932 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			932 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a CFL-based, summary-based alias analysis algorithm. It
 | 
						|
// differs from CFLSteensAliasAnalysis in its inclusion-based nature while
 | 
						|
// CFLSteensAliasAnalysis is unification-based. This pass has worse performance
 | 
						|
// than CFLSteensAliasAnalysis (the worst case complexity of
 | 
						|
// CFLAndersAliasAnalysis is cubic, while the worst case complexity of
 | 
						|
// CFLSteensAliasAnalysis is almost linear), but it is able to yield more
 | 
						|
// precise analysis result. The precision of this analysis is roughly the same
 | 
						|
// as that of an one level context-sensitive Andersen's algorithm.
 | 
						|
//
 | 
						|
// The algorithm used here is based on recursive state machine matching scheme
 | 
						|
// proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu
 | 
						|
// Rugina. The general idea is to extend the traditional transitive closure
 | 
						|
// algorithm to perform CFL matching along the way: instead of recording
 | 
						|
// "whether X is reachable from Y", we keep track of "whether X is reachable
 | 
						|
// from Y at state Z", where the "state" field indicates where we are in the CFL
 | 
						|
// matching process. To understand the matching better, it is advisable to have
 | 
						|
// the state machine shown in Figure 3 of the paper available when reading the
 | 
						|
// codes: all we do here is to selectively expand the transitive closure by
 | 
						|
// discarding edges that are not recognized by the state machine.
 | 
						|
//
 | 
						|
// There are two differences between our current implementation and the one
 | 
						|
// described in the paper:
 | 
						|
// - Our algorithm eagerly computes all alias pairs after the CFLGraph is built,
 | 
						|
// while in the paper the authors did the computation in a demand-driven
 | 
						|
// fashion. We did not implement the demand-driven algorithm due to the
 | 
						|
// additional coding complexity and higher memory profile, but if we found it
 | 
						|
// necessary we may switch to it eventually.
 | 
						|
// - In the paper the authors use a state machine that does not distinguish
 | 
						|
// value reads from value writes. For example, if Y is reachable from X at state
 | 
						|
// S3, it may be the case that X is written into Y, or it may be the case that
 | 
						|
// there's a third value Z that writes into both X and Y. To make that
 | 
						|
// distinction (which is crucial in building function summary as well as
 | 
						|
// retrieving mod-ref info), we choose to duplicate some of the states in the
 | 
						|
// paper's proposed state machine. The duplication does not change the set the
 | 
						|
// machine accepts. Given a pair of reachable values, it only provides more
 | 
						|
// detailed information on which value is being written into and which is being
 | 
						|
// read from.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
 | 
						|
// CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because
 | 
						|
// FunctionPasses are only allowed to inspect the Function that they're being
 | 
						|
// run on. Realistically, this likely isn't a problem until we allow
 | 
						|
// FunctionPasses to run concurrently.
 | 
						|
 | 
						|
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
 | 
						|
#include "AliasAnalysisSummary.h"
 | 
						|
#include "CFLGraph.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseMapInfo.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/MemoryLocation.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <bitset>
 | 
						|
#include <cassert>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
#include <functional>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::cflaa;
 | 
						|
 | 
						|
#define DEBUG_TYPE "cfl-anders-aa"
 | 
						|
 | 
						|
CFLAndersAAResult::CFLAndersAAResult(
 | 
						|
    std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
 | 
						|
    : GetTLI(std::move(GetTLI)) {}
 | 
						|
CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS)
 | 
						|
    : AAResultBase(std::move(RHS)), GetTLI(std::move(RHS.GetTLI)) {}
 | 
						|
CFLAndersAAResult::~CFLAndersAAResult() = default;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
enum class MatchState : uint8_t {
 | 
						|
  // The following state represents S1 in the paper.
 | 
						|
  FlowFromReadOnly = 0,
 | 
						|
  // The following two states together represent S2 in the paper.
 | 
						|
  // The 'NoReadWrite' suffix indicates that there exists an alias path that
 | 
						|
  // does not contain assignment and reverse assignment edges.
 | 
						|
  // The 'ReadOnly' suffix indicates that there exists an alias path that
 | 
						|
  // contains reverse assignment edges only.
 | 
						|
  FlowFromMemAliasNoReadWrite,
 | 
						|
  FlowFromMemAliasReadOnly,
 | 
						|
  // The following two states together represent S3 in the paper.
 | 
						|
  // The 'WriteOnly' suffix indicates that there exists an alias path that
 | 
						|
  // contains assignment edges only.
 | 
						|
  // The 'ReadWrite' suffix indicates that there exists an alias path that
 | 
						|
  // contains both assignment and reverse assignment edges. Note that if X and Y
 | 
						|
  // are reachable at 'ReadWrite' state, it does NOT mean X is both read from
 | 
						|
  // and written to Y. Instead, it means that a third value Z is written to both
 | 
						|
  // X and Y.
 | 
						|
  FlowToWriteOnly,
 | 
						|
  FlowToReadWrite,
 | 
						|
  // The following two states together represent S4 in the paper.
