522 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			522 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
| //== Store.cpp - Interface for maps from Locations to Values ----*- C++ -*--==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defined the types Store and StoreManager.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
 | |
| #include "clang/AST/CXXInheritance.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/AST/DeclObjC.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace ento;
 | |
| 
 | |
| StoreManager::StoreManager(ProgramStateManager &stateMgr)
 | |
|   : svalBuilder(stateMgr.getSValBuilder()), StateMgr(stateMgr),
 | |
|     MRMgr(svalBuilder.getRegionManager()), Ctx(stateMgr.getContext()) {}
 | |
| 
 | |
| StoreRef StoreManager::enterStackFrame(Store OldStore,
 | |
|                                        const CallEvent &Call,
 | |
|                                        const StackFrameContext *LCtx) {
 | |
|   StoreRef Store = StoreRef(OldStore, *this);
 | |
| 
 | |
|   SmallVector<CallEvent::FrameBindingTy, 16> InitialBindings;
 | |
|   Call.getInitialStackFrameContents(LCtx, InitialBindings);
 | |
| 
 | |
|   for (CallEvent::BindingsTy::iterator I = InitialBindings.begin(),
 | |
|                                        E = InitialBindings.end();
 | |
|        I != E; ++I) {
 | |
|     Store = Bind(Store.getStore(), I->first, I->second);
 | |
|   }
 | |
| 
 | |
|   return Store;
 | |
| }
 | |
| 
 | |
| const MemRegion *StoreManager::MakeElementRegion(const MemRegion *Base,
 | |
|                                               QualType EleTy, uint64_t index) {
 | |
|   NonLoc idx = svalBuilder.makeArrayIndex(index);
 | |
|   return MRMgr.getElementRegion(EleTy, idx, Base, svalBuilder.getContext());
 | |
| }
 | |
| 
 | |
| // FIXME: Merge with the implementation of the same method in MemRegion.cpp
 | |
| static bool IsCompleteType(ASTContext &Ctx, QualType Ty) {
 | |
|   if (const RecordType *RT = Ty->getAs<RecordType>()) {
 | |
|     const RecordDecl *D = RT->getDecl();
 | |
|     if (!D->getDefinition())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| StoreRef StoreManager::BindDefault(Store store, const MemRegion *R, SVal V) {
 | |
|   return StoreRef(store, *this);
 | |
| }
 | |
| 
 | |
| const ElementRegion *StoreManager::GetElementZeroRegion(const MemRegion *R, 
 | |
|                                                         QualType T) {
 | |
|   NonLoc idx = svalBuilder.makeZeroArrayIndex();
 | |
|   assert(!T.isNull());
 | |
|   return MRMgr.getElementRegion(T, idx, R, Ctx);
 | |
| }
 | |
| 
 | |
| const MemRegion *StoreManager::castRegion(const MemRegion *R, QualType CastToTy) {
 | |
| 
 | |
|   ASTContext &Ctx = StateMgr.getContext();
 | |
| 
 | |
|   // Handle casts to Objective-C objects.
 | |
|   if (CastToTy->isObjCObjectPointerType())
 | |
|     return R->StripCasts();
 | |
| 
 | |
|   if (CastToTy->isBlockPointerType()) {
 | |
|     // FIXME: We may need different solutions, depending on the symbol
 | |
|     // involved.  Blocks can be casted to/from 'id', as they can be treated
 | |
|     // as Objective-C objects.  This could possibly be handled by enhancing
 | |
|     // our reasoning of downcasts of symbolic objects.
 | |
|     if (isa<CodeTextRegion>(R) || isa<SymbolicRegion>(R))
 | |
|       return R;
 | |
| 
 | |
|     // We don't know what to make of it.  Return a NULL region, which
 | |
|     // will be interpretted as UnknownVal.
