3230 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3230 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines routines for folding instructions into constants.
 | 
						|
//
 | 
						|
// Also, to supplement the basic IR ConstantExpr simplifications,
 | 
						|
// this file defines some additional folding routines that can make use of
 | 
						|
// DataLayout information. These functions cannot go in IR due to library
 | 
						|
// dependency issues.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/ADT/APFloat.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/APSInt.h"
 | 
						|
#include "llvm/ADT/ArrayRef.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Analysis/TargetFolder.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
#include "llvm/Config/config.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/IntrinsicsAArch64.h"
 | 
						|
#include "llvm/IR/IntrinsicsAMDGPU.h"
 | 
						|
#include "llvm/IR/IntrinsicsARM.h"
 | 
						|
#include "llvm/IR/IntrinsicsWebAssembly.h"
 | 
						|
#include "llvm/IR/IntrinsicsX86.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/KnownBits.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cerrno>
 | 
						|
#include <cfenv>
 | 
						|
#include <cmath>
 | 
						|
#include <cstddef>
 | 
						|
#include <cstdint>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Constant Folding internal helper functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
 | 
						|
                                        Constant *C, Type *SrcEltTy,
 | 
						|
                                        unsigned NumSrcElts,
 | 
						|
                                        const DataLayout &DL) {
 | 
						|
  // Now that we know that the input value is a vector of integers, just shift
 | 
						|
  // and insert them into our result.
 | 
						|
  unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
 | 
						|
  for (unsigned i = 0; i != NumSrcElts; ++i) {
 | 
						|
    Constant *Element;
 | 
						|
    if (DL.isLittleEndian())
 | 
						|
      Element = C->getAggregateElement(NumSrcElts - i - 1);
 | 
						|
    else
 | 
						|
      Element = C->getAggregateElement(i);
 | 
						|
 | 
						|
    if (Element && isa<UndefValue>(Element)) {
 | 
						|
      Result <<= BitShift;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
 | 
						|
    if (!ElementCI)
 | 
						|
      return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
    Result <<= BitShift;
 | 
						|
    Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Constant fold bitcast, symbolically evaluating it with DataLayout.
 | 
						|
/// This always returns a non-null constant, but it may be a
 | 
						|
/// ConstantExpr if unfoldable.
 | 
						|
Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
 | 
						|
  assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
 | 
						|
         "Invalid constantexpr bitcast!");
 | 
						|
 | 
						|
  // Catch the obvious splat cases.
 | 
						|
  if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
 | 
						|
    return Res;
 | 
						|
 | 
						|
  if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
 | 
						|
    // Handle a vector->scalar integer/fp cast.
 | 
						|
    if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
 | 
						|
      unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
 | 
						|
      Type *SrcEltTy = VTy->getElementType();
 | 
						|
 | 
						|
      // If the vector is a vector of floating point, convert it to vector of int
 | 
						|
      // to simplify things.
 | 
						|
      if (SrcEltTy->isFloatingPointTy()) {
 | 
						|
        unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | 
						|
        auto *SrcIVTy = FixedVectorType::get(
 | 
						|
            IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
 | 
						|
        // Ask IR to do the conversion now that #elts line up.
 | 
						|
        C = ConstantExpr::getBitCast(C, SrcIVTy);
 | 
						|
      }
 | 
						|
 | 
						|
      APInt Result(DL.getTypeSizeInBits(DestTy), 0);
 | 
						|
      if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
 | 
						|
                                                SrcEltTy, NumSrcElts, DL))
 | 
						|
        return CE;
 | 
						|
 | 
						|
      if (isa<IntegerType>(DestTy))
 | 
						|
        return ConstantInt::get(DestTy, Result);
 | 
						|
 | 
						|
      APFloat FP(DestTy->getFltSemantics(), Result);
 | 
						|
      return ConstantFP::get(DestTy->getContext(), FP);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The code below only handles casts to vectors currently.
 | 
						|
  auto *DestVTy = dyn_cast<VectorType>(DestTy);
 | 
						|
  if (!DestVTy)
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
  // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
 | 
						|
  // vector so the code below can handle it uniformly.
 | 
						|
  if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
 | 
						|
    Constant *Ops = C; // don't take the address of C!
 | 
						|
    return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is a bitcast from constant vector -> vector, fold it.
 | 
						|
  if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
  // If the element types match, IR can fold it.
 | 
						|
  unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
 | 
						|
  unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
 | 
						|
  if (NumDstElt == NumSrcElt)
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
  Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
 | 
						|
  Type *DstEltTy = DestVTy->getElementType();
 | 
						|
 | 
						|
  // Otherwise, we're changing the number of elements in a vector, which
 | 
						|
  // requires endianness information to do the right thing.  For example,
 | 
						|
  //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | 
						|
  // folds to (little endian):
 | 
						|
  //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
 | 
						|
  // and to (big endian):
 | 
						|
  //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
 | 
						|
 | 
						|
  // First thing is first.  We only want to think about integer here, so if
 | 
						|
  // we have something in FP form, recast it as integer.
 | 
						|
  if (DstEltTy->isFloatingPointTy()) {
 | 
						|
    // Fold to an vector of integers with same size as our FP type.
 | 
						|
    unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
 | 
						|
    auto *DestIVTy = FixedVectorType::get(
 | 
						|
        IntegerType::get(C->getContext(), FPWidth), NumDstElt);
 | 
						|
    // Recursively handle this integer conversion, if possible.
 | 
						|
    C = FoldBitCast(C, DestIVTy, DL);
 | 
						|
 | 
						|
    // Finally, IR can handle this now that #elts line up.
 | 
						|
    return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we know the destination is integer, if the input is FP, convert
 | 
						|
  // it to integer first.
 | 
						|
  if (SrcEltTy->isFloatingPointTy()) {
 | 
						|
    unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
 | 
						|
    auto *SrcIVTy = FixedVectorType::get(
 | 
						|
        IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
 | 
						|
    // Ask IR to do the conversion now that #elts line up.
 | 
						|
    C = ConstantExpr::getBitCast(C, SrcIVTy);
 | 
						|
    // If IR wasn't able to fold it, bail out.
 | 
						|
    if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
 | 
						|
        !isa<ConstantDataVector>(C))
 | 
						|
      return C;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that the input and output vectors are both integer vectors
 | 
						|
  // of the same size, and that their #elements is not the same.  Do the
 | 
						|
  // conversion here, which depends on whether the input or output has
 | 
						|
  // more elements.
 | 
						|
  bool isLittleEndian = DL.isLittleEndian();
 | 
						|
 | 
						|
  SmallVector<Constant*, 32> Result;
 | 
						|
  if (NumDstElt < NumSrcElt) {
 | 
						|
    // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
 | 
						|
    Constant *Zero = Constant::getNullValue(DstEltTy);
 | 
						|
    unsigned Ratio = NumSrcElt/NumDstElt;
 | 
						|
    unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
 | 
						|
    unsigned SrcElt = 0;
 | 
						|
    for (unsigned i = 0; i != NumDstElt; ++i) {
 | 
						|
      // Build each element of the result.
 | 
						|
      Constant *Elt = Zero;
 | 
						|
      unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
 | 
						|
      for (unsigned j = 0; j != Ratio; ++j) {
 | 
						|
        Constant *Src = C->getAggregateElement(SrcElt++);
 | 
						|
        if (Src && isa<UndefValue>(Src))
 | 
						|
          Src = Constant::getNullValue(
 | 
						|
              cast<VectorType>(C->getType())->getElementType());
 | 
						|
        else
 | 
						|
          Src = dyn_cast_or_null<ConstantInt>(Src);
 | 
						|
        if (!Src)  // Reject constantexpr elements.
 | 
						|
          return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
        // Zero extend the element to the right size.
 | 
						|
        Src = ConstantExpr::getZExt(Src, Elt->getType());
 | 
						|
 | 
						|
        // Shift it to the right place, depending on endianness.
 | 
						|
        Src = ConstantExpr::getShl(Src,
 | 
						|
                                   ConstantInt::get(Src->getType(), ShiftAmt));
 | 
						|
        ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
 | 
						|
 | 
						|
        // Mix it in.
 | 
						|
        Elt = ConstantExpr::getOr(Elt, Src);
 | 
						|
      }
 | 
						|
      Result.push_back(Elt);
 | 
						|
    }
 | 
						|
    return ConstantVector::get(Result);
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
 | 
						|
  unsigned Ratio = NumDstElt/NumSrcElt;
 | 
						|
  unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
 | 
						|
 | 
						|
  // Loop over each source value, expanding into multiple results.
 | 
						|
  for (unsigned i = 0; i != NumSrcElt; ++i) {
 | 
						|
    auto *Element = C->getAggregateElement(i);
 | 
						|
 | 
						|
    if (!Element) // Reject constantexpr elements.
 | 
						|
      return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
    if (isa<UndefValue>(Element)) {
 | 
						|
      // Correctly Propagate undef values.
 | 
						|
      Result.append(Ratio, UndefValue::get(DstEltTy));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *Src = dyn_cast<ConstantInt>(Element);
 | 
						|
    if (!Src)
 | 
						|
      return ConstantExpr::getBitCast(C, DestTy);
 | 
						|
 | 
						|
    unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
 | 
						|
    for (unsigned j = 0; j != Ratio; ++j) {
 | 
						|
      // Shift the piece of the value into the right place, depending on
 | 
						|
      // endianness.
 | 
						|
      Constant *Elt = ConstantExpr::getLShr(Src,
 | 
						|
                                  ConstantInt::get(Src->getType(), ShiftAmt));
 | 
						|
      ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
 | 
						|
 | 
						|
      // Truncate the element to an integer with the same pointer size and
 | 
						|
      // convert the element back to a pointer using a inttoptr.
 | 
						|
      if (DstEltTy->isPointerTy()) {
 | 
						|
        IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
 | 
						|
        Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
 | 
						|
        Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Truncate and remember this piece.
 | 
						|
      Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantVector::get(Result);
 | 
						|
}
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// If this constant is a constant offset from a global, return the global and
 | 
						|
/// the constant. Because of constantexprs, this function is recursive.
 | 
						|
bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
 | 
						|
                                      APInt &Offset, const DataLayout &DL,
 | 
						|
                                      DSOLocalEquivalent **DSOEquiv) {
 | 
						|
  if (DSOEquiv)
 | 
						|
    *DSOEquiv = nullptr;
 | 
						|
 | 
						|
  // Trivial case, constant is the global.
 | 
						|
  if ((GV = dyn_cast<GlobalValue>(C))) {
 | 
						|
    unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
 | 
						|
    Offset = APInt(BitWidth, 0);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
 | 
						|
    if (DSOEquiv)
 | 
						|
      *DSOEquiv = FoundDSOEquiv;
 | 
						|
    GV = FoundDSOEquiv->getGlobalValue();
 | 
						|
    unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
 | 
						|
    Offset = APInt(BitWidth, 0);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if this isn't a constant expr, bail out.
 | 
						|
  auto *CE = dyn_cast<ConstantExpr>(C);
 | 
						|
  if (!CE) return false;
 | 
						|
 | 
						|
  // Look through ptr->int and ptr->ptr casts.
 | 
						|
  if (CE->getOpcode() == Instruction::PtrToInt ||
 | 
						|
      CE->getOpcode() == Instruction::BitCast)
 | 
						|
    return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
 | 
						|
                                      DSOEquiv);
 | 
						|
 | 
						|
  // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
 | 
						|
  auto *GEP = dyn_cast<GEPOperator>(CE);
 | 
						|
  if (!GEP)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
 | 
						|
  APInt TmpOffset(BitWidth, 0);
 | 
						|
 | 
						|
  // If the base isn't a global+constant, we aren't either.
 | 
						|
  if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
 | 
						|
                                  DSOEquiv))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, add any offset that our operands provide.
 | 
						|
  if (!GEP->accumulateConstantOffset(DL, TmpOffset))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Offset = TmpOffset;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
 | 
						|
                                         const DataLayout &DL) {
 | 
						|
  do {
 | 
						|
    Type *SrcTy = C->getType();
 | 
						|
    if (SrcTy == DestTy)
 | 
						|
      return C;
 | 
						|
 | 
						|
    TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
 | 
						|
    TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
 | 
						|
    if (!TypeSize::isKnownGE(SrcSize, DestSize))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Catch the obvious splat cases (since all-zeros can coerce non-integral
 | 
						|
    // pointers legally).
 | 
						|
    if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy))
 | 
						|
      return Res;
 | 
						|
 | 
						|
    // If the type sizes are the same and a cast is legal, just directly
 | 
						|
    // cast the constant.
 | 
						|
    // But be careful not to coerce non-integral pointers illegally.
 | 
						|
    if (SrcSize == DestSize &&
 | 
						|
        DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
 | 
						|
            DL.isNonIntegralPointerType(DestTy->getScalarType())) {
 | 
						|
      Instruction::CastOps Cast = Instruction::BitCast;
 | 
						|
      // If we are going from a pointer to int or vice versa, we spell the cast
 | 
						|
      // differently.
 | 
						|
      if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
 | 
						|
        Cast = Instruction::IntToPtr;
 | 
						|
      else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
 | 
						|
        Cast = Instruction::PtrToInt;
 | 
						|
 | 
						|
      if (CastInst::castIsValid(Cast, C, DestTy))
 | 
						|
        return ConstantExpr::getCast(Cast, C, DestTy);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this isn't an aggregate type, there is nothing we can do to drill down
 | 
						|
    // and find a bitcastable constant.
 | 
						|
    if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // We're simulating a load through a pointer that was bitcast to point to
 | 
						|
    // a different type, so we can try to walk down through the initial
 | 
						|
    // elements of an aggregate to see if some part of the aggregate is
 | 
						|
    // castable to implement the "load" semantic model.
 | 
						|
    if (SrcTy->isStructTy()) {
 | 
						|
      // Struct types might have leading zero-length elements like [0 x i32],
 | 
						|
      // which are certainly not what we are looking for, so skip them.
 | 
						|
      unsigned Elem = 0;
 | 
						|
      Constant *ElemC;
 | 
						|
      do {
 | 
						|
        ElemC = C->getAggregateElement(Elem++);
 | 
						|
      } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
 | 
						|
      C = ElemC;
 | 
						|
    } else {
 | 
						|
      // For non-byte-sized vector elements, the first element is not
 | 
						|
      // necessarily located at the vector base address.
 | 
						|
      if (auto *VT = dyn_cast<VectorType>(SrcTy))
 | 
						|
        if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
      C = C->getAggregateElement(0u);
 | 
						|
    }
 | 
						|
  } while (C);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Recursive helper to read bits out of global. C is the constant being copied
 | 
						|
/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
 | 
						|
/// results into and BytesLeft is the number of bytes left in
 | 
						|
/// the CurPtr buffer. DL is the DataLayout.
 | 
						|
bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
 | 
						|
                        unsigned BytesLeft, const DataLayout &DL) {
 | 
						|
  assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
 | 
						|
         "Out of range access");
 | 
						|
 | 
						|
  // If this element is zero or undefined, we can just return since *CurPtr is
 | 
						|
  // zero initialized.
 | 
						|
  if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (auto *CI = dyn_cast<ConstantInt>(C)) {
 | 
						|
    if (CI->getBitWidth() > 64 ||
 | 
						|
        (CI->getBitWidth() & 7) != 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    uint64_t Val = CI->getZExtValue();
 | 
						|
    unsigned IntBytes = unsigned(CI->getBitWidth()/8);
 | 
						|
 | 
						|
    for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
 | 
						|
      int n = ByteOffset;
 | 
						|
      if (!DL.isLittleEndian())
 | 
						|
        n = IntBytes - n - 1;
 | 
						|
      CurPtr[i] = (unsigned char)(Val >> (n * 8));
 | 
						|
      ++ByteOffset;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *CFP = dyn_cast<ConstantFP>(C)) {
 | 
						|
    if (CFP->getType()->isDoubleTy()) {
 | 
						|
      C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
 | 
						|
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
 | 
						|
    }
 | 
						|
    if (CFP->getType()->isFloatTy()){
 | 
						|
      C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
 | 
						|
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
 | 
						|
    }
 | 
						|
    if (CFP->getType()->isHalfTy()){
 | 
						|
      C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
 | 
						|
      return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *CS = dyn_cast<ConstantStruct>(C)) {
 | 
						|
    const StructLayout *SL = DL.getStructLayout(CS->getType());
 | 
						|
    unsigned Index = SL->getElementContainingOffset(ByteOffset);
 | 
						|
    uint64_t CurEltOffset = SL->getElementOffset(Index);
 | 
						|
    ByteOffset -= CurEltOffset;
 | 
						|
 | 
						|
    while (true) {
 | 
						|
      // If the element access is to the element itself and not to tail padding,
 | 
						|
      // read the bytes from the element.
 | 
						|
      uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
 | 
						|
 | 
						|
      if (ByteOffset < EltSize &&
 | 
						|
          !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
 | 
						|
                              BytesLeft, DL))
 | 
						|
        return false;
 | 
						|
 | 
						|
      ++Index;
 | 
						|
 | 
						|
      // Check to see if we read from the last struct element, if so we're done.
 | 
						|
      if (Index == CS->getType()->getNumElements())
 | 
						|
        return true;
 | 
						|
 | 
						|
      // If we read all of the bytes we needed from this element we're done.
 | 
						|
      uint64_t NextEltOffset = SL->getElementOffset(Index);
 | 
						|
 | 
						|
      if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
 | 
						|
        return true;
 | 
						|
 | 
						|
      // Move to the next element of the struct.
 | 
						|
      CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
 | 
						|
      BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
 | 
						|
      ByteOffset = 0;
 | 
						|
      CurEltOffset = NextEltOffset;
 | 
						|
    }
 | 
						|
    // not reached.