 | 
						|
  FlowToMemAliasWriteOnly,
 | 
						|
  FlowToMemAliasReadWrite,
 | 
						|
};
 | 
						|
 | 
						|
using StateSet = std::bitset<7>;
 | 
						|
 | 
						|
const unsigned ReadOnlyStateMask =
 | 
						|
    (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly)) |
 | 
						|
    (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly));
 | 
						|
const unsigned WriteOnlyStateMask =
 | 
						|
    (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly)) |
 | 
						|
    (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly));
 | 
						|
 | 
						|
// A pair that consists of a value and an offset
 | 
						|
struct OffsetValue {
 | 
						|
  const Value *Val;
 | 
						|
  int64_t Offset;
 | 
						|
};
 | 
						|
 | 
						|
bool operator==(OffsetValue LHS, OffsetValue RHS) {
 | 
						|
  return LHS.Val == RHS.Val && LHS.Offset == RHS.Offset;
 | 
						|
}
 | 
						|
bool operator<(OffsetValue LHS, OffsetValue RHS) {
 | 
						|
  return std::less<const Value *>()(LHS.Val, RHS.Val) ||
 | 
						|
         (LHS.Val == RHS.Val && LHS.Offset < RHS.Offset);
 | 
						|
}
 | 
						|
 | 
						|
// A pair that consists of an InstantiatedValue and an offset
 | 
						|
struct OffsetInstantiatedValue {
 | 
						|
  InstantiatedValue IVal;
 | 
						|
  int64_t Offset;
 | 
						|
};
 | 
						|
 | 
						|
bool operator==(OffsetInstantiatedValue LHS, OffsetInstantiatedValue RHS) {
 | 
						|
  return LHS.IVal == RHS.IVal && LHS.Offset == RHS.Offset;
 | 
						|
}
 | 
						|
 | 
						|
// We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in
 | 
						|
// the paper) during the analysis.
 | 
						|
class ReachabilitySet {
 | 
						|
  using ValueStateMap = DenseMap<InstantiatedValue, StateSet>;
 | 
						|
  using ValueReachMap = DenseMap<InstantiatedValue, ValueStateMap>;
 | 
						|
 | 
						|
  ValueReachMap ReachMap;
 | 
						|
 | 
						|
public:
 | 
						|
  using const_valuestate_iterator = ValueStateMap::const_iterator;
 | 
						|
  using const_value_iterator = ValueReachMap::const_iterator;
 | 
						|
 | 
						|
  // Insert edge 'From->To' at state 'State'
 | 
						|
  bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) {
 | 
						|
    assert(From != To);
 | 
						|
    auto &States = ReachMap[To][From];
 | 
						|
    auto Idx = static_cast<size_t>(State);
 | 
						|
    if (!States.test(Idx)) {
 | 
						|
      States.set(Idx);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Return the set of all ('From', 'State') pair for a given node 'To'
 | 
						|
  iterator_range<const_valuestate_iterator>
 | 
						|
  reachableValueAliases(InstantiatedValue V) const {
 | 
						|
    auto Itr = ReachMap.find(V);
 | 
						|
    if (Itr == ReachMap.end())
 | 
						|
      return make_range<const_valuestate_iterator>(const_valuestate_iterator(),
 | 
						|
                                                   const_valuestate_iterator());
 | 
						|
    return make_range<const_valuestate_iterator>(Itr->second.begin(),
 | 
						|
                                                 Itr->second.end());
 | 
						|
  }
 | 
						|
 | 
						|
  iterator_range<const_value_iterator> value_mappings() const {
 | 
						|
    return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// We use AliasMemSet to keep track of all memory aliases (the nonterminal "M"
 | 
						|
// in the paper) during the analysis.
 | 
						|
class AliasMemSet {
 | 
						|
  using MemSet = DenseSet<InstantiatedValue>;
 | 
						|
  using MemMapType = DenseMap<InstantiatedValue, MemSet>;
 | 
						|
 | 
						|
  MemMapType MemMap;
 | 
						|
 | 
						|
public:
 | 
						|
  using const_mem_iterator = MemSet::const_iterator;
 | 
						|
 | 
						|
  bool insert(InstantiatedValue LHS, InstantiatedValue RHS) {
 | 
						|
    // Top-level values can never be memory aliases because one cannot take the
 | 
						|
    // addresses of them
 | 
						|
    assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0);
 | 
						|
    return MemMap[LHS].insert(RHS).second;
 | 
						|
  }
 | 
						|
 | 
						|
  const MemSet *getMemoryAliases(InstantiatedValue V) const {
 | 
						|
    auto Itr = MemMap.find(V);
 | 
						|
    if (Itr == MemMap.end())
 | 
						|
      return nullptr;
 | 
						|
    return &Itr->second;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// We use AliasAttrMap to keep track of the AliasAttr of each node.
 | 
						|
class AliasAttrMap {
 | 
						|
  using MapType = DenseMap<InstantiatedValue, AliasAttrs>;
 | 
						|
 | 
						|
  MapType AttrMap;
 | 
						|
 | 
						|
public:
 | 
						|
  using const_iterator = MapType::const_iterator;
 | 
						|
 | 
						|
  bool add(InstantiatedValue V, AliasAttrs Attr) {
 | 
						|
    auto &OldAttr = AttrMap[V];
 | 
						|
    auto NewAttr = OldAttr | Attr;
 | 
						|
    if (OldAttr == NewAttr)
 | 
						|
      return false;
 | 
						|
    OldAttr = NewAttr;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  AliasAttrs getAttrs(InstantiatedValue V) const {
 | 
						|
    AliasAttrs Attr;
 | 
						|
    auto Itr = AttrMap.find(V);
 | 
						|
    if (Itr != AttrMap.end())
 | 
						|
      Attr = Itr->second;
 | 
						|
    return Attr;
 | 
						|
  }
 | 
						|
 | 
						|
  iterator_range<const_iterator> mappings() const {
 | 
						|
    return make_range<const_iterator>(AttrMap.begin(), AttrMap.end());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
struct WorkListItem {
 | 
						|
  InstantiatedValue From;
 | 
						|
  InstantiatedValue To;
 | 
						|
  MatchState State;
 | 
						|
};
 | 
						|
 | 
						|
struct ValueSummary {
 | 
						|
  struct Record {
 | 
						|
    InterfaceValue IValue;
 | 
						|
    unsigned DerefLevel;
 | 
						|
  };
 | 
						|
  SmallVector<Record, 4> FromRecords, ToRecords;
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
// Specialize DenseMapInfo for OffsetValue.
