482 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			482 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- VFABIDemangling.cpp - Vector Function ABI demangling utilities. ---===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/Analysis/VectorUtils.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Utilities for the Vector Function ABI name parser.
 | 
						|
 | 
						|
/// Return types for the parser functions.
 | 
						|
enum class ParseRet {
 | 
						|
  OK,   // Found.
 | 
						|
  None, // Not found.
 | 
						|
  Error // Syntax error.
 | 
						|
};
 | 
						|
 | 
						|
/// Extracts the `<isa>` information from the mangled string, and
 | 
						|
/// sets the `ISA` accordingly.
 | 
						|
ParseRet tryParseISA(StringRef &MangledName, VFISAKind &ISA) {
 | 
						|
  if (MangledName.empty())
 | 
						|
    return ParseRet::Error;
 | 
						|
 | 
						|
  if (MangledName.startswith(VFABI::_LLVM_)) {
 | 
						|
    MangledName = MangledName.drop_front(strlen(VFABI::_LLVM_));
 | 
						|
    ISA = VFISAKind::LLVM;
 | 
						|
  } else {
 | 
						|
    ISA = StringSwitch<VFISAKind>(MangledName.take_front(1))
 | 
						|
              .Case("n", VFISAKind::AdvancedSIMD)
 | 
						|
              .Case("s", VFISAKind::SVE)
 | 
						|
              .Case("b", VFISAKind::SSE)
 | 
						|
              .Case("c", VFISAKind::AVX)
 | 
						|
              .Case("d", VFISAKind::AVX2)
 | 
						|
              .Case("e", VFISAKind::AVX512)
 | 
						|
              .Default(VFISAKind::Unknown);
 | 
						|
    MangledName = MangledName.drop_front(1);
 | 
						|
  }
 | 
						|
 | 
						|
  return ParseRet::OK;
 | 
						|
}
 | 
						|
 | 
						|
/// Extracts the `<mask>` information from the mangled string, and
 | 
						|
/// sets `IsMasked` accordingly. The input string `MangledName` is
 | 
						|
/// left unmodified.
 | 
						|
ParseRet tryParseMask(StringRef &MangledName, bool &IsMasked) {
 | 
						|
  if (MangledName.consume_front("M")) {
 | 
						|
    IsMasked = true;
 | 
						|
    return ParseRet::OK;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MangledName.consume_front("N")) {
 | 
						|
    IsMasked = false;
 | 
						|
    return ParseRet::OK;
 | 
						|
  }
 | 
						|
 | 
						|
  return ParseRet::Error;
 | 
						|
}
 | 
						|
 | 
						|
/// Extract the `<vlen>` information from the mangled string, and
 | 
						|
/// sets `VF` accordingly. A `<vlen> == "x"` token is interpreted as a scalable
 | 
						|
/// vector length. On success, the `<vlen>` token is removed from
 | 
						|
/// the input string `ParseString`.
 | 
						|
///
 | 
						|
ParseRet tryParseVLEN(StringRef &ParseString, unsigned &VF, bool &IsScalable) {
 | 
						|
  if (ParseString.consume_front("x")) {
 | 
						|
    // Set VF to 0, to be later adjusted to a value grater than zero
 | 
						|
    // by looking at the signature of the vector function with
 | 
						|
    // `getECFromSignature`.
 | 
						|
    VF = 0;
 | 
						|
    IsScalable = true;
 | 
						|
    return ParseRet::OK;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ParseString.consumeInteger(10, VF))
 | 
						|
    return ParseRet::Error;
 | 
						|
 | 
						|
  // The token `0` is invalid for VLEN.
 | 
						|
  if (VF == 0)
 | 
						|
    return ParseRet::Error;
 | 
						|
 | 
						|
  IsScalable = false;
 | 
						|
  return ParseRet::OK;
 | 
						|
}
 | 
						|
 | 
						|
/// The function looks for the following strings at the beginning of
 | 
						|
/// the input string `ParseString`:
 | 
						|
///
 | 
						|
///  <token> <number>
 | 
						|
///
 | 
						|
/// On success, it removes the parsed parameter from `ParseString`,
 | 
						|
/// sets `PKind` to the correspondent enum value, sets `Pos` to
 | 
						|
/// <number>, and return success.  On a syntax error, it return a
 | 
						|
/// parsing error. If nothing is parsed, it returns None.