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
 | 
						|
      isa<ConstantDataSequential>(C)) {
 | 
						|
    uint64_t NumElts;
 | 
						|
    Type *EltTy;
 | 
						|
    if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
 | 
						|
      NumElts = AT->getNumElements();
 | 
						|
      EltTy = AT->getElementType();
 | 
						|
    } else {
 | 
						|
      NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
 | 
						|
      EltTy = cast<FixedVectorType>(C->getType())->getElementType();
 | 
						|
    }
 | 
						|
    uint64_t EltSize = DL.getTypeAllocSize(EltTy);
 | 
						|
    uint64_t Index = ByteOffset / EltSize;
 | 
						|
    uint64_t Offset = ByteOffset - Index * EltSize;
 | 
						|
 | 
						|
    for (; Index != NumElts; ++Index) {
 | 
						|
      if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
 | 
						|
                              BytesLeft, DL))
 | 
						|
        return false;
 | 
						|
 | 
						|
      uint64_t BytesWritten = EltSize - Offset;
 | 
						|
      assert(BytesWritten <= EltSize && "Not indexing into this element?");
 | 
						|
      if (BytesWritten >= BytesLeft)
 | 
						|
        return true;
 | 
						|
 | 
						|
      Offset = 0;
 | 
						|
      BytesLeft -= BytesWritten;
 | 
						|
      CurPtr += BytesWritten;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    if (CE->getOpcode() == Instruction::IntToPtr &&
 | 
						|
        CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
 | 
						|
      return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
 | 
						|
                                BytesLeft, DL);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, unknown initializer type.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
 | 
						|
                                       int64_t Offset, const DataLayout &DL) {
 | 
						|
  // Bail out early. Not expect to load from scalable global variable.
 | 
						|
  if (isa<ScalableVectorType>(LoadTy))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *IntType = dyn_cast<IntegerType>(LoadTy);
 | 
						|
 | 
						|
  // If this isn't an integer load we can't fold it directly.
 | 
						|
  if (!IntType) {
 | 
						|
    // If this is a float/double load, we can try folding it as an int32/64 load
 | 
						|
    // and then bitcast the result.  This can be useful for union cases.  Note
 | 
						|
    // that address spaces don't matter here since we're not going to result in
 | 
						|
    // an actual new load.
 | 
						|
    Type *MapTy;
 | 
						|
    if (LoadTy->isHalfTy())
 | 
						|
      MapTy = Type::getInt16Ty(C->getContext());
 | 
						|
    else if (LoadTy->isFloatTy())
 | 
						|
      MapTy = Type::getInt32Ty(C->getContext());
 | 
						|
    else if (LoadTy->isDoubleTy())
 | 
						|
      MapTy = Type::getInt64Ty(C->getContext());
 | 
						|
    else if (LoadTy->isVectorTy()) {
 | 
						|
      MapTy = PointerType::getIntNTy(
 | 
						|
          C->getContext(), DL.getTypeSizeInBits(LoadTy).getFixedSize());
 | 
						|
    } else
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
 | 
						|
      if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
 | 
						|
          !LoadTy->isX86_AMXTy())
 | 
						|
        // Materializing a zero can be done trivially without a bitcast
 | 
						|
        return Constant::getNullValue(LoadTy);
 | 
						|
      Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
 | 
						|
      Res = FoldBitCast(Res, CastTy, DL);
 | 
						|
      if (LoadTy->isPtrOrPtrVectorTy()) {
 | 
						|
        // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
 | 
						|
        if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
 | 
						|
            !LoadTy->isX86_AMXTy())
 | 
						|
          return Constant::getNullValue(LoadTy);
 | 
						|
        if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
 | 
						|
          // Be careful not to replace a load of an addrspace value with an inttoptr here
 | 
						|
          return nullptr;
 | 
						|
        Res = ConstantExpr::getCast(Instruction::IntToPtr, Res, LoadTy);
 | 
						|
      }
 | 
						|
      return Res;
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
 | 
						|
  if (BytesLoaded > 32 || BytesLoaded == 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  int64_t InitializerSize = DL.getTypeAllocSize(C->getType()).getFixedSize();
 | 
						|
 | 
						|
  // If we're not accessing anything in this constant, the result is undefined.
 | 
						|
  if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
 | 
						|
    return UndefValue::get(IntType);
 | 
						|
 | 
						|
  // If we're not accessing anything in this constant, the result is undefined.
 | 
						|
  if (Offset >= InitializerSize)
 | 
						|
    return UndefValue::get(IntType);
 | 
						|
 | 
						|
  unsigned char RawBytes[32] = {0};
 | 
						|
  unsigned char *CurPtr = RawBytes;
 | 
						|
  unsigned BytesLeft = BytesLoaded;
 | 
						|
 | 
						|
  // If we're loading off the beginning of the global, some bytes may be valid.
 | 
						|
  if (Offset < 0) {
 | 
						|
    CurPtr += -Offset;
 | 
						|
    BytesLeft += Offset;
 | 
						|
    Offset = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  APInt ResultVal = APInt(IntType->getBitWidth(), 0);
 | 
						|
  if (DL.isLittleEndian()) {
 | 
						|
    ResultVal = RawBytes[BytesLoaded - 1];
 | 
						|
    for (unsigned i = 1; i != BytesLoaded; ++i) {
 | 
						|
      ResultVal <<= 8;
 | 
						|
      ResultVal |= RawBytes[BytesLoaded - 1 - i];
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    ResultVal = RawBytes[0];
 | 
						|
    for (unsigned i = 1; i != BytesLoaded; ++i) {
 | 
						|
      ResultVal <<= 8;
 | 
						|
      ResultVal |= RawBytes[i];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantInt::get(IntType->getContext(), ResultVal);
 | 
						|
}
 | 
						|
 | 
						|
/// If this Offset points exactly to the start of an aggregate element, return
 | 
						|
/// that element, otherwise return nullptr.
 | 
						|
Constant *getConstantAtOffset(Constant *Base, APInt Offset,
 | 
						|
                              const DataLayout &DL) {
 | 
						|
  if (Offset.isZero())
 | 
						|
    return Base;
 | 
						|
 | 
						|
  if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *ElemTy = Base->getType();
 | 
						|
  SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
 | 
						|
  if (!Offset.isZero() || !Indices[0].isZero())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Constant *C = Base;
 | 
						|
  for (const APInt &Index : drop_begin(Indices)) {
 | 
						|
    if (Index.isNegative() || Index.getActiveBits() >= 32)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    C = C->getAggregateElement(Index.getZExtValue());
 | 
						|
    if (!C)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
 | 
						|
                                          const APInt &Offset,
 | 
						|
                                          const DataLayout &DL) {
 | 
						|
  if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
 | 
						|
    if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
 | 
						|
      return Result;
 | 
						|
 | 
						|
  // Explicitly check for out-of-bounds access, so we return undef even if the
 | 
						|
  // constant is a uniform value.
 | 
						|
  TypeSize Size = DL.getTypeAllocSize(C->getType());
 | 
						|
  if (!Size.isScalable() && Offset.sge(Size.getFixedSize()))
 | 
						|
    return UndefValue::get(Ty);
 | 
						|
 | 
						|
  // Try an offset-independent fold of a uniform value.
 | 
						|
  if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty))
 | 
						|
    return Result;
 | 
						|
 | 
						|
  // Try hard to fold loads from bitcasted strange and non-type-safe things.
 | 
						|
  if (Offset.getMinSignedBits() <= 64)
 | 
						|
    if (Constant *Result =
 | 
						|
            FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
 | 
						|
      return Result;
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
 | 
						|
                                          const DataLayout &DL) {
 | 
						|
  return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
 | 
						|
                                             APInt Offset,
 | 
						|
                                             const DataLayout &DL) {
 | 
						|
  C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
 | 
						|
          DL, Offset, /* AllowNonInbounds */ true));
 | 
						|
 | 
						|
  if (auto *GV = dyn_cast<GlobalVariable>(C))
 | 
						|
    if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | 
						|
      if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
 | 
						|
                                                       Offset, DL))
 | 
						|
        return Result;
 | 
						|
 | 
						|
  // If this load comes from anywhere in a uniform constant global, the value
 | 
						|
  // is always the same, regardless of the loaded offset.
 | 
						|
  if (auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C))) {
 | 
						|
    if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
 | 
						|
      if (Constant *Res =
 | 
						|
              ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty))
 | 
						|
        return Res;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
 | 
						|
                                             const DataLayout &DL) {
 | 
						|
  APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
 | 
						|
  return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) {
 | 
						|
  if (isa<PoisonValue>(C))
 | 
						|
    return PoisonValue::get(Ty);
 | 
						|
  if (isa<UndefValue>(C))
 | 
						|
    return UndefValue::get(Ty);
 | 
						|
  if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
 | 
						|
    return Constant::getNullValue(Ty);
 | 
						|
  if (C->isAllOnesValue() &&
 | 
						|
      (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
 | 
						|
    return Constant::getAllOnesValue(Ty);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// One of Op0/Op1 is a constant expression.
 | 
						|
/// Attempt to symbolically evaluate the result of a binary operator merging
 | 
						|
/// these together.  If target data info is available, it is provided as DL,
 | 
						|
/// otherwise DL is null.
 | 
						|
Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
 | 
						|
                                    const DataLayout &DL) {
 | 
						|
  // SROA
 | 
						|
 | 
						|
  // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
 | 
						|
  // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
 | 
						|
  // bits.
 | 
						|
 | 
						|
  if (Opc == Instruction::And) {
 | 
						|
    KnownBits Known0 = computeKnownBits(Op0, DL);
 | 
						|
    KnownBits Known1 = computeKnownBits(Op1, DL);
 | 
						|
    if ((Known1.One | Known0.Zero).isAllOnes()) {
 | 
						|
      // All the bits of Op0 that the 'and' could be masking are already zero.
 | 
						|
      return Op0;
 | 
						|
    }
 | 
						|
    if ((Known0.One | Known1.Zero).isAllOnes()) {
 | 
						|
      // All the bits of Op1 that the 'and' could be masking are already zero.
 | 
						|
      return Op1;
 | 
						|
    }
 | 
						|
 | 
						|
    Known0 &= Known1;
 | 
						|
    if (Known0.isConstant())
 | 
						|
      return ConstantInt::get(Op0->getType(), Known0.getConstant());
 | 
						|
  }
 | 
						|
 | 
						|
  // If the constant expr is something like &A[123] - &A[4].f, fold this into a
 | 
						|
  // constant.  This happens frequently when iterating over a global array.
 | 
						|
  if (Opc == Instruction::Sub) {
 | 
						|
    GlobalValue *GV1, *GV2;
 | 
						|
    APInt Offs1, Offs2;
 | 
						|
 | 
						|
    if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
 | 
						|
      if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
 | 
						|
        unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
 | 
						|
 | 
						|
        // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
 | 
						|
        // PtrToInt may change the bitwidth so we have convert to the right size
 | 
						|
        // first.
 | 
						|
        return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
 | 
						|
                                                Offs2.zextOrTrunc(OpSize));
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// If array indices are not pointer-sized integers, explicitly cast them so
 | 
						|
/// that they aren't implicitly casted by the getelementptr.
 | 
						|
Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
 | 
						|
                         Type *ResultTy, Optional<unsigned> InRangeIndex,
 | 
						|
                         const DataLayout &DL, const TargetLibraryInfo *TLI) {
 | 
						|
  Type *IntIdxTy = DL.getIndexType(ResultTy);
 | 
						|
  Type *IntIdxScalarTy = IntIdxTy->getScalarType();
 | 
						|
 | 
						|
  bool Any = false;
 | 
						|
  SmallVector<Constant*, 32> NewIdxs;
 | 
						|
  for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
 | 
						|
    if ((i == 1 ||
 | 
						|
         !isa<StructType>(GetElementPtrInst::getIndexedType(
 | 
						|
             SrcElemTy, Ops.slice(1, i - 1)))) &&
 | 
						|
        Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
 | 
						|
      Any = true;
 | 
						|
      Type *NewType = Ops[i]->getType()->isVectorTy()
 | 
						|
                          ? IntIdxTy
 | 
						|
                          : IntIdxScalarTy;
 | 
						|
      NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
 | 
						|
                                                                      true,
 | 
						|
                                                                      NewType,
 | 
						|
                                                                      true),
 | 
						|
                                              Ops[i], NewType));
 | 
						|
    } else
 | 
						|
      NewIdxs.push_back(Ops[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Any)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Constant *C = ConstantExpr::getGetElementPtr(
 | 
						|
      SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
 | 
						|
  return ConstantFoldConstant(C, DL, TLI);
 | 
						|
}
 | 
						|
 | 
						|
/// Strip the pointer casts, but preserve the address space information.
 | 
						|
Constant *StripPtrCastKeepAS(Constant *Ptr) {
 | 
						|
  assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
 | 
						|
  auto *OldPtrTy = cast<PointerType>(Ptr->getType());
 | 
						|
  Ptr = cast<Constant>(Ptr->stripPointerCasts());
 | 
						|
  auto *NewPtrTy = cast<PointerType>(Ptr->getType());
 | 
						|
 | 
						|
  // Preserve the address space number of the pointer.
 | 
						|
  if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
 | 
						|
    Ptr = ConstantExpr::getPointerCast(
 | 
						|
        Ptr, PointerType::getWithSamePointeeType(NewPtrTy,
 | 
						|
                                                 OldPtrTy->getAddressSpace()));
 | 
						|
  }
 | 
						|
  return Ptr;
 | 
						|
}
 | 
						|
 | 
						|
/// If we can symbolically evaluate the GEP constant expression, do so.
 | 
						|
Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
 | 
						|
                                  ArrayRef<Constant *> Ops,
 | 
						|
                                  const DataLayout &DL,
 | 
						|
                                  const TargetLibraryInfo *TLI) {
 | 
						|
  const GEPOperator *InnermostGEP = GEP;
 | 
						|
  bool InBounds = GEP->isInBounds();
 | 
						|
 | 
						|
  Type *SrcElemTy = GEP->getSourceElementType();
 | 
						|
  Type *ResElemTy = GEP->getResultElementType();
 | 
						|
  Type *ResTy = GEP->getType();
 | 
						|
  if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
 | 
						|
                                   GEP->getInRangeIndex(), DL, TLI))
 | 
						|
    return C;
 | 
						|
 | 
						|
  Constant *Ptr = Ops[0];
 | 
						|
  if (!Ptr->getType()->isPointerTy())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *IntIdxTy = DL.getIndexType(Ptr->getType());
 | 
						|
 | 
						|
  // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
 | 
						|
  // "inttoptr (sub (ptrtoint Ptr), V)"
 | 
						|
  if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
 | 
						|
    auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
 | 
						|
    assert((!CE || CE->getType() == IntIdxTy) &&
 | 
						|
           "CastGEPIndices didn't canonicalize index types!");
 | 
						|
    if (CE && CE->getOpcode() == Instruction::Sub &&
 | 
						|
        CE->getOperand(0)->isNullValue()) {
 | 
						|
      Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
 | 
						|
      Res = ConstantExpr::getSub(Res, CE->getOperand(1));
 | 
						|
      Res = ConstantExpr::getIntToPtr(Res, ResTy);
 | 
						|
      return ConstantFoldConstant(Res, DL, TLI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | 
						|
    if (!isa<ConstantInt>(Ops[i]))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
  unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
 | 
						|
  APInt Offset =
 | 
						|
      APInt(BitWidth,
 | 
						|
            DL.getIndexedOffsetInType(
 | 
						|
                SrcElemTy,
 | 
						|
                makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
 | 
						|
  Ptr = StripPtrCastKeepAS(Ptr);
 | 
						|
 | 
						|
  // If this is a GEP of a GEP, fold it all into a single GEP.
