1834 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1834 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MachineSink.cpp - Sinking for machine instructions -----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass moves instructions into successor blocks when possible, so that
 | 
						|
// they aren't executed on paths where their results aren't needed.
 | 
						|
//
 | 
						|
// This pass is not intended to be a replacement or a complete alternative
 | 
						|
// for an LLVM-IR-level sinking pass. It is only designed to sink simple
 | 
						|
// constructs that are not exposed before lowering and instruction selection.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/PointerIntPair.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/SparseBitVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachinePostDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/RegisterClassInfo.h"
 | 
						|
#include "llvm/CodeGen/RegisterPressure.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/BranchProbability.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <map>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "machine-sink"
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
SplitEdges("machine-sink-split",
 | 
						|
           cl::desc("Split critical edges during machine sinking"),
 | 
						|
           cl::init(true), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
UseBlockFreqInfo("machine-sink-bfi",
 | 
						|
           cl::desc("Use block frequency info to find successors to sink"),
 | 
						|
           cl::init(true), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
 | 
						|
    "machine-sink-split-probability-threshold",
 | 
						|
    cl::desc(
 | 
						|
        "Percentage threshold for splitting single-instruction critical edge. "
 | 
						|
        "If the branch threshold is higher than this threshold, we allow "
 | 
						|
        "speculative execution of up to 1 instruction to avoid branching to "
 | 
						|
        "splitted critical edge"),
 | 
						|
    cl::init(40), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold(
 | 
						|
    "machine-sink-load-instrs-threshold",
 | 
						|
    cl::desc("Do not try to find alias store for a load if there is a in-path "
 | 
						|
             "block whose instruction number is higher than this threshold."),
 | 
						|
    cl::init(2000), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<unsigned> SinkLoadBlocksThreshold(
 | 
						|
    "machine-sink-load-blocks-threshold",
 | 
						|
    cl::desc("Do not try to find alias store for a load if the block number in "
 | 
						|
             "the straight line is higher than this threshold."),
 | 
						|
    cl::init(20), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
SinkInstsIntoLoop("sink-insts-to-avoid-spills",
 | 
						|
                  cl::desc("Sink instructions into loops to avoid "
 | 
						|
                           "register spills"),
 | 
						|
                  cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<unsigned> SinkIntoLoopLimit(
 | 
						|
    "machine-sink-loop-limit",
 | 
						|
    cl::desc("The maximum number of instructions considered for loop sinking."),
 | 
						|
    cl::init(50), cl::Hidden);
 | 
						|
 | 
						|
STATISTIC(NumSunk,      "Number of machine instructions sunk");
 | 
						|
STATISTIC(NumLoopSunk,  "Number of machine instructions sunk into a loop");
 | 
						|
STATISTIC(NumSplit,     "Number of critical edges split");
 | 
						|
STATISTIC(NumCoalesces, "Number of copies coalesced");
 | 
						|
STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class MachineSinking : public MachineFunctionPass {
 | 
						|
    const TargetInstrInfo *TII;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
    MachineRegisterInfo  *MRI;     // Machine register information
 | 
						|
    MachineDominatorTree *DT;      // Machine dominator tree
 | 
						|
    MachinePostDominatorTree *PDT; // Machine post dominator tree
 | 
						|
    MachineLoopInfo *LI;
 | 
						|
    MachineBlockFrequencyInfo *MBFI;
 | 
						|
    const MachineBranchProbabilityInfo *MBPI;
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    RegisterClassInfo RegClassInfo;
 | 
						|
 | 
						|
    // Remember which edges have been considered for breaking.
 | 
						|
    SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
 | 
						|
    CEBCandidates;
 | 
						|
    // Remember which edges we are about to split.
 | 
						|
    // This is different from CEBCandidates since those edges
 | 
						|
    // will be split.
 | 
						|
    SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
 | 
						|
 | 
						|
    DenseSet<Register> RegsToClearKillFlags;
 | 
						|
 | 
						|
    using AllSuccsCache =
 | 
						|
        std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
 | 
						|
 | 
						|
    /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
 | 
						|
    /// post-dominated by another DBG_VALUE of the same variable location.
 | 
						|
    /// This is necessary to detect sequences such as:
 | 
						|
    ///     %0 = someinst
 | 
						|
    ///     DBG_VALUE %0, !123, !DIExpression()
 | 
						|
    ///     %1 = anotherinst
 | 
						|
    ///     DBG_VALUE %1, !123, !DIExpression()
 | 
						|
    /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
 | 
						|
    /// would re-order assignments.
 | 
						|
    using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
 | 
						|
 | 
						|
    /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
 | 
						|
    /// debug instructions to sink.
 | 
						|
    SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
 | 
						|
 | 
						|
    /// Record of debug variables that have had their locations set in the
 | 
						|
    /// current block.
 | 
						|
    DenseSet<DebugVariable> SeenDbgVars;
 | 
						|
 | 
						|
    std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool>
 | 
						|
        HasStoreCache;
 | 
						|
    std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>,
 | 
						|
             std::vector<MachineInstr *>>
 | 
						|
        StoreInstrCache;
 | 
						|
 | 
						|
    /// Cached BB's register pressure.