 | 
						|
template <> struct DenseMapInfo<OffsetValue> {
 | 
						|
  static OffsetValue getEmptyKey() {
 | 
						|
    return OffsetValue{DenseMapInfo<const Value *>::getEmptyKey(),
 | 
						|
                       DenseMapInfo<int64_t>::getEmptyKey()};
 | 
						|
  }
 | 
						|
 | 
						|
  static OffsetValue getTombstoneKey() {
 | 
						|
    return OffsetValue{DenseMapInfo<const Value *>::getTombstoneKey(),
 | 
						|
                       DenseMapInfo<int64_t>::getEmptyKey()};
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const OffsetValue &OVal) {
 | 
						|
    return DenseMapInfo<std::pair<const Value *, int64_t>>::getHashValue(
 | 
						|
        std::make_pair(OVal.Val, OVal.Offset));
 | 
						|
  }
 | 
						|
 | 
						|
  static bool isEqual(const OffsetValue &LHS, const OffsetValue &RHS) {
 | 
						|
    return LHS == RHS;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// Specialize DenseMapInfo for OffsetInstantiatedValue.
 | 
						|
template <> struct DenseMapInfo<OffsetInstantiatedValue> {
 | 
						|
  static OffsetInstantiatedValue getEmptyKey() {
 | 
						|
    return OffsetInstantiatedValue{
 | 
						|
        DenseMapInfo<InstantiatedValue>::getEmptyKey(),
 | 
						|
        DenseMapInfo<int64_t>::getEmptyKey()};
 | 
						|
  }
 | 
						|
 | 
						|
  static OffsetInstantiatedValue getTombstoneKey() {
 | 
						|
    return OffsetInstantiatedValue{
 | 
						|
        DenseMapInfo<InstantiatedValue>::getTombstoneKey(),
 | 
						|
        DenseMapInfo<int64_t>::getEmptyKey()};
 | 
						|
  }
 | 
						|
 | 
						|
  static unsigned getHashValue(const OffsetInstantiatedValue &OVal) {
 | 
						|
    return DenseMapInfo<std::pair<InstantiatedValue, int64_t>>::getHashValue(
 | 
						|
        std::make_pair(OVal.IVal, OVal.Offset));
 | 
						|
  }
 | 
						|
 | 
						|
  static bool isEqual(const OffsetInstantiatedValue &LHS,
 | 
						|
                      const OffsetInstantiatedValue &RHS) {
 | 
						|
    return LHS == RHS;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
class CFLAndersAAResult::FunctionInfo {
 | 
						|
  /// Map a value to other values that may alias it
 | 
						|
  /// Since the alias relation is symmetric, to save some space we assume values
 | 
						|
  /// are properly ordered: if a and b alias each other, and a < b, then b is in
 | 
						|
  /// AliasMap[a] but not vice versa.
 | 
						|
  DenseMap<const Value *, std::vector<OffsetValue>> AliasMap;
 | 
						|
 | 
						|
  /// Map a value to its corresponding AliasAttrs
 | 
						|
  DenseMap<const Value *, AliasAttrs> AttrMap;
 | 
						|
 | 
						|
  /// Summary of externally visible effects.
 | 
						|
  AliasSummary Summary;
 | 
						|
 | 
						|
  Optional<AliasAttrs> getAttrs(const Value *) const;
 | 
						|
 | 
						|
public:
 | 
						|
  FunctionInfo(const Function &, const SmallVectorImpl<Value *> &,
 | 
						|
               const ReachabilitySet &, const AliasAttrMap &);
 | 
						|
 | 
						|
  bool mayAlias(const Value *, LocationSize, const Value *, LocationSize) const;
 | 
						|
  const AliasSummary &getAliasSummary() const { return Summary; }
 | 
						|
};
 | 
						|
 | 
						|
static bool hasReadOnlyState(StateSet Set) {
 | 
						|
  return (Set & StateSet(ReadOnlyStateMask)).any();
 | 
						|
}
 | 
						|
 | 
						|
static bool hasWriteOnlyState(StateSet Set) {
 | 
						|
  return (Set & StateSet(WriteOnlyStateMask)).any();
 | 
						|
}
 | 
						|
 | 
						|
static Optional<InterfaceValue>
 | 
						|
getInterfaceValue(InstantiatedValue IValue,
 | 
						|
                  const SmallVectorImpl<Value *> &RetVals) {
 | 
						|
  auto Val = IValue.Val;
 | 
						|
 | 
						|
  Optional<unsigned> Index;
 | 
						|
  if (auto Arg = dyn_cast<Argument>(Val))
 | 
						|
    Index = Arg->getArgNo() + 1;
 | 
						|
  else if (is_contained(RetVals, Val))
 | 
						|
    Index = 0;
 | 
						|
 | 
						|
  if (Index)
 | 
						|
    return InterfaceValue{*Index, IValue.DerefLevel};
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
static void populateAttrMap(DenseMap<const Value *, AliasAttrs> &AttrMap,
 | 
						|
                            const AliasAttrMap &AMap) {
 | 
						|
  for (const auto &Mapping : AMap.mappings()) {
 | 
						|
    auto IVal = Mapping.first;
 | 
						|
 | 
						|
    // Insert IVal into the map
 | 
						|
    auto &Attr = AttrMap[IVal.Val];
 | 
						|
    // AttrMap only cares about top-level values
 | 
						|
    if (IVal.DerefLevel == 0)
 | 
						|
      Attr |= Mapping.second;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
populateAliasMap(DenseMap<const Value *, std::vector<OffsetValue>> &AliasMap,
 | 
						|
                 const ReachabilitySet &ReachSet) {
 | 
						|
  for (const auto &OuterMapping : ReachSet.value_mappings()) {
 | 
						|
    // AliasMap only cares about top-level values
 | 
						|
    if (OuterMapping.first.DerefLevel > 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto Val = OuterMapping.first.Val;
 | 
						|
    auto &AliasList = AliasMap[Val];
 | 
						|
    for (const auto &InnerMapping : OuterMapping.second) {
 | 
						|
      // Again, AliasMap only cares about top-level values
 | 
						|
      if (InnerMapping.first.DerefLevel == 0)
 | 
						|
        AliasList.push_back(OffsetValue{InnerMapping.first.Val, UnknownOffset});
 | 
						|
    }
 | 
						|
 | 
						|
    // Sort AliasList for faster lookup
 | 
						|
    llvm::sort(AliasList);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void populateExternalRelations(
 | 
						|
    SmallVectorImpl<ExternalRelation> &ExtRelations, const Function &Fn,
 | 
						|
    const SmallVectorImpl<Value *> &RetVals, const ReachabilitySet &ReachSet) {
 | 
						|
  // If a function only returns one of its argument X, then X will be both an
 | 
						|
  // argument and a return value at the same time. This is an edge case that
 | 
						|
  // needs special handling here.
