1334 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1334 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Loops should be simplified before this analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/BranchProbabilityInfo.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <map>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "branch-prob"
 | 
						|
 | 
						|
static cl::opt<bool> PrintBranchProb(
 | 
						|
    "print-bpi", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Print the branch probability info."));
 | 
						|
 | 
						|
cl::opt<std::string> PrintBranchProbFuncName(
 | 
						|
    "print-bpi-func-name", cl::Hidden,
 | 
						|
    cl::desc("The option to specify the name of the function "
 | 
						|
             "whose branch probability info is printed."));
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
 | 
						|
                      "Branch Probability Analysis", false, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
 | 
						|
                    "Branch Probability Analysis", false, true)
 | 
						|
 | 
						|
BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
 | 
						|
    : FunctionPass(ID) {
 | 
						|
  initializeBranchProbabilityInfoWrapperPassPass(
 | 
						|
      *PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
char BranchProbabilityInfoWrapperPass::ID = 0;
 | 
						|
 | 
						|
// Weights are for internal use only. They are used by heuristics to help to
 | 
						|
// estimate edges' probability. Example:
 | 
						|
//
 | 
						|
// Using "Loop Branch Heuristics" we predict weights of edges for the
 | 
						|
// block BB2.
 | 
						|
//         ...
 | 
						|
//          |
 | 
						|
//          V
 | 
						|
//         BB1<-+
 | 
						|
//          |   |
 | 
						|
//          |   | (Weight = 124)
 | 
						|
//          V   |
 | 
						|
//         BB2--+
 | 
						|
//          |
 | 
						|
//          | (Weight = 4)
 | 
						|
//          V
 | 
						|
//         BB3
 | 
						|
//
 | 
						|
// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
 | 
						|
// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
 | 
						|
static const uint32_t LBH_TAKEN_WEIGHT = 124;
 | 
						|
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
 | 
						|
 | 
						|
/// Unreachable-terminating branch taken probability.
 | 
						|
///
 | 
						|
/// This is the probability for a branch being taken to a block that terminates
 | 
						|
/// (eventually) in unreachable. These are predicted as unlikely as possible.
 | 
						|
/// All reachable probability will proportionally share the remaining part.
 | 
						|
static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
 | 
						|
 | 
						|
/// Heuristics and lookup tables for non-loop branches:
 | 
						|
/// Pointer Heuristics (PH)
 | 
						|
static const uint32_t PH_TAKEN_WEIGHT = 20;
 | 
						|
static const uint32_t PH_NONTAKEN_WEIGHT = 12;
 | 
						|
static const BranchProbability
 | 
						|
    PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
 | 
						|
static const BranchProbability
 | 
						|
    PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
 | 
						|
 | 
						|
using ProbabilityList = SmallVector<BranchProbability>;
 | 
						|
using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
 | 
						|
 | 
						|
/// Pointer comparisons:
 | 
						|
static const ProbabilityTable PointerTable{
 | 
						|
    {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
 | 
						|
    {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
 | 
						|
};
 | 
						|
 | 
						|
/// Zero Heuristics (ZH)
 | 
						|
static const uint32_t ZH_TAKEN_WEIGHT = 20;
 | 
						|
static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
 | 
						|
static const BranchProbability
 | 
						|
    ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
 | 
						|
static const BranchProbability
 | 
						|
    ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
 | 
						|
 | 
						|
/// Integer compares with 0:
 | 
						|
static const ProbabilityTable ICmpWithZeroTable{
 | 
						|
    {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == 0 -> Unlikely
 | 
						|
    {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != 0 -> Likely
 | 
						|
    {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0  -> Unlikely
 | 
						|
    {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0  -> Likely
 | 
						|
};
 | 
						|
 | 
						|
/// Integer compares with -1:
 | 
						|
static const ProbabilityTable ICmpWithMinusOneTable{
 | 
						|
    {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},  /// X == -1 -> Unlikely
 | 
						|
    {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},  /// X != -1 -> Likely
 | 
						|
    // InstCombine canonicalizes X >= 0 into X > -1
 | 
						|
    {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0  -> Likely
 | 
						|
};
 | 
						|
 | 
						|
/// Integer compares with 1:
 | 
						|
static const ProbabilityTable ICmpWithOneTable{
 | 
						|
    // InstCombine canonicalizes X <= 0 into X < 1
 | 
						|
    {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
 | 
						|
};
 | 
						|
 | 
						|
/// strcmp and similar functions return zero, negative, or positive, if the
 | 
						|
/// first string is equal, less, or greater than the second. We consider it
 | 
						|
/// likely that the strings are not equal, so a comparison with zero is
 | 
						|
/// probably false, but also a comparison with any other number is also
 | 
						|
/// probably false given that what exactly is returned for nonzero values is
 | 
						|
/// not specified. Any kind of comparison other than equality we know
 | 
						|
/// nothing about.
 | 
						|
static const ProbabilityTable ICmpWithLibCallTable{
 | 
						|
    {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
 | 
						|
    {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
 | 
						|
};
 | 
						|
 | 
						|
// Floating-Point Heuristics (FPH)
 | 
						|
static const uint32_t FPH_TAKEN_WEIGHT = 20;
 | 
						|
static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
 | 
						|
 | 
						|
/// This is the probability for an ordered floating point comparison.
 | 
						|
static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
 | 
						|
/// This is the probability for an unordered floating point comparison, it means
 | 
						|
/// one or two of the operands are NaN. Usually it is used to test for an
 | 
						|
/// exceptional case, so the result is unlikely.
 | 
						|
static const uint32_t FPH_UNO_WEIGHT = 1;
 | 
						|
 | 
						|
static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
 | 
						|
                                              FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
 | 
						|
static const BranchProbability
 | 
						|
    FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
 | 
						|
static const BranchProbability
 | 
						|
    FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
 | 
						|
static const BranchProbability
 | 
						|
    FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
 | 
						|
 | 
						|
/// Floating-Point compares:
 | 
						|
static const ProbabilityTable FCmpTable{
 | 
						|
    {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
 | 
						|
    {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
 | 
						|
};
 | 
						|
 | 
						|
/// Set of dedicated "absolute" execution weights for a block. These weights are
 | 
						|
/// meaningful relative to each other and their derivatives only.
 | 
						|
enum class BlockExecWeight : std::uint32_t {
 | 
						|
  /// Special weight used for cases with exact zero probability.
 | 
						|
  ZERO = 0x0,
 | 
						|
  /// Minimal possible non zero weight.
 | 
						|
  LOWEST_NON_ZERO = 0x1,
 | 
						|
  /// Weight to an 'unreachable' block.
 | 
						|
  UNREACHABLE = ZERO,
 | 
						|
  /// Weight to a block containing non returning call.
 | 
						|
  NORETURN = LOWEST_NON_ZERO,
 | 
						|
  /// Weight to 'unwind' block of an invoke instruction.