 | 
						|
    std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification
 | 
						|
 | 
						|
    MachineSinking() : MachineFunctionPass(ID) {
 | 
						|
      initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
      AU.addRequired<AAResultsWrapperPass>();
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addRequired<MachinePostDominatorTree>();
 | 
						|
      AU.addRequired<MachineLoopInfo>();
 | 
						|
      AU.addRequired<MachineBranchProbabilityInfo>();
 | 
						|
      AU.addPreserved<MachineLoopInfo>();
 | 
						|
      if (UseBlockFreqInfo)
 | 
						|
        AU.addRequired<MachineBlockFrequencyInfo>();
 | 
						|
    }
 | 
						|
 | 
						|
    void releaseMemory() override {
 | 
						|
      CEBCandidates.clear();
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool ProcessBlock(MachineBasicBlock &MBB);
 | 
						|
    void ProcessDbgInst(MachineInstr &MI);
 | 
						|
    bool isWorthBreakingCriticalEdge(MachineInstr &MI,
 | 
						|
                                     MachineBasicBlock *From,
 | 
						|
                                     MachineBasicBlock *To);
 | 
						|
 | 
						|
    bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To,
 | 
						|
                         MachineInstr &MI);
 | 
						|
 | 
						|
    /// Postpone the splitting of the given critical
 | 
						|
    /// edge (\p From, \p To).
 | 
						|
    ///
 | 
						|
    /// We do not split the edges on the fly. Indeed, this invalidates
 | 
						|
    /// the dominance information and thus triggers a lot of updates
 | 
						|
    /// of that information underneath.
 | 
						|
    /// Instead, we postpone all the splits after each iteration of
 | 
						|
    /// the main loop. That way, the information is at least valid
 | 
						|
    /// for the lifetime of an iteration.
 | 
						|
    ///
 | 
						|
    /// \return True if the edge is marked as toSplit, false otherwise.
 | 
						|
    /// False can be returned if, for instance, this is not profitable.
 | 
						|
    bool PostponeSplitCriticalEdge(MachineInstr &MI,
 | 
						|
                                   MachineBasicBlock *From,
 | 
						|
                                   MachineBasicBlock *To,
 | 
						|
                                   bool BreakPHIEdge);
 | 
						|
    bool SinkInstruction(MachineInstr &MI, bool &SawStore,
 | 
						|
                         AllSuccsCache &AllSuccessors);
 | 
						|
 | 
						|
    /// If we sink a COPY inst, some debug users of it's destination may no
 | 
						|
    /// longer be dominated by the COPY, and will eventually be dropped.
 | 
						|
    /// This is easily rectified by forwarding the non-dominated debug uses
 | 
						|
    /// to the copy source.
 | 
						|
    void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
 | 
						|
                                       MachineBasicBlock *TargetBlock);
 | 
						|
    bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB,
 | 
						|
                                 MachineBasicBlock *DefMBB, bool &BreakPHIEdge,
 | 
						|
                                 bool &LocalUse) const;
 | 
						|
    MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
 | 
						|
               bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
 | 
						|
 | 
						|
    void FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB,
 | 
						|
                                SmallVectorImpl<MachineInstr *> &Candidates);
 | 
						|
    bool SinkIntoLoop(MachineLoop *L, MachineInstr &I);
 | 
						|
 | 
						|
    bool isProfitableToSinkTo(Register Reg, MachineInstr &MI,
 | 
						|
                              MachineBasicBlock *MBB,
 | 
						|
                              MachineBasicBlock *SuccToSinkTo,
 | 
						|
                              AllSuccsCache &AllSuccessors);
 | 
						|
 | 
						|
    bool PerformTrivialForwardCoalescing(MachineInstr &MI,
 | 
						|
                                         MachineBasicBlock *MBB);
 | 
						|
 | 
						|
    SmallVector<MachineBasicBlock *, 4> &
 | 
						|
    GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
 | 
						|
                           AllSuccsCache &AllSuccessors) const;
 | 
						|
 | 
						|
    std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB);
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char MachineSinking::ID = 0;
 | 
						|
 | 
						|
char &llvm::MachineSinkingID = MachineSinking::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
 | 
						|
                      "Machine code sinking", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
 | 
						|
                    "Machine code sinking", false, false)
 | 
						|
 | 
						|
bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
 | 
						|
                                                     MachineBasicBlock *MBB) {
 | 
						|
  if (!MI.isCopy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Register SrcReg = MI.getOperand(1).getReg();
 | 
						|
  Register DstReg = MI.getOperand(0).getReg();
 | 
						|
  if (!Register::isVirtualRegister(SrcReg) ||
 | 
						|
      !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
 | 
						|
  const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
 | 
						|
  if (SRC != DRC)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
 | 
						|
  if (DefMI->isCopyLike())
 | 
						|
    return false;
 | 
						|
  LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
 | 
						|
  LLVM_DEBUG(dbgs() << "*** to: " << MI);
 | 
						|
  MRI->replaceRegWith(DstReg, SrcReg);
 | 
						|
  MI.eraseFromParent();
 | 
						|
 | 
						|
  // Conservatively, clear any kill flags, since it's possible that they are no
 | 
						|
  // longer correct.
 | 
						|
  MRI->clearKillFlags(SrcReg);
 | 
						|
 | 
						|
  ++NumCoalesces;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// AllUsesDominatedByBlock - Return true if all uses of the specified register
 | 
						|
/// occur in blocks dominated by the specified block. If any use is in the
 | 
						|
/// definition block, then return false since it is never legal to move def
 | 
						|
/// after uses.
 | 
						|
bool MachineSinking::AllUsesDominatedByBlock(Register Reg,
 | 
						|
                                             MachineBasicBlock *MBB,
 | 
						|
                                             MachineBasicBlock *DefMBB,
 | 
						|
                                             bool &BreakPHIEdge,
 | 
						|
                                             bool &LocalUse) const {
 | 
						|
  assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
 | 
						|
 | 
						|
  // Ignore debug uses because debug info doesn't affect the code.