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Now assume we are casting from pointer to pointer. Other cases should
 | |
|   // already be handled.
 | |
|   QualType PointeeTy = CastToTy->getPointeeType();
 | |
|   QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
 | |
| 
 | |
|   // Handle casts to void*.  We just pass the region through.
 | |
|   if (CanonPointeeTy.getLocalUnqualifiedType() == Ctx.VoidTy)
 | |
|     return R;
 | |
| 
 | |
|   // Handle casts from compatible types.
 | |
|   if (R->isBoundable())
 | |
|     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
 | |
|       QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
 | |
|       if (CanonPointeeTy == ObjTy)
 | |
|         return R;
 | |
|     }
 | |
| 
 | |
|   // Process region cast according to the kind of the region being cast.
 | |
|   switch (R->getKind()) {
 | |
|     case MemRegion::CXXThisRegionKind:
 | |
|     case MemRegion::GenericMemSpaceRegionKind:
 | |
|     case MemRegion::StackLocalsSpaceRegionKind:
 | |
|     case MemRegion::StackArgumentsSpaceRegionKind:
 | |
|     case MemRegion::HeapSpaceRegionKind:
 | |
|     case MemRegion::UnknownSpaceRegionKind:
 | |
|     case MemRegion::StaticGlobalSpaceRegionKind:
 | |
|     case MemRegion::GlobalInternalSpaceRegionKind:
 | |
|     case MemRegion::GlobalSystemSpaceRegionKind:
 | |
|     case MemRegion::GlobalImmutableSpaceRegionKind: {
 | |
|       llvm_unreachable("Invalid region cast");
 | |
|     }
 | |
| 
 | |
|     case MemRegion::FunctionTextRegionKind:
 | |
|     case MemRegion::BlockTextRegionKind:
 | |
|     case MemRegion::BlockDataRegionKind:
 | |
|     case MemRegion::StringRegionKind:
 | |
|       // FIXME: Need to handle arbitrary downcasts.
 | |
|     case MemRegion::SymbolicRegionKind:
 | |
|     case MemRegion::AllocaRegionKind:
 | |
|     case MemRegion::CompoundLiteralRegionKind:
 | |
|     case MemRegion::FieldRegionKind:
 | |
|     case MemRegion::ObjCIvarRegionKind:
 | |
|     case MemRegion::ObjCStringRegionKind:
 | |
|     case MemRegion::VarRegionKind:
 | |
|     case MemRegion::CXXTempObjectRegionKind:
 | |
|     case MemRegion::CXXBaseObjectRegionKind:
 | |
|       return MakeElementRegion(R, PointeeTy);
 | |
| 
 | |
|     case MemRegion::ElementRegionKind: {
 | |
|       // If we are casting from an ElementRegion to another type, the
 | |
|       // algorithm is as follows:
 | |
|       //
 | |
|       // (1) Compute the "raw offset" of the ElementRegion from the
 | |
|       //     base region.  This is done by calling 'getAsRawOffset()'.
 | |
|       //
 | |
|       // (2a) If we get a 'RegionRawOffset' after calling
 | |
|       //      'getAsRawOffset()', determine if the absolute offset
 | |
|       //      can be exactly divided into chunks of the size of the
 | |
|       //      casted-pointee type.  If so, create a new ElementRegion with
 | |
|       //      the pointee-cast type as the new ElementType and the index
 | |
|       //      being the offset divded by the chunk size.  If not, create
 | |
|       //      a new ElementRegion at offset 0 off the raw offset region.
 | |
|       //
 | |
|       // (2b) If we don't a get a 'RegionRawOffset' after calling
 | |
|       //      'getAsRawOffset()', it means that we are at offset 0.
 | |
|       //
 | |
|       // FIXME: Handle symbolic raw offsets.
 | |
| 
 | |
|       const ElementRegion *elementR = cast<ElementRegion>(R);
 | |
|       const RegionRawOffset &rawOff = elementR->getAsArrayOffset();
 | |
|       const MemRegion *baseR = rawOff.getRegion();
 | |
| 
 | |
|       // If we cannot compute a raw offset, throw up our hands and return
 | |
|       // a NULL MemRegion*.
 | |
|       if (!baseR)
 | |
|         return nullptr;
 | |
| 
 | |
|       CharUnits off = rawOff.getOffset();
 | |
| 
 | |
|       if (off.isZero()) {
 | |
|         // Edge case: we are at 0 bytes off the beginning of baseR.  We
 | |
|         // check to see if type we are casting to is the same as the base
 | |
|         // region.  If so, just return the base region.