 | 
						|
  UNWIND = LOWEST_NON_ZERO,
 | 
						|
  /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
 | 
						|
  /// with attribute 'cold'.
 | 
						|
  COLD = 0xffff,
 | 
						|
  /// Default weight is used in cases when there is no dedicated execution
 | 
						|
  /// weight set. It is not propagated through the domination line either.
 | 
						|
  DEFAULT = 0xfffff
 | 
						|
};
 | 
						|
 | 
						|
BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
 | 
						|
  // Record SCC numbers of blocks in the CFG to identify irreducible loops.
 | 
						|
  // FIXME: We could only calculate this if the CFG is known to be irreducible
 | 
						|
  // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
 | 
						|
  int SccNum = 0;
 | 
						|
  for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
 | 
						|
       ++It, ++SccNum) {
 | 
						|
    // Ignore single-block SCCs since they either aren't loops or LoopInfo will
 | 
						|
    // catch them.
 | 
						|
    const std::vector<const BasicBlock *> &Scc = *It;
 | 
						|
    if (Scc.size() == 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
 | 
						|
    for (const auto *BB : Scc) {
 | 
						|
      LLVM_DEBUG(dbgs() << " " << BB->getName());
 | 
						|
      SccNums[BB] = SccNum;
 | 
						|
      calculateSccBlockType(BB, SccNum);
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
 | 
						|
  auto SccIt = SccNums.find(BB);
 | 
						|
  if (SccIt == SccNums.end())
 | 
						|
    return -1;
 | 
						|
  return SccIt->second;
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
 | 
						|
    int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
 | 
						|
 | 
						|
  for (auto MapIt : SccBlocks[SccNum]) {
 | 
						|
    const auto *BB = MapIt.first;
 | 
						|
    if (isSCCHeader(BB, SccNum))
 | 
						|
      for (const auto *Pred : predecessors(BB))
 | 
						|
        if (getSCCNum(Pred) != SccNum)
 | 
						|
          Enters.push_back(const_cast<BasicBlock *>(BB));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
 | 
						|
    int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
 | 
						|
  for (auto MapIt : SccBlocks[SccNum]) {
 | 
						|
    const auto *BB = MapIt.first;
 | 
						|
    if (isSCCExitingBlock(BB, SccNum))
 | 
						|
      for (const auto *Succ : successors(BB))
 | 
						|
        if (getSCCNum(Succ) != SccNum)
 | 
						|
          Exits.push_back(const_cast<BasicBlock *>(Succ));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
 | 
						|
                                                         int SccNum) const {
 | 
						|
  assert(getSCCNum(BB) == SccNum);
 | 
						|
 | 
						|
  assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
 | 
						|
  const auto &SccBlockTypes = SccBlocks[SccNum];
 | 
						|
 | 
						|
  auto It = SccBlockTypes.find(BB);
 | 
						|
  if (It != SccBlockTypes.end()) {
 | 
						|
    return It->second;
 | 
						|
  }
 | 
						|
  return Inner;
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
 | 
						|
                                                           int SccNum) {
 | 
						|
  assert(getSCCNum(BB) == SccNum);
 | 
						|
  uint32_t BlockType = Inner;
 | 
						|
 | 
						|
  if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
 | 
						|
        // Consider any block that is an entry point to the SCC as
 | 
						|
        // a header.
 | 
						|
        return getSCCNum(Pred) != SccNum;
 | 
						|
      }))
 | 
						|
    BlockType |= Header;
 | 
						|
 | 
						|
  if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
 | 
						|
        return getSCCNum(Succ) != SccNum;
 | 
						|
      }))
 | 
						|
    BlockType |= Exiting;
 | 
						|
 | 
						|
  // Lazily compute the set of headers for a given SCC and cache the results
 | 
						|
  // in the SccHeaderMap.
 | 
						|
  if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
 | 
						|
    SccBlocks.resize(SccNum + 1);
 | 
						|
  auto &SccBlockTypes = SccBlocks[SccNum];
 | 
						|
 | 
						|
  if (BlockType != Inner) {
 | 
						|
    bool IsInserted;
 | 
						|
    std::tie(std::ignore, IsInserted) =
 | 
						|
        SccBlockTypes.insert(std::make_pair(BB, BlockType));
 | 
						|
    assert(IsInserted && "Duplicated block in SCC");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
 | 
						|
                                            const LoopInfo &LI,
 | 
						|
                                            const SccInfo &SccI)
 | 
						|
    : BB(BB) {
 | 
						|
  LD.first = LI.getLoopFor(BB);
 | 
						|
  if (!LD.first) {
 | 
						|
    LD.second = SccI.getSCCNum(BB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
 | 
						|
  const auto &SrcBlock = Edge.first;
 | 
						|
  const auto &DstBlock = Edge.second;
 | 
						|
  return (DstBlock.getLoop() &&
 | 
						|
          !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
 | 
						|
         // Assume that SCCs can't be nested.
 | 
						|
         (DstBlock.getSccNum() != -1 &&
 | 
						|
          SrcBlock.getSccNum() != DstBlock.getSccNum());
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
 | 
						|
  return isLoopEnteringEdge({Edge.second, Edge.first});
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
 | 
						|
    const LoopEdge &Edge) const {
 | 
						|
  return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
 | 
						|
  const auto &SrcBlock = Edge.first;
 | 
						|
  const auto &DstBlock = Edge.second;
 | 
						|
  return SrcBlock.belongsToSameLoop(DstBlock) &&
 | 
						|
         ((DstBlock.getLoop() &&
 | 
						|
           DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
 | 
						|
          (DstBlock.getSccNum() != -1 &&
 | 
						|
           SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::getLoopEnterBlocks(
 | 
						|
    const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
 | 
						|
  if (LB.getLoop()) {
 | 
						|
    auto *Header = LB.getLoop()->getHeader();
 | 
						|
    Enters.append(pred_begin(Header), pred_end(Header));
 | 
						|
  } else {
 | 
						|
    assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
 | 
						|
    SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::getLoopExitBlocks(
 | 
						|
    const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
 | 
						|
  if (LB.getLoop()) {
 | 
						|
    LB.getLoop()->getExitBlocks(Exits);
 | 
						|
  } else {
 | 
						|
    assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
 | 
						|
    SccI->getSccExitBlocks(LB.getSccNum(), Exits);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Propagate existing explicit probabilities from either profile data or
 | 
						|
// 'expect' intrinsic processing. Examine metadata against unreachable
 | 
						|
// heuristic. The probability of the edge coming to unreachable block is
 | 
						|
// set to min of metadata and unreachable heuristic.
 | 
						|
bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
 | 
						|
  const Instruction *TI = BB->getTerminator();
 | 
						|
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
 | 
						|
  if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
 | 
						|
        isa<InvokeInst>(TI)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
 | 
						|
  if (!WeightsNode)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the number of successors is manageable.