 | 
						|
  for (const auto &Arg : Fn.args()) {
 | 
						|
    if (is_contained(RetVals, &Arg)) {
 | 
						|
      auto ArgVal = InterfaceValue{Arg.getArgNo() + 1, 0};
 | 
						|
      auto RetVal = InterfaceValue{0, 0};
 | 
						|
      ExtRelations.push_back(ExternalRelation{ArgVal, RetVal, 0});
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Below is the core summary construction logic.
 | 
						|
  // A naive solution of adding only the value aliases that are parameters or
 | 
						|
  // return values in ReachSet to the summary won't work: It is possible that a
 | 
						|
  // parameter P is written into an intermediate value I, and the function
 | 
						|
  // subsequently returns *I. In that case, *I is does not value alias anything
 | 
						|
  // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to
 | 
						|
  // (I, 1).
 | 
						|
  // To account for the aforementioned case, we need to check each non-parameter
 | 
						|
  // and non-return value for the possibility of acting as an intermediate.
 | 
						|
  // 'ValueMap' here records, for each value, which InterfaceValues read from or
 | 
						|
  // write into it. If both the read list and the write list of a given value
 | 
						|
  // are non-empty, we know that a particular value is an intermidate and we
 | 
						|
  // need to add summary edges from the writes to the reads.
 | 
						|
  DenseMap<Value *, ValueSummary> ValueMap;
 | 
						|
  for (const auto &OuterMapping : ReachSet.value_mappings()) {
 | 
						|
    if (auto Dst = getInterfaceValue(OuterMapping.first, RetVals)) {
 | 
						|
      for (const auto &InnerMapping : OuterMapping.second) {
 | 
						|
        // If Src is a param/return value, we get a same-level assignment.
 | 
						|
        if (auto Src = getInterfaceValue(InnerMapping.first, RetVals)) {
 | 
						|
          // This may happen if both Dst and Src are return values
 | 
						|
          if (*Dst == *Src)
 | 
						|
            continue;
 | 
						|
 | 
						|
          if (hasReadOnlyState(InnerMapping.second))
 | 
						|
            ExtRelations.push_back(ExternalRelation{*Dst, *Src, UnknownOffset});
 | 
						|
          // No need to check for WriteOnly state, since ReachSet is symmetric
 | 
						|
        } else {
 | 
						|
          // If Src is not a param/return, add it to ValueMap
 | 
						|
          auto SrcIVal = InnerMapping.first;
 | 
						|
          if (hasReadOnlyState(InnerMapping.second))
 | 
						|
            ValueMap[SrcIVal.Val].FromRecords.push_back(
 | 
						|
                ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
 | 
						|
          if (hasWriteOnlyState(InnerMapping.second))
 | 
						|
            ValueMap[SrcIVal.Val].ToRecords.push_back(
 | 
						|
                ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (const auto &Mapping : ValueMap) {
 | 
						|
    for (const auto &FromRecord : Mapping.second.FromRecords) {
 | 
						|
      for (const auto &ToRecord : Mapping.second.ToRecords) {
 | 
						|
        auto ToLevel = ToRecord.DerefLevel;
 | 
						|
        auto FromLevel = FromRecord.DerefLevel;
 | 
						|
        // Same-level assignments should have already been processed by now
 | 
						|
        if (ToLevel == FromLevel)
 | 
						|
          continue;
 | 
						|
 | 
						|
        auto SrcIndex = FromRecord.IValue.Index;
 | 
						|
        auto SrcLevel = FromRecord.IValue.DerefLevel;
 | 
						|
        auto DstIndex = ToRecord.IValue.Index;
 | 
						|
        auto DstLevel = ToRecord.IValue.DerefLevel;
 | 
						|
        if (ToLevel > FromLevel)
 | 
						|
          SrcLevel += ToLevel - FromLevel;
 | 
						|
        else
 | 
						|
          DstLevel += FromLevel - ToLevel;
 | 
						|
 | 
						|
        ExtRelations.push_back(ExternalRelation{
 | 
						|
            InterfaceValue{SrcIndex, SrcLevel},
 | 
						|
            InterfaceValue{DstIndex, DstLevel}, UnknownOffset});
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove duplicates in ExtRelations
 | 
						|
  llvm::sort(ExtRelations);
 | 
						|
  ExtRelations.erase(std::unique(ExtRelations.begin(), ExtRelations.end()),
 | 
						|
                     ExtRelations.end());
 | 
						|