 | |
|         if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(baseR)) {
 | |
|           QualType ObjTy = Ctx.getCanonicalType(TR->getValueType());
 | |
|           QualType CanonPointeeTy = Ctx.getCanonicalType(PointeeTy);
 | |
|           if (CanonPointeeTy == ObjTy)
 | |
|             return baseR;
 | |
|         }
 | |
| 
 | |
|         // Otherwise, create a new ElementRegion at offset 0.
 | |
|         return MakeElementRegion(baseR, PointeeTy);
 | |
|       }
 | |
| 
 | |
|       // We have a non-zero offset from the base region.  We want to determine
 | |
|       // if the offset can be evenly divided by sizeof(PointeeTy).  If so,
 | |
|       // we create an ElementRegion whose index is that value.  Otherwise, we
 | |
|       // create two ElementRegions, one that reflects a raw offset and the other
 | |
|       // that reflects the cast.
 | |
| 
 | |
|       // Compute the index for the new ElementRegion.
 | |
|       int64_t newIndex = 0;
 | |
|       const MemRegion *newSuperR = nullptr;
 | |
| 
 | |
|       // We can only compute sizeof(PointeeTy) if it is a complete type.
 | |
|       if (IsCompleteType(Ctx, PointeeTy)) {
 | |
|         // Compute the size in **bytes**.
 | |
|         CharUnits pointeeTySize = Ctx.getTypeSizeInChars(PointeeTy);
 | |
|         if (!pointeeTySize.isZero()) {
 | |
|           // Is the offset a multiple of the size?  If so, we can layer the
 | |
|           // ElementRegion (with elementType == PointeeTy) directly on top of
 | |
|           // the base region.
 | |
|           if (off % pointeeTySize == 0) {
 | |
|             newIndex = off / pointeeTySize;
 | |
|             newSuperR = baseR;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!newSuperR) {
 | |
|         // Create an intermediate ElementRegion to represent the raw byte.
 | |
|         // This will be the super region of the final ElementRegion.
 | |
|         newSuperR = MakeElementRegion(baseR, Ctx.CharTy, off.getQuantity());
 | |
|       }
 | |
| 
 | |
|       return MakeElementRegion(newSuperR, PointeeTy, newIndex);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unreachable");
 | |
| }
 | |
| 
 | |
| static bool regionMatchesCXXRecordType(SVal V, QualType Ty) {
 | |
|   const MemRegion *MR = V.getAsRegion();
 | |
|   if (!MR)
 | |
|     return true;
 | |
| 
 | |
|   const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
 | |
|   if (!TVR)
 | |
|     return true;
 | |
| 
 | |
|   const CXXRecordDecl *RD = TVR->getValueType()->getAsCXXRecordDecl();
 | |
|   if (!RD)
 | |
|     return true;
 | |
| 
 | |
|   const CXXRecordDecl *Expected = Ty->getPointeeCXXRecordDecl();
 | |
|   if (!Expected)
 | |
|     Expected = Ty->getAsCXXRecordDecl();
 | |
| 
 | |
|   return Expected->getCanonicalDecl() == RD->getCanonicalDecl();
 | |
| }
 | |
| 
 | |
| SVal StoreManager::evalDerivedToBase(SVal Derived, const CastExpr *Cast) {
 | |
|   // Sanity check to avoid doing the wrong thing in the face of
 | |
|   // reinterpret_cast.
 | |
|   if (!regionMatchesCXXRecordType(Derived, Cast->getSubExpr()->getType()))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Walk through the cast path to create nested CXXBaseRegions.
 | |
|   SVal Result = Derived;
 | |
|   for (CastExpr::path_const_iterator I = Cast->path_begin(),
 | |
|                                      E = Cast->path_end();
 | |
|        I != E; ++I) {
 | |
|     Result = evalDerivedToBase(Result, (*I)->getType(), (*I)->isVirtual());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SVal StoreManager::evalDerivedToBase(SVal Derived, const CXXBasePath &Path) {
 | |
|   // Walk through the path to create nested CXXBaseRegions.