 | 
						|
  assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
 | 
						|
 | 
						|
  // Ensure there are weights for all of the successors. Note that the first
 | 
						|
  // operand to the metadata node is a name, not a weight.
 | 
						|
  if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Build up the final weights that will be used in a temporary buffer.
 | 
						|
  // Compute the sum of all weights to later decide whether they need to
 | 
						|
  // be scaled to fit in 32 bits.
 | 
						|
  uint64_t WeightSum = 0;
 | 
						|
  SmallVector<uint32_t, 2> Weights;
 | 
						|
  SmallVector<unsigned, 2> UnreachableIdxs;
 | 
						|
  SmallVector<unsigned, 2> ReachableIdxs;
 | 
						|
  Weights.reserve(TI->getNumSuccessors());
 | 
						|
  for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
 | 
						|
    ConstantInt *Weight =
 | 
						|
        mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
 | 
						|
    if (!Weight)
 | 
						|
      return false;
 | 
						|
    assert(Weight->getValue().getActiveBits() <= 32 &&
 | 
						|
           "Too many bits for uint32_t");
 | 
						|
    Weights.push_back(Weight->getZExtValue());
 | 
						|
    WeightSum += Weights.back();
 | 
						|
    const LoopBlock SrcLoopBB = getLoopBlock(BB);
 | 
						|
    const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1));
 | 
						|
    auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
 | 
						|
    if (EstimatedWeight &&
 | 
						|
        EstimatedWeight.getValue() <=
 | 
						|
            static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
 | 
						|
      UnreachableIdxs.push_back(I - 1);
 | 
						|
    else
 | 
						|
      ReachableIdxs.push_back(I - 1);
 | 
						|
  }
 | 
						|
  assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
 | 
						|
 | 
						|
  // If the sum of weights does not fit in 32 bits, scale every weight down
 | 
						|
  // accordingly.
 | 
						|
  uint64_t ScalingFactor =
 | 
						|
      (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
 | 
						|
 | 
						|
  if (ScalingFactor > 1) {
 | 
						|
    WeightSum = 0;
 | 
						|
    for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
 | 
						|
      Weights[I] /= ScalingFactor;
 | 
						|
      WeightSum += Weights[I];
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(WeightSum <= UINT32_MAX &&
 | 
						|
         "Expected weights to scale down to 32 bits");
 | 
						|
 | 
						|
  if (WeightSum == 0 || ReachableIdxs.size() == 0) {
 | 
						|
    for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
 | 
						|
      Weights[I] = 1;
 | 
						|
    WeightSum = TI->getNumSuccessors();
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the probability.
 | 
						|
  SmallVector<BranchProbability, 2> BP;
 | 
						|
  for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
 | 
						|
    BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
 | 
						|
 | 
						|
  // Examine the metadata against unreachable heuristic.
 | 
						|
  // If the unreachable heuristic is more strong then we use it for this edge.
 | 
						|
  if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
 | 
						|
    setEdgeProbability(BB, BP);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  auto UnreachableProb = UR_TAKEN_PROB;
 | 
						|
  for (auto I : UnreachableIdxs)
 | 
						|
    if (UnreachableProb < BP[I]) {
 | 
						|
      BP[I] = UnreachableProb;
 | 
						|
    }
 | 
						|
 | 
						|
  // Sum of all edge probabilities must be 1.0. If we modified the probability
 | 
						|
  // of some edges then we must distribute the introduced difference over the
 | 
						|
  // reachable blocks.
 | 
						|
  //
 | 
						|
  // Proportional distribution: the relation between probabilities of the
 | 
						|
  // reachable edges is kept unchanged. That is for any reachable edges i and j:
 | 
						|
  //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
 | 
						|
  //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
 | 
						|
  // Where K is independent of i,j.
 | 
						|
  //   newBP[i] == oldBP[i] * K
 | 
						|
  // We need to find K.
 | 
						|
  // Make sum of all reachables of the left and right parts:
 | 
						|
  //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
 | 
						|
  // Sum of newBP must be equal to 1.0:
 | 
						|
  //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
 | 
						|
  //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
 | 
						|
  // Where sum_of_unreachable(newBP) is what has been just changed.
 | 
						|
  // Finally:
 | 
						|
  //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
 | 
						|
  //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
 | 
						|
  BranchProbability NewUnreachableSum = BranchProbability::getZero();
 | 
						|
  for (auto I : UnreachableIdxs)
 | 
						|
    NewUnreachableSum += BP[I];
 | 
						|
 | 
						|
  BranchProbability NewReachableSum =
 | 
						|
      BranchProbability::getOne() - NewUnreachableSum;
 | 
						|
 | 
						|
  BranchProbability OldReachableSum = BranchProbability::getZero();
 | 
						|
  for (auto I : ReachableIdxs)
 | 
						|
    OldReachableSum += BP[I];
 | 
						|
 | 
						|
  if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
 | 
						|
    if (OldReachableSum.isZero()) {
 | 
						|
      // If all oldBP[i] are zeroes then the proportional distribution results
 | 
						|
      // in all zero probabilities and the error stays big. In this case we
 | 
						|
      // evenly spread NewReachableSum over the reachable edges.
 | 
						|
      BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
 | 
						|
      for (auto I : ReachableIdxs)
 | 
						|
        BP[I] = PerEdge;
 | 
						|
    } else {
 | 
						|
      for (auto I : ReachableIdxs) {
 | 
						|
        // We use uint64_t to avoid double rounding error of the following
 | 
						|
        // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
 | 
						|
        // The formula is taken from the private constructor
 | 
						|
        // BranchProbability(uint32_t Numerator, uint32_t Denominator)
 | 
						|
        uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
 | 
						|
                       BP[I].getNumerator();
 | 
						|
        uint32_t Div = static_cast<uint32_t>(
 | 
						|
            divideNearest(Mul, OldReachableSum.getNumerator()));
 | 
						|
        BP[I] = BranchProbability::getRaw(Div);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  setEdgeProbability(BB, BP);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
 | 
						|
// between two pointer or pointer and NULL will fail.
 | 
						|
bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
 | 
						|
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || !BI->isConditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Cond = BI->getCondition();
 | 
						|
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
 | 
						|
  if (!CI || !CI->isEquality())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *LHS = CI->getOperand(0);
 | 
						|
 | 
						|
  if (!LHS->getType()->isPointerTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(CI->getOperand(1)->getType()->isPointerTy());
 | 
						|
 | 
						|
  auto Search = PointerTable.find(CI->getPredicate());
 | 
						|
  if (Search == PointerTable.end())
 | 
						|
    return false;
 | 
						|
  setEdgeProbability(BB, Search->second);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Compute the unlikely successors to the block BB in the loop L, specifically
 | 
						|
// those that are unlikely because this is a loop, and add them to the
 | 
						|
// UnlikelyBlocks set.