 | 
						|
  if (MRI->use_nodbg_empty(Reg))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
 | 
						|
  // into and they are all PHI nodes. In this case, machine-sink must break
 | 
						|
  // the critical edge first. e.g.
 | 
						|
  //
 | 
						|
  // %bb.1:
 | 
						|
  //   Predecessors according to CFG: %bb.0
 | 
						|
  //     ...
 | 
						|
  //     %def = DEC64_32r %x, implicit-def dead %eflags
 | 
						|
  //     ...
 | 
						|
  //     JE_4 <%bb.37>, implicit %eflags
 | 
						|
  //   Successors according to CFG: %bb.37 %bb.2
 | 
						|
  //
 | 
						|
  // %bb.2:
 | 
						|
  //     %p = PHI %y, %bb.0, %def, %bb.1
 | 
						|
  if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
 | 
						|
        MachineInstr *UseInst = MO.getParent();
 | 
						|
        unsigned OpNo = UseInst->getOperandNo(&MO);
 | 
						|
        MachineBasicBlock *UseBlock = UseInst->getParent();
 | 
						|
        return UseBlock == MBB && UseInst->isPHI() &&
 | 
						|
               UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
 | 
						|
      })) {
 | 
						|
    BreakPHIEdge = true;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
 | 
						|
    // Determine the block of the use.
 | 
						|
    MachineInstr *UseInst = MO.getParent();
 | 
						|
    unsigned OpNo = &MO - &UseInst->getOperand(0);
 | 
						|
    MachineBasicBlock *UseBlock = UseInst->getParent();
 | 
						|
    if (UseInst->isPHI()) {
 | 
						|
      // PHI nodes use the operand in the predecessor block, not the block with
 | 
						|
      // the PHI.
 | 
						|
      UseBlock = UseInst->getOperand(OpNo+1).getMBB();
 | 
						|
    } else if (UseBlock == DefMBB) {
 | 
						|
      LocalUse = true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Check that it dominates.
 | 
						|
    if (!DT->dominates(MBB, UseBlock))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if this machine instruction loads from global offset table or
 | 
						|
/// constant pool.
 | 
						|
static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
 | 
						|
  assert(MI.mayLoad() && "Expected MI that loads!");
 | 
						|
 | 
						|
  // If we lost memory operands, conservatively assume that the instruction
 | 
						|
  // reads from everything..
 | 
						|
  if (MI.memoperands_empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (MachineMemOperand *MemOp : MI.memoperands())
 | 
						|
    if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
 | 
						|
      if (PSV->isGOT() || PSV->isConstantPool())
 | 
						|
        return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void MachineSinking::FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB,
 | 
						|
    SmallVectorImpl<MachineInstr *> &Candidates) {
 | 
						|
  for (auto &MI : *BB) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI);
 | 
						|
    if (!TII->shouldSink(MI)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this "
 | 
						|
                           "target\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (!L->isLoopInvariant(MI)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    bool DontMoveAcrossStore = true;
 | 
						|
    if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (MI.isConvergent())
 | 
						|
      continue;
 | 
						|
 | 
						|
    const MachineOperand &MO = MI.getOperand(0);
 | 
						|
    if (!MO.isReg() || !MO.getReg() || !MO.isDef())
 | 
						|
      continue;
 | 
						|
    if (!MRI->hasOneDef(MO.getReg()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n");
 | 
						|
    Candidates.push_back(&MI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (skipFunction(MF.getFunction()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
 | 
						|
 | 
						|
  TII = MF.getSubtarget().getInstrInfo();
 | 
						|
  TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  DT = &getAnalysis<MachineDominatorTree>();
 | 
						|
  PDT = &getAnalysis<MachinePostDominatorTree>();
 | 
						|
  LI = &getAnalysis<MachineLoopInfo>();
 | 
						|
  MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
 | 
						|
  MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
 | 
						|
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
  RegClassInfo.runOnMachineFunction(MF);
 | 
						|
 | 
						|
  bool EverMadeChange = false;
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    bool MadeChange = false;
 | 
						|
 | 
						|
    // Process all basic blocks.
 | 
						|
    CEBCandidates.clear();
 | 
						|
    ToSplit.clear();
 | 
						|
    for (auto &MBB: MF)
 | 
						|
      MadeChange |= ProcessBlock(MBB);
 | 
						|
 | 
						|
    // If we have anything we marked as toSplit, split it now.
 | 
						|
    for (auto &Pair : ToSplit) {
 | 
						|
      auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
 | 
						|
      if (NewSucc != nullptr) {
 | 
						|
        LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
 | 
						|
                          << printMBBReference(*Pair.first) << " -- "
 | 
						|
                          << printMBBReference(*NewSucc) << " -- "
 | 
						|
                          << printMBBReference(*Pair.second) << '\n');
 | 
						|
        if (MBFI)
 | 
						|
          MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
 | 
						|
 | 
						|
        MadeChange = true;
 | 
						|
        ++NumSplit;
 | 
						|
      } else
 | 
						|
        LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
 | 
						|
    }
 | 
						|
    // If this iteration over the code changed anything, keep iterating.