 | 
						|
  while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
 | 
						|
    InnermostGEP = GEP;
 | 
						|
    InBounds &= GEP->isInBounds();
 | 
						|
 | 
						|
    SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
 | 
						|
 | 
						|
    // Do not try the incorporate the sub-GEP if some index is not a number.
 | 
						|
    bool AllConstantInt = true;
 | 
						|
    for (Value *NestedOp : NestedOps)
 | 
						|
      if (!isa<ConstantInt>(NestedOp)) {
 | 
						|
        AllConstantInt = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    if (!AllConstantInt)
 | 
						|
      break;
 | 
						|
 | 
						|
    Ptr = cast<Constant>(GEP->getOperand(0));
 | 
						|
    SrcElemTy = GEP->getSourceElementType();
 | 
						|
    Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
 | 
						|
    Ptr = StripPtrCastKeepAS(Ptr);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the base value for this address is a literal integer value, fold the
 | 
						|
  // getelementptr to the resulting integer value casted to the pointer type.
 | 
						|
  APInt BasePtr(BitWidth, 0);
 | 
						|
  if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
 | 
						|
    if (CE->getOpcode() == Instruction::IntToPtr) {
 | 
						|
      if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
 | 
						|
        BasePtr = Base->getValue().zextOrTrunc(BitWidth);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto *PTy = cast<PointerType>(Ptr->getType());
 | 
						|
  if ((Ptr->isNullValue() || BasePtr != 0) &&
 | 
						|
      !DL.isNonIntegralPointerType(PTy)) {
 | 
						|
    Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
 | 
						|
    return ConstantExpr::getIntToPtr(C, ResTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise form a regular getelementptr. Recompute the indices so that
 | 
						|
  // we eliminate over-indexing of the notional static type array bounds.
 | 
						|
  // This makes it easy to determine if the getelementptr is "inbounds".
 | 
						|
  // Also, this helps GlobalOpt do SROA on GlobalVariables.
 | 
						|
 | 
						|
  // For GEPs of GlobalValues, use the value type even for opaque pointers.
 | 
						|
  // Otherwise use an i8 GEP.
 | 
						|
  if (auto *GV = dyn_cast<GlobalValue>(Ptr))
 | 
						|
    SrcElemTy = GV->getValueType();
 | 
						|
  else if (!PTy->isOpaque())
 | 
						|
    SrcElemTy = PTy->getElementType();
 | 
						|
  else
 | 
						|
    SrcElemTy = Type::getInt8Ty(Ptr->getContext());
 | 
						|
 | 
						|
  if (!SrcElemTy->isSized())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  Type *ElemTy = SrcElemTy;
 | 
						|
  SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
 | 
						|
  if (Offset != 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Try to add additional zero indices to reach the desired result element
 | 
						|
  // type.
 | 
						|
  // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and
 | 
						|
  // we'll have to insert a bitcast anyway?
 | 
						|
  while (ElemTy != ResElemTy) {
 | 
						|
    Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0);
 | 
						|
    if (!NextTy)
 | 
						|
      break;
 | 
						|
 | 
						|
    Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth));
 | 
						|
    ElemTy = NextTy;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<Constant *, 32> NewIdxs;
 | 
						|
  for (const APInt &Index : Indices)
 | 
						|
    NewIdxs.push_back(ConstantInt::get(
 | 
						|
        Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index));
 | 
						|
 | 
						|
  // Preserve the inrange index from the innermost GEP if possible. We must
 | 
						|
  // have calculated the same indices up to and including the inrange index.
 | 
						|
  Optional<unsigned> InRangeIndex;
 | 
						|
  if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
 | 
						|
    if (SrcElemTy == InnermostGEP->getSourceElementType() &&
 | 
						|
        NewIdxs.size() > *LastIRIndex) {
 | 
						|
      InRangeIndex = LastIRIndex;
 | 
						|
      for (unsigned I = 0; I <= *LastIRIndex; ++I)
 | 
						|
        if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
 | 
						|
          return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
  // Create a GEP.
 | 
						|
  Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
 | 
						|
                                               InBounds, InRangeIndex);
 | 
						|
  assert(
 | 
						|
      cast<PointerType>(C->getType())->isOpaqueOrPointeeTypeMatches(ElemTy) &&
 | 
						|
      "Computed GetElementPtr has unexpected type!");
 | 
						|
 | 
						|
  // If we ended up indexing a member with a type that doesn't match
 | 
						|
  // the type of what the original indices indexed, add a cast.
 | 
						|
  if (C->getType() != ResTy)
 | 
						|
    C = FoldBitCast(C, ResTy, DL);
 | 
						|
 | 
						|
  return C;
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to constant fold an instruction with the
 | 
						|
/// specified opcode and operands.  If successful, the constant result is
 | 
						|
/// returned, if not, null is returned.  Note that this function can fail when
 | 
						|
/// attempting to fold instructions like loads and stores, which have no
 | 
						|
/// constant expression form.
 | 
						|
Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
 | 
						|
                                       ArrayRef<Constant *> Ops,
 | 
						|
                                       const DataLayout &DL,
 | 
						|
                                       const TargetLibraryInfo *TLI) {
 | 
						|
  Type *DestTy = InstOrCE->getType();
 | 
						|
 | 
						|
  if (Instruction::isUnaryOp(Opcode))
 | 
						|
    return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
 | 
						|
 | 
						|
  if (Instruction::isBinaryOp(Opcode))
 | 
						|
    return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
 | 
						|
 | 
						|
  if (Instruction::isCast(Opcode))
 | 
						|
    return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
 | 
						|
 | 
						|
  if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
 | 
						|
    if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
 | 
						|
      return C;
 | 
						|
 | 
						|
    return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
 | 
						|
                                          Ops.slice(1), GEP->isInBounds(),
 | 
						|
                                          GEP->getInRangeIndex());
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
 | 
						|
    return CE->getWithOperands(Ops);
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  default: return nullptr;
 | 
						|
  case Instruction::ICmp:
 | 
						|
  case Instruction::FCmp: llvm_unreachable("Invalid for compares");
 | 
						|
  case Instruction::Freeze:
 | 
						|
    return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
 | 
						|
  case Instruction::Call:
 | 
						|
    if (auto *F = dyn_cast<Function>(Ops.back())) {
 | 
						|
      const auto *Call = cast<CallBase>(InstOrCE);
 | 
						|
      if (canConstantFoldCallTo(Call, F))
 | 
						|
        return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  case Instruction::Select:
 | 
						|
    return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::ExtractElement:
 | 
						|
    return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
 | 
						|
  case Instruction::ExtractValue:
 | 
						|
    return ConstantExpr::getExtractValue(
 | 
						|
        Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
 | 
						|
  case Instruction::InsertElement:
 | 
						|
    return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
 | 
						|
  case Instruction::ShuffleVector:
 | 
						|
    return ConstantExpr::getShuffleVector(
 | 
						|
        Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Constant Folding public APIs
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
Constant *
 | 
						|
ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
 | 
						|
                         const TargetLibraryInfo *TLI,
 | 
						|
                         SmallDenseMap<Constant *, Constant *> &FoldedOps) {
 | 
						|
  if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
 | 
						|
    return const_cast<Constant *>(C);
 | 
						|
 | 
						|
  SmallVector<Constant *, 8> Ops;
 | 
						|
  for (const Use &OldU : C->operands()) {
 | 
						|
    Constant *OldC = cast<Constant>(&OldU);
 | 
						|
    Constant *NewC = OldC;
 | 
						|
    // Recursively fold the ConstantExpr's operands. If we have already folded
 | 
						|
    // a ConstantExpr, we don't have to process it again.
 | 
						|
    if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
 | 
						|
      auto It = FoldedOps.find(OldC);
 | 
						|
      if (It == FoldedOps.end()) {
 | 
						|
        NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
 | 
						|
        FoldedOps.insert({OldC, NewC});
 | 
						|
      } else {
 | 
						|
        NewC = It->second;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Ops.push_back(NewC);
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
    if (CE->isCompare())
 | 
						|
      return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
 | 
						|
                                             DL, TLI);
 | 
						|
 | 
						|
    return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(isa<ConstantVector>(C));
 | 
						|
  return ConstantVector::get(Ops);
 | 
						|
}
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
 | 
						|
                                        const TargetLibraryInfo *TLI) {
 | 
						|
  // Handle PHI nodes quickly here...
 | 
						|
  if (auto *PN = dyn_cast<PHINode>(I)) {
 | 
						|
    Constant *CommonValue = nullptr;
 | 
						|
 | 
						|
    SmallDenseMap<Constant *, Constant *> FoldedOps;
 | 
						|
    for (Value *Incoming : PN->incoming_values()) {
 | 
						|
      // If the incoming value is undef then skip it.  Note that while we could
 | 
						|
      // skip the value if it is equal to the phi node itself we choose not to
 | 
						|
      // because that would break the rule that constant folding only applies if
 | 
						|
      // all operands are constants.
 | 
						|
      if (isa<UndefValue>(Incoming))
 | 
						|
        continue;
 | 
						|
      // If the incoming value is not a constant, then give up.
 | 
						|
      auto *C = dyn_cast<Constant>(Incoming);
 | 
						|
      if (!C)
 | 
						|
        return nullptr;
 | 
						|
      // Fold the PHI's operands.
 | 
						|
      C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
 | 
						|
      // If the incoming value is a different constant to
 | 
						|
      // the one we saw previously, then give up.
 | 
						|
      if (CommonValue && C != CommonValue)
 | 
						|
        return nullptr;
 | 
						|
      CommonValue = C;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we reach here, all incoming values are the same constant or undef.
 | 
						|
    return CommonValue ? CommonValue : UndefValue::get(PN->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan the operand list, checking to see if they are all constants, if so,
 | 
						|
  // hand off to ConstantFoldInstOperandsImpl.
 | 
						|
  if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  SmallDenseMap<Constant *, Constant *> FoldedOps;
 | 
						|
  SmallVector<Constant *, 8> Ops;
 | 
						|
  for (const Use &OpU : I->operands()) {
 | 
						|
    auto *Op = cast<Constant>(&OpU);
 | 
						|
    // Fold the Instruction's operands.
 | 
						|
    Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
 | 
						|
    Ops.push_back(Op);
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *CI = dyn_cast<CmpInst>(I))
 | 
						|
    return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
 | 
						|
                                           DL, TLI);
 | 
						|
 | 
						|
  if (const auto *LI = dyn_cast<LoadInst>(I)) {
 | 
						|
    if (LI->isVolatile())
 | 
						|
      return nullptr;
 | 
						|
    return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *IVI = dyn_cast<InsertValueInst>(I))
 | 
						|
    return ConstantExpr::getInsertValue(Ops[0], Ops[1], IVI->getIndices());
 | 
						|
 | 
						|
  if (auto *EVI = dyn_cast<ExtractValueInst>(I))
 | 
						|
    return ConstantExpr::getExtractValue(Ops[0], EVI->getIndices());
 | 
						|
 | 
						|
  return ConstantFoldInstOperands(I, Ops, DL, TLI);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
 | 
						|
                                     const TargetLibraryInfo *TLI) {
 | 
						|
  SmallDenseMap<Constant *, Constant *> FoldedOps;
 | 
						|
  return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldInstOperands(Instruction *I,
 | 
						|
                                         ArrayRef<Constant *> Ops,
 | 
						|
                                         const DataLayout &DL,
 | 
						|
                                         const TargetLibraryInfo *TLI) {
 | 
						|
  return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldCompareInstOperands(unsigned IntPredicate,
 | 
						|
                                                Constant *Ops0, Constant *Ops1,
 | 
						|
                                                const DataLayout &DL,
 | 
						|
                                                const TargetLibraryInfo *TLI) {
 | 
						|
  CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
 | 
						|
  // fold: icmp (inttoptr x), null         -> icmp x, 0
 | 
						|
  // fold: icmp null, (inttoptr x)         -> icmp 0, x
 | 
						|
  // fold: icmp (ptrtoint x), 0            -> icmp x, null
 | 
						|
  // fold: icmp 0, (ptrtoint x)            -> icmp null, x
 | 
						|
  // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
 | 
						|
  // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
 | 
						|
  //
 | 
						|
  // FIXME: The following comment is out of data and the DataLayout is here now.
 | 
						|
  // ConstantExpr::getCompare cannot do this, because it doesn't have DL
 | 
						|
  // around to know if bit truncation is happening.
 | 
						|
  if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
 | 
						|
    if (Ops1->isNullValue()) {
 | 
						|
      if (CE0->getOpcode() == Instruction::IntToPtr) {
 | 
						|
        Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
 | 
						|
        // Convert the integer value to the right size to ensure we get the
 | 
						|
        // proper extension or truncation.
 | 
						|
        Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | 
						|
                                                   IntPtrTy, false);
 | 
						|
        Constant *Null = Constant::getNullValue(C->getType());
 | 
						|
        return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
 | 
						|
      }
 | 
						|
 | 
						|
      // Only do this transformation if the int is intptrty in size, otherwise
 | 
						|
      // there is a truncation or extension that we aren't modeling.
 | 
						|
      if (CE0->getOpcode() == Instruction::PtrToInt) {
 | 
						|
        Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
 | 
						|
        if (CE0->getType() == IntPtrTy) {
 | 
						|
          Constant *C = CE0->getOperand(0);
 | 
						|
          Constant *Null = Constant::getNullValue(C->getType());
 | 
						|
          return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
 | 
						|
      if (CE0->getOpcode() == CE1->getOpcode()) {
 | 
						|
        if (CE0->getOpcode() == Instruction::IntToPtr) {
 | 
						|
          Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
 | 
						|
 | 
						|
          // Convert the integer value to the right size to ensure we get the
 | 
						|
          // proper extension or truncation.
 | 
						|
          Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
 | 
						|
                                                      IntPtrTy, false);
 | 
						|
          Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
 | 
						|
                                                      IntPtrTy, false);
 | 
						|
          return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
 | 
						|
        }
 | 
						|
 | 
						|
        // Only do this transformation if the int is intptrty in size, otherwise
 | 
						|
        // there is a truncation or extension that we aren't modeling.
 | 
						|
        if (CE0->getOpcode() == Instruction::PtrToInt) {
 | 
						|
          Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
 | 
						|
          if (CE0->getType() == IntPtrTy &&
 | 
						|
              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
 | 
						|
            return ConstantFoldCompareInstOperands(
 | 
						|
                Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
 | 
						|
    // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
 | 
						|
    if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
 | 
						|
        CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
 | 
						|
      Constant *LHS = ConstantFoldCompareInstOperands(
 | 
						|
          Predicate, CE0->getOperand(0), Ops1, DL, TLI);
 | 
						|
      Constant *RHS = ConstantFoldCompareInstOperands(
 | 
						|
          Predicate, CE0->getOperand(1), Ops1, DL, TLI);
 | 
						|
      unsigned OpC =
 | 
						|
        Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
 | 
						|
      return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
 | 
						|
    }
 | 
						|
 | 
						|
    // Convert pointer comparison (base+offset1) pred (base+offset2) into
 | 
						|
    // offset1 pred offset2, for the case where the offset is inbounds. This
 | 
						|
    // only works for equality and unsigned comparison, as inbounds permits
 | 
						|
    // crossing the sign boundary. However, the offset comparison itself is
 | 
						|
    // signed.
 | 
						|
    if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
 | 
						|
      unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
 | 
						|
      APInt Offset0(IndexWidth, 0);
 | 
						|
      Value *Stripped0 =
 | 
						|
          Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
 | 
						|
      APInt Offset1(IndexWidth, 0);
 | 
						|
      Value *Stripped1 =
 | 
						|
          Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
 | 
						|
      if (Stripped0 == Stripped1)
 | 
						|
        return ConstantExpr::getCompare(
 | 
						|
            ICmpInst::getSignedPredicate(Predicate),
 | 
						|
            ConstantInt::get(CE0->getContext(), Offset0),
 | 
						|
            ConstantInt::get(CE0->getContext(), Offset1));
 | 
						|
    }
 | 
						|
  } else if (isa<ConstantExpr>(Ops1)) {
 | 
						|
    // If RHS is a constant expression, but the left side isn't, swap the
 | 
						|
    // operands and try again.