 | 
						|
static void
 | 
						|
computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
 | 
						|
                          SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
 | 
						|
  // Sometimes in a loop we have a branch whose condition is made false by
 | 
						|
  // taking it. This is typically something like
 | 
						|
  //  int n = 0;
 | 
						|
  //  while (...) {
 | 
						|
  //    if (++n >= MAX) {
 | 
						|
  //      n = 0;
 | 
						|
  //    }
 | 
						|
  //  }
 | 
						|
  // In this sort of situation taking the branch means that at the very least it
 | 
						|
  // won't be taken again in the next iteration of the loop, so we should
 | 
						|
  // consider it less likely than a typical branch.
 | 
						|
  //
 | 
						|
  // We detect this by looking back through the graph of PHI nodes that sets the
 | 
						|
  // value that the condition depends on, and seeing if we can reach a successor
 | 
						|
  // block which can be determined to make the condition false.
 | 
						|
  //
 | 
						|
  // FIXME: We currently consider unlikely blocks to be half as likely as other
 | 
						|
  // blocks, but if we consider the example above the likelyhood is actually
 | 
						|
  // 1/MAX. We could therefore be more precise in how unlikely we consider
 | 
						|
  // blocks to be, but it would require more careful examination of the form
 | 
						|
  // of the comparison expression.
 | 
						|
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || !BI->isConditional())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if the branch is based on an instruction compared with a constant
 | 
						|
  CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
 | 
						|
  if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
 | 
						|
      !isa<Constant>(CI->getOperand(1)))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Either the instruction must be a PHI, or a chain of operations involving
 | 
						|
  // constants that ends in a PHI which we can then collapse into a single value
 | 
						|
  // if the PHI value is known.
 | 
						|
  Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
 | 
						|
  PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
 | 
						|
  Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
 | 
						|
  // Collect the instructions until we hit a PHI
 | 
						|
  SmallVector<BinaryOperator *, 1> InstChain;
 | 
						|
  while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
 | 
						|
         isa<Constant>(CmpLHS->getOperand(1))) {
 | 
						|
    // Stop if the chain extends outside of the loop
 | 
						|
    if (!L->contains(CmpLHS))
 | 
						|
      return;
 | 
						|
    InstChain.push_back(cast<BinaryOperator>(CmpLHS));
 | 
						|
    CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
 | 
						|
    if (CmpLHS)
 | 
						|
      CmpPHI = dyn_cast<PHINode>(CmpLHS);
 | 
						|
  }
 | 
						|
  if (!CmpPHI || !L->contains(CmpPHI))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Trace the phi node to find all values that come from successors of BB
 | 
						|
  SmallPtrSet<PHINode*, 8> VisitedInsts;
 | 
						|
  SmallVector<PHINode*, 8> WorkList;
 | 
						|
  WorkList.push_back(CmpPHI);
 | 
						|
  VisitedInsts.insert(CmpPHI);
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    PHINode *P = WorkList.pop_back_val();
 | 
						|
    for (BasicBlock *B : P->blocks()) {
 | 
						|
      // Skip blocks that aren't part of the loop
 | 
						|
      if (!L->contains(B))
 | 
						|
        continue;
 | 
						|
      Value *V = P->getIncomingValueForBlock(B);
 | 
						|
      // If the source is a PHI add it to the work list if we haven't
 | 
						|
      // already visited it.
 | 
						|
      if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | 
						|
        if (VisitedInsts.insert(PN).second)
 | 
						|
          WorkList.push_back(PN);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // If this incoming value is a constant and B is a successor of BB, then
 | 
						|
      // we can constant-evaluate the compare to see if it makes the branch be
 | 
						|
      // taken or not.
 | 
						|
      Constant *CmpLHSConst = dyn_cast<Constant>(V);
 | 
						|
      if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
 | 
						|
        continue;
 | 
						|
      // First collapse InstChain
 | 
						|
      for (Instruction *I : llvm::reverse(InstChain)) {
 | 
						|
        CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
 | 
						|
                                        cast<Constant>(I->getOperand(1)), true);
 | 
						|
        if (!CmpLHSConst)
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      if (!CmpLHSConst)
 | 
						|
        continue;
 | 
						|
      // Now constant-evaluate the compare
 | 
						|
      Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
 | 
						|
                                                  CmpLHSConst, CmpConst, true);
 | 
						|
      // If the result means we don't branch to the block then that block is
 | 
						|
      // unlikely.
 | 
						|
      if (Result &&
 | 
						|
          ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
 | 
						|
           (Result->isOneValue() && B == BI->getSuccessor(1))))
 | 
						|
        UnlikelyBlocks.insert(B);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Optional<uint32_t>
 | 
						|
BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
 | 
						|
  auto WeightIt = EstimatedBlockWeight.find(BB);
 | 
						|
  if (WeightIt == EstimatedBlockWeight.end())
 | 
						|
    return None;
 | 
						|
  return WeightIt->second;
 | 
						|
}
 | 
						|
 | 
						|
Optional<uint32_t>
 | 
						|
BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
 | 
						|
  auto WeightIt = EstimatedLoopWeight.find(L);
 | 
						|
  if (WeightIt == EstimatedLoopWeight.end())
 | 
						|
    return None;
 | 
						|
  return WeightIt->second;
 | 
						|
}
 | 
						|
 | 
						|
Optional<uint32_t>
 | 
						|
BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
 | 
						|
  // For edges entering a loop take weight of a loop rather than an individual
 | 
						|
  // block in the loop.
 | 
						|
  return isLoopEnteringEdge(Edge)
 | 
						|
             ? getEstimatedLoopWeight(Edge.second.getLoopData())
 | 
						|
             : getEstimatedBlockWeight(Edge.second.getBlock());
 | 
						|
}
 | 
						|
 | 
						|
template <class IterT>
 | 
						|
Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
 | 
						|
    const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
 | 
						|
  SmallVector<uint32_t, 4> Weights;
 | 
						|
  Optional<uint32_t> MaxWeight;
 | 
						|
  for (const BasicBlock *DstBB : Successors) {
 | 
						|
    const LoopBlock DstLoopBB = getLoopBlock(DstBB);
 | 
						|
    auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
 | 
						|
 | 
						|
    if (!Weight)
 | 
						|
      return None;
 | 
						|
 | 
						|
    if (!MaxWeight || MaxWeight.getValue() < Weight.getValue())
 | 
						|
      MaxWeight = Weight;
 | 
						|
  }
 | 
						|
 | 
						|
  return MaxWeight;
 | 
						|
}
 | 
						|
 | 
						|
// Updates \p LoopBB's weight and returns true. If \p LoopBB has already
 | 
						|
// an associated weight it is unchanged and false is returned.
 | 
						|
//
 | 
						|
// Please note by the algorithm the weight is not expected to change once set
 | 
						|
// thus 'false' status is used to track visited blocks.