 | 
						|
///
 | 
						|
/// The function expects <token> to be one of "ls", "Rs", "Us" or
 | 
						|
/// "Ls".
 | 
						|
ParseRet tryParseLinearTokenWithRuntimeStep(StringRef &ParseString,
 | 
						|
                                            VFParamKind &PKind, int &Pos,
 | 
						|
                                            const StringRef Token) {
 | 
						|
  if (ParseString.consume_front(Token)) {
 | 
						|
    PKind = VFABI::getVFParamKindFromString(Token);
 | 
						|
    if (ParseString.consumeInteger(10, Pos))
 | 
						|
      return ParseRet::Error;
 | 
						|
    return ParseRet::OK;
 | 
						|
  }
 | 
						|
 | 
						|
  return ParseRet::None;
 | 
						|
}
 | 
						|
 | 
						|
/// The function looks for the following stringt at the beginning of
 | 
						|
/// the input string `ParseString`:
 | 
						|
///
 | 
						|
///  <token> <number>
 | 
						|
///
 | 
						|
/// <token> is one of "ls", "Rs", "Us" or "Ls".
 | 
						|
///
 | 
						|
/// On success, it removes the parsed parameter from `ParseString`,
 | 
						|
/// sets `PKind` to the correspondent enum value, sets `StepOrPos` to
 | 
						|
/// <number>, and return success.  On a syntax error, it return a
 | 
						|
/// parsing error. If nothing is parsed, it returns None.
 | 
						|
ParseRet tryParseLinearWithRuntimeStep(StringRef &ParseString,
 | 
						|
                                       VFParamKind &PKind, int &StepOrPos) {
 | 
						|
  ParseRet Ret;
 | 
						|
 | 
						|
  // "ls" <RuntimeStepPos>
 | 
						|
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "ls");
 | 
						|
  if (Ret != ParseRet::None)
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // "Rs" <RuntimeStepPos>
 | 
						|
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Rs");
 | 
						|
  if (Ret != ParseRet::None)
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // "Ls" <RuntimeStepPos>
 | 
						|
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Ls");
 | 
						|
  if (Ret != ParseRet::None)
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  // "Us" <RuntimeStepPos>
 | 
						|
  Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Us");
 | 
						|
  if (Ret != ParseRet::None)
 | 
						|
    return Ret;
 | 
						|
 | 
						|
  return ParseRet::None;
 | 
						|
}
 | 
						|
 | 
						|
/// The function looks for the following strings at the beginning of
 | 
						|
/// the input string `ParseString`:
 | 
						|
///
 | 
						|
///  <token> {"n"} <number>
 | 
						|
///
 | 
						|
/// On success, it removes the parsed parameter from `ParseString`,
 | 
						|
/// sets `PKind` to the correspondent enum value, sets `LinearStep` to
 | 
						|
/// <number>, and return success.  On a syntax error, it return a
 | 
						|
/// parsing error. If nothing is parsed, it returns None.
 | 
						|
///
 | 
						|
/// The function expects <token> to be one of "l", "R", "U" or
 | 
						|
/// "L".
 | 
						|
ParseRet tryParseCompileTimeLinearToken(StringRef &ParseString,
 | 
						|
                                        VFParamKind &PKind, int &LinearStep,
 | 
						|
                                        const StringRef Token) {
 | 
						|
  if (ParseString.consume_front(Token)) {
 | 
						|
    PKind = VFABI::getVFParamKindFromString(Token);
 | 
						|
    const bool Negate = ParseString.consume_front("n");
 | 
						|
    if (ParseString.consumeInteger(10, LinearStep))
 | 
						|
      LinearStep = 1;
 | 
						|
    if (Negate)
 | 
						|
      LinearStep *= -1;
 | 
						|
    return ParseRet::OK;
 | 
						|
  }
 | 
						|
 | 
						|
  return ParseRet::None;
 | 
						|
}
 | 
						|
 | 
						|
/// The function looks for the following strings at the beginning of
 | 
						|
/// the input string `ParseString`:
 | 
						|
///
 | 
						|
/// ["l" | "R" | "U" | "L"] {"n"} <number>
 | 
						|
///
 | 
						|
/// On success, it removes the parsed parameter from `ParseString`,
 | 
						|
/// sets `PKind` to the correspondent enum value, sets `LinearStep` to
 | 
						|
/// <number>, and return success.  On a syntax error, it return a
 | 
						|
/// parsing error. If nothing is parsed, it returns None.