 | 
						|
    Predicate = ICmpInst::getSwappedPredicate(Predicate);
 | 
						|
    return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
 | 
						|
                                           const DataLayout &DL) {
 | 
						|
  assert(Instruction::isUnaryOp(Opcode));
 | 
						|
 | 
						|
  return ConstantExpr::get(Opcode, Op);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
 | 
						|
                                             Constant *RHS,
 | 
						|
                                             const DataLayout &DL) {
 | 
						|
  assert(Instruction::isBinaryOp(Opcode));
 | 
						|
  if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
 | 
						|
    if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
 | 
						|
      return C;
 | 
						|
 | 
						|
  return ConstantExpr::get(Opcode, LHS, RHS);
 | 
						|
}
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
 | 
						|
                                        Type *DestTy, const DataLayout &DL) {
 | 
						|
  assert(Instruction::isCast(Opcode));
 | 
						|
  switch (Opcode) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Missing case");
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
    if (auto *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
      Constant *FoldedValue = nullptr;
 | 
						|
      // If the input is a inttoptr, eliminate the pair.  This requires knowing
 | 
						|
      // the width of a pointer, so it can't be done in ConstantExpr::getCast.
 | 
						|
      if (CE->getOpcode() == Instruction::IntToPtr) {
 | 
						|
        // zext/trunc the inttoptr to pointer size.
 | 
						|
        FoldedValue = ConstantExpr::getIntegerCast(
 | 
						|
            CE->getOperand(0), DL.getIntPtrType(CE->getType()),
 | 
						|
            /*IsSigned=*/false);
 | 
						|
      } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
 | 
						|
        // If we have GEP, we can perform the following folds:
 | 
						|
        // (ptrtoint (gep null, x)) -> x
 | 
						|
        // (ptrtoint (gep (gep null, x), y) -> x + y, etc.
 | 
						|
        unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
 | 
						|
        APInt BaseOffset(BitWidth, 0);
 | 
						|
        auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
 | 
						|
            DL, BaseOffset, /*AllowNonInbounds=*/true));
 | 
						|
        if (Base->isNullValue()) {
 | 
						|
          FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (FoldedValue) {
 | 
						|
        // Do a zext or trunc to get to the ptrtoint dest size.
 | 
						|
        return ConstantExpr::getIntegerCast(FoldedValue, DestTy,
 | 
						|
                                            /*IsSigned=*/false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return ConstantExpr::getCast(Opcode, C, DestTy);
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
    // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
 | 
						|
    // the int size is >= the ptr size and the address spaces are the same.
 | 
						|
    // This requires knowing the width of a pointer, so it can't be done in
 | 
						|
    // ConstantExpr::getCast.
 | 
						|
    if (auto *CE = dyn_cast<ConstantExpr>(C)) {
 | 
						|
      if (CE->getOpcode() == Instruction::PtrToInt) {
 | 
						|
        Constant *SrcPtr = CE->getOperand(0);
 | 
						|
        unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
 | 
						|
        unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
        if (MidIntSize >= SrcPtrSize) {
 | 
						|
          unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
 | 
						|
          if (SrcAS == DestTy->getPointerAddressSpace())
 | 
						|
            return FoldBitCast(CE->getOperand(0), DestTy, DL);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return ConstantExpr::getCast(Opcode, C, DestTy);
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
  case Instruction::UIToFP:
 | 
						|
  case Instruction::SIToFP:
 | 
						|
  case Instruction::FPToUI:
 | 
						|
  case Instruction::FPToSI:
 | 
						|
  case Instruction::AddrSpaceCast:
 | 
						|
      return ConstantExpr::getCast(Opcode, C, DestTy);
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return FoldBitCast(C, DestTy, DL);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Constant Folding for Calls
 | 
						|
//
 | 
						|
 | 
						|
bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
 | 
						|
  if (Call->isNoBuiltin())
 | 
						|
    return false;
 | 
						|
  switch (F->getIntrinsicID()) {
 | 
						|
  // Operations that do not operate floating-point numbers and do not depend on
 | 
						|
  // FP environment can be folded even in strictfp functions.
 | 
						|
  case Intrinsic::bswap:
 | 
						|
  case Intrinsic::ctpop:
 | 
						|
  case Intrinsic::ctlz:
 | 
						|
  case Intrinsic::cttz:
 | 
						|
  case Intrinsic::fshl:
 | 
						|
  case Intrinsic::fshr:
 | 
						|
  case Intrinsic::launder_invariant_group:
 | 
						|
  case Intrinsic::strip_invariant_group:
 | 
						|
  case Intrinsic::masked_load:
 | 
						|
  case Intrinsic::get_active_lane_mask:
 | 
						|
  case Intrinsic::abs:
 | 
						|
  case Intrinsic::smax:
 | 
						|
  case Intrinsic::smin:
 | 
						|
  case Intrinsic::umax:
 | 
						|
  case Intrinsic::umin:
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
  case Intrinsic::uadd_with_overflow:
 | 
						|
  case Intrinsic::ssub_with_overflow:
 | 
						|
  case Intrinsic::usub_with_overflow:
 | 
						|
  case Intrinsic::smul_with_overflow:
 | 
						|
  case Intrinsic::umul_with_overflow:
 | 
						|
  case Intrinsic::sadd_sat:
 | 
						|
  case Intrinsic::uadd_sat:
 | 
						|
  case Intrinsic::ssub_sat:
 | 
						|
  case Intrinsic::usub_sat:
 | 
						|
  case Intrinsic::smul_fix:
 | 
						|
  case Intrinsic::smul_fix_sat:
 | 
						|
  case Intrinsic::bitreverse:
 | 
						|
  case Intrinsic::is_constant:
 | 
						|
  case Intrinsic::vector_reduce_add:
 | 
						|
  case Intrinsic::vector_reduce_mul:
 | 
						|
  case Intrinsic::vector_reduce_and:
 | 
						|
  case Intrinsic::vector_reduce_or:
 | 
						|
  case Intrinsic::vector_reduce_xor:
 | 
						|
  case Intrinsic::vector_reduce_smin:
 | 
						|
  case Intrinsic::vector_reduce_smax:
 | 
						|
  case Intrinsic::vector_reduce_umin:
 | 
						|
  case Intrinsic::vector_reduce_umax:
 | 
						|
  // Target intrinsics
 | 
						|
  case Intrinsic::amdgcn_perm:
 | 
						|
  case Intrinsic::arm_mve_vctp8:
 | 
						|
  case Intrinsic::arm_mve_vctp16:
 | 
						|
  case Intrinsic::arm_mve_vctp32:
 | 
						|
  case Intrinsic::arm_mve_vctp64:
 | 
						|
  case Intrinsic::aarch64_sve_convert_from_svbool:
 | 
						|
  // WebAssembly float semantics are always known
 | 
						|
  case Intrinsic::wasm_trunc_signed:
 | 
						|
  case Intrinsic::wasm_trunc_unsigned:
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Floating point operations cannot be folded in strictfp functions in
 | 
						|
  // general case. They can be folded if FP environment is known to compiler.
 | 
						|
  case Intrinsic::minnum:
 | 
						|
  case Intrinsic::maxnum:
 | 
						|
  case Intrinsic::minimum:
 | 
						|
  case Intrinsic::maximum:
 | 
						|
  case Intrinsic::log:
 | 
						|
  case Intrinsic::log2:
 | 
						|
  case Intrinsic::log10:
 | 
						|
  case Intrinsic::exp:
 | 
						|
  case Intrinsic::exp2:
 | 
						|
  case Intrinsic::sqrt:
 | 
						|
  case Intrinsic::sin:
 | 
						|
  case Intrinsic::cos:
 | 
						|
  case Intrinsic::pow:
 | 
						|
  case Intrinsic::powi:
 | 
						|
  case Intrinsic::fma:
 | 
						|
  case Intrinsic::fmuladd:
 | 
						|
  case Intrinsic::fptoui_sat:
 | 
						|
  case Intrinsic::fptosi_sat:
 | 
						|
  case Intrinsic::convert_from_fp16:
 | 
						|
  case Intrinsic::convert_to_fp16:
 | 
						|
  case Intrinsic::amdgcn_cos:
 | 
						|
  case Intrinsic::amdgcn_cubeid:
 | 
						|
  case Intrinsic::amdgcn_cubema:
 | 
						|
  case Intrinsic::amdgcn_cubesc:
 | 
						|
  case Intrinsic::amdgcn_cubetc:
 | 
						|
  case Intrinsic::amdgcn_fmul_legacy:
 | 
						|
  case Intrinsic::amdgcn_fma_legacy:
 | 
						|
  case Intrinsic::amdgcn_fract:
 | 
						|
  case Intrinsic::amdgcn_ldexp:
 | 
						|
  case Intrinsic::amdgcn_sin:
 | 
						|
  // The intrinsics below depend on rounding mode in MXCSR.
 | 
						|
  case Intrinsic::x86_sse_cvtss2si:
 | 
						|
  case Intrinsic::x86_sse_cvtss2si64:
 | 
						|
  case Intrinsic::x86_sse_cvttss2si:
 | 
						|
  case Intrinsic::x86_sse_cvttss2si64:
 | 
						|
  case Intrinsic::x86_sse2_cvtsd2si:
 | 
						|
  case Intrinsic::x86_sse2_cvtsd2si64:
 | 
						|
  case Intrinsic::x86_sse2_cvttsd2si:
 | 
						|
  case Intrinsic::x86_sse2_cvttsd2si64:
 | 
						|
  case Intrinsic::x86_avx512_vcvtss2si32:
 | 
						|
  case Intrinsic::x86_avx512_vcvtss2si64:
 | 
						|
  case Intrinsic::x86_avx512_cvttss2si:
 | 
						|
  case Intrinsic::x86_avx512_cvttss2si64:
 | 
						|
  case Intrinsic::x86_avx512_vcvtsd2si32:
 | 
						|
  case Intrinsic::x86_avx512_vcvtsd2si64:
 | 
						|
  case Intrinsic::x86_avx512_cvttsd2si:
 | 
						|
  case Intrinsic::x86_avx512_cvttsd2si64:
 | 
						|
  case Intrinsic::x86_avx512_vcvtss2usi32:
 | 
						|
  case Intrinsic::x86_avx512_vcvtss2usi64:
 | 
						|
  case Intrinsic::x86_avx512_cvttss2usi:
 | 
						|
  case Intrinsic::x86_avx512_cvttss2usi64:
 | 
						|
  case Intrinsic::x86_avx512_vcvtsd2usi32:
 | 
						|
  case Intrinsic::x86_avx512_vcvtsd2usi64:
 | 
						|
  case Intrinsic::x86_avx512_cvttsd2usi:
 | 
						|
  case Intrinsic::x86_avx512_cvttsd2usi64:
 | 
						|
    return !Call->isStrictFP();
 | 
						|
 | 
						|
  // Sign operations are actually bitwise operations, they do not raise
 | 
						|
  // exceptions even for SNANs.
 | 
						|
  case Intrinsic::fabs:
 | 
						|
  case Intrinsic::copysign:
 | 
						|
  // Non-constrained variants of rounding operations means default FP
 | 
						|
  // environment, they can be folded in any case.
 | 
						|
  case Intrinsic::ceil:
 | 
						|
  case Intrinsic::floor:
 | 
						|
  case Intrinsic::round:
 | 
						|
  case Intrinsic::roundeven:
 | 
						|
  case Intrinsic::trunc:
 | 
						|
  case Intrinsic::nearbyint:
 | 
						|
  case Intrinsic::rint:
 | 
						|
  // Constrained intrinsics can be folded if FP environment is known
 | 
						|
  // to compiler.
 | 
						|
  case Intrinsic::experimental_constrained_fma:
 | 
						|
  case Intrinsic::experimental_constrained_fmuladd:
 | 
						|
  case Intrinsic::experimental_constrained_fadd:
 | 
						|
  case Intrinsic::experimental_constrained_fsub:
 | 
						|
  case Intrinsic::experimental_constrained_fmul:
 | 
						|
  case Intrinsic::experimental_constrained_fdiv:
 | 
						|
  case Intrinsic::experimental_constrained_frem:
 | 
						|
  case Intrinsic::experimental_constrained_ceil:
 | 
						|
  case Intrinsic::experimental_constrained_floor:
 | 
						|
  case Intrinsic::experimental_constrained_round:
 | 
						|
  case Intrinsic::experimental_constrained_roundeven:
 | 
						|
  case Intrinsic::experimental_constrained_trunc:
 | 
						|
  case Intrinsic::experimental_constrained_nearbyint:
 | 
						|
  case Intrinsic::experimental_constrained_rint:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case Intrinsic::not_intrinsic: break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!F->hasName() || Call->isStrictFP())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // In these cases, the check of the length is required.  We don't want to
 | 
						|
  // return true for a name like "cos\0blah" which strcmp would return equal to
 | 
						|
  // "cos", but has length 8.
 | 
						|
  StringRef Name = F->getName();
 | 
						|
  switch (Name[0]) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case 'a':
 | 
						|
    return Name == "acos" || Name == "acosf" ||
 | 
						|
           Name == "asin" || Name == "asinf" ||
 | 
						|
           Name == "atan" || Name == "atanf" ||
 | 
						|
           Name == "atan2" || Name == "atan2f";
 | 
						|
  case 'c':
 | 
						|
    return Name == "ceil" || Name == "ceilf" ||
 | 
						|
           Name == "cos" || Name == "cosf" ||
 | 
						|
           Name == "cosh" || Name == "coshf";
 | 
						|
  case 'e':
 | 
						|
    return Name == "exp" || Name == "expf" ||
 | 
						|
           Name == "exp2" || Name == "exp2f";
 | 
						|
  case 'f':
 | 
						|
    return Name == "fabs" || Name == "fabsf" ||
 | 
						|
           Name == "floor" || Name == "floorf" ||
 | 
						|
           Name == "fmod" || Name == "fmodf";
 | 
						|
  case 'l':
 | 
						|
    return Name == "log" || Name == "logf" ||
 | 
						|
           Name == "log2" || Name == "log2f" ||
 | 
						|
           Name == "log10" || Name == "log10f";
 | 
						|
  case 'n':
 | 
						|
    return Name == "nearbyint" || Name == "nearbyintf";
 | 
						|
  case 'p':
 | 
						|
    return Name == "pow" || Name == "powf";
 | 
						|
  case 'r':
 | 
						|
    return Name == "remainder" || Name == "remainderf" ||
 | 
						|
           Name == "rint" || Name == "rintf" ||
 | 
						|
           Name == "round" || Name == "roundf";
 | 
						|
  case 's':
 | 
						|
    return Name == "sin" || Name == "sinf" ||
 | 
						|
           Name == "sinh" || Name == "sinhf" ||
 | 
						|
           Name == "sqrt" || Name == "sqrtf";
 | 
						|
  case 't':
 | 
						|
    return Name == "tan" || Name == "tanf" ||
 | 
						|
           Name == "tanh" || Name == "tanhf" ||
 | 
						|
           Name == "trunc" || Name == "truncf";
 | 
						|
  case '_':
 | 
						|
    // Check for various function names that get used for the math functions
 | 
						|
    // when the header files are preprocessed with the macro
 | 
						|
    // __FINITE_MATH_ONLY__ enabled.
 | 
						|
    // The '12' here is the length of the shortest name that can match.
 | 
						|
    // We need to check the size before looking at Name[1] and Name[2]
 | 
						|
    // so we may as well check a limit that will eliminate mismatches.
 | 
						|
    if (Name.size() < 12 || Name[1] != '_')
 | 
						|
      return false;
 | 
						|
    switch (Name[2]) {
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
    case 'a':
 | 
						|
      return Name == "__acos_finite" || Name == "__acosf_finite" ||
 | 
						|
             Name == "__asin_finite" || Name == "__asinf_finite" ||
 | 
						|
             Name == "__atan2_finite" || Name == "__atan2f_finite";
 | 
						|
    case 'c':
 | 
						|
      return Name == "__cosh_finite" || Name == "__coshf_finite";
 | 
						|
    case 'e':
 | 
						|
      return Name == "__exp_finite" || Name == "__expf_finite" ||
 | 
						|
             Name == "__exp2_finite" || Name == "__exp2f_finite";
 | 
						|
    case 'l':
 | 
						|
      return Name == "__log_finite" || Name == "__logf_finite" ||
 | 
						|
             Name == "__log10_finite" || Name == "__log10f_finite";
 | 
						|
    case 'p':
 | 
						|
      return Name == "__pow_finite" || Name == "__powf_finite";
 | 
						|
    case 's':
 | 
						|
      return Name == "__sinh_finite" || Name == "__sinhf_finite";
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
Constant *GetConstantFoldFPValue(double V, Type *Ty) {
 | 
						|
  if (Ty->isHalfTy() || Ty->isFloatTy()) {
 | 
						|
    APFloat APF(V);
 | 
						|
    bool unused;
 | 
						|
    APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
 | 
						|
    return ConstantFP::get(Ty->getContext(), APF);
 | 
						|
  }
 | 
						|
  if (Ty->isDoubleTy())
 | 
						|
    return ConstantFP::get(Ty->getContext(), APFloat(V));
 | 
						|
  llvm_unreachable("Can only constant fold half/float/double");
 | 
						|
}
 | 
						|
 | 
						|
/// Clear the floating-point exception state.