 | |
|   SVal Result = Derived;
 | |
|   for (CXXBasePath::const_iterator I = Path.begin(), E = Path.end();
 | |
|        I != E; ++I) {
 | |
|     Result = evalDerivedToBase(Result, I->Base->getType(),
 | |
|                                I->Base->isVirtual());
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SVal StoreManager::evalDerivedToBase(SVal Derived, QualType BaseType,
 | |
|                                      bool IsVirtual) {
 | |
|   Optional<loc::MemRegionVal> DerivedRegVal =
 | |
|       Derived.getAs<loc::MemRegionVal>();
 | |
|   if (!DerivedRegVal)
 | |
|     return Derived;
 | |
| 
 | |
|   const CXXRecordDecl *BaseDecl = BaseType->getPointeeCXXRecordDecl();
 | |
|   if (!BaseDecl)
 | |
|     BaseDecl = BaseType->getAsCXXRecordDecl();
 | |
|   assert(BaseDecl && "not a C++ object?");
 | |
| 
 | |
|   const MemRegion *BaseReg =
 | |
|     MRMgr.getCXXBaseObjectRegion(BaseDecl, DerivedRegVal->getRegion(),
 | |
|                                  IsVirtual);
 | |
| 
 | |
|   return loc::MemRegionVal(BaseReg);
 | |
| }
 | |
| 
 | |
| /// Returns the static type of the given region, if it represents a C++ class
 | |
| /// object.
 | |
| ///
 | |
| /// This handles both fully-typed regions, where the dynamic type is known, and
 | |
| /// symbolic regions, where the dynamic type is merely bounded (and even then,
 | |
| /// only ostensibly!), but does not take advantage of any dynamic type info.
 | |
| static const CXXRecordDecl *getCXXRecordType(const MemRegion *MR) {
 | |
|   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR))
 | |
|     return TVR->getValueType()->getAsCXXRecordDecl();
 | |
|   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(MR))
 | |
|     return SR->getSymbol()->getType()->getPointeeCXXRecordDecl();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| SVal StoreManager::evalDynamicCast(SVal Base, QualType TargetType,
 | |
|                                    bool &Failed) {
 | |
|   Failed = false;
 | |
| 
 | |
|   const MemRegion *MR = Base.getAsRegion();
 | |
|   if (!MR)
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Assume the derived class is a pointer or a reference to a CXX record.
 | |
|   TargetType = TargetType->getPointeeType();
 | |
|   assert(!TargetType.isNull());
 | |
|   const CXXRecordDecl *TargetClass = TargetType->getAsCXXRecordDecl();
 | |
|   if (!TargetClass && !TargetType->isVoidType())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Drill down the CXXBaseObject chains, which represent upcasts (casts from
 | |
|   // derived to base).
 | |
|   while (const CXXRecordDecl *MRClass = getCXXRecordType(MR)) {
 | |
|     // If found the derived class, the cast succeeds.
 | |
|     if (MRClass == TargetClass)
 | |
|       return loc::MemRegionVal(MR);
 | |
| 
 | |
|     // We skip over incomplete types. They must be the result of an earlier
 | |
|     // reinterpret_cast, as one can only dynamic_cast between types in the same
 | |
|     // class hierarchy.
 | |
|     if (!TargetType->isVoidType() && MRClass->hasDefinition()) {
 | |
|       // Static upcasts are marked as DerivedToBase casts by Sema, so this will
 | |
|       // only happen when multiple or virtual inheritance is involved.
 | |
|       CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
 | |
|                          /*DetectVirtual=*/false);
 | |
|       if (MRClass->isDerivedFrom(TargetClass, Paths))
 | |
|         return evalDerivedToBase(loc::MemRegionVal(MR), Paths.front());
 | |
|     }
 | |
| 
 | |
|     if (const CXXBaseObjectRegion *BaseR = dyn_cast<CXXBaseObjectRegion>(MR)) {
 | |
|       // Drill down the chain to get the derived classes.
 | |
|       MR = BaseR->getSuperRegion();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a cast to void*, return the region.