 | 
						|
ParseRet tryParseLinearWithCompileTimeStep(StringRef &ParseString,
 | 
						|
                                           VFParamKind &PKind, int &StepOrPos) {
 | 
						|
  // "l" {"n"} <CompileTimeStep>
 | 
						|
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "l") ==
 | 
						|
      ParseRet::OK)
 | 
						|
    return ParseRet::OK;
 | 
						|
 | 
						|
  // "R" {"n"} <CompileTimeStep>
 | 
						|
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "R") ==
 | 
						|
      ParseRet::OK)
 | 
						|
    return ParseRet::OK;
 | 
						|
 | 
						|
  // "L" {"n"} <CompileTimeStep>
 | 
						|
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "L") ==
 | 
						|
      ParseRet::OK)
 | 
						|
    return ParseRet::OK;
 | 
						|
 | 
						|
  // "U" {"n"} <CompileTimeStep>
 | 
						|
  if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "U") ==
 | 
						|
      ParseRet::OK)
 | 
						|
    return ParseRet::OK;
 | 
						|
 | 
						|
  return ParseRet::None;
 | 
						|
}
 | 
						|
 | 
						|
/// Looks into the <parameters> part of the mangled name in search
 | 
						|
/// for valid paramaters at the beginning of the string
 | 
						|
/// `ParseString`.
 | 
						|
///
 | 
						|
/// On success, it removes the parsed parameter from `ParseString`,
 | 
						|
/// sets `PKind` to the correspondent enum value, sets `StepOrPos`
 | 
						|
/// accordingly, and return success.  On a syntax error, it return a
 | 
						|
/// parsing error. If nothing is parsed, it returns None.
 | 
						|
ParseRet tryParseParameter(StringRef &ParseString, VFParamKind &PKind,
 | 
						|
                           int &StepOrPos) {
 | 
						|
  if (ParseString.consume_front("v")) {
 | 
						|
    PKind = VFParamKind::Vector;
 | 
						|
    StepOrPos = 0;
 | 
						|
    return ParseRet::OK;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ParseString.consume_front("u")) {
 | 
						|
    PKind = VFParamKind::OMP_Uniform;
 | 
						|
    StepOrPos = 0;
 | 
						|
    return ParseRet::OK;
 | 
						|
  }
 | 
						|
 | 
						|
  const ParseRet HasLinearRuntime =
 | 
						|
      tryParseLinearWithRuntimeStep(ParseString, PKind, StepOrPos);
 | 
						|
  if (HasLinearRuntime != ParseRet::None)
 | 
						|
    return HasLinearRuntime;
 | 
						|
 | 
						|
  const ParseRet HasLinearCompileTime =
 | 
						|
      tryParseLinearWithCompileTimeStep(ParseString, PKind, StepOrPos);
 | 
						|
  if (HasLinearCompileTime != ParseRet::None)
 | 
						|
    return HasLinearCompileTime;
 | 
						|
 | 
						|
  return ParseRet::None;
 | 
						|
}
 | 
						|
 | 
						|
/// Looks into the <parameters> part of the mangled name in search
 | 
						|
/// of a valid 'aligned' clause. The function should be invoked
 | 
						|
/// after parsing a parameter via `tryParseParameter`.