 | 
						|
inline void llvm_fenv_clearexcept() {
 | 
						|
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
 | 
						|
  feclearexcept(FE_ALL_EXCEPT);
 | 
						|
#endif
 | 
						|
  errno = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Test if a floating-point exception was raised.
 | 
						|
inline bool llvm_fenv_testexcept() {
 | 
						|
  int errno_val = errno;
 | 
						|
  if (errno_val == ERANGE || errno_val == EDOM)
 | 
						|
    return true;
 | 
						|
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
 | 
						|
  if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
 | 
						|
    return true;
 | 
						|
#endif
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
 | 
						|
                         Type *Ty) {
 | 
						|
  llvm_fenv_clearexcept();
 | 
						|
  double Result = NativeFP(V.convertToDouble());
 | 
						|
  if (llvm_fenv_testexcept()) {
 | 
						|
    llvm_fenv_clearexcept();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return GetConstantFoldFPValue(Result, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
 | 
						|
                               const APFloat &V, const APFloat &W, Type *Ty) {
 | 
						|
  llvm_fenv_clearexcept();
 | 
						|
  double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
 | 
						|
  if (llvm_fenv_testexcept()) {
 | 
						|
    llvm_fenv_clearexcept();
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return GetConstantFoldFPValue(Result, Ty);
 | 
						|
}
 | 
						|
 | 
						|
Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
 | 
						|
  FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
 | 
						|
  if (!VT)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // This isn't strictly necessary, but handle the special/common case of zero:
 | 
						|
  // all integer reductions of a zero input produce zero.
 | 
						|
  if (isa<ConstantAggregateZero>(Op))
 | 
						|
    return ConstantInt::get(VT->getElementType(), 0);
 | 
						|
 | 
						|
  // This is the same as the underlying binops - poison propagates.
 | 
						|
  if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
 | 
						|
    return PoisonValue::get(VT->getElementType());
 | 
						|
 | 
						|
  // TODO: Handle undef.
 | 
						|
  if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
 | 
						|
  if (!EltC)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  APInt Acc = EltC->getValue();
 | 
						|
  for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
 | 
						|
    if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
 | 
						|
      return nullptr;
 | 
						|
    const APInt &X = EltC->getValue();
 | 
						|
    switch (IID) {
 | 
						|
    case Intrinsic::vector_reduce_add:
 | 
						|
      Acc = Acc + X;
 | 
						|
      break;
 | 
						|
    case Intrinsic::vector_reduce_mul:
 | 
						|
      Acc = Acc * X;
 | 
						|
      break;
 | 
						|
    case Intrinsic::vector_reduce_and:
 | 
						|
      Acc = Acc & X;
 | 
						|
      break;
 | 
						|
    case Intrinsic::vector_reduce_or:
 | 
						|
      Acc = Acc | X;
 | 
						|
      break;
 | 
						|
    case Intrinsic::vector_reduce_xor:
 | 
						|
      Acc = Acc ^ X;
 | 
						|
      break;
 | 
						|
    case Intrinsic::vector_reduce_smin:
 | 
						|
      Acc = APIntOps::smin(Acc, X);
 | 
						|
      break;
 | 
						|
    case Intrinsic::vector_reduce_smax:
 | 
						|
      Acc = APIntOps::smax(Acc, X);
 | 
						|
      break;
 | 
						|
    case Intrinsic::vector_reduce_umin:
 | 
						|
      Acc = APIntOps::umin(Acc, X);
 | 
						|
      break;
 | 
						|
    case Intrinsic::vector_reduce_umax:
 | 
						|
      Acc = APIntOps::umax(Acc, X);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantInt::get(Op->getContext(), Acc);
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt to fold an SSE floating point to integer conversion of a constant
 | 
						|
/// floating point. If roundTowardZero is false, the default IEEE rounding is
 | 
						|
/// used (toward nearest, ties to even). This matches the behavior of the
 | 
						|
/// non-truncating SSE instructions in the default rounding mode. The desired
 | 
						|
/// integer type Ty is used to select how many bits are available for the
 | 
						|
/// result. Returns null if the conversion cannot be performed, otherwise
 | 
						|
/// returns the Constant value resulting from the conversion.
 | 
						|
Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
 | 
						|
                                      Type *Ty, bool IsSigned) {
 | 
						|
  // All of these conversion intrinsics form an integer of at most 64bits.
 | 
						|
  unsigned ResultWidth = Ty->getIntegerBitWidth();
 | 
						|
  assert(ResultWidth <= 64 &&
 | 
						|
         "Can only constant fold conversions to 64 and 32 bit ints");
 | 
						|
 | 
						|
  uint64_t UIntVal;
 | 
						|
  bool isExact = false;
 | 
						|
  APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
 | 
						|
                                              : APFloat::rmNearestTiesToEven;
 | 
						|
  APFloat::opStatus status =
 | 
						|
      Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
 | 
						|
                           IsSigned, mode, &isExact);
 | 
						|
  if (status != APFloat::opOK &&
 | 
						|
      (!roundTowardZero || status != APFloat::opInexact))
 | 
						|
    return nullptr;
 | 
						|
  return ConstantInt::get(Ty, UIntVal, IsSigned);
 | 
						|
}
 | 
						|
 | 
						|
double getValueAsDouble(ConstantFP *Op) {
 | 
						|
  Type *Ty = Op->getType();
 | 
						|
 | 
						|
  if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
 | 
						|
    return Op->getValueAPF().convertToDouble();
 | 
						|
 | 
						|
  bool unused;
 | 
						|
  APFloat APF = Op->getValueAPF();
 | 
						|
  APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
 | 
						|
  return APF.convertToDouble();
 | 
						|
}
 | 
						|
 | 
						|
static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
 | 
						|
  if (auto *CI = dyn_cast<ConstantInt>(Op)) {
 | 
						|
    C = &CI->getValue();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (isa<UndefValue>(Op)) {
 | 
						|
    C = nullptr;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Checks if the given intrinsic call, which evaluates to constant, is allowed
 | 
						|
/// to be folded.
 | 
						|
///
 | 
						|
/// \param CI Constrained intrinsic call.
 | 
						|
/// \param St Exception flags raised during constant evaluation.
 | 
						|
static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
 | 
						|
                               APFloat::opStatus St) {
 | 
						|
  Optional<RoundingMode> ORM = CI->getRoundingMode();
 | 
						|
  Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
 | 
						|
 | 
						|
  // If the operation does not change exception status flags, it is safe
 | 
						|
  // to fold.
 | 
						|
  if (St == APFloat::opStatus::opOK)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If evaluation raised FP exception, the result can depend on rounding
 | 
						|
  // mode. If the latter is unknown, folding is not possible.
 | 
						|
  if (!ORM || *ORM == RoundingMode::Dynamic)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If FP exceptions are ignored, fold the call, even if such exception is
 | 
						|
  // raised.
 | 
						|
  if (!EB || *EB != fp::ExceptionBehavior::ebStrict)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Leave the calculation for runtime so that exception flags be correctly set
 | 
						|
  // in hardware.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the rounding mode that should be used for constant evaluation.
 | 
						|
static RoundingMode
 | 
						|
getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
 | 
						|
  Optional<RoundingMode> ORM = CI->getRoundingMode();
 | 
						|
  if (!ORM || *ORM == RoundingMode::Dynamic)
 | 
						|
    // Even if the rounding mode is unknown, try evaluating the operation.
 | 
						|
    // If it does not raise inexact exception, rounding was not applied,
 | 
						|
    // so the result is exact and does not depend on rounding mode. Whether
 | 
						|
    // other FP exceptions are raised, it does not depend on rounding mode.
 | 
						|
    return RoundingMode::NearestTiesToEven;
 | 
						|
  return *ORM;
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldScalarCall1(StringRef Name,
 | 
						|
                                         Intrinsic::ID IntrinsicID,
 | 
						|
                                         Type *Ty,
 | 
						|
                                         ArrayRef<Constant *> Operands,
 | 
						|
                                         const TargetLibraryInfo *TLI,
 | 
						|
                                         const CallBase *Call) {
 | 
						|
  assert(Operands.size() == 1 && "Wrong number of operands.");
 | 
						|
 | 
						|
  if (IntrinsicID == Intrinsic::is_constant) {
 | 
						|
    // We know we have a "Constant" argument. But we want to only
 | 
						|
    // return true for manifest constants, not those that depend on
 | 
						|
    // constants with unknowable values, e.g. GlobalValue or BlockAddress.
 | 
						|
    if (Operands[0]->isManifestConstant())
 | 
						|
      return ConstantInt::getTrue(Ty->getContext());
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
  if (isa<UndefValue>(Operands[0])) {
 | 
						|
    // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
 | 
						|
    // ctpop() is between 0 and bitwidth, pick 0 for undef.
 | 
						|
    // fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
 | 
						|
    if (IntrinsicID == Intrinsic::cos ||
 | 
						|
        IntrinsicID == Intrinsic::ctpop ||
 | 
						|
        IntrinsicID == Intrinsic::fptoui_sat ||
 | 
						|
        IntrinsicID == Intrinsic::fptosi_sat)
 | 
						|
      return Constant::getNullValue(Ty);
 | 
						|
    if (IntrinsicID == Intrinsic::bswap ||
 | 
						|
        IntrinsicID == Intrinsic::bitreverse ||
 | 
						|
        IntrinsicID == Intrinsic::launder_invariant_group ||
 | 
						|
        IntrinsicID == Intrinsic::strip_invariant_group)
 | 
						|
      return Operands[0];
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<ConstantPointerNull>(Operands[0])) {
 | 
						|
    // launder(null) == null == strip(null) iff in addrspace 0
 | 
						|
    if (IntrinsicID == Intrinsic::launder_invariant_group ||
 | 
						|
        IntrinsicID == Intrinsic::strip_invariant_group) {
 | 
						|
      // If instruction is not yet put in a basic block (e.g. when cloning
 | 
						|
      // a function during inlining), Call's caller may not be available.
 | 
						|
      // So check Call's BB first before querying Call->getCaller.
 | 
						|
      const Function *Caller =
 | 
						|
          Call->getParent() ? Call->getCaller() : nullptr;
 | 
						|
      if (Caller &&
 | 
						|
          !NullPointerIsDefined(
 | 
						|
              Caller, Operands[0]->getType()->getPointerAddressSpace())) {
 | 
						|
        return Operands[0];
 | 
						|
      }
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
 | 
						|
    if (IntrinsicID == Intrinsic::convert_to_fp16) {
 | 
						|
      APFloat Val(Op->getValueAPF());
 | 
						|
 | 
						|
      bool lost = false;
 | 
						|
      Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
 | 
						|
 | 
						|
      return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
 | 
						|
    }
 | 
						|
 | 
						|
    APFloat U = Op->getValueAPF();
 | 
						|
 | 
						|
    if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
 | 
						|
        IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
 | 
						|
      bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
 | 
						|
 | 
						|
      if (U.isNaN())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      unsigned Width = Ty->getIntegerBitWidth();
 | 
						|
      APSInt Int(Width, !Signed);
 | 
						|
      bool IsExact = false;
 | 
						|
      APFloat::opStatus Status =
 | 
						|
          U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
 | 
						|
 | 
						|
      if (Status == APFloat::opOK || Status == APFloat::opInexact)
 | 
						|
        return ConstantInt::get(Ty, Int);
 | 
						|
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntrinsicID == Intrinsic::fptoui_sat ||
 | 
						|
        IntrinsicID == Intrinsic::fptosi_sat) {
 | 
						|
      // convertToInteger() already has the desired saturation semantics.
 | 
						|
      APSInt Int(Ty->getIntegerBitWidth(),
 | 
						|
                 IntrinsicID == Intrinsic::fptoui_sat);
 | 
						|
      bool IsExact;
 | 
						|
      U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
 | 
						|
      return ConstantInt::get(Ty, Int);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Use internal versions of these intrinsics.
 | 
						|
 | 
						|
    if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
 | 
						|
      U.roundToIntegral(APFloat::rmNearestTiesToEven);
 | 
						|
      return ConstantFP::get(Ty->getContext(), U);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntrinsicID == Intrinsic::round) {
 | 
						|
      U.roundToIntegral(APFloat::rmNearestTiesToAway);
 | 
						|
      return ConstantFP::get(Ty->getContext(), U);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntrinsicID == Intrinsic::roundeven) {
 | 
						|
      U.roundToIntegral(APFloat::rmNearestTiesToEven);
 | 
						|
      return ConstantFP::get(Ty->getContext(), U);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntrinsicID == Intrinsic::ceil) {
 | 
						|
      U.roundToIntegral(APFloat::rmTowardPositive);
 | 
						|
      return ConstantFP::get(Ty->getContext(), U);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntrinsicID == Intrinsic::floor) {
 | 
						|
      U.roundToIntegral(APFloat::rmTowardNegative);
 | 
						|
      return ConstantFP::get(Ty->getContext(), U);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntrinsicID == Intrinsic::trunc) {
 | 
						|
      U.roundToIntegral(APFloat::rmTowardZero);
 | 
						|
      return ConstantFP::get(Ty->getContext(), U);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntrinsicID == Intrinsic::fabs) {
 | 
						|
      U.clearSign();
 | 
						|
      return ConstantFP::get(Ty->getContext(), U);
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntrinsicID == Intrinsic::amdgcn_fract) {
 | 
						|
      // The v_fract instruction behaves like the OpenCL spec, which defines
 | 
						|
      // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
 | 
						|
      //   there to prevent fract(-small) from returning 1.0. It returns the
 | 
						|
      //   largest positive floating-point number less than 1.0."
 | 
						|
      APFloat FloorU(U);
 | 
						|
      FloorU.roundToIntegral(APFloat::rmTowardNegative);
 | 
						|
      APFloat FractU(U - FloorU);
 | 
						|
      APFloat AlmostOne(U.getSemantics(), 1);
 | 
						|
      AlmostOne.next(/*nextDown*/ true);
 | 
						|
      return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
 | 
						|
    }
 | 
						|
 | 
						|
    // Rounding operations (floor, trunc, ceil, round and nearbyint) do not
 | 
						|
    // raise FP exceptions, unless the argument is signaling NaN.
 | 
						|
 | 
						|
    Optional<APFloat::roundingMode> RM;
 | 
						|
    switch (IntrinsicID) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case Intrinsic::experimental_constrained_nearbyint:
 | 
						|
    case Intrinsic::experimental_constrained_rint: {
 | 
						|
      auto CI = cast<ConstrainedFPIntrinsic>(Call);
 | 
						|
      RM = CI->getRoundingMode();
 | 
						|
      if (!RM || RM.getValue() == RoundingMode::Dynamic)
 | 
						|
        return nullptr;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Intrinsic::experimental_constrained_round:
 | 
						|
      RM = APFloat::rmNearestTiesToAway;
 | 
						|
      break;
 | 
						|
    case Intrinsic::experimental_constrained_ceil:
 | 
						|
      RM = APFloat::rmTowardPositive;
 | 
						|
      break;
 | 
						|
    case Intrinsic::experimental_constrained_floor:
 | 
						|
      RM = APFloat::rmTowardNegative;
 | 
						|
      break;
 | 
						|
    case Intrinsic::experimental_constrained_trunc:
 | 
						|
      RM = APFloat::rmTowardZero;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (RM) {
 | 
						|
      auto CI = cast<ConstrainedFPIntrinsic>(Call);
 | 
						|
      if (U.isFinite()) {
 | 
						|
        APFloat::opStatus St = U.roundToIntegral(*RM);
 | 
						|
        if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
 | 
						|
            St == APFloat::opInexact) {
 | 
						|
          Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
 | 
						|
          if (EB && *EB == fp::ebStrict)
 | 
						|
            return nullptr;
 | 
						|
        }
 | 
						|
      } else if (U.isSignaling()) {
 | 
						|
        Optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
 | 
						|
        if (EB && *EB != fp::ebIgnore)
 | 
						|
          return nullptr;
 | 
						|
        U = APFloat::getQNaN(U.getSemantics());
 | 
						|
      }
 | 
						|
      return ConstantFP::get(Ty->getContext(), U);
 | 
						|
    }
 | 
						|
 | 
						|
    /// We only fold functions with finite arguments. Folding NaN and inf is
 | 
						|
    /// likely to be aborted with an exception anyway, and some host libms
 | 
						|
    /// have known errors raising exceptions.