 | 
						|
    if (!MadeChange) break;
 | 
						|
    EverMadeChange = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SinkInstsIntoLoop) {
 | 
						|
    SmallVector<MachineLoop *, 8> Loops(LI->begin(), LI->end());
 | 
						|
    for (auto *L : Loops) {
 | 
						|
      MachineBasicBlock *Preheader = LI->findLoopPreheader(L);
 | 
						|
      if (!Preheader) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      SmallVector<MachineInstr *, 8> Candidates;
 | 
						|
      FindLoopSinkCandidates(L, Preheader, Candidates);
 | 
						|
 | 
						|
      // Walk the candidates in reverse order so that we start with the use
 | 
						|
      // of a def-use chain, if there is any.
 | 
						|
      // TODO: Sort the candidates using a cost-model.
 | 
						|
      unsigned i = 0;
 | 
						|
      for (MachineInstr *I : llvm::reverse(Candidates)) {
 | 
						|
        if (i++ == SinkIntoLoopLimit) {
 | 
						|
          LLVM_DEBUG(dbgs() << "LoopSink:   Limit reached of instructions to "
 | 
						|
                               "be analysed.");
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!SinkIntoLoop(L, *I))
 | 
						|
          break;
 | 
						|
        EverMadeChange = true;
 | 
						|
        ++NumLoopSunk;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  HasStoreCache.clear();
 | 
						|
  StoreInstrCache.clear();
 | 
						|
 | 
						|
  // Now clear any kill flags for recorded registers.
 | 
						|
  for (auto I : RegsToClearKillFlags)
 | 
						|
    MRI->clearKillFlags(I);
 | 
						|
  RegsToClearKillFlags.clear();
 | 
						|
 | 
						|
  return EverMadeChange;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
 | 
						|
  // Can't sink anything out of a block that has less than two successors.
 | 
						|
  if (MBB.succ_size() <= 1 || MBB.empty()) return false;
 | 
						|
 | 
						|
  // Don't bother sinking code out of unreachable blocks. In addition to being
 | 
						|
  // unprofitable, it can also lead to infinite looping, because in an
 | 
						|
  // unreachable loop there may be nowhere to stop.
 | 
						|
  if (!DT->isReachableFromEntry(&MBB)) return false;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  // Cache all successors, sorted by frequency info and loop depth.
 | 
						|
  AllSuccsCache AllSuccessors;
 | 
						|
 | 
						|
  // Walk the basic block bottom-up.  Remember if we saw a store.
 | 
						|
  MachineBasicBlock::iterator I = MBB.end();
 | 
						|
  --I;
 | 
						|
  bool ProcessedBegin, SawStore = false;
 | 
						|
  do {
 | 
						|
    MachineInstr &MI = *I;  // The instruction to sink.
 | 
						|
 | 
						|
    // Predecrement I (if it's not begin) so that it isn't invalidated by
 | 
						|
    // sinking.
 | 
						|
    ProcessedBegin = I == MBB.begin();
 | 
						|
    if (!ProcessedBegin)
 | 
						|
      --I;
 | 
						|
 | 
						|
    if (MI.isDebugOrPseudoInstr()) {
 | 
						|
      if (MI.isDebugValue())
 | 
						|
        ProcessDbgInst(MI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
 | 
						|
    if (Joined) {
 | 
						|
      MadeChange = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SinkInstruction(MI, SawStore, AllSuccessors)) {
 | 
						|
      ++NumSunk;
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we just processed the first instruction in the block, we're done.
 | 
						|
  } while (!ProcessedBegin);
 | 
						|
 | 
						|
  SeenDbgUsers.clear();
 | 
						|
  SeenDbgVars.clear();
 | 
						|
  // recalculate the bb register pressure after sinking one BB.
 | 
						|
  CachedRegisterPressure.clear();
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
 | 
						|
  // When we see DBG_VALUEs for registers, record any vreg it reads, so that
 | 
						|
  // we know what to sink if the vreg def sinks.
 | 
						|
  assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
 | 
						|
 | 
						|
  DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
 | 
						|
                    MI.getDebugLoc()->getInlinedAt());
 | 
						|
  bool SeenBefore = SeenDbgVars.contains(Var);
 | 
						|
 | 
						|
  for (MachineOperand &MO : MI.debug_operands()) {
 | 
						|
    if (MO.isReg() && MO.getReg().isVirtual())
 | 
						|
      SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
 | 
						|
  }
 | 
						|
 | 
						|
  // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
 | 
						|
  SeenDbgVars.insert(Var);
 | 
						|
}
 | 
						|
 | 
						|
bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
 | 
						|
                                                 MachineBasicBlock *From,
 | 
						|
                                                 MachineBasicBlock *To) {
 | 
						|
  // FIXME: Need much better heuristics.
 | 
						|
 | 
						|
  // If the pass has already considered breaking this edge (during this pass
 | 
						|
  // through the function), then let's go ahead and break it. This means
 | 
						|
  // sinking multiple "cheap" instructions into the same block.
 | 
						|
  if (!CEBCandidates.insert(std::make_pair(From, To)).second)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
 | 
						|
      BranchProbability(SplitEdgeProbabilityThreshold, 100))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // MI is cheap, we probably don't want to break the critical edge for it.
 | 
						|
  // However, if this would allow some definitions of its source operands
 | 
						|
  // to be sunk then it's probably worth it.