 | 
						|
///
 | 
						|
/// On success, it removes the parsed parameter from `ParseString`,
 | 
						|
/// sets `PKind` to the correspondent enum value, sets `StepOrPos`
 | 
						|
/// accordingly, and return success.  On a syntax error, it return a
 | 
						|
/// parsing error. If nothing is parsed, it returns None.
 | 
						|
ParseRet tryParseAlign(StringRef &ParseString, Align &Alignment) {
 | 
						|
  uint64_t Val;
 | 
						|
  //    "a" <number>
 | 
						|
  if (ParseString.consume_front("a")) {
 | 
						|
    if (ParseString.consumeInteger(10, Val))
 | 
						|
      return ParseRet::Error;
 | 
						|
 | 
						|
    if (!isPowerOf2_64(Val))
 | 
						|
      return ParseRet::Error;
 | 
						|
 | 
						|
    Alignment = Align(Val);
 | 
						|
 | 
						|
    return ParseRet::OK;
 | 
						|
  }
 | 
						|
 | 
						|
  return ParseRet::None;
 | 
						|
}
 | 
						|
#ifndef NDEBUG
 | 
						|
// Verify the assumtion that all vectors in the signature of a vector
 | 
						|
// function have the same number of elements.
 | 
						|
bool verifyAllVectorsHaveSameWidth(FunctionType *Signature) {
 | 
						|
  SmallVector<VectorType *, 2> VecTys;
 | 
						|
  if (auto *RetTy = dyn_cast<VectorType>(Signature->getReturnType()))
 | 
						|
    VecTys.push_back(RetTy);
 | 
						|
  for (auto *Ty : Signature->params())
 | 
						|
    if (auto *VTy = dyn_cast<VectorType>(Ty))
 | 
						|
      VecTys.push_back(VTy);
 | 
						|
 | 
						|
  if (VecTys.size() <= 1)
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert(VecTys.size() > 1 && "Invalid number of elements.");
 | 
						|
  const ElementCount EC = VecTys[0]->getElementCount();
 | 
						|
  return llvm::all_of(llvm::drop_begin(VecTys), [&EC](VectorType *VTy) {
 | 
						|
    return (EC == VTy->getElementCount());
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
// Extract the VectorizationFactor from a given function signature,
 | 
						|
// under the assumtion that all vectors have the same number of
 | 
						|
// elements, i.e. same ElementCount.Min.
 | 
						|
ElementCount getECFromSignature(FunctionType *Signature) {
 | 
						|
  assert(verifyAllVectorsHaveSameWidth(Signature) &&
 | 
						|
         "Invalid vector signature.");
 | 
						|
 | 
						|
  if (auto *RetTy = dyn_cast<VectorType>(Signature->getReturnType()))
 | 
						|
    return RetTy->getElementCount();
 | 
						|
  for (auto *Ty : Signature->params())
 | 
						|
    if (auto *VTy = dyn_cast<VectorType>(Ty))
 | 
						|
      return VTy->getElementCount();
 | 
						|
 | 
						|
  return ElementCount::getFixed(/*Min=*/1);
 | 
						|
}
 | 
						|
} // namespace
 | 
						|
 | 
						|
// Format of the ABI name:
 | 
						|
// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)]
 | 
						|
Optional<VFInfo> VFABI::tryDemangleForVFABI(StringRef MangledName,
 | 
						|
                                            const Module &M) {
 | 
						|
  const StringRef OriginalName = MangledName;
 | 
						|
  // Assume there is no custom name <redirection>, and therefore the
 | 
						|
  // vector name consists of
 | 
						|
  // _ZGV<isa><mask><vlen><parameters>_<scalarname>.
 | 
						|
  StringRef VectorName = MangledName;
 | 
						|
 | 
						|
  // Parse the fixed size part of the manled name
 | 
						|
  if (!MangledName.consume_front("_ZGV"))
 | 
						|
    return None;
 | 
						|
 | 
						|
  // Extract ISA. An unknow ISA is also supported, so we accept all
 | 
						|
  // values.
 | 
						|
  VFISAKind ISA;
 | 
						|
  if (tryParseISA(MangledName, ISA) != ParseRet::OK)
 | 
						|
    return None;
 | 
						|
 | 
						|
  // Extract <mask>.