 | 
						|
    if (!U.isFinite())
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    /// Currently APFloat versions of these functions do not exist, so we use
 | 
						|
    /// the host native double versions.  Float versions are not called
 | 
						|
    /// directly but for all these it is true (float)(f((double)arg)) ==
 | 
						|
    /// f(arg).  Long double not supported yet.
 | 
						|
    const APFloat &APF = Op->getValueAPF();
 | 
						|
 | 
						|
    switch (IntrinsicID) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::log:
 | 
						|
        return ConstantFoldFP(log, APF, Ty);
 | 
						|
      case Intrinsic::log2:
 | 
						|
        // TODO: What about hosts that lack a C99 library?
 | 
						|
        return ConstantFoldFP(Log2, APF, Ty);
 | 
						|
      case Intrinsic::log10:
 | 
						|
        // TODO: What about hosts that lack a C99 library?
 | 
						|
        return ConstantFoldFP(log10, APF, Ty);
 | 
						|
      case Intrinsic::exp:
 | 
						|
        return ConstantFoldFP(exp, APF, Ty);
 | 
						|
      case Intrinsic::exp2:
 | 
						|
        // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
 | 
						|
        return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
 | 
						|
      case Intrinsic::sin:
 | 
						|
        return ConstantFoldFP(sin, APF, Ty);
 | 
						|
      case Intrinsic::cos:
 | 
						|
        return ConstantFoldFP(cos, APF, Ty);
 | 
						|
      case Intrinsic::sqrt:
 | 
						|
        return ConstantFoldFP(sqrt, APF, Ty);
 | 
						|
      case Intrinsic::amdgcn_cos:
 | 
						|
      case Intrinsic::amdgcn_sin: {
 | 
						|
        double V = getValueAsDouble(Op);
 | 
						|
        if (V < -256.0 || V > 256.0)
 | 
						|
          // The gfx8 and gfx9 architectures handle arguments outside the range
 | 
						|
          // [-256, 256] differently. This should be a rare case so bail out
 | 
						|
          // rather than trying to handle the difference.
 | 
						|
          return nullptr;
 | 
						|
        bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
 | 
						|
        double V4 = V * 4.0;
 | 
						|
        if (V4 == floor(V4)) {
 | 
						|
          // Force exact results for quarter-integer inputs.
 | 
						|
          const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
 | 
						|
          V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
 | 
						|
        } else {
 | 
						|
          if (IsCos)
 | 
						|
            V = cos(V * 2.0 * numbers::pi);
 | 
						|
          else
 | 
						|
            V = sin(V * 2.0 * numbers::pi);
 | 
						|
        }
 | 
						|
        return GetConstantFoldFPValue(V, Ty);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!TLI)
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    LibFunc Func = NotLibFunc;
 | 
						|
    if (!TLI->getLibFunc(Name, Func))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    switch (Func) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case LibFunc_acos:
 | 
						|
    case LibFunc_acosf:
 | 
						|
    case LibFunc_acos_finite:
 | 
						|
    case LibFunc_acosf_finite:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        return ConstantFoldFP(acos, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_asin:
 | 
						|
    case LibFunc_asinf:
 | 
						|
    case LibFunc_asin_finite:
 | 
						|
    case LibFunc_asinf_finite:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        return ConstantFoldFP(asin, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_atan:
 | 
						|
    case LibFunc_atanf:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        return ConstantFoldFP(atan, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_ceil:
 | 
						|
    case LibFunc_ceilf:
 | 
						|
      if (TLI->has(Func)) {
 | 
						|
        U.roundToIntegral(APFloat::rmTowardPositive);
 | 
						|
        return ConstantFP::get(Ty->getContext(), U);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case LibFunc_cos:
 | 
						|
    case LibFunc_cosf:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        return ConstantFoldFP(cos, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_cosh:
 | 
						|
    case LibFunc_coshf:
 | 
						|
    case LibFunc_cosh_finite:
 | 
						|
    case LibFunc_coshf_finite:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        return ConstantFoldFP(cosh, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_exp:
 | 
						|
    case LibFunc_expf:
 | 
						|
    case LibFunc_exp_finite:
 | 
						|
    case LibFunc_expf_finite:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        return ConstantFoldFP(exp, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_exp2:
 | 
						|
    case LibFunc_exp2f:
 | 
						|
    case LibFunc_exp2_finite:
 | 
						|
    case LibFunc_exp2f_finite:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
 | 
						|
        return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_fabs:
 | 
						|
    case LibFunc_fabsf:
 | 
						|
      if (TLI->has(Func)) {
 | 
						|
        U.clearSign();
 | 
						|
        return ConstantFP::get(Ty->getContext(), U);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case LibFunc_floor:
 | 
						|
    case LibFunc_floorf:
 | 
						|
      if (TLI->has(Func)) {
 | 
						|
        U.roundToIntegral(APFloat::rmTowardNegative);
 | 
						|
        return ConstantFP::get(Ty->getContext(), U);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case LibFunc_log:
 | 
						|
    case LibFunc_logf:
 | 
						|
    case LibFunc_log_finite:
 | 
						|
    case LibFunc_logf_finite:
 | 
						|
      if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
 | 
						|
        return ConstantFoldFP(log, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_log2:
 | 
						|
    case LibFunc_log2f:
 | 
						|
    case LibFunc_log2_finite:
 | 
						|
    case LibFunc_log2f_finite:
 | 
						|
      if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
 | 
						|
        // TODO: What about hosts that lack a C99 library?
 | 
						|
        return ConstantFoldFP(Log2, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_log10:
 | 
						|
    case LibFunc_log10f:
 | 
						|
    case LibFunc_log10_finite:
 | 
						|
    case LibFunc_log10f_finite:
 | 
						|
      if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
 | 
						|
        // TODO: What about hosts that lack a C99 library?
 | 
						|
        return ConstantFoldFP(log10, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_nearbyint:
 | 
						|
    case LibFunc_nearbyintf:
 | 
						|
    case LibFunc_rint:
 | 
						|
    case LibFunc_rintf:
 | 
						|
      if (TLI->has(Func)) {
 | 
						|
        U.roundToIntegral(APFloat::rmNearestTiesToEven);
 | 
						|
        return ConstantFP::get(Ty->getContext(), U);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case LibFunc_round:
 | 
						|
    case LibFunc_roundf:
 | 
						|
      if (TLI->has(Func)) {
 | 
						|
        U.roundToIntegral(APFloat::rmNearestTiesToAway);
 | 
						|
        return ConstantFP::get(Ty->getContext(), U);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case LibFunc_sin:
 | 
						|
    case LibFunc_sinf:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        return ConstantFoldFP(sin, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_sinh:
 | 
						|
    case LibFunc_sinhf:
 | 
						|
    case LibFunc_sinh_finite:
 | 
						|
    case LibFunc_sinhf_finite:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        return ConstantFoldFP(sinh, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_sqrt:
 | 
						|
    case LibFunc_sqrtf:
 | 
						|
      if (!APF.isNegative() && TLI->has(Func))
 | 
						|
        return ConstantFoldFP(sqrt, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_tan:
 | 
						|
    case LibFunc_tanf:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        return ConstantFoldFP(tan, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_tanh:
 | 
						|
    case LibFunc_tanhf:
 | 
						|
      if (TLI->has(Func))
 | 
						|
        return ConstantFoldFP(tanh, APF, Ty);
 | 
						|
      break;
 | 
						|
    case LibFunc_trunc:
 | 
						|
    case LibFunc_truncf:
 | 
						|
      if (TLI->has(Func)) {
 | 
						|
        U.roundToIntegral(APFloat::rmTowardZero);
 | 
						|
        return ConstantFP::get(Ty->getContext(), U);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
 | 
						|
    switch (IntrinsicID) {
 | 
						|
    case Intrinsic::bswap:
 | 
						|
      return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
 | 
						|
    case Intrinsic::ctpop:
 | 
						|
      return ConstantInt::get(Ty, Op->getValue().countPopulation());
 | 
						|
    case Intrinsic::bitreverse:
 | 
						|
      return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
 | 
						|
    case Intrinsic::convert_from_fp16: {
 | 
						|
      APFloat Val(APFloat::IEEEhalf(), Op->getValue());
 | 
						|
 | 
						|
      bool lost = false;
 | 
						|
      APFloat::opStatus status = Val.convert(
 | 
						|
          Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
 | 
						|
 | 
						|
      // Conversion is always precise.
 | 
						|
      (void)status;
 | 
						|
      assert(status == APFloat::opOK && !lost &&
 | 
						|
             "Precision lost during fp16 constfolding");
 | 
						|
 | 
						|
      return ConstantFP::get(Ty->getContext(), Val);
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  default: break;
 | 
						|
  case Intrinsic::vector_reduce_add:
 | 
						|
  case Intrinsic::vector_reduce_mul:
 | 
						|
  case Intrinsic::vector_reduce_and:
 | 
						|
  case Intrinsic::vector_reduce_or:
 | 
						|
  case Intrinsic::vector_reduce_xor:
 | 
						|
  case Intrinsic::vector_reduce_smin:
 | 
						|
  case Intrinsic::vector_reduce_smax:
 | 
						|
  case Intrinsic::vector_reduce_umin:
 | 
						|
  case Intrinsic::vector_reduce_umax:
 | 
						|
    if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
 | 
						|
      return C;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Support ConstantVector in case we have an Undef in the top.
 | 
						|
  if (isa<ConstantVector>(Operands[0]) ||
 | 
						|
      isa<ConstantDataVector>(Operands[0])) {
 | 
						|
    auto *Op = cast<Constant>(Operands[0]);
 | 
						|
    switch (IntrinsicID) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::x86_sse_cvtss2si:
 | 
						|
    case Intrinsic::x86_sse_cvtss2si64:
 | 
						|
    case Intrinsic::x86_sse2_cvtsd2si:
 | 
						|
    case Intrinsic::x86_sse2_cvtsd2si64:
 | 
						|
      if (ConstantFP *FPOp =
 | 
						|
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | 
						|
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | 
						|
                                           /*roundTowardZero=*/false, Ty,
 | 
						|
                                           /*IsSigned*/true);
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_sse_cvttss2si:
 | 
						|
    case Intrinsic::x86_sse_cvttss2si64:
 | 
						|
    case Intrinsic::x86_sse2_cvttsd2si:
 | 
						|
    case Intrinsic::x86_sse2_cvttsd2si64:
 | 
						|
      if (ConstantFP *FPOp =
 | 
						|
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | 
						|
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | 
						|
                                           /*roundTowardZero=*/true, Ty,
 | 
						|
                                           /*IsSigned*/true);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldScalarCall2(StringRef Name,
 | 
						|
                                         Intrinsic::ID IntrinsicID,
 | 
						|
                                         Type *Ty,
 | 
						|
                                         ArrayRef<Constant *> Operands,
 | 
						|
                                         const TargetLibraryInfo *TLI,
 | 
						|
                                         const CallBase *Call) {
 | 
						|
  assert(Operands.size() == 2 && "Wrong number of operands.");
 | 
						|
 | 
						|
  if (Ty->isFloatingPointTy()) {
 | 
						|
    // TODO: We should have undef handling for all of the FP intrinsics that
 | 
						|
    //       are attempted to be folded in this function.
 | 
						|
    bool IsOp0Undef = isa<UndefValue>(Operands[0]);
 | 
						|
    bool IsOp1Undef = isa<UndefValue>(Operands[1]);
 | 
						|
    switch (IntrinsicID) {
 | 
						|
    case Intrinsic::maxnum:
 | 
						|
    case Intrinsic::minnum:
 | 
						|
    case Intrinsic::maximum:
 | 
						|
    case Intrinsic::minimum:
 | 
						|
      // If one argument is undef, return the other argument.
 | 
						|
      if (IsOp0Undef)
 | 
						|
        return Operands[1];
 | 
						|
      if (IsOp1Undef)
 | 
						|
        return Operands[0];
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
 | 
						|
    if (!Ty->isFloatingPointTy())
 | 
						|
      return nullptr;
 | 
						|
    const APFloat &Op1V = Op1->getValueAPF();
 | 
						|
 | 
						|
    if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
 | 
						|
      if (Op2->getType() != Op1->getType())
 | 
						|
        return nullptr;
 | 
						|
      const APFloat &Op2V = Op2->getValueAPF();
 | 
						|
 | 
						|
      if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
 | 
						|
        RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
 | 
						|
        APFloat Res = Op1V;
 | 
						|
        APFloat::opStatus St;
 | 
						|
        switch (IntrinsicID) {
 | 
						|
        default:
 | 
						|
          return nullptr;
 | 
						|
        case Intrinsic::experimental_constrained_fadd:
 | 
						|
          St = Res.add(Op2V, RM);
 | 
						|
          break;
 | 
						|
        case Intrinsic::experimental_constrained_fsub:
 | 
						|
          St = Res.subtract(Op2V, RM);
 | 
						|
          break;
 | 
						|
        case Intrinsic::experimental_constrained_fmul:
 | 
						|
          St = Res.multiply(Op2V, RM);
 | 
						|
          break;
 | 
						|
        case Intrinsic::experimental_constrained_fdiv:
 | 
						|
          St = Res.divide(Op2V, RM);
 | 
						|
          break;
 | 
						|
        case Intrinsic::experimental_constrained_frem:
 | 
						|
          St = Res.mod(Op2V);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
 | 
						|
                               St))
 | 
						|
          return ConstantFP::get(Ty->getContext(), Res);
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case Intrinsic::copysign:
 | 
						|
        return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
 | 
						|
      case Intrinsic::minnum:
 | 
						|
        return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
 | 
						|
      case Intrinsic::maxnum:
 | 
						|
        return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
 | 
						|
      case Intrinsic::minimum:
 | 
						|
        return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
 | 
						|
      case Intrinsic::maximum:
 | 
						|
        return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case Intrinsic::pow:
 | 
						|
        return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
 | 
						|
      case Intrinsic::amdgcn_fmul_legacy:
 | 
						|
        // The legacy behaviour is that multiplying +/- 0.0 by anything, even
 | 
						|
        // NaN or infinity, gives +0.0.
 | 
						|
        if (Op1V.isZero() || Op2V.isZero())
 | 
						|
          return ConstantFP::getNullValue(Ty);
 | 
						|
        return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
 | 
						|
      }
 | 
						|
 | 
						|
      if (!TLI)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      LibFunc Func = NotLibFunc;
 | 
						|
      if (!TLI->getLibFunc(Name, Func))
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      switch (Func) {
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      case LibFunc_pow:
 | 
						|
      case LibFunc_powf:
 | 
						|
      case LibFunc_pow_finite:
 | 
						|
      case LibFunc_powf_finite:
 | 
						|
        if (TLI->has(Func))
 | 
						|
          return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
 | 
						|
        break;
 | 
						|
      case LibFunc_fmod:
 | 
						|
      case LibFunc_fmodf:
 | 
						|
        if (TLI->has(Func)) {
 | 
						|
          APFloat V = Op1->getValueAPF();
 | 
						|
          if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
 | 
						|
            return ConstantFP::get(Ty->getContext(), V);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case LibFunc_remainder:
 | 
						|
      case LibFunc_remainderf:
 | 
						|
        if (TLI->has(Func)) {
 | 
						|
          APFloat V = Op1->getValueAPF();
 | 
						|
          if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
 | 
						|
            return ConstantFP::get(Ty->getContext(), V);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case LibFunc_atan2:
 | 
						|
      case LibFunc_atan2f:
 | 
						|
      case LibFunc_atan2_finite:
 | 
						|
      case LibFunc_atan2f_finite:
 | 
						|
        if (TLI->has(Func))
 | 
						|
          return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
 | 
						|
      if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
 | 
						|
        return nullptr;
 | 
						|
      if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
 | 
						|
        return ConstantFP::get(
 | 
						|
            Ty->getContext(),
 | 
						|
            APFloat((float)std::pow((float)Op1V.convertToDouble(),
 | 
						|
                                    (int)Op2C->getZExtValue())));
 | 
						|
      if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
 | 
						|
        return ConstantFP::get(
 | 
						|
            Ty->getContext(),
 | 
						|
            APFloat((float)std::pow((float)Op1V.convertToDouble(),
 | 
						|
                                    (int)Op2C->getZExtValue())));
 | 
						|
      if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
 | 
						|
        return ConstantFP::get(
 | 
						|
            Ty->getContext(),
 | 
						|
            APFloat((double)std::pow(Op1V.convertToDouble(),
 | 
						|
                                     (int)Op2C->getZExtValue())));
 | 
						|
 | 
						|
      if (IntrinsicID == Intrinsic::amdgcn_ldexp) {
 | 
						|
        // FIXME: Should flush denorms depending on FP mode, but that's ignored
 | 
						|
        // everywhere else.