 | 
						|
bool BranchProbabilityInfo::updateEstimatedBlockWeight(
 | 
						|
    LoopBlock &LoopBB, uint32_t BBWeight,
 | 
						|
    SmallVectorImpl<BasicBlock *> &BlockWorkList,
 | 
						|
    SmallVectorImpl<LoopBlock> &LoopWorkList) {
 | 
						|
  BasicBlock *BB = LoopBB.getBlock();
 | 
						|
 | 
						|
  // In general, weight is assigned to a block when it has final value and
 | 
						|
  // can't/shouldn't be changed.  However, there are cases when a block
 | 
						|
  // inherently has several (possibly "contradicting") weights. For example,
 | 
						|
  // "unwind" block may also contain "cold" call. In that case the first
 | 
						|
  // set weight is favored and all consequent weights are ignored.
 | 
						|
  if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (BasicBlock *PredBlock : predecessors(BB)) {
 | 
						|
    LoopBlock PredLoop = getLoopBlock(PredBlock);
 | 
						|
    // Add affected block/loop to a working list.
 | 
						|
    if (isLoopExitingEdge({PredLoop, LoopBB})) {
 | 
						|
      if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
 | 
						|
        LoopWorkList.push_back(PredLoop);
 | 
						|
    } else if (!EstimatedBlockWeight.count(PredBlock))
 | 
						|
      BlockWorkList.push_back(PredBlock);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Starting from \p BB traverse through dominator blocks and assign \p BBWeight
 | 
						|
// to all such blocks that are post dominated by \BB. In other words to all
 | 
						|
// blocks that the one is executed if and only if another one is executed.
 | 
						|
// Importantly, we skip loops here for two reasons. First weights of blocks in
 | 
						|
// a loop should be scaled by trip count (yet possibly unknown). Second there is
 | 
						|
// no any value in doing that because that doesn't give any additional
 | 
						|
// information regarding distribution of probabilities inside the loop.
 | 
						|
// Exception is loop 'enter' and 'exit' edges that are handled in a special way
 | 
						|
// at calcEstimatedHeuristics.
 | 
						|
//
 | 
						|
// In addition, \p WorkList is populated with basic blocks if at leas one
 | 
						|
// successor has updated estimated weight.
 | 
						|
void BranchProbabilityInfo::propagateEstimatedBlockWeight(
 | 
						|
    const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
 | 
						|
    uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
 | 
						|
    SmallVectorImpl<LoopBlock> &LoopWorkList) {
 | 
						|
  const BasicBlock *BB = LoopBB.getBlock();
 | 
						|
  const auto *DTStartNode = DT->getNode(BB);
 | 
						|
  const auto *PDTStartNode = PDT->getNode(BB);
 | 
						|
 | 
						|
  // TODO: Consider propagating weight down the domination line as well.
 | 
						|
  for (const auto *DTNode = DTStartNode; DTNode != nullptr;
 | 
						|
       DTNode = DTNode->getIDom()) {
 | 
						|
    auto *DomBB = DTNode->getBlock();
 | 
						|
    // Consider blocks which lie on one 'line'.
 | 
						|
    if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
 | 
						|
      // If BB doesn't post dominate DomBB it will not post dominate dominators
 | 
						|
      // of DomBB as well.
 | 
						|
      break;
 | 
						|
 | 
						|
    LoopBlock DomLoopBB = getLoopBlock(DomBB);
 | 
						|
    const LoopEdge Edge{DomLoopBB, LoopBB};
 | 
						|
    // Don't propagate weight to blocks belonging to different loops.
 | 
						|
    if (!isLoopEnteringExitingEdge(Edge)) {
 | 
						|
      if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
 | 
						|
                                      LoopWorkList))
 | 
						|
        // If DomBB has weight set then all it's predecessors are already
 | 
						|
        // processed (since we propagate weight up to the top of IR each time).
 | 
						|
        break;
 | 
						|
    } else if (isLoopExitingEdge(Edge)) {
 | 
						|
      LoopWorkList.push_back(DomLoopBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
 | 
						|
    const BasicBlock *BB) {
 | 
						|
  // Returns true if \p BB has call marked with "NoReturn" attribute.
 | 
						|
  auto hasNoReturn = [&](const BasicBlock *BB) {
 | 
						|
    for (const auto &I : reverse(*BB))
 | 
						|
      if (const CallInst *CI = dyn_cast<CallInst>(&I))
 | 
						|
        if (CI->hasFnAttr(Attribute::NoReturn))
 | 
						|
          return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Important note regarding the order of checks. They are ordered by weight
 | 
						|
  // from lowest to highest. Doing that allows to avoid "unstable" results
 | 
						|
  // when several conditions heuristics can be applied simultaneously.
 | 
						|
  if (isa<UnreachableInst>(BB->getTerminator()) ||
 | 
						|
      // If this block is terminated by a call to
 | 
						|
      // @llvm.experimental.deoptimize then treat it like an unreachable
 | 
						|
      // since it is expected to practically never execute.
 | 
						|
      // TODO: Should we actually treat as never returning call?
 | 
						|
      BB->getTerminatingDeoptimizeCall())
 | 
						|
    return hasNoReturn(BB)
 | 
						|
               ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
 | 
						|
               : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
 | 
						|
 | 
						|
  // Check if the block is 'unwind' handler of  some invoke instruction.
 | 
						|
  for (const auto *Pred : predecessors(BB))
 | 
						|
    if (Pred)
 | 
						|
      if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
 | 
						|
        if (II->getUnwindDest() == BB)
 | 
						|
          return static_cast<uint32_t>(BlockExecWeight::UNWIND);
 | 
						|
 | 
						|
  // Check if the block contains 'cold' call.
 | 
						|
  for (const auto &I : *BB)
 | 
						|
    if (const CallInst *CI = dyn_cast<CallInst>(&I))
 | 
						|
      if (CI->hasFnAttr(Attribute::Cold))
 | 
						|
        return static_cast<uint32_t>(BlockExecWeight::COLD);
 | 
						|
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
// Does RPO traversal over all blocks in \p F and assigns weights to
 | 
						|
// 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
 | 
						|
// best to propagate the weight to up/down the IR.
 | 
						|
void BranchProbabilityInfo::computeEestimateBlockWeight(
 | 
						|
    const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
 | 
						|
  SmallVector<BasicBlock *, 8> BlockWorkList;
 | 
						|
  SmallVector<LoopBlock, 8> LoopWorkList;
 | 
						|
 | 
						|
  // By doing RPO we make sure that all predecessors already have weights
 | 
						|
  // calculated before visiting theirs successors.
 | 
						|
  ReversePostOrderTraversal<const Function *> RPOT(&F);
 | 
						|
  for (const auto *BB : RPOT)
 | 
						|
    if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
 | 
						|
      // If we were able to find estimated weight for the block set it to this
 | 
						|
      // block and propagate up the IR.