}
 | 
						|
 | 
						|
static void populateExternalAttributes(
 | 
						|
    SmallVectorImpl<ExternalAttribute> &ExtAttributes, const Function &Fn,
 | 
						|
    const SmallVectorImpl<Value *> &RetVals, const AliasAttrMap &AMap) {
 | 
						|
  for (const auto &Mapping : AMap.mappings()) {
 | 
						|
    if (auto IVal = getInterfaceValue(Mapping.first, RetVals)) {
 | 
						|
      auto Attr = getExternallyVisibleAttrs(Mapping.second);
 | 
						|
      if (Attr.any())
 | 
						|
        ExtAttributes.push_back(ExternalAttribute{*IVal, Attr});
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CFLAndersAAResult::FunctionInfo::FunctionInfo(
 | 
						|
    const Function &Fn, const SmallVectorImpl<Value *> &RetVals,
 | 
						|
    const ReachabilitySet &ReachSet, const AliasAttrMap &AMap) {
 | 
						|
  populateAttrMap(AttrMap, AMap);
 | 
						|
  populateExternalAttributes(Summary.RetParamAttributes, Fn, RetVals, AMap);
 | 
						|
  populateAliasMap(AliasMap, ReachSet);
 | 
						|
  populateExternalRelations(Summary.RetParamRelations, Fn, RetVals, ReachSet);
 | 
						|
}
 | 
						|
 | 
						|
Optional<AliasAttrs>
 | 
						|
CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const {
 | 
						|
  assert(V != nullptr);
 | 
						|
 | 
						|
  auto Itr = AttrMap.find(V);
 | 
						|
  if (Itr != AttrMap.end())
 | 
						|
    return Itr->second;
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
bool CFLAndersAAResult::FunctionInfo::mayAlias(
 | 
						|
    const Value *LHS, LocationSize MaybeLHSSize, const Value *RHS,
 | 
						|
    LocationSize MaybeRHSSize) const {
 | 
						|
  assert(LHS && RHS);
 | 
						|
 | 
						|
  // Check if we've seen LHS and RHS before. Sometimes LHS or RHS can be created
 | 
						|
  // after the analysis gets executed, and we want to be conservative in those
 | 
						|
  // cases.
 | 
						|
  auto MaybeAttrsA = getAttrs(LHS);
 | 
						|
  auto MaybeAttrsB = getAttrs(RHS);
 | 
						|
  if (!MaybeAttrsA || !MaybeAttrsB)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check AliasAttrs before AliasMap lookup since it's cheaper
 | 
						|
  auto AttrsA = *MaybeAttrsA;
 | 
						|
  auto AttrsB = *MaybeAttrsB;
 | 
						|
  if (hasUnknownOrCallerAttr(AttrsA))
 | 
						|
    return AttrsB.any();
 | 
						|
  if (hasUnknownOrCallerAttr(AttrsB))
 | 
						|
    return AttrsA.any();
 | 
						|
  if (isGlobalOrArgAttr(AttrsA))
 | 
						|
    return isGlobalOrArgAttr(AttrsB);
 | 
						|
  if (isGlobalOrArgAttr(AttrsB))
 | 
						|
    return isGlobalOrArgAttr(AttrsA);
 | 
						|
 | 
						|
  // At this point both LHS and RHS should point to locally allocated objects
 | 
						|
 | 
						|
  auto Itr = AliasMap.find(LHS);
 | 
						|
  if (Itr != AliasMap.end()) {
 | 
						|
 | 
						|
    // Find out all (X, Offset) where X == RHS
 | 
						|
    auto Comparator = [](OffsetValue LHS, OffsetValue RHS) {
 | 
						|
      return std::less<const Value *>()(LHS.Val, RHS.Val);
 | 
						|
    };
 | 
						|
#ifdef EXPENSIVE_CHECKS
 | 
						|
    assert(llvm::is_sorted(Itr->second, Comparator));
 | 
						|
#endif
 | 
						|
    auto RangePair = std::equal_range(Itr->second.begin(), Itr->second.end(),
 | 
						|
                                      OffsetValue{RHS, 0}, Comparator);
 | 
						|
 | 
						|
    if (RangePair.first != RangePair.second) {
 | 
						|
      // Be conservative about unknown sizes
 | 
						|
      if (!MaybeLHSSize.hasValue() || !MaybeRHSSize.hasValue())
 | 
						|
        return true;
 | 
						|
 | 
						|
      const uint64_t LHSSize = MaybeLHSSize.getValue();
 | 
						|
      const uint64_t RHSSize = MaybeRHSSize.getValue();
 | 
						|
 | 
						|
      for (const auto &OVal : make_range(RangePair)) {
 | 
						|
        // Be conservative about UnknownOffset
 | 
						|
        if (OVal.Offset == UnknownOffset)
 | 
						|
          return true;
 | 
						|
 | 
						|
        // We know that LHS aliases (RHS + OVal.Offset) if the control flow
 | 
						|
        // reaches here. The may-alias query essentially becomes integer
 | 
						|
        // range-overlap queries over two ranges [OVal.Offset, OVal.Offset +
 | 
						|
        // LHSSize) and [0, RHSSize).