 | 
						|
 | 
						|
        // scalbn is equivalent to ldexp with float radix 2
 | 
						|
        APFloat Result = scalbn(Op1->getValueAPF(), Op2C->getSExtValue(),
 | 
						|
                                APFloat::rmNearestTiesToEven);
 | 
						|
        return ConstantFP::get(Ty->getContext(), Result);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Operands[0]->getType()->isIntegerTy() &&
 | 
						|
      Operands[1]->getType()->isIntegerTy()) {
 | 
						|
    const APInt *C0, *C1;
 | 
						|
    if (!getConstIntOrUndef(Operands[0], C0) ||
 | 
						|
        !getConstIntOrUndef(Operands[1], C1))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    switch (IntrinsicID) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::smax:
 | 
						|
    case Intrinsic::smin:
 | 
						|
    case Intrinsic::umax:
 | 
						|
    case Intrinsic::umin:
 | 
						|
      if (!C0 && !C1)
 | 
						|
        return UndefValue::get(Ty);
 | 
						|
      if (!C0 || !C1)
 | 
						|
        return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
 | 
						|
      return ConstantInt::get(
 | 
						|
          Ty, ICmpInst::compare(*C0, *C1,
 | 
						|
                                MinMaxIntrinsic::getPredicate(IntrinsicID))
 | 
						|
                  ? *C0
 | 
						|
                  : *C1);
 | 
						|
 | 
						|
    case Intrinsic::usub_with_overflow:
 | 
						|
    case Intrinsic::ssub_with_overflow:
 | 
						|
      // X - undef -> { 0, false }
 | 
						|
      // undef - X -> { 0, false }
 | 
						|
      if (!C0 || !C1)
 | 
						|
        return Constant::getNullValue(Ty);
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Intrinsic::uadd_with_overflow:
 | 
						|
    case Intrinsic::sadd_with_overflow:
 | 
						|
      // X + undef -> { -1, false }
 | 
						|
      // undef + x -> { -1, false }
 | 
						|
      if (!C0 || !C1) {
 | 
						|
        return ConstantStruct::get(
 | 
						|
            cast<StructType>(Ty),
 | 
						|
            {Constant::getAllOnesValue(Ty->getStructElementType(0)),
 | 
						|
             Constant::getNullValue(Ty->getStructElementType(1))});
 | 
						|
      }
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Intrinsic::smul_with_overflow:
 | 
						|
    case Intrinsic::umul_with_overflow: {
 | 
						|
      // undef * X -> { 0, false }
 | 
						|
      // X * undef -> { 0, false }
 | 
						|
      if (!C0 || !C1)
 | 
						|
        return Constant::getNullValue(Ty);
 | 
						|
 | 
						|
      APInt Res;
 | 
						|
      bool Overflow;
 | 
						|
      switch (IntrinsicID) {
 | 
						|
      default: llvm_unreachable("Invalid case");
 | 
						|
      case Intrinsic::sadd_with_overflow:
 | 
						|
        Res = C0->sadd_ov(*C1, Overflow);
 | 
						|
        break;
 | 
						|
      case Intrinsic::uadd_with_overflow:
 | 
						|
        Res = C0->uadd_ov(*C1, Overflow);
 | 
						|
        break;
 | 
						|
      case Intrinsic::ssub_with_overflow:
 | 
						|
        Res = C0->ssub_ov(*C1, Overflow);
 | 
						|
        break;
 | 
						|
      case Intrinsic::usub_with_overflow:
 | 
						|
        Res = C0->usub_ov(*C1, Overflow);
 | 
						|
        break;
 | 
						|
      case Intrinsic::smul_with_overflow:
 | 
						|
        Res = C0->smul_ov(*C1, Overflow);
 | 
						|
        break;
 | 
						|
      case Intrinsic::umul_with_overflow:
 | 
						|
        Res = C0->umul_ov(*C1, Overflow);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      Constant *Ops[] = {
 | 
						|
        ConstantInt::get(Ty->getContext(), Res),
 | 
						|
        ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
 | 
						|
      };
 | 
						|
      return ConstantStruct::get(cast<StructType>(Ty), Ops);
 | 
						|
    }
 | 
						|
    case Intrinsic::uadd_sat:
 | 
						|
    case Intrinsic::sadd_sat:
 | 
						|
      if (!C0 && !C1)
 | 
						|
        return UndefValue::get(Ty);
 | 
						|
      if (!C0 || !C1)
 | 
						|
        return Constant::getAllOnesValue(Ty);
 | 
						|
      if (IntrinsicID == Intrinsic::uadd_sat)
 | 
						|
        return ConstantInt::get(Ty, C0->uadd_sat(*C1));
 | 
						|
      else
 | 
						|
        return ConstantInt::get(Ty, C0->sadd_sat(*C1));
 | 
						|
    case Intrinsic::usub_sat:
 | 
						|
    case Intrinsic::ssub_sat:
 | 
						|
      if (!C0 && !C1)
 | 
						|
        return UndefValue::get(Ty);
 | 
						|
      if (!C0 || !C1)
 | 
						|
        return Constant::getNullValue(Ty);
 | 
						|
      if (IntrinsicID == Intrinsic::usub_sat)
 | 
						|
        return ConstantInt::get(Ty, C0->usub_sat(*C1));
 | 
						|
      else
 | 
						|
        return ConstantInt::get(Ty, C0->ssub_sat(*C1));
 | 
						|
    case Intrinsic::cttz:
 | 
						|
    case Intrinsic::ctlz:
 | 
						|
      assert(C1 && "Must be constant int");
 | 
						|
 | 
						|
      // cttz(0, 1) and ctlz(0, 1) are undef.
 | 
						|
      if (C1->isOne() && (!C0 || C0->isZero()))
 | 
						|
        return UndefValue::get(Ty);
 | 
						|
      if (!C0)
 | 
						|
        return Constant::getNullValue(Ty);
 | 
						|
      if (IntrinsicID == Intrinsic::cttz)
 | 
						|
        return ConstantInt::get(Ty, C0->countTrailingZeros());
 | 
						|
      else
 | 
						|
        return ConstantInt::get(Ty, C0->countLeadingZeros());
 | 
						|
 | 
						|
    case Intrinsic::abs:
 | 
						|
      assert(C1 && "Must be constant int");
 | 
						|
      assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
 | 
						|
 | 
						|
      // Undef or minimum val operand with poison min --> undef
 | 
						|
      if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
 | 
						|
        return UndefValue::get(Ty);
 | 
						|
 | 
						|
      // Undef operand with no poison min --> 0 (sign bit must be clear)
 | 
						|
      if (!C0)
 | 
						|
        return Constant::getNullValue(Ty);
 | 
						|
 | 
						|
      return ConstantInt::get(Ty, C0->abs());
 | 
						|
    }
 | 
						|
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Support ConstantVector in case we have an Undef in the top.
 | 
						|
  if ((isa<ConstantVector>(Operands[0]) ||
 | 
						|
       isa<ConstantDataVector>(Operands[0])) &&
 | 
						|
      // Check for default rounding mode.
 | 
						|
      // FIXME: Support other rounding modes?
 | 
						|
      isa<ConstantInt>(Operands[1]) &&
 | 
						|
      cast<ConstantInt>(Operands[1])->getValue() == 4) {
 | 
						|
    auto *Op = cast<Constant>(Operands[0]);
 | 
						|
    switch (IntrinsicID) {
 | 
						|
    default: break;
 | 
						|
    case Intrinsic::x86_avx512_vcvtss2si32:
 | 
						|
    case Intrinsic::x86_avx512_vcvtss2si64:
 | 
						|
    case Intrinsic::x86_avx512_vcvtsd2si32:
 | 
						|
    case Intrinsic::x86_avx512_vcvtsd2si64:
 | 
						|
      if (ConstantFP *FPOp =
 | 
						|
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | 
						|
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | 
						|
                                           /*roundTowardZero=*/false, Ty,
 | 
						|
                                           /*IsSigned*/true);
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_avx512_vcvtss2usi32:
 | 
						|
    case Intrinsic::x86_avx512_vcvtss2usi64:
 | 
						|
    case Intrinsic::x86_avx512_vcvtsd2usi32:
 | 
						|
    case Intrinsic::x86_avx512_vcvtsd2usi64:
 | 
						|
      if (ConstantFP *FPOp =
 | 
						|
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | 
						|
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | 
						|
                                           /*roundTowardZero=*/false, Ty,
 | 
						|
                                           /*IsSigned*/false);
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_avx512_cvttss2si:
 | 
						|
    case Intrinsic::x86_avx512_cvttss2si64:
 | 
						|
    case Intrinsic::x86_avx512_cvttsd2si:
 | 
						|
    case Intrinsic::x86_avx512_cvttsd2si64:
 | 
						|
      if (ConstantFP *FPOp =
 | 
						|
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | 
						|
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | 
						|
                                           /*roundTowardZero=*/true, Ty,
 | 
						|
                                           /*IsSigned*/true);
 | 
						|
      break;
 | 
						|
    case Intrinsic::x86_avx512_cvttss2usi:
 | 
						|
    case Intrinsic::x86_avx512_cvttss2usi64:
 | 
						|
    case Intrinsic::x86_avx512_cvttsd2usi:
 | 
						|
    case Intrinsic::x86_avx512_cvttsd2usi64:
 | 
						|
      if (ConstantFP *FPOp =
 | 
						|
              dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
 | 
						|
        return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
 | 
						|
                                           /*roundTowardZero=*/true, Ty,
 | 
						|
                                           /*IsSigned*/false);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
 | 
						|
                                               const APFloat &S0,
 | 
						|
                                               const APFloat &S1,
 | 
						|
                                               const APFloat &S2) {
 | 
						|
  unsigned ID;
 | 
						|
  const fltSemantics &Sem = S0.getSemantics();
 | 
						|
  APFloat MA(Sem), SC(Sem), TC(Sem);
 | 
						|
  if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
 | 
						|
    if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
 | 
						|
      // S2 < 0
 | 
						|
      ID = 5;
 | 
						|
      SC = -S0;
 | 
						|
    } else {
 | 
						|
      ID = 4;
 | 
						|
      SC = S0;
 | 
						|
    }
 | 
						|
    MA = S2;
 | 
						|
    TC = -S1;
 | 
						|
  } else if (abs(S1) >= abs(S0)) {
 | 
						|
    if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
 | 
						|
      // S1 < 0
 | 
						|
      ID = 3;
 | 
						|
      TC = -S2;
 | 
						|
    } else {
 | 
						|
      ID = 2;
 | 
						|
      TC = S2;
 | 
						|
    }
 | 
						|
    MA = S1;
 | 
						|
    SC = S0;
 | 
						|
  } else {
 | 
						|
    if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
 | 
						|
      // S0 < 0
 | 
						|
      ID = 1;
 | 
						|
      SC = S2;
 | 
						|
    } else {
 | 
						|
      ID = 0;
 | 
						|
      SC = -S2;
 | 
						|
    }
 | 
						|
    MA = S0;
 | 
						|
    TC = -S1;
 | 
						|
  }
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unhandled amdgcn cube intrinsic");
 | 
						|
  case Intrinsic::amdgcn_cubeid:
 | 
						|
    return APFloat(Sem, ID);
 | 
						|
  case Intrinsic::amdgcn_cubema:
 | 
						|
    return MA + MA;
 | 
						|
  case Intrinsic::amdgcn_cubesc:
 | 
						|
    return SC;
 | 
						|
  case Intrinsic::amdgcn_cubetc:
 | 
						|
    return TC;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
 | 
						|
                                                 Type *Ty) {
 | 
						|
  const APInt *C0, *C1, *C2;
 | 
						|
  if (!getConstIntOrUndef(Operands[0], C0) ||
 | 
						|
      !getConstIntOrUndef(Operands[1], C1) ||
 | 
						|
      !getConstIntOrUndef(Operands[2], C2))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (!C2)
 | 
						|
    return UndefValue::get(Ty);
 | 
						|
 | 
						|
  APInt Val(32, 0);
 | 
						|
  unsigned NumUndefBytes = 0;
 | 
						|
  for (unsigned I = 0; I < 32; I += 8) {
 | 
						|
    unsigned Sel = C2->extractBitsAsZExtValue(8, I);
 | 
						|
    unsigned B = 0;
 | 
						|
 | 
						|
    if (Sel >= 13)
 | 
						|
      B = 0xff;
 | 
						|
    else if (Sel == 12)
 | 
						|
      B = 0x00;
 | 
						|
    else {
 | 
						|
      const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
 | 
						|
      if (!Src)
 | 
						|
        ++NumUndefBytes;
 | 
						|
      else if (Sel < 8)
 | 
						|
        B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
 | 
						|
      else
 | 
						|
        B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
 | 
						|
    }
 | 
						|
 | 
						|
    Val.insertBits(B, I, 8);
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumUndefBytes == 4)
 | 
						|
    return UndefValue::get(Ty);
 | 
						|
 | 
						|
  return ConstantInt::get(Ty, Val);
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldScalarCall3(StringRef Name,
 | 
						|
                                         Intrinsic::ID IntrinsicID,
 | 
						|
                                         Type *Ty,
 | 
						|
                                         ArrayRef<Constant *> Operands,
 | 
						|
                                         const TargetLibraryInfo *TLI,
 | 
						|
                                         const CallBase *Call) {
 | 
						|
  assert(Operands.size() == 3 && "Wrong number of operands.");
 | 
						|
 | 
						|
  if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
 | 
						|
    if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
 | 
						|
      if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
 | 
						|
        const APFloat &C1 = Op1->getValueAPF();
 | 
						|
        const APFloat &C2 = Op2->getValueAPF();
 | 
						|
        const APFloat &C3 = Op3->getValueAPF();
 | 
						|
 | 
						|
        if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
 | 
						|
          RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
 | 
						|
          APFloat Res = C1;
 | 
						|
          APFloat::opStatus St;
 | 
						|
          switch (IntrinsicID) {
 | 
						|
          default:
 | 
						|
            return nullptr;
 | 
						|
          case Intrinsic::experimental_constrained_fma:
 | 
						|
          case Intrinsic::experimental_constrained_fmuladd:
 | 
						|
            St = Res.fusedMultiplyAdd(C2, C3, RM);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          if (mayFoldConstrained(
 | 
						|
                  const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
 | 
						|
            return ConstantFP::get(Ty->getContext(), Res);
 | 
						|
          return nullptr;
 | 
						|
        }
 | 
						|
 | 
						|
        switch (IntrinsicID) {
 | 
						|
        default: break;
 | 
						|
        case Intrinsic::amdgcn_fma_legacy: {
 | 
						|
          // The legacy behaviour is that multiplying +/- 0.0 by anything, even
 | 
						|
          // NaN or infinity, gives +0.0.
 | 
						|
          if (C1.isZero() || C2.isZero()) {
 | 
						|
            // It's tempting to just return C3 here, but that would give the
 | 
						|
            // wrong result if C3 was -0.0.