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    if (!MO.isReg() || !MO.isUse())
 | 
						|
      continue;
 | 
						|
    Register Reg = MO.getReg();
 | 
						|
    if (Reg == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We don't move live definitions of physical registers,
 | 
						|
    // so sinking their uses won't enable any opportunities.
 | 
						|
    if (Register::isPhysicalRegister(Reg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this instruction is the only user of a virtual register,
 | 
						|
    // check if breaking the edge will enable sinking
 | 
						|
    // both this instruction and the defining instruction.
 | 
						|
    if (MRI->hasOneNonDBGUse(Reg)) {
 | 
						|
      // If the definition resides in same MBB,
 | 
						|
      // claim it's likely we can sink these together.
 | 
						|
      // If definition resides elsewhere, we aren't
 | 
						|
      // blocking it from being sunk so don't break the edge.
 | 
						|
      MachineInstr *DefMI = MRI->getVRegDef(Reg);
 | 
						|
      if (DefMI->getParent() == MI.getParent())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
 | 
						|
                                               MachineBasicBlock *FromBB,
 | 
						|
                                               MachineBasicBlock *ToBB,
 | 
						|
                                               bool BreakPHIEdge) {
 | 
						|
  if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Avoid breaking back edge. From == To means backedge for single BB loop.
 | 
						|
  if (!SplitEdges || FromBB == ToBB)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check for backedges of more "complex" loops.
 | 
						|
  if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
 | 
						|
      LI->isLoopHeader(ToBB))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // It's not always legal to break critical edges and sink the computation
 | 
						|
  // to the edge.
 | 
						|
  //
 | 
						|
  // %bb.1:
 | 
						|
  // v1024
 | 
						|
  // Beq %bb.3
 | 
						|
  // <fallthrough>
 | 
						|
  // %bb.2:
 | 
						|
  // ... no uses of v1024
 | 
						|
  // <fallthrough>
 | 
						|
  // %bb.3:
 | 
						|
  // ...
 | 
						|
  //       = v1024
 | 
						|
  //
 | 
						|
  // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
 | 
						|
  //
 | 
						|
  // %bb.1:
 | 
						|
  // ...
 | 
						|
  // Bne %bb.2
 | 
						|
  // %bb.4:
 | 
						|
  // v1024 =
 | 
						|
  // B %bb.3
 | 
						|
  // %bb.2:
 | 
						|
  // ... no uses of v1024
 | 
						|
  // <fallthrough>
 | 
						|
  // %bb.3:
 | 
						|
  // ...
 | 
						|
  //       = v1024
 | 
						|
  //
 | 
						|
  // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
 | 
						|
  // flow. We need to ensure the new basic block where the computation is
 | 
						|
  // sunk to dominates all the uses.
 | 
						|
  // It's only legal to break critical edge and sink the computation to the
 | 
						|
  // new block if all the predecessors of "To", except for "From", are
 | 
						|
  // not dominated by "From". Given SSA property, this means these
 | 
						|
  // predecessors are dominated by "To".
 | 
						|
  //
 | 
						|
  // There is no need to do this check if all the uses are PHI nodes. PHI
 | 
						|
  // sources are only defined on the specific predecessor edges.
 | 
						|
  if (!BreakPHIEdge) {
 | 
						|
    for (MachineBasicBlock *Pred : ToBB->predecessors())
 | 
						|
      if (Pred != FromBB && !DT->dominates(ToBB, Pred))
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  ToSplit.insert(std::make_pair(FromBB, ToBB));
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<unsigned> &
 | 
						|
MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) {
 | 
						|
  // Currently to save compiling time, MBB's register pressure will not change
 | 
						|
  // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
 | 
						|
  // register pressure is changed after sinking any instructions into it.
 | 
						|
  // FIXME: need a accurate and cheap register pressure estiminate model here.
 | 
						|
  auto RP = CachedRegisterPressure.find(&MBB);
 | 
						|
  if (RP != CachedRegisterPressure.end())
 | 
						|
    return RP->second;
 | 
						|
 | 
						|
  RegionPressure Pressure;
 | 
						|
  RegPressureTracker RPTracker(Pressure);
 | 
						|
 | 
						|
  // Initialize the register pressure tracker.
 | 
						|
  RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(),
 | 
						|
                 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
 | 
						|
 | 
						|
  for (MachineBasicBlock::iterator MII = MBB.instr_end(),
 | 
						|
                                   MIE = MBB.instr_begin();
 | 
						|
       MII != MIE; --MII) {
 | 
						|
    MachineInstr &MI = *std::prev(MII);
 | 
						|
    if (MI.isDebugInstr() || MI.isPseudoProbe())
 | 
						|
      continue;
 | 
						|
    RegisterOperands RegOpers;
 | 
						|
    RegOpers.collect(MI, *TRI, *MRI, false, false);
 | 
						|
    RPTracker.recedeSkipDebugValues();
 | 
						|
    assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
 | 
						|
    RPTracker.recede(RegOpers);
 | 
						|
  }
 | 
						|
 | 
						|
  RPTracker.closeRegion();
 | 
						|
  auto It = CachedRegisterPressure.insert(
 | 
						|
      std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure));
 | 
						|
  return It.first->second;
 | 
						|
}
 | 
						|
 | 
						|
/// isProfitableToSinkTo - Return true if it is profitable to sink MI.
 | 
						|
bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI,
 | 
						|
                                          MachineBasicBlock *MBB,
 | 
						|
                                          MachineBasicBlock *SuccToSinkTo,
 | 
						|
                                          AllSuccsCache &AllSuccessors) {
 | 
						|
  assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
 | 
						|
 | 
						|
  if (MBB == SuccToSinkTo)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // It is profitable if SuccToSinkTo does not post dominate current block.