 | 
						|
 | 
						|
        // Try to be conservative on super large offsets
 | 
						|
        if (LLVM_UNLIKELY(LHSSize > INT64_MAX || RHSSize > INT64_MAX))
 | 
						|
          return true;
 | 
						|
 | 
						|
        auto LHSStart = OVal.Offset;
 | 
						|
        // FIXME: Do we need to guard against integer overflow?
 | 
						|
        auto LHSEnd = OVal.Offset + static_cast<int64_t>(LHSSize);
 | 
						|
        auto RHSStart = 0;
 | 
						|
        auto RHSEnd = static_cast<int64_t>(RHSSize);
 | 
						|
        if (LHSEnd > RHSStart && LHSStart < RHSEnd)
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void propagate(InstantiatedValue From, InstantiatedValue To,
 | 
						|
                      MatchState State, ReachabilitySet &ReachSet,
 | 
						|
                      std::vector<WorkListItem> &WorkList) {
 | 
						|
  if (From == To)
 | 
						|
    return;
 | 
						|
  if (ReachSet.insert(From, To, State))
 | 
						|
    WorkList.push_back(WorkListItem{From, To, State});
 | 
						|
}
 | 
						|
 | 
						|
static void initializeWorkList(std::vector<WorkListItem> &WorkList,
 | 
						|
                               ReachabilitySet &ReachSet,
 | 
						|
                               const CFLGraph &Graph) {
 | 
						|
  for (const auto &Mapping : Graph.value_mappings()) {
 | 
						|
    auto Val = Mapping.first;
 | 
						|
    auto &ValueInfo = Mapping.second;
 | 
						|
    assert(ValueInfo.getNumLevels() > 0);
 | 
						|
 | 
						|
    // Insert all immediate assignment neighbors to the worklist
 | 
						|
    for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
 | 
						|
      auto Src = InstantiatedValue{Val, I};
 | 
						|
      // If there's an assignment edge from X to Y, it means Y is reachable from
 | 
						|
      // X at S3 and X is reachable from Y at S1
 | 
						|
      for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) {
 | 
						|
        propagate(Edge.Other, Src, MatchState::FlowFromReadOnly, ReachSet,
 | 
						|
                  WorkList);
 | 
						|
        propagate(Src, Edge.Other, MatchState::FlowToWriteOnly, ReachSet,
 | 
						|
                  WorkList);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph,
 | 
						|
                                                InstantiatedValue V) {
 | 
						|
  auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1};
 | 
						|
  if (Graph.getNode(NodeBelow))
 | 
						|
    return NodeBelow;
 | 
						|
  return None;
 | 
						|
}
 | 
						|
 | 
						|
static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph,
 | 
						|
                                ReachabilitySet &ReachSet, AliasMemSet &MemSet,
 | 
						|
                                std::vector<WorkListItem> &WorkList) {
 | 
						|
  auto FromNode = Item.From;
 | 
						|
  auto ToNode = Item.To;
 | 
						|
 | 
						|
  auto NodeInfo = Graph.getNode(ToNode);
 | 
						|
  assert(NodeInfo != nullptr);
 | 
						|
 | 
						|
  // TODO: propagate field offsets
 | 
						|
 | 
						|
  // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds
 | 
						|
  // relations that are symmetric, we could actually cut the storage by half by
 | 
						|
  // sorting FromNode and ToNode before insertion happens.
 | 
						|
 | 
						|
  // The newly added value alias pair may potentially generate more memory
 | 
						|
  // alias pairs. Check for them here.
 | 
						|
  auto FromNodeBelow = getNodeBelow(Graph, FromNode);
 | 
						|
  auto ToNodeBelow = getNodeBelow(Graph, ToNode);
 | 
						|
  if (FromNodeBelow && ToNodeBelow &&
 | 
						|
      MemSet.insert(*FromNodeBelow, *ToNodeBelow)) {
 | 
						|
    propagate(*FromNodeBelow, *ToNodeBelow,
 | 
						|
              MatchState::FlowFromMemAliasNoReadWrite, ReachSet, WorkList);
 | 
						|
    for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) {
 | 
						|
      auto Src = Mapping.first;
 | 
						|
      auto MemAliasPropagate = [&](MatchState FromState, MatchState ToState) {
 | 
						|
        if (Mapping.second.test(static_cast<size_t>(FromState)))
 | 
						|
          propagate(Src, *ToNodeBelow, ToState, ReachSet, WorkList);
 | 
						|
      };
 | 
						|
 | 
						|
      MemAliasPropagate(MatchState::FlowFromReadOnly,
 | 
						|
                        MatchState::FlowFromMemAliasReadOnly);
 | 
						|
      MemAliasPropagate(MatchState::FlowToWriteOnly,
 | 
						|
                        MatchState::FlowToMemAliasWriteOnly);
 | 
						|
      MemAliasPropagate(MatchState::FlowToReadWrite,
 | 
						|
                        MatchState::FlowToMemAliasReadWrite);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // This is the core of the state machine walking algorithm. We expand ReachSet
 | 
						|
  // based on which state we are at (which in turn dictates what edges we
 | 
						|
  // should examine)
 | 
						|
  // From a high-level point of view, the state machine here guarantees two
 | 
						|
  // properties:
 | 
						|
  // - If *X and *Y are memory aliases, then X and Y are value aliases
 | 
						|
  // - If Y is an alias of X, then reverse assignment edges (if there is any)
 | 
						|
  // should precede any assignment edges on the path from X to Y.