 | 
						|
      propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT,
 | 
						|
                                    BBWeight.getValue(), BlockWorkList,
 | 
						|
                                    LoopWorkList);
 | 
						|
 | 
						|
  // BlockWorklist/LoopWorkList contains blocks/loops with at least one
 | 
						|
  // successor/exit having estimated weight. Try to propagate weight to such
 | 
						|
  // blocks/loops from successors/exits.
 | 
						|
  // Process loops and blocks. Order is not important.
 | 
						|
  do {
 | 
						|
    while (!LoopWorkList.empty()) {
 | 
						|
      const LoopBlock LoopBB = LoopWorkList.pop_back_val();
 | 
						|
 | 
						|
      if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      SmallVector<BasicBlock *, 4> Exits;
 | 
						|
      getLoopExitBlocks(LoopBB, Exits);
 | 
						|
      auto LoopWeight = getMaxEstimatedEdgeWeight(
 | 
						|
          LoopBB, make_range(Exits.begin(), Exits.end()));
 | 
						|
 | 
						|
      if (LoopWeight) {
 | 
						|
        // If we never exit the loop then we can enter it once at maximum.
 | 
						|
        if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
 | 
						|
          LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
 | 
						|
 | 
						|
        EstimatedLoopWeight.insert(
 | 
						|
            {LoopBB.getLoopData(), LoopWeight.getValue()});
 | 
						|
        // Add all blocks entering the loop into working list.
 | 
						|
        getLoopEnterBlocks(LoopBB, BlockWorkList);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    while (!BlockWorkList.empty()) {
 | 
						|
      // We can reach here only if BlockWorkList is not empty.
 | 
						|
      const BasicBlock *BB = BlockWorkList.pop_back_val();
 | 
						|
      if (EstimatedBlockWeight.count(BB))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // We take maximum over all weights of successors. In other words we take
 | 
						|
      // weight of "hot" path. In theory we can probably find a better function
 | 
						|
      // which gives higher accuracy results (comparing to "maximum") but I
 | 
						|
      // can't
 | 
						|
      // think of any right now. And I doubt it will make any difference in
 | 
						|
      // practice.
 | 
						|
      const LoopBlock LoopBB = getLoopBlock(BB);
 | 
						|
      auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
 | 
						|
 | 
						|
      if (MaxWeight)
 | 
						|
        propagateEstimatedBlockWeight(LoopBB, DT, PDT, MaxWeight.getValue(),
 | 
						|
                                      BlockWorkList, LoopWorkList);
 | 
						|
    }
 | 
						|
  } while (!BlockWorkList.empty() || !LoopWorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
// Calculate edge probabilities based on block's estimated weight.
 | 
						|
// Note that gathered weights were not scaled for loops. Thus edges entering
 | 
						|
// and exiting loops requires special processing.
 | 
						|
bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
 | 
						|
  assert(BB->getTerminator()->getNumSuccessors() > 1 &&
 | 
						|
         "expected more than one successor!");
 | 
						|
 | 
						|
  const LoopBlock LoopBB = getLoopBlock(BB);
 | 
						|
 | 
						|
  SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
 | 
						|
  uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
 | 
						|
  if (LoopBB.getLoop())
 | 
						|
    computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
 | 
						|
 | 
						|
  // Changed to 'true' if at least one successor has estimated weight.
 | 
						|
  bool FoundEstimatedWeight = false;
 | 
						|
  SmallVector<uint32_t, 4> SuccWeights;
 | 
						|
  uint64_t TotalWeight = 0;
 | 
						|
  // Go over all successors of BB and put their weights into SuccWeights.
 | 
						|
  for (const BasicBlock *SuccBB : successors(BB)) {
 | 
						|
    Optional<uint32_t> Weight;
 | 
						|
    const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
 | 
						|
    const LoopEdge Edge{LoopBB, SuccLoopBB};
 | 
						|
 | 
						|
    Weight = getEstimatedEdgeWeight(Edge);
 | 
						|
 | 
						|
    if (isLoopExitingEdge(Edge) &&
 | 
						|
        // Avoid adjustment of ZERO weight since it should remain unchanged.
 | 
						|
        Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
 | 
						|
      // Scale down loop exiting weight by trip count.
 | 
						|
      Weight = std::max(
 | 
						|
          static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
 | 
						|
          Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
 | 
						|
              TC);
 | 
						|
    }
 | 
						|
    bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
 | 
						|
    if (IsUnlikelyEdge &&
 | 
						|
        // Avoid adjustment of ZERO weight since it should remain unchanged.
 | 
						|
        Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
 | 
						|
      // 'Unlikely' blocks have twice lower weight.
 | 
						|
      Weight = std::max(
 | 
						|
          static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
 | 
						|
          Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
 | 
						|
              2);
 | 
						|
    }
 | 
						|
 | 
						|
    if (Weight)
 | 
						|
      FoundEstimatedWeight = true;
 | 
						|
 | 
						|
    auto WeightVal =
 | 
						|
        Weight.getValueOr(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
 | 
						|
    TotalWeight += WeightVal;
 | 
						|
    SuccWeights.push_back(WeightVal);
 | 
						|
  }
 | 
						|
 | 
						|
  // If non of blocks have estimated weight bail out.
 | 
						|
  // If TotalWeight is 0 that means weight of each successor is 0 as well and
 | 
						|
  // equally likely. Bail out early to not deal with devision by zero.
 | 
						|
  if (!FoundEstimatedWeight || TotalWeight == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
 | 
						|
  const unsigned SuccCount = SuccWeights.size();
 | 
						|
 | 
						|
  // If the sum of weights does not fit in 32 bits, scale every weight down
 | 
						|
  // accordingly.
 | 
						|
  if (TotalWeight > UINT32_MAX) {
 | 
						|
    uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
 | 
						|
    TotalWeight = 0;
 | 
						|
    for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
 | 
						|
      SuccWeights[Idx] /= ScalingFactor;
 | 
						|
      if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
 | 
						|
        SuccWeights[Idx] =
 | 
						|
            static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
 | 
						|
      TotalWeight += SuccWeights[Idx];
 | 
						|
    }
 | 
						|
    assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally set probabilities to edges according to estimated block weights.
 | 
						|
  SmallVector<BranchProbability, 4> EdgeProbabilities(
 | 
						|
      SuccCount, BranchProbability::getUnknown());
 | 
						|
 | 
						|
  for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
 | 
						|
    EdgeProbabilities[Idx] =
 | 
						|
        BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
 | 
						|
  }
 | 
						|
  setEdgeProbability(BB, EdgeProbabilities);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
 | 
						|
                                               const TargetLibraryInfo *TLI) {
 | 
						|
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || !BI->isConditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Cond = BI->getCondition();
 | 
						|
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
 | 
						|
  if (!CI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto GetConstantInt = [](Value *V) {
 | 
						|
    if (auto *I = dyn_cast<BitCastInst>(V))
 | 
						|
      return dyn_cast<ConstantInt>(I->getOperand(0));
 | 
						|
    return dyn_cast<ConstantInt>(V);
 | 
						|
  };
 | 
						|
 | 
						|
  Value *RHS = CI->getOperand(1);
 | 
						|
  ConstantInt *CV = GetConstantInt(RHS);
 | 
						|
  if (!CV)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the LHS is the result of AND'ing a value with a single bit bitmask,
 | 
						|
  // we don't have information about probabilities.