 | 
						|
  if (!PDT->dominates(SuccToSinkTo, MBB))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // It is profitable to sink an instruction from a deeper loop to a shallower
 | 
						|
  // loop, even if the latter post-dominates the former (PR21115).
 | 
						|
  if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check if only use in post dominated block is PHI instruction.
 | 
						|
  bool NonPHIUse = false;
 | 
						|
  for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
 | 
						|
    MachineBasicBlock *UseBlock = UseInst.getParent();
 | 
						|
    if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
 | 
						|
      NonPHIUse = true;
 | 
						|
  }
 | 
						|
  if (!NonPHIUse)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If SuccToSinkTo post dominates then also it may be profitable if MI
 | 
						|
  // can further profitably sinked into another block in next round.
 | 
						|
  bool BreakPHIEdge = false;
 | 
						|
  // FIXME - If finding successor is compile time expensive then cache results.
 | 
						|
  if (MachineBasicBlock *MBB2 =
 | 
						|
          FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
 | 
						|
    return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
 | 
						|
 | 
						|
  MachineLoop *ML = LI->getLoopFor(MBB);
 | 
						|
 | 
						|
  // If the instruction is not inside a loop, it is not profitable to sink MI to
 | 
						|
  // a post dominate block SuccToSinkTo.
 | 
						|
  if (!ML)
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) {
 | 
						|
    unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
 | 
						|
    const int *PS = TRI->getRegClassPressureSets(RC);
 | 
						|
    // Get register pressure for block SuccToSinkTo.
 | 
						|
    std::vector<unsigned> BBRegisterPressure =
 | 
						|
        getBBRegisterPressure(*SuccToSinkTo);
 | 
						|
    for (; *PS != -1; PS++)
 | 
						|
      // check if any register pressure set exceeds limit in block SuccToSinkTo
 | 
						|
      // after sinking.
 | 
						|
      if (Weight + BBRegisterPressure[*PS] >=
 | 
						|
          TRI->getRegPressureSetLimit(*MBB->getParent(), *PS))
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // If this instruction is inside a loop and sinking this instruction can make
 | 
						|
  // more registers live range shorten, it is still prifitable.
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    // Ignore non-register operands.
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
    Register Reg = MO.getReg();
 | 
						|
    if (Reg == 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (Register::isPhysicalRegister(Reg)) {
 | 
						|
      if (MO.isUse() &&
 | 
						|
          (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO)))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Don't handle non-constant and non-ignorable physical register.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Users for the defs are all dominated by SuccToSinkTo.
 | 
						|
    if (MO.isDef()) {
 | 
						|
      // This def register's live range is shortened after sinking.
 | 
						|
      bool LocalUse = false;
 | 
						|
      if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
 | 
						|
                                   LocalUse))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      MachineInstr *DefMI = MRI->getVRegDef(Reg);
 | 
						|
      // DefMI is defined outside of loop. There should be no live range
 | 
						|
      // impact for this operand. Defination outside of loop means:
 | 
						|
      // 1: defination is outside of loop.
 | 
						|
      // 2: defination is in this loop, but it is a PHI in the loop header.
 | 
						|
      if (LI->getLoopFor(DefMI->getParent()) != ML ||
 | 
						|
          (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent())))
 | 
						|
        continue;
 | 
						|
      // The DefMI is defined inside the loop.
 | 
						|
      // If sinking this operand makes some register pressure set exceed limit,
 | 
						|
      // it is not profitable.
 | 
						|
      if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) {
 | 
						|
        LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If MI is in loop and all its operands are alive across the whole loop or if
 | 
						|
  // no operand sinking make register pressure set exceed limit, it is
 | 
						|
  // profitable to sink MI.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Get the sorted sequence of successors for this MachineBasicBlock, possibly
 | 
						|
/// computing it if it was not already cached.
 | 
						|
SmallVector<MachineBasicBlock *, 4> &
 | 
						|
MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
 | 
						|
                                       AllSuccsCache &AllSuccessors) const {
 | 
						|
  // Do we have the sorted successors in cache ?
 | 
						|
  auto Succs = AllSuccessors.find(MBB);
 | 
						|
  if (Succs != AllSuccessors.end())
 | 
						|
    return Succs->second;
 | 
						|
 | 
						|
  SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors());
 | 
						|
 | 
						|
  // Handle cases where sinking can happen but where the sink point isn't a
 | 
						|
  // successor. For example:
 | 
						|
  //
 | 
						|
  //   x = computation
 | 
						|
  //   if () {} else {}
 | 
						|
  //   use x
 | 
						|
  //
 | 
						|
  for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
 | 
						|
    // DomTree children of MBB that have MBB as immediate dominator are added.
 | 
						|
    if (DTChild->getIDom()->getBlock() == MI.getParent() &&
 | 
						|
        // Skip MBBs already added to the AllSuccs vector above.
 | 
						|
        !MBB->isSuccessor(DTChild->getBlock()))
 | 
						|
      AllSuccs.push_back(DTChild->getBlock());
 | 
						|
  }
 | 
						|
 | 
						|
  // Sort Successors according to their loop depth or block frequency info.
 | 
						|
  llvm::stable_sort(
 | 
						|
      AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
 | 
						|
        uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
 | 
						|
        uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
 | 
						|
        bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
 | 
						|
        return HasBlockFreq ? LHSFreq < RHSFreq
 | 
						|
                            : LI->getLoopDepth(L) < LI->getLoopDepth(R);
 | 
						|
      });
 | 
						|
 | 
						|
  auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
 | 
						|
 | 
						|
  return it.first->second;
 | 
						|
}
 | 
						|
 | 
						|
/// FindSuccToSinkTo - Find a successor to sink this instruction to.