 | 
						|
            return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
 | 
						|
          }
 | 
						|
          LLVM_FALLTHROUGH;
 | 
						|
        }
 | 
						|
        case Intrinsic::fma:
 | 
						|
        case Intrinsic::fmuladd: {
 | 
						|
          APFloat V = C1;
 | 
						|
          V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
 | 
						|
          return ConstantFP::get(Ty->getContext(), V);
 | 
						|
        }
 | 
						|
        case Intrinsic::amdgcn_cubeid:
 | 
						|
        case Intrinsic::amdgcn_cubema:
 | 
						|
        case Intrinsic::amdgcn_cubesc:
 | 
						|
        case Intrinsic::amdgcn_cubetc: {
 | 
						|
          APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
 | 
						|
          return ConstantFP::get(Ty->getContext(), V);
 | 
						|
        }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (IntrinsicID == Intrinsic::smul_fix ||
 | 
						|
      IntrinsicID == Intrinsic::smul_fix_sat) {
 | 
						|
    // poison * C -> poison
 | 
						|
    // C * poison -> poison
 | 
						|
    if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
 | 
						|
      return PoisonValue::get(Ty);
 | 
						|
 | 
						|
    const APInt *C0, *C1;
 | 
						|
    if (!getConstIntOrUndef(Operands[0], C0) ||
 | 
						|
        !getConstIntOrUndef(Operands[1], C1))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // undef * C -> 0
 | 
						|
    // C * undef -> 0
 | 
						|
    if (!C0 || !C1)
 | 
						|
      return Constant::getNullValue(Ty);
 | 
						|
 | 
						|
    // This code performs rounding towards negative infinity in case the result
 | 
						|
    // cannot be represented exactly for the given scale. Targets that do care
 | 
						|
    // about rounding should use a target hook for specifying how rounding
 | 
						|
    // should be done, and provide their own folding to be consistent with
 | 
						|
    // rounding. This is the same approach as used by
 | 
						|
    // DAGTypeLegalizer::ExpandIntRes_MULFIX.
 | 
						|
    unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
 | 
						|
    unsigned Width = C0->getBitWidth();
 | 
						|
    assert(Scale < Width && "Illegal scale.");
 | 
						|
    unsigned ExtendedWidth = Width * 2;
 | 
						|
    APInt Product = (C0->sextOrSelf(ExtendedWidth) *
 | 
						|
                     C1->sextOrSelf(ExtendedWidth)).ashr(Scale);
 | 
						|
    if (IntrinsicID == Intrinsic::smul_fix_sat) {
 | 
						|
      APInt Max = APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
 | 
						|
      APInt Min = APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
 | 
						|
      Product = APIntOps::smin(Product, Max);
 | 
						|
      Product = APIntOps::smax(Product, Min);
 | 
						|
    }
 | 
						|
    return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
 | 
						|
  }
 | 
						|
 | 
						|
  if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
 | 
						|
    const APInt *C0, *C1, *C2;
 | 
						|
    if (!getConstIntOrUndef(Operands[0], C0) ||
 | 
						|
        !getConstIntOrUndef(Operands[1], C1) ||
 | 
						|
        !getConstIntOrUndef(Operands[2], C2))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    bool IsRight = IntrinsicID == Intrinsic::fshr;
 | 
						|
    if (!C2)
 | 
						|
      return Operands[IsRight ? 1 : 0];
 | 
						|
    if (!C0 && !C1)
 | 
						|
      return UndefValue::get(Ty);
 | 
						|
 | 
						|
    // The shift amount is interpreted as modulo the bitwidth. If the shift
 | 
						|
    // amount is effectively 0, avoid UB due to oversized inverse shift below.
 | 
						|
    unsigned BitWidth = C2->getBitWidth();
 | 
						|
    unsigned ShAmt = C2->urem(BitWidth);
 | 
						|
    if (!ShAmt)
 | 
						|
      return Operands[IsRight ? 1 : 0];
 | 
						|
 | 
						|
    // (C0 << ShlAmt) | (C1 >> LshrAmt)
 | 
						|
    unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
 | 
						|
    unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
 | 
						|
    if (!C0)
 | 
						|
      return ConstantInt::get(Ty, C1->lshr(LshrAmt));
 | 
						|
    if (!C1)
 | 
						|
      return ConstantInt::get(Ty, C0->shl(ShlAmt));
 | 
						|
    return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
 | 
						|
  }
 | 
						|
 | 
						|
  if (IntrinsicID == Intrinsic::amdgcn_perm)
 | 
						|
    return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldScalarCall(StringRef Name,
 | 
						|
                                        Intrinsic::ID IntrinsicID,
 | 
						|
                                        Type *Ty,
 | 
						|
                                        ArrayRef<Constant *> Operands,
 | 
						|
                                        const TargetLibraryInfo *TLI,
 | 
						|
                                        const CallBase *Call) {
 | 
						|
  if (Operands.size() == 1)
 | 
						|
    return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
 | 
						|
 | 
						|
  if (Operands.size() == 2)
 | 
						|
    return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
 | 
						|
 | 
						|
  if (Operands.size() == 3)
 | 
						|
    return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldFixedVectorCall(
 | 
						|
    StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
 | 
						|
    ArrayRef<Constant *> Operands, const DataLayout &DL,
 | 
						|
    const TargetLibraryInfo *TLI, const CallBase *Call) {
 | 
						|
  SmallVector<Constant *, 4> Result(FVTy->getNumElements());
 | 
						|
  SmallVector<Constant *, 4> Lane(Operands.size());
 | 
						|
  Type *Ty = FVTy->getElementType();
 | 
						|
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  case Intrinsic::masked_load: {
 | 
						|
    auto *SrcPtr = Operands[0];
 | 
						|
    auto *Mask = Operands[2];
 | 
						|
    auto *Passthru = Operands[3];
 | 
						|
 | 
						|
    Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
 | 
						|
 | 
						|
    SmallVector<Constant *, 32> NewElements;
 | 
						|
    for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
 | 
						|
      auto *MaskElt = Mask->getAggregateElement(I);
 | 
						|
      if (!MaskElt)
 | 
						|
        break;
 | 
						|
      auto *PassthruElt = Passthru->getAggregateElement(I);
 | 
						|
      auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
 | 
						|
      if (isa<UndefValue>(MaskElt)) {
 | 
						|
        if (PassthruElt)
 | 
						|
          NewElements.push_back(PassthruElt);
 | 
						|
        else if (VecElt)
 | 
						|
          NewElements.push_back(VecElt);
 | 
						|
        else
 | 
						|
          return nullptr;
 | 
						|
      }
 | 
						|
      if (MaskElt->isNullValue()) {
 | 
						|
        if (!PassthruElt)
 | 
						|
          return nullptr;
 | 
						|
        NewElements.push_back(PassthruElt);
 | 
						|
      } else if (MaskElt->isOneValue()) {
 | 
						|
        if (!VecElt)
 | 
						|
          return nullptr;
 | 
						|
        NewElements.push_back(VecElt);
 | 
						|
      } else {
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (NewElements.size() != FVTy->getNumElements())
 | 
						|
      return nullptr;
 | 
						|
    return ConstantVector::get(NewElements);
 | 
						|
  }
 | 
						|
  case Intrinsic::arm_mve_vctp8:
 | 
						|
  case Intrinsic::arm_mve_vctp16:
 | 
						|
  case Intrinsic::arm_mve_vctp32:
 | 
						|
  case Intrinsic::arm_mve_vctp64: {
 | 
						|
    if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
 | 
						|
      unsigned Lanes = FVTy->getNumElements();
 | 
						|
      uint64_t Limit = Op->getZExtValue();
 | 
						|
 | 
						|
      SmallVector<Constant *, 16> NCs;
 | 
						|
      for (unsigned i = 0; i < Lanes; i++) {
 | 
						|
        if (i < Limit)
 | 
						|
          NCs.push_back(ConstantInt::getTrue(Ty));
 | 
						|
        else
 | 
						|
          NCs.push_back(ConstantInt::getFalse(Ty));
 | 
						|
      }
 | 
						|
      return ConstantVector::get(NCs);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::get_active_lane_mask: {
 | 
						|
    auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
 | 
						|
    auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
 | 
						|
    if (Op0 && Op1) {
 | 
						|
      unsigned Lanes = FVTy->getNumElements();
 | 
						|
      uint64_t Base = Op0->getZExtValue();
 | 
						|
      uint64_t Limit = Op1->getZExtValue();
 | 
						|
 | 
						|
      SmallVector<Constant *, 16> NCs;
 | 
						|
      for (unsigned i = 0; i < Lanes; i++) {
 | 
						|
        if (Base + i < Limit)
 | 
						|
          NCs.push_back(ConstantInt::getTrue(Ty));
 | 
						|
        else
 | 
						|
          NCs.push_back(ConstantInt::getFalse(Ty));
 | 
						|
      }
 | 
						|
      return ConstantVector::get(NCs);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
 | 
						|
    // Gather a column of constants.
 | 
						|
    for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
 | 
						|
      // Some intrinsics use a scalar type for certain arguments.
 | 
						|
      if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
 | 
						|
        Lane[J] = Operands[J];
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Constant *Agg = Operands[J]->getAggregateElement(I);
 | 
						|
      if (!Agg)
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      Lane[J] = Agg;
 | 
						|
    }
 | 
						|
 | 
						|
    // Use the regular scalar folding to simplify this column.
 | 
						|
    Constant *Folded =
 | 
						|
        ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
 | 
						|
    if (!Folded)
 | 
						|
      return nullptr;
 | 
						|
    Result[I] = Folded;
 | 
						|
  }
 | 
						|
 | 
						|
  return ConstantVector::get(Result);
 | 
						|
}
 | 
						|
 | 
						|
static Constant *ConstantFoldScalableVectorCall(
 | 
						|
    StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
 | 
						|
    ArrayRef<Constant *> Operands, const DataLayout &DL,
 | 
						|
    const TargetLibraryInfo *TLI, const CallBase *Call) {
 | 
						|
  switch (IntrinsicID) {
 | 
						|
  case Intrinsic::aarch64_sve_convert_from_svbool: {
 | 
						|
    auto *Src = dyn_cast<Constant>(Operands[0]);
 | 
						|
    if (!Src || !Src->isNullValue())
 | 
						|
      break;
 | 
						|
 | 
						|
    return ConstantInt::getFalse(SVTy);
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
 | 
						|
                                 ArrayRef<Constant *> Operands,
 | 
						|
                                 const TargetLibraryInfo *TLI) {
 | 
						|
  if (Call->isNoBuiltin())
 | 
						|
    return nullptr;
 | 
						|
  if (!F->hasName())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If this is not an intrinsic and not recognized as a library call, bail out.
 | 
						|
  if (F->getIntrinsicID() == Intrinsic::not_intrinsic) {
 | 
						|
    if (!TLI)
 | 
						|
      return nullptr;
 | 
						|
    LibFunc LibF;
 | 
						|
    if (!TLI->getLibFunc(*F, LibF))
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef Name = F->getName();
 | 
						|
  Type *Ty = F->getReturnType();
 | 
						|
  if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
 | 
						|
    return ConstantFoldFixedVectorCall(
 | 
						|
        Name, F->getIntrinsicID(), FVTy, Operands,
 | 
						|
        F->getParent()->getDataLayout(), TLI, Call);
 | 
						|
 | 
						|
  if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
 | 
						|
    return ConstantFoldScalableVectorCall(
 | 
						|
        Name, F->getIntrinsicID(), SVTy, Operands,
 | 
						|
        F->getParent()->getDataLayout(), TLI, Call);
 | 
						|
 | 
						|
  // TODO: If this is a library function, we already discovered that above,
 | 
						|
  //       so we should pass the LibFunc, not the name (and it might be better
 | 
						|
  //       still to separate intrinsic handling from libcalls).
 | 
						|
  return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
 | 
						|
                                Call);
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::isMathLibCallNoop(const CallBase *Call,
 | 
						|
                             const TargetLibraryInfo *TLI) {
 | 
						|
  // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
 | 
						|
  // (and to some extent ConstantFoldScalarCall).
 | 
						|
  if (Call->isNoBuiltin() || Call->isStrictFP())
 | 
						|
    return false;
 | 
						|
  Function *F = Call->getCalledFunction();
 | 
						|
  if (!F)
 | 
						|
    return false;
 | 
						|
 | 
						|
  LibFunc Func;
 | 
						|
  if (!TLI || !TLI->getLibFunc(*F, Func))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Call->arg_size() == 1) {
 | 
						|
    if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
 | 
						|
      const APFloat &Op = OpC->getValueAPF();
 | 
						|
      switch (Func) {
 | 
						|
      case LibFunc_logl:
 | 
						|
      case LibFunc_log:
 | 
						|
      case LibFunc_logf:
 | 
						|
      case LibFunc_log2l:
 | 
						|
      case LibFunc_log2:
 | 
						|
      case LibFunc_log2f:
 | 
						|
      case LibFunc_log10l:
 | 
						|
      case LibFunc_log10:
 | 
						|
      case LibFunc_log10f:
 | 
						|
        return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
 | 
						|
 | 
						|
      case LibFunc_expl:
 | 
						|
      case LibFunc_exp:
 | 
						|
      case LibFunc_expf:
 | 
						|
        // FIXME: These boundaries are slightly conservative.
 | 
						|
        if (OpC->getType()->isDoubleTy())
 | 
						|
          return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
 | 
						|
        if (OpC->getType()->isFloatTy())
 | 
						|
          return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
 | 
						|
        break;
 | 
						|
 | 
						|
      case LibFunc_exp2l:
 | 
						|
      case LibFunc_exp2:
 | 
						|
      case LibFunc_exp2f:
 | 
						|
        // FIXME: These boundaries are slightly conservative.
 | 
						|
        if (OpC->getType()->isDoubleTy())
 | 
						|
          return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
 | 
						|
        if (OpC->getType()->isFloatTy())
 | 
						|
          return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
 | 
						|
        break;
 | 
						|
 | 
						|
      case LibFunc_sinl:
 | 
						|
      case LibFunc_sin:
 | 
						|
      case LibFunc_sinf:
 | 
						|
      case LibFunc_cosl:
 | 
						|
      case LibFunc_cos:
 | 
						|
      case LibFunc_cosf:
 | 
						|
        return !Op.isInfinity();
 | 
						|
 | 
						|
      case LibFunc_tanl:
 | 
						|
      case LibFunc_tan:
 | 
						|
      case LibFunc_tanf: {
 | 
						|
        // FIXME: Stop using the host math library.
 | 
						|
        // FIXME: The computation isn't done in the right precision.
 | 
						|
        Type *Ty = OpC->getType();
 | 
						|
        if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
 | 
						|
          return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case LibFunc_asinl:
 | 
						|
      case LibFunc_asin:
 | 
						|
      case LibFunc_asinf:
 | 
						|
      case LibFunc_acosl:
 | 
						|
      case LibFunc_acos:
 | 
						|
      case LibFunc_acosf:
 | 
						|
        return !(Op < APFloat(Op.getSemantics(), "-1") ||
 | 
						|
                 Op > APFloat(Op.getSemantics(), "1"));
 | 
						|
 | 
						|
      case LibFunc_sinh:
 | 
						|
      case LibFunc_cosh:
 | 
						|
      case LibFunc_sinhf:
 | 
						|
      case LibFunc_coshf:
 | 
						|
      case LibFunc_sinhl:
 | 
						|
      case LibFunc_coshl:
 | 
						|
        // FIXME: These boundaries are slightly conservative.
 | 
						|
        if (OpC->getType()->isDoubleTy())
 | 
						|
          return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
 | 
						|
        if (OpC->getType()->isFloatTy())
 | 
						|
          return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
 | 
						|
        break;
 | 
						|
 | 
						|
      case LibFunc_sqrtl:
 | 
						|
      case LibFunc_sqrt:
 | 
						|
      case LibFunc_sqrtf:
 | 
						|
        return Op.isNaN() || Op.isZero() || !Op.isNegative();
 | 
						|
 | 
						|
      // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
 | 
						|
      // maybe others?
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Call->arg_size() == 2) {
 | 
						|
    ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
 | 
						|
    ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
 | 
						|
    if (Op0C && Op1C) {
 | 
						|
      const APFloat &Op0 = Op0C->getValueAPF();
 | 
						|
      const APFloat &Op1 = Op1C->getValueAPF();
 | 
						|
 | 
						|
      switch (Func) {
 | 
						|
      case LibFunc_powl:
 | 
						|
      case LibFunc_pow:
 | 
						|
      case LibFunc_powf: {
 | 
						|
        // FIXME: Stop using the host math library.
 | 
						|
        // FIXME: The computation isn't done in the right precision.
 | 
						|
        Type *Ty = Op0C->getType();
 | 
						|
        if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
 | 
						|
          if (Ty == Op1C->getType())
 | 
						|
            return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      case LibFunc_fmodl:
 | 
						|
      case LibFunc_fmod:
 | 
						|
      case LibFunc_fmodf:
 | 
						|
      case LibFunc_remainderl:
 | 
						|
      case LibFunc_remainder:
 | 
						|
      case LibFunc_remainderf:
 | 
						|
        return Op0.isNaN() || Op1.isNaN() ||
 | 
						|
               (!Op0.isInfinity() && !Op1.isZero());
 | 
						|
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void TargetFolder::anchor() {}
 |