 | 
						|
  if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
 | 
						|
    if (LHS->getOpcode() == Instruction::And)
 | 
						|
      if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
 | 
						|
        if (AndRHS->getValue().isPowerOf2())
 | 
						|
          return false;
 | 
						|
 | 
						|
  // Check if the LHS is the return value of a library function
 | 
						|
  LibFunc Func = NumLibFuncs;
 | 
						|
  if (TLI)
 | 
						|
    if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
 | 
						|
      if (Function *CalledFn = Call->getCalledFunction())
 | 
						|
        TLI->getLibFunc(*CalledFn, Func);
 | 
						|
 | 
						|
  ProbabilityTable::const_iterator Search;
 | 
						|
  if (Func == LibFunc_strcasecmp ||
 | 
						|
      Func == LibFunc_strcmp ||
 | 
						|
      Func == LibFunc_strncasecmp ||
 | 
						|
      Func == LibFunc_strncmp ||
 | 
						|
      Func == LibFunc_memcmp ||
 | 
						|
      Func == LibFunc_bcmp) {
 | 
						|
    Search = ICmpWithLibCallTable.find(CI->getPredicate());
 | 
						|
    if (Search == ICmpWithLibCallTable.end())
 | 
						|
      return false;
 | 
						|
  } else if (CV->isZero()) {
 | 
						|
    Search = ICmpWithZeroTable.find(CI->getPredicate());
 | 
						|
    if (Search == ICmpWithZeroTable.end())
 | 
						|
      return false;
 | 
						|
  } else if (CV->isOne()) {
 | 
						|
    Search = ICmpWithOneTable.find(CI->getPredicate());
 | 
						|
    if (Search == ICmpWithOneTable.end())
 | 
						|
      return false;
 | 
						|
  } else if (CV->isMinusOne()) {
 | 
						|
    Search = ICmpWithMinusOneTable.find(CI->getPredicate());
 | 
						|
    if (Search == ICmpWithMinusOneTable.end())
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  setEdgeProbability(BB, Search->second);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
 | 
						|
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
  if (!BI || !BI->isConditional())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Cond = BI->getCondition();
 | 
						|
  FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
 | 
						|
  if (!FCmp)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ProbabilityList ProbList;
 | 
						|
  if (FCmp->isEquality()) {
 | 
						|
    ProbList = !FCmp->isTrueWhenEqual() ?
 | 
						|
      // f1 == f2 -> Unlikely
 | 
						|
      ProbabilityList({FPTakenProb, FPUntakenProb}) :
 | 
						|
      // f1 != f2 -> Likely
 | 
						|
      ProbabilityList({FPUntakenProb, FPTakenProb});
 | 
						|
  } else {
 | 
						|
    auto Search = FCmpTable.find(FCmp->getPredicate());
 | 
						|
    if (Search == FCmpTable.end())
 | 
						|
      return false;
 | 
						|
    ProbList = Search->second;
 | 
						|
  }
 | 
						|
 | 
						|
  setEdgeProbability(BB, ProbList);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::releaseMemory() {
 | 
						|
  Probs.clear();
 | 
						|
  Handles.clear();
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
 | 
						|
                                       FunctionAnalysisManager::Invalidator &) {
 | 
						|
  // Check whether the analysis, all analyses on functions, or the function's
 | 
						|
  // CFG have been preserved.
 | 
						|
  auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
 | 
						|
  return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
 | 
						|
           PAC.preservedSet<CFGAnalyses>());
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::print(raw_ostream &OS) const {
 | 
						|
  OS << "---- Branch Probabilities ----\n";
 | 
						|
  // We print the probabilities from the last function the analysis ran over,
 | 
						|
  // or the function it is currently running over.
 | 
						|
  assert(LastF && "Cannot print prior to running over a function");
 | 
						|
  for (const auto &BI : *LastF) {
 | 
						|
    for (const BasicBlock *Succ : successors(&BI))
 | 
						|
      printEdgeProbability(OS << "  ", &BI, Succ);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfo::
 | 
						|
isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
 | 
						|
  // Hot probability is at least 4/5 = 80%
 | 
						|
  // FIXME: Compare against a static "hot" BranchProbability.
 | 
						|
  return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
 | 
						|
}
 | 
						|
 | 
						|
/// Get the raw edge probability for the edge. If can't find it, return a
 | 
						|
/// default probability 1/N where N is the number of successors. Here an edge is
 | 
						|
/// specified using PredBlock and an
 | 
						|
/// index to the successors.
 | 
						|
BranchProbability
 | 
						|
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | 
						|
                                          unsigned IndexInSuccessors) const {
 | 
						|
  auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
 | 
						|
  assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
 | 
						|
             (Probs.end() == I) &&
 | 
						|
         "Probability for I-th successor must always be defined along with the "
 | 
						|
         "probability for the first successor");
 | 
						|
 | 
						|
  if (I != Probs.end())
 | 
						|
    return I->second;
 | 
						|
 | 
						|
  return {1, static_cast<uint32_t>(succ_size(Src))};
 | 
						|
}
 | 
						|
 | 
						|
BranchProbability
 | 
						|
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | 
						|
                                          const_succ_iterator Dst) const {
 | 
						|
  return getEdgeProbability(Src, Dst.getSuccessorIndex());
 | 
						|
}
 | 
						|
 | 
						|
/// Get the raw edge probability calculated for the block pair. This returns the
 | 
						|
/// sum of all raw edge probabilities from Src to Dst.
 | 
						|
BranchProbability
 | 
						|
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
 | 
						|
                                          const BasicBlock *Dst) const {
 | 
						|
  if (!Probs.count(std::make_pair(Src, 0)))
 | 
						|
    return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
 | 
						|
 | 
						|
  auto Prob = BranchProbability::getZero();
 | 
						|
  for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
 | 
						|
    if (*I == Dst)
 | 
						|
      Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
 | 
						|
 | 
						|
  return Prob;
 | 
						|
}
 | 
						|
 | 
						|
/// Set the edge probability for all edges at once.
 | 
						|
void BranchProbabilityInfo::setEdgeProbability(
 | 
						|
    const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
 | 
						|
  assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
 | 
						|
  eraseBlock(Src); // Erase stale data if any.
 | 
						|
  if (Probs.size() == 0)
 | 
						|
    return; // Nothing to set.