 | 
						|
  auto NextAssignState = [&](MatchState State) {
 | 
						|
    for (const auto &AssignEdge : NodeInfo->Edges)
 | 
						|
      propagate(FromNode, AssignEdge.Other, State, ReachSet, WorkList);
 | 
						|
  };
 | 
						|
  auto NextRevAssignState = [&](MatchState State) {
 | 
						|
    for (const auto &RevAssignEdge : NodeInfo->ReverseEdges)
 | 
						|
      propagate(FromNode, RevAssignEdge.Other, State, ReachSet, WorkList);
 | 
						|
  };
 | 
						|
  auto NextMemState = [&](MatchState State) {
 | 
						|
    if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) {
 | 
						|
      for (const auto &MemAlias : *AliasSet)
 | 
						|
        propagate(FromNode, MemAlias, State, ReachSet, WorkList);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  switch (Item.State) {
 | 
						|
  case MatchState::FlowFromReadOnly:
 | 
						|
    NextRevAssignState(MatchState::FlowFromReadOnly);
 | 
						|
    NextAssignState(MatchState::FlowToReadWrite);
 | 
						|
    NextMemState(MatchState::FlowFromMemAliasReadOnly);
 | 
						|
    break;
 | 
						|
 | 
						|
  case MatchState::FlowFromMemAliasNoReadWrite:
 | 
						|
    NextRevAssignState(MatchState::FlowFromReadOnly);
 | 
						|
    NextAssignState(MatchState::FlowToWriteOnly);
 | 
						|
    break;
 | 
						|
 | 
						|
  case MatchState::FlowFromMemAliasReadOnly:
 | 
						|
    NextRevAssignState(MatchState::FlowFromReadOnly);
 | 
						|
    NextAssignState(MatchState::FlowToReadWrite);
 | 
						|
    break;
 | 
						|
 | 
						|
  case MatchState::FlowToWriteOnly:
 | 
						|
    NextAssignState(MatchState::FlowToWriteOnly);
 | 
						|
    NextMemState(MatchState::FlowToMemAliasWriteOnly);
 | 
						|
    break;
 | 
						|
 | 
						|
  case MatchState::FlowToReadWrite:
 | 
						|
    NextAssignState(MatchState::FlowToReadWrite);
 | 
						|
    NextMemState(MatchState::FlowToMemAliasReadWrite);
 | 
						|
    break;
 | 
						|
 | 
						|
  case MatchState::FlowToMemAliasWriteOnly:
 | 
						|
    NextAssignState(MatchState::FlowToWriteOnly);
 | 
						|
    break;
 | 
						|
 | 
						|
  case MatchState::FlowToMemAliasReadWrite:
 | 
						|
    NextAssignState(MatchState::FlowToReadWrite);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static AliasAttrMap buildAttrMap(const CFLGraph &Graph,
 | 
						|
                                 const ReachabilitySet &ReachSet) {
 | 
						|
  AliasAttrMap AttrMap;
 | 
						|
  std::vector<InstantiatedValue> WorkList, NextList;
 | 
						|
 | 
						|
  // Initialize each node with its original AliasAttrs in CFLGraph
 | 
						|
  for (const auto &Mapping : Graph.value_mappings()) {
 | 
						|
    auto Val = Mapping.first;
 | 
						|
    auto &ValueInfo = Mapping.second;
 | 
						|
    for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
 | 
						|
      auto Node = InstantiatedValue{Val, I};
 | 
						|
      AttrMap.add(Node, ValueInfo.getNodeInfoAtLevel(I).Attr);
 | 
						|
      WorkList.push_back(Node);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    for (const auto &Dst : WorkList) {
 | 
						|
      auto DstAttr = AttrMap.getAttrs(Dst);
 | 
						|
      if (DstAttr.none())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Propagate attr on the same level
 | 
						|
      for (const auto &Mapping : ReachSet.reachableValueAliases(Dst)) {
 | 
						|
        auto Src = Mapping.first;
 | 
						|
        if (AttrMap.add(Src, DstAttr))
 | 
						|
          NextList.push_back(Src);
 | 
						|
      }
 | 
						|
 | 
						|
      // Propagate attr to the levels below
 | 
						|
      auto DstBelow = getNodeBelow(Graph, Dst);
 | 
						|
      while (DstBelow) {
 | 
						|
        if (AttrMap.add(*DstBelow, DstAttr)) {
 | 
						|
          NextList.push_back(*DstBelow);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        DstBelow = getNodeBelow(Graph, *DstBelow);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    WorkList.swap(NextList);
 | 
						|
    NextList.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  return AttrMap;
 | 
						|
}
 | 
						|
 | 
						|
CFLAndersAAResult::FunctionInfo
 | 
						|
CFLAndersAAResult::buildInfoFrom(const Function &Fn) {
 | 
						|
  CFLGraphBuilder<CFLAndersAAResult> GraphBuilder(
 | 
						|
      *this, GetTLI(const_cast<Function &>(Fn)),
 | 
						|
      // Cast away the constness here due to GraphBuilder's API requirement
 | 
						|
      const_cast<Function &>(Fn));
 | 
						|
  auto &Graph = GraphBuilder.getCFLGraph();
 | 
						|
 | 
						|
  ReachabilitySet ReachSet;
 | 
						|
  AliasMemSet MemSet;
 | 
						|
 | 
						|
  std::vector<WorkListItem> WorkList, NextList;
 | 
						|
  initializeWorkList(WorkList, ReachSet, Graph);
 | 
						|
  // TODO: make sure we don't stop before the fix point is reached
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    for (const auto &Item : WorkList)
 | 
						|
      processWorkListItem(Item, Graph, ReachSet, MemSet, NextList);
 | 
						|
 | 
						|
    NextList.swap(WorkList);
 | 
						|
    NextList.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have all the reachability info, propagate AliasAttrs according
 | 
						|
  // to it
 | 
						|