 | 
						|
  bool IsMasked;
 | 
						|
  if (tryParseMask(MangledName, IsMasked) != ParseRet::OK)
 | 
						|
    return None;
 | 
						|
 | 
						|
  // Parse the variable size, starting from <vlen>.
 | 
						|
  unsigned VF;
 | 
						|
  bool IsScalable;
 | 
						|
  if (tryParseVLEN(MangledName, VF, IsScalable) != ParseRet::OK)
 | 
						|
    return None;
 | 
						|
 | 
						|
  // Parse the <parameters>.
 | 
						|
  ParseRet ParamFound;
 | 
						|
  SmallVector<VFParameter, 8> Parameters;
 | 
						|
  do {
 | 
						|
    const unsigned ParameterPos = Parameters.size();
 | 
						|
    VFParamKind PKind;
 | 
						|
    int StepOrPos;
 | 
						|
    ParamFound = tryParseParameter(MangledName, PKind, StepOrPos);
 | 
						|
 | 
						|
    // Bail off if there is a parsing error in the parsing of the parameter.
 | 
						|
    if (ParamFound == ParseRet::Error)
 | 
						|
      return None;
 | 
						|
 | 
						|
    if (ParamFound == ParseRet::OK) {
 | 
						|
      Align Alignment;
 | 
						|
      // Look for the alignment token "a <number>".
 | 
						|
      const ParseRet AlignFound = tryParseAlign(MangledName, Alignment);
 | 
						|
      // Bail off if there is a syntax error in the align token.
 | 
						|
      if (AlignFound == ParseRet::Error)
 | 
						|
        return None;
 | 
						|
 | 
						|
      // Add the parameter.
 | 
						|
      Parameters.push_back({ParameterPos, PKind, StepOrPos, Alignment});
 | 
						|
    }
 | 
						|
  } while (ParamFound == ParseRet::OK);
 | 
						|
 | 
						|
  // A valid MangledName must have at least one valid entry in the
 | 
						|
  // <parameters>.
 | 
						|
  if (Parameters.empty())
 | 
						|
    return None;
 | 
						|
 | 
						|
  // Check for the <scalarname> and the optional <redirection>, which
 | 
						|
  // are separated from the prefix with "_"
 | 
						|
  if (!MangledName.consume_front("_"))
 | 
						|
    return None;
 | 
						|
 | 
						|
  // The rest of the string must be in the format:
 | 
						|
  // <scalarname>[(<redirection>)]
 | 
						|
  const StringRef ScalarName =
 | 
						|
      MangledName.take_while([](char In) { return In != '('; });
 | 
						|
 | 
						|
  if (ScalarName.empty())
 | 
						|
    return None;
 | 
						|
 | 
						|
  // Reduce MangledName to [(<redirection>)].
 | 
						|
  MangledName = MangledName.ltrim(ScalarName);
 | 
						|
  // Find the optional custom name redirection.
 | 
						|
  if (MangledName.consume_front("(")) {
 | 
						|
    if (!MangledName.consume_back(")"))
 | 
						|
      return None;
 | 
						|
    // Update the vector variant with the one specified by the user.
 | 
						|
    VectorName = MangledName;
 | 
						|
    // If the vector name is missing, bail out.
 | 
						|
    if (VectorName.empty())
 | 
						|
      return None;
 | 
						|
  }
 | 
						|
 | 
						|
  // LLVM internal mapping via the TargetLibraryInfo (TLI) must be
 | 
						|
  // redirected to an existing name.
 | 
						|
  if (ISA == VFISAKind::LLVM && VectorName == OriginalName)
 | 
						|
    return None;
 | 
						|
 | 
						|
  // When <mask> is "M", we need to add a parameter that is used as
 | 
						|
  // global predicate for the function.
 | 
						|
  if (IsMasked) {
 | 
						|
    const unsigned Pos = Parameters.size();
 | 
						|
    Parameters.push_back({Pos, VFParamKind::GlobalPredicate});
 | 
						|
  }
 | 
						|
 | 
						|
  // Asserts for parameters of type `VFParamKind::GlobalPredicate`, as
 | 
						|
  // prescribed by the Vector Function ABI specifications supported by
 | 
						|
  // this parser:
 | 
						|
  // 1. Uniqueness.