 | |
|     if (TargetType->isVoidType())
 | |
|       return loc::MemRegionVal(MR);
 | |
| 
 | |
|     // Strange use of reinterpret_cast can give us paths we don't reason
 | |
|     // about well, by putting in ElementRegions where we'd expect
 | |
|     // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
 | |
|     // derived class has a zero offset from the base class), then it's safe
 | |
|     // to strip the cast; if it's invalid, -Wreinterpret-base-class should
 | |
|     // catch it. In the interest of performance, the analyzer will silently
 | |
|     // do the wrong thing in the invalid case (because offsets for subregions
 | |
|     // will be wrong).
 | |
|     const MemRegion *Uncasted = MR->StripCasts(/*IncludeBaseCasts=*/false);
 | |
|     if (Uncasted == MR) {
 | |
|       // We reached the bottom of the hierarchy and did not find the derived
 | |
|       // class. We we must be casting the base to derived, so the cast should
 | |
|       // fail.
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     MR = Uncasted;
 | |
|   }
 | |
| 
 | |
|   // We failed if the region we ended up with has perfect type info.
 | |
|   Failed = isa<TypedValueRegion>(MR);
 | |
|   return UnknownVal();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CastRetrievedVal - Used by subclasses of StoreManager to implement
 | |
| ///  implicit casts that arise from loads from regions that are reinterpreted
 | |
| ///  as another region.
 | |
| SVal StoreManager::CastRetrievedVal(SVal V, const TypedValueRegion *R,
 | |
|                                     QualType castTy, bool performTestOnly) {
 | |
|   
 | |
|   if (castTy.isNull() || V.isUnknownOrUndef())
 | |
|     return V;
 | |
|   
 | |
|   ASTContext &Ctx = svalBuilder.getContext();
 | |
| 
 | |
|   if (performTestOnly) {  
 | |
|     // Automatically translate references to pointers.
 | |
|     QualType T = R->getValueType();
 | |
|     if (const ReferenceType *RT = T->getAs<ReferenceType>())
 | |
|       T = Ctx.getPointerType(RT->getPointeeType());
 | |
|     
 | |
|     assert(svalBuilder.getContext().hasSameUnqualifiedType(castTy, T));
 | |
|     return V;
 | |
|   }
 | |
|   
 | |
|   return svalBuilder.dispatchCast(V, castTy);
 | |
| }
 | |
| 
 | |
| SVal StoreManager::getLValueFieldOrIvar(const Decl *D, SVal Base) {
 | |
|   if (Base.isUnknownOrUndef())
 | |
|     return Base;
 | |
| 
 | |
|   Loc BaseL = Base.castAs<Loc>();
 | |
|   const MemRegion* BaseR = nullptr;
 | |
| 
 | |
|   switch (BaseL.getSubKind()) {
 | |
|   case loc::MemRegionKind:
 | |
|     BaseR = BaseL.castAs<loc::MemRegionVal>().getRegion();
 | |
|     break;
 | |
| 
 | |
|   case loc::GotoLabelKind:
 | |
|     // These are anormal cases. Flag an undefined value.
 | |
|     return UndefinedVal();
 | |
| 
 | |
|   case loc::ConcreteIntKind:
 | |
|     // While these seem funny, this can happen through casts.
 | |
|     // FIXME: What we should return is the field offset.  For example,
 | |
|     //  add the field offset to the integer value.  That way funny things
 | |
|     //  like this work properly:  &(((struct foo *) 0xa)->f)
 | |
|     return Base;
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled Base.");
 | |
|   }
 | |
| 
 | |
|   // NOTE: We must have this check first because ObjCIvarDecl is a subclass
 | |
|   // of FieldDecl.
 | |
|   if (const ObjCIvarDecl *ID = dyn_cast<ObjCIvarDecl>(D))
 | |
|     return loc::MemRegionVal(MRMgr.getObjCIvarRegion(ID, BaseR));
 | |
| 
 | |
|   return loc::MemRegionVal(MRMgr.getFieldRegion(cast<FieldDecl>(D), BaseR));
 | |
| }
 | |
| 
 | |
| SVal StoreManager::getLValueIvar(const ObjCIvarDecl *decl, SVal base) {
 | |
|   return getLValueFieldOrIvar(decl, base);
 | |
| }
 | |
| 
 | |
| SVal StoreManager::getLValueElement(QualType elementType, NonLoc Offset, 
 | |
|                                     SVal Base) {
 | |
| 
 | |
|   // If the base is an unknown or undefined value, just return it back.