 | 
						|
MachineBasicBlock *
 | 
						|
MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
 | 
						|
                                 bool &BreakPHIEdge,
 | 
						|
                                 AllSuccsCache &AllSuccessors) {
 | 
						|
  assert (MBB && "Invalid MachineBasicBlock!");
 | 
						|
 | 
						|
  // Loop over all the operands of the specified instruction.  If there is
 | 
						|
  // anything we can't handle, bail out.
 | 
						|
 | 
						|
  // SuccToSinkTo - This is the successor to sink this instruction to, once we
 | 
						|
  // decide.
 | 
						|
  MachineBasicBlock *SuccToSinkTo = nullptr;
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    if (!MO.isReg()) continue;  // Ignore non-register operands.
 | 
						|
 | 
						|
    Register Reg = MO.getReg();
 | 
						|
    if (Reg == 0) continue;
 | 
						|
 | 
						|
    if (Register::isPhysicalRegister(Reg)) {
 | 
						|
      if (MO.isUse()) {
 | 
						|
        // If the physreg has no defs anywhere, it's just an ambient register
 | 
						|
        // and we can freely move its uses. Alternatively, if it's allocatable,
 | 
						|
        // it could get allocated to something with a def during allocation.
 | 
						|
        if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO))
 | 
						|
          return nullptr;
 | 
						|
      } else if (!MO.isDead()) {
 | 
						|
        // A def that isn't dead. We can't move it.
 | 
						|
        return nullptr;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Virtual register uses are always safe to sink.
 | 
						|
      if (MO.isUse()) continue;
 | 
						|
 | 
						|
      // If it's not safe to move defs of the register class, then abort.
 | 
						|
      if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
 | 
						|
        return nullptr;
 | 
						|
 | 
						|
      // Virtual register defs can only be sunk if all their uses are in blocks
 | 
						|
      // dominated by one of the successors.
 | 
						|
      if (SuccToSinkTo) {
 | 
						|
        // If a previous operand picked a block to sink to, then this operand
 | 
						|
        // must be sinkable to the same block.
 | 
						|
        bool LocalUse = false;
 | 
						|
        if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
 | 
						|
                                     BreakPHIEdge, LocalUse))
 | 
						|
          return nullptr;
 | 
						|
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Otherwise, we should look at all the successors and decide which one
 | 
						|
      // we should sink to. If we have reliable block frequency information
 | 
						|
      // (frequency != 0) available, give successors with smaller frequencies
 | 
						|
      // higher priority, otherwise prioritize smaller loop depths.
 | 
						|
      for (MachineBasicBlock *SuccBlock :
 | 
						|
           GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
 | 
						|
        bool LocalUse = false;
 | 
						|
        if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
 | 
						|
                                    BreakPHIEdge, LocalUse)) {
 | 
						|
          SuccToSinkTo = SuccBlock;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (LocalUse)
 | 
						|
          // Def is used locally, it's never safe to move this def.
 | 
						|
          return nullptr;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we couldn't find a block to sink to, ignore this instruction.
 | 
						|
      if (!SuccToSinkTo)
 | 
						|
        return nullptr;
 | 
						|
      if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
 | 
						|
        return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // It is not possible to sink an instruction into its own block.  This can
 | 
						|
  // happen with loops.
 | 
						|
  if (MBB == SuccToSinkTo)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // It's not safe to sink instructions to EH landing pad. Control flow into
 | 
						|
  // landing pad is implicitly defined.
 | 
						|
  if (SuccToSinkTo && SuccToSinkTo->isEHPad())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // It ought to be okay to sink instructions into an INLINEASM_BR target, but
 | 
						|
  // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
 | 
						|
  // the source block (which this code does not yet do). So for now, forbid
 | 
						|
  // doing so.
 | 
						|
  if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return SuccToSinkTo;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if MI is likely to be usable as a memory operation by the
 | 
						|
/// implicit null check optimization.
 | 
						|
///
 | 
						|
/// This is a "best effort" heuristic, and should not be relied upon for
 | 
						|
/// correctness.  This returning true does not guarantee that the implicit null
 | 
						|
/// check optimization is legal over MI, and this returning false does not
 | 
						|
/// guarantee MI cannot possibly be used to do a null check.
 | 
						|
static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
 | 
						|
                                             const TargetInstrInfo *TII,
 | 
						|
                                             const TargetRegisterInfo *TRI) {
 | 
						|
  using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
 | 
						|
 | 
						|
  auto *MBB = MI.getParent();
 | 
						|
  if (MBB->pred_size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *PredMBB = *MBB->pred_begin();
 | 
						|
  auto *PredBB = PredMBB->getBasicBlock();
 | 
						|
 | 
						|
  // Frontends that don't use implicit null checks have no reason to emit
 | 
						|
  // branches with make.implicit metadata, and this function should always
 | 
						|
  // return false for them.
 | 
						|
  if (!PredBB ||
 | 
						|
      !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const MachineOperand *BaseOp;
 | 
						|
  int64_t Offset;
 | 
						|
  bool OffsetIsScalable;
 | 
						|
  if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!BaseOp->isReg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!(MI.mayLoad() && !MI.isPredicable()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBranchPredicate MBP;
 | 
						|
  if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
 | 
						|
         (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
 | 
						|
          MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
 | 
						|
         MBP.LHS.getReg() == BaseOp->getReg();
 | 
						|
}
 | 
						|
 | 
						|
/// If the sunk instruction is a copy, try to forward the copy instead of
 | 
						|
/// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
 | 
						|
/// there's any subregister weirdness involved. Returns true if copy
 | 
						|
/// propagation occurred.