 | 
						|
  // 2. Must be the last in the parameter list.
 | 
						|
  const auto NGlobalPreds = std::count_if(
 | 
						|
      Parameters.begin(), Parameters.end(), [](const VFParameter PK) {
 | 
						|
        return PK.ParamKind == VFParamKind::GlobalPredicate;
 | 
						|
      });
 | 
						|
  assert(NGlobalPreds < 2 && "Cannot have more than one global predicate.");
 | 
						|
  if (NGlobalPreds)
 | 
						|
    assert(Parameters.back().ParamKind == VFParamKind::GlobalPredicate &&
 | 
						|
           "The global predicate must be the last parameter");
 | 
						|
 | 
						|
  // Adjust the VF for scalable signatures. The EC.Min is not encoded
 | 
						|
  // in the name of the function, but it is encoded in the IR
 | 
						|
  // signature of the function. We need to extract this information
 | 
						|
  // because it is needed by the loop vectorizer, which reasons in
 | 
						|
  // terms of VectorizationFactor or ElementCount. In particular, we
 | 
						|
  // need to make sure that the VF field of the VFShape class is never
 | 
						|
  // set to 0.
 | 
						|
  if (IsScalable) {
 | 
						|
    const Function *F = M.getFunction(VectorName);
 | 
						|
    // The declaration of the function must be present in the module
 | 
						|
    // to be able to retrieve its signature.
 | 
						|
    if (!F)
 | 
						|
      return None;
 | 
						|
    const ElementCount EC = getECFromSignature(F->getFunctionType());
 | 
						|
    VF = EC.getKnownMinValue();
 | 
						|
  }
 | 
						|
 | 
						|
  // 1. We don't accept a zero lanes vectorization factor.
 | 
						|
  // 2. We don't accept the demangling if the vector function is not
 | 
						|
  // present in the module.
 | 
						|
  if (VF == 0)
 | 
						|
    return None;
 | 
						|
  if (!M.getFunction(VectorName))
 | 
						|
    return None;
 | 
						|
 | 
						|
  const VFShape Shape({ElementCount::get(VF, IsScalable), Parameters});
 | 
						|
  return VFInfo({Shape, std::string(ScalarName), std::string(VectorName), ISA});
 | 
						|
}
 | 
						|
 | 
						|
VFParamKind VFABI::getVFParamKindFromString(const StringRef Token) {
 | 
						|
  const VFParamKind ParamKind = StringSwitch<VFParamKind>(Token)
 | 
						|
                                    .Case("v", VFParamKind::Vector)
 | 
						|
                                    .Case("l", VFParamKind::OMP_Linear)
 | 
						|
                                    .Case("R", VFParamKind::OMP_LinearRef)
 | 
						|
                                    .Case("L", VFParamKind::OMP_LinearVal)
 | 
						|
                                    .Case("U", VFParamKind::OMP_LinearUVal)
 | 
						|
                                    .Case("ls", VFParamKind::OMP_LinearPos)
 | 
						|
                                    .Case("Ls", VFParamKind::OMP_LinearValPos)
 | 
						|
                                    .Case("Rs", VFParamKind::OMP_LinearRefPos)
 | 
						|
                                    .Case("Us", VFParamKind::OMP_LinearUValPos)
 | 
						|
                                    .Case("u", VFParamKind::OMP_Uniform)
 | 
						|
                                    .Default(VFParamKind::Unknown);
 | 
						|
 | 
						|
  if (ParamKind != VFParamKind::Unknown)
 | 
						|
    return ParamKind;
 | 
						|
 | 
						|
  // This function should never be invoked with an invalid input.
 | 
						|
  llvm_unreachable("This fuction should be invoken only on parameters"
 | 
						|
                   " that have a textual representation in the mangled name"
 | 
						|
                   " of the Vector Function ABI");
 | 
						|
}
 |