 | 
						|
 | 
						|
  Handles.insert(BasicBlockCallbackVH(Src, this));
 | 
						|
  uint64_t TotalNumerator = 0;
 | 
						|
  for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
 | 
						|
    this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
 | 
						|
    LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
 | 
						|
                      << " successor probability to " << Probs[SuccIdx]
 | 
						|
                      << "\n");
 | 
						|
    TotalNumerator += Probs[SuccIdx].getNumerator();
 | 
						|
  }
 | 
						|
 | 
						|
  // Because of rounding errors the total probability cannot be checked to be
 | 
						|
  // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
 | 
						|
  // Instead, every single probability in Probs must be as accurate as possible.
 | 
						|
  // This results in error 1/denominator at most, thus the total absolute error
 | 
						|
  // should be within Probs.size / BranchProbability::getDenominator.
 | 
						|
  assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
 | 
						|
  assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
 | 
						|
  (void)TotalNumerator;
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
 | 
						|
                                                  BasicBlock *Dst) {
 | 
						|
  eraseBlock(Dst); // Erase stale data if any.
 | 
						|
  unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
 | 
						|
  assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
 | 
						|
  if (NumSuccessors == 0)
 | 
						|
    return; // Nothing to set.
 | 
						|
  if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
 | 
						|
    return; // No probability is set for edges from Src. Keep the same for Dst.
 | 
						|
 | 
						|
  Handles.insert(BasicBlockCallbackVH(Dst, this));
 | 
						|
  for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
 | 
						|
    auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
 | 
						|
    this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
 | 
						|
    LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
 | 
						|
                      << " successor probability to " << Prob << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &
 | 
						|
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
 | 
						|
                                            const BasicBlock *Src,
 | 
						|
                                            const BasicBlock *Dst) const {
 | 
						|
  const BranchProbability Prob = getEdgeProbability(Src, Dst);
 | 
						|
  OS << "edge " << Src->getName() << " -> " << Dst->getName()
 | 
						|
     << " probability is " << Prob
 | 
						|
     << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
 | 
						|
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
 | 
						|
  LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
 | 
						|
 | 
						|
  // Note that we cannot use successors of BB because the terminator of BB may
 | 
						|
  // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
 | 
						|
  // Instead we remove prob data for the block by iterating successors by their
 | 
						|
  // indices from 0 till the last which exists. There could not be prob data for
 | 
						|
  // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
 | 
						|
  // set for all successors from 0 to M at once by the method
 | 
						|
  // setEdgeProbability().
 | 
						|
  Handles.erase(BasicBlockCallbackVH(BB, this));
 | 
						|
  for (unsigned I = 0;; ++I) {
 | 
						|
    auto MapI = Probs.find(std::make_pair(BB, I));
 | 
						|
    if (MapI == Probs.end()) {
 | 
						|
      assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
 | 
						|
             "Must be no more successors");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    Probs.erase(MapI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
 | 
						|
                                      const TargetLibraryInfo *TLI,
 | 
						|
                                      DominatorTree *DT,
 | 
						|
                                      PostDominatorTree *PDT) {
 | 
						|
  LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
 | 
						|
                    << " ----\n\n");
 | 
						|
  LastF = &F; // Store the last function we ran on for printing.
 | 
						|
  LI = &LoopI;
 | 
						|
 | 
						|
  SccI = std::make_unique<SccInfo>(F);
 | 
						|
 | 
						|
  assert(EstimatedBlockWeight.empty());
 | 
						|
  assert(EstimatedLoopWeight.empty());
 | 
						|
 | 
						|
  std::unique_ptr<DominatorTree> DTPtr;
 | 
						|
  std::unique_ptr<PostDominatorTree> PDTPtr;
 | 
						|
 | 
						|
  if (!DT) {
 | 
						|
    DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
 | 
						|
    DT = DTPtr.get();
 | 
						|
  }
 | 
						|
 | 
						|
  if (!PDT) {
 | 
						|
    PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
 | 
						|
    PDT = PDTPtr.get();
 | 
						|
  }
 | 
						|
 | 
						|
  computeEestimateBlockWeight(F, DT, PDT);
 | 
						|
 | 
						|
  // Walk the basic blocks in post-order so that we can build up state about
 | 
						|
  // the successors of a block iteratively.
 | 
						|
  for (auto BB : post_order(&F.getEntryBlock())) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
 | 
						|
                      << "\n");
 | 
						|
    // If there is no at least two successors, no sense to set probability.
 | 
						|
    if (BB->getTerminator()->getNumSuccessors() < 2)
 | 
						|
      continue;
 | 
						|
    if (calcMetadataWeights(BB))
 | 
						|
      continue;
 | 
						|
    if (calcEstimatedHeuristics(BB))
 | 
						|
      continue;
 | 
						|
    if (calcPointerHeuristics(BB))
 | 
						|
      continue;
 | 
						|
    if (calcZeroHeuristics(BB, TLI))
 | 
						|
      continue;
 | 
						|
    if (calcFloatingPointHeuristics(BB))
 | 
						|
      continue;
 | 
						|
  }
 | 
						|
 | 
						|
  EstimatedLoopWeight.clear();
 | 
						|
  EstimatedBlockWeight.clear();
 | 
						|
  SccI.reset();
 | 
						|
 | 
						|
  if (PrintBranchProb &&
 | 
						|
      (PrintBranchProbFuncName.empty() ||
 | 
						|
       F.getName().equals(PrintBranchProbFuncName))) {
 | 
						|
    print(dbgs());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
 | 
						|
    AnalysisUsage &AU) const {
 | 
						|
  // We require DT so it's available when LI is available. The LI updating code
 | 
						|
  // asserts that DT is also present so if we don't make sure that we have DT
 | 
						|
  // here, that assert will trigger.
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
  AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<PostDominatorTreeWrapperPass>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
 | 
						|
  const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  const TargetLibraryInfo &TLI =
 | 
						|
      getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | 
						|
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  PostDominatorTree &PDT =
 | 
						|
      getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
 | 
						|
  BPI.calculate(F, LI, &TLI, &DT, &PDT);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
 | 
						|
 | 
						|
void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
 | 
						|
                                             const Module *) const {
 | 
						|
  BPI.print(OS);
 | 
						|
}
 | 
						|
 | 
						|
AnalysisKey BranchProbabilityAnalysis::Key;
 | 
						|
BranchProbabilityInfo
 | 
						|
BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  BranchProbabilityInfo BPI;
 | 
						|
  BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
 | 
						|
                &AM.getResult<TargetLibraryAnalysis>(F),
 | 
						|
                &AM.getResult<DominatorTreeAnalysis>(F),
 | 
						|
                &AM.getResult<PostDominatorTreeAnalysis>(F));
 | 
						|
  return BPI;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses
 | 
						|
BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  OS << "Printing analysis results of BPI for function "
 | 
						|
     << "'" << F.getName() << "':"
 | 
						|
     << "\n";
 | 
						|
  AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
 | 
						|
  return PreservedAnalyses::all();
 | 
						|
}
 |