 | |
|   // FIXME: For absolute pointer addresses, we just return that value back as
 | |
|   //  well, although in reality we should return the offset added to that
 | |
|   //  value.
 | |
|   if (Base.isUnknownOrUndef() || Base.getAs<loc::ConcreteInt>())
 | |
|     return Base;
 | |
| 
 | |
|   const MemRegion* BaseRegion = Base.castAs<loc::MemRegionVal>().getRegion();
 | |
| 
 | |
|   // Pointer of any type can be cast and used as array base.
 | |
|   const ElementRegion *ElemR = dyn_cast<ElementRegion>(BaseRegion);
 | |
| 
 | |
|   // Convert the offset to the appropriate size and signedness.
 | |
|   Offset = svalBuilder.convertToArrayIndex(Offset).castAs<NonLoc>();
 | |
| 
 | |
|   if (!ElemR) {
 | |
|     //
 | |
|     // If the base region is not an ElementRegion, create one.
 | |
|     // This can happen in the following example:
 | |
|     //
 | |
|     //   char *p = __builtin_alloc(10);
 | |
|     //   p[1] = 8;
 | |
|     //
 | |
|     //  Observe that 'p' binds to an AllocaRegion.
 | |
|     //
 | |
|     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
 | |
|                                                     BaseRegion, Ctx));
 | |
|   }
 | |
| 
 | |
|   SVal BaseIdx = ElemR->getIndex();
 | |
| 
 | |
|   if (!BaseIdx.getAs<nonloc::ConcreteInt>())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   const llvm::APSInt &BaseIdxI =
 | |
|       BaseIdx.castAs<nonloc::ConcreteInt>().getValue();
 | |
| 
 | |
|   // Only allow non-integer offsets if the base region has no offset itself.
 | |
|   // FIXME: This is a somewhat arbitrary restriction. We should be using
 | |
|   // SValBuilder here to add the two offsets without checking their types.
 | |
|   if (!Offset.getAs<nonloc::ConcreteInt>()) {
 | |
|     if (isa<ElementRegion>(BaseRegion->StripCasts()))
 | |
|       return UnknownVal();
 | |
| 
 | |
|     return loc::MemRegionVal(MRMgr.getElementRegion(elementType, Offset,
 | |
|                                                     ElemR->getSuperRegion(),
 | |
|                                                     Ctx));
 | |
|   }
 | |
| 
 | |
|   const llvm::APSInt& OffI = Offset.castAs<nonloc::ConcreteInt>().getValue();
 | |
|   assert(BaseIdxI.isSigned());
 | |
| 
 | |
|   // Compute the new index.
 | |
|   nonloc::ConcreteInt NewIdx(svalBuilder.getBasicValueFactory().getValue(BaseIdxI +
 | |
|                                                                     OffI));
 | |
| 
 | |
|   // Construct the new ElementRegion.
 | |
|   const MemRegion *ArrayR = ElemR->getSuperRegion();
 | |
|   return loc::MemRegionVal(MRMgr.getElementRegion(elementType, NewIdx, ArrayR,
 | |
|                                                   Ctx));
 | |
| }
 | |
| 
 | |
| StoreManager::BindingsHandler::~BindingsHandler() {}
 | |
| 
 | |
| bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager& SMgr,
 | |
|                                                     Store store,
 | |
|                                                     const MemRegion* R,
 | |
|                                                     SVal val) {
 | |
|   SymbolRef SymV = val.getAsLocSymbol();
 | |
|   if (!SymV || SymV != Sym)
 | |
|     return true;
 | |
| 
 | |
|   if (Binding) {
 | |
|     First = false;
 | |
|     return false;
 | |
|   }
 | |
|   else
 | |
|     Binding = R;
 | |
| 
 | |
|   return true;
 | |
| }
 |