  auto IValueAttrMap = buildAttrMap(Graph, ReachSet);
 | 
						|
 | 
						|
  return FunctionInfo(Fn, GraphBuilder.getReturnValues(), ReachSet,
 | 
						|
                      std::move(IValueAttrMap));
 | 
						|
}
 | 
						|
 | 
						|
void CFLAndersAAResult::scan(const Function &Fn) {
 | 
						|
  auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>()));
 | 
						|
  (void)InsertPair;
 | 
						|
  assert(InsertPair.second &&
 | 
						|
         "Trying to scan a function that has already been cached");
 | 
						|
 | 
						|
  // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
 | 
						|
  // may get evaluated after operator[], potentially triggering a DenseMap
 | 
						|
  // resize and invalidating the reference returned by operator[]
 | 
						|
  auto FunInfo = buildInfoFrom(Fn);
 | 
						|
  Cache[&Fn] = std::move(FunInfo);
 | 
						|
  Handles.emplace_front(const_cast<Function *>(&Fn), this);
 | 
						|
}
 | 
						|
 | 
						|
void CFLAndersAAResult::evict(const Function *Fn) { Cache.erase(Fn); }
 | 
						|
 | 
						|
const Optional<CFLAndersAAResult::FunctionInfo> &
 | 
						|
CFLAndersAAResult::ensureCached(const Function &Fn) {
 | 
						|
  auto Iter = Cache.find(&Fn);
 | 
						|
  if (Iter == Cache.end()) {
 | 
						|
    scan(Fn);
 | 
						|
    Iter = Cache.find(&Fn);
 | 
						|
    assert(Iter != Cache.end());
 | 
						|
    assert(Iter->second.hasValue());
 | 
						|
  }
 | 
						|
  return Iter->second;
 | 
						|
}
 | 
						|
 | 
						|
const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) {
 | 
						|
  auto &FunInfo = ensureCached(Fn);
 | 
						|
  if (FunInfo.hasValue())
 | 
						|
    return &FunInfo->getAliasSummary();
 | 
						|
  else
 | 
						|
    return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA,
 | 
						|
                                     const MemoryLocation &LocB) {
 | 
						|
  auto *ValA = LocA.Ptr;
 | 
						|
  auto *ValB = LocB.Ptr;
 | 
						|
 | 
						|
  if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
 | 
						|
    return AliasResult::NoAlias;
 | 
						|
 | 
						|
  auto *Fn = parentFunctionOfValue(ValA);
 | 
						|
  if (!Fn) {
 | 
						|
    Fn = parentFunctionOfValue(ValB);
 | 
						|
    if (!Fn) {
 | 
						|
      // The only times this is known to happen are when globals + InlineAsm are
 | 
						|
      // involved
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs()
 | 
						|
          << "CFLAndersAA: could not extract parent function information.\n");
 | 
						|
      return AliasResult::MayAlias;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Fn != nullptr);
 | 
						|
  auto &FunInfo = ensureCached(*Fn);
 | 
						|
 | 
						|
  // AliasMap lookup
 | 
						|
  if (FunInfo->mayAlias(ValA, LocA.Size, ValB, LocB.Size))
 | 
						|
    return AliasResult::MayAlias;
 | 
						|
  return AliasResult::NoAlias;
 | 
						|
}
 | 
						|
 | 
						|
AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA,
 | 
						|
                                     const MemoryLocation &LocB,
 | 
						|
                                     AAQueryInfo &AAQI) {
 | 
						|
  if (LocA.Ptr == LocB.Ptr)
 | 
						|
    return AliasResult::MustAlias;
 | 
						|
 | 
						|
  // Comparisons between global variables and other constants should be
 | 
						|
  // handled by BasicAA.
 | 
						|
  // CFLAndersAA may report NoAlias when comparing a GlobalValue and
 | 
						|
  // ConstantExpr, but every query needs to have at least one Value tied to a
 | 
						|
  // Function, and neither GlobalValues nor ConstantExprs are.
 | 
						|
  if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr))
 | 
						|
    return AAResultBase::alias(LocA, LocB, AAQI);
 | 
						|
 | 
						|
  AliasResult QueryResult = query(LocA, LocB);
 | 
						|
  if (QueryResult == AliasResult::MayAlias)
 | 
						|
    return AAResultBase::alias(LocA, LocB, AAQI);
 | 
						|
 | 
						|
  return QueryResult;
 | 
						|
}
 | 
						|
 | 
						|
AnalysisKey CFLAndersAA::Key;
 | 
						|
 | 
						|
CFLAndersAAResult CFLAndersAA::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  auto GetTLI = [&AM](Function &F) -> TargetLibraryInfo & {
 | 
						|
    return AM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
  };
 | 
						|
  return CFLAndersAAResult(GetTLI);
 | 
						|
}
 | 
						|
 | 
						|
char CFLAndersAAWrapperPass::ID = 0;
 | 
						|
INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa",
 | 
						|
                "Inclusion-Based CFL Alias Analysis", false, true)
 | 
						|
 | 
						|
ImmutablePass *llvm::createCFLAndersAAWrapperPass() {
 | 
						|
  return new CFLAndersAAWrapperPass();
 | 
						|
}
 | 
						|
 | 
						|
CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) {
 | 
						|
  initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void CFLAndersAAWrapperPass::initializePass() {
 | 
						|
  auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
 | 
						|
    return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | 
						|
  };
 | 
						|
  Result.reset(new CFLAndersAAResult(GetTLI));
 | 
						|
}
 | 
						|
 | 
						|
void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
}
 |