 | 
						|
static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI,
 | 
						|
                                 Register Reg) {
 | 
						|
  const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
 | 
						|
  const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
 | 
						|
 | 
						|
  // Copy DBG_VALUE operand and set the original to undef. We then check to
 | 
						|
  // see whether this is something that can be copy-forwarded. If it isn't,
 | 
						|
  // continue around the loop.
 | 
						|
 | 
						|
  const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
 | 
						|
  auto CopyOperands = TII.isCopyInstr(SinkInst);
 | 
						|
  if (!CopyOperands)
 | 
						|
    return false;
 | 
						|
  SrcMO = CopyOperands->Source;
 | 
						|
  DstMO = CopyOperands->Destination;
 | 
						|
 | 
						|
  // Check validity of forwarding this copy.
 | 
						|
  bool PostRA = MRI.getNumVirtRegs() == 0;
 | 
						|
 | 
						|
  // Trying to forward between physical and virtual registers is too hard.
 | 
						|
  if (Reg.isVirtual() != SrcMO->getReg().isVirtual())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only try virtual register copy-forwarding before regalloc, and physical
 | 
						|
  // register copy-forwarding after regalloc.
 | 
						|
  bool arePhysRegs = !Reg.isVirtual();
 | 
						|
  if (arePhysRegs != PostRA)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Pre-regalloc, only forward if all subregisters agree (or there are no
 | 
						|
  // subregs at all). More analysis might recover some forwardable copies.
 | 
						|
  if (!PostRA)
 | 
						|
    for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg))
 | 
						|
      if (DbgMO.getSubReg() != SrcMO->getSubReg() ||
 | 
						|
          DbgMO.getSubReg() != DstMO->getSubReg())
 | 
						|
        return false;
 | 
						|
 | 
						|
  // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
 | 
						|
  // of this copy. Only forward the copy if the DBG_VALUE operand exactly
 | 
						|
  // matches the copy destination.
 | 
						|
  if (PostRA && Reg != DstMO->getReg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) {
 | 
						|
    DbgMO.setReg(SrcMO->getReg());
 | 
						|
    DbgMO.setSubReg(SrcMO->getSubReg());
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>;
 | 
						|
/// Sink an instruction and its associated debug instructions.
 | 
						|
static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
 | 
						|
                        MachineBasicBlock::iterator InsertPos,
 | 
						|
                        SmallVectorImpl<MIRegs> &DbgValuesToSink) {
 | 
						|
 | 
						|
  // If we cannot find a location to use (merge with), then we erase the debug
 | 
						|
  // location to prevent debug-info driven tools from potentially reporting
 | 
						|
  // wrong location information.
 | 
						|
  if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
 | 
						|
    MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
 | 
						|
                                                 InsertPos->getDebugLoc()));
 | 
						|
  else
 | 
						|
    MI.setDebugLoc(DebugLoc());
 | 
						|
 | 
						|
  // Move the instruction.
 | 
						|
  MachineBasicBlock *ParentBlock = MI.getParent();
 | 
						|
  SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
 | 
						|
                      ++MachineBasicBlock::iterator(MI));
 | 
						|
 | 
						|
  // Sink a copy of debug users to the insert position. Mark the original
 | 
						|
  // DBG_VALUE location as 'undef', indicating that any earlier variable
 | 
						|
  // location should be terminated as we've optimised away the value at this
 | 
						|
  // point.
 | 
						|
  for (auto DbgValueToSink : DbgValuesToSink) {
 | 
						|
    MachineInstr *DbgMI = DbgValueToSink.first;
 | 
						|
    MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI);
 | 
						|
    SuccToSinkTo.insert(InsertPos, NewDbgMI);
 | 
						|
 | 
						|
    bool PropagatedAllSunkOps = true;
 | 
						|
    for (unsigned Reg : DbgValueToSink.second) {
 | 
						|
      if (DbgMI->hasDebugOperandForReg(Reg)) {
 | 
						|
        if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) {
 | 
						|
          PropagatedAllSunkOps = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!PropagatedAllSunkOps)
 | 
						|
      DbgMI->setDebugValueUndef();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// hasStoreBetween - check if there is store betweeen straight line blocks From
 | 
						|
/// and To.
 | 
						|
bool MachineSinking::hasStoreBetween(MachineBasicBlock *From,
 | 
						|
                                     MachineBasicBlock *To, MachineInstr &MI) {
 | 
						|
  // Make sure From and To are in straight line which means From dominates To
 | 
						|
  // and To post dominates From.
 | 
						|
  if (!DT->dominates(From, To) || !PDT->dominates(To, From))
 | 
						|
    return true;
 | 
						|
 | 
						|
  auto BlockPair = std::make_pair(From, To);
 | 
						|
 | 
						|
  // Does these two blocks pair be queried before and have a definite cached
 | 
						|
  // result?
 | 
						|
  if (HasStoreCache.find(BlockPair) != HasStoreCache.end())
 | 
						|
    return HasStoreCache[BlockPair];
 | 
						|
 | 
						|
  if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end())
 | 
						|
    return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) {
 | 
						|
      return I->mayAlias(AA, MI, false);
 | 
						|
    });
 | 
						|
 | 
						|
  bool SawStore = false;
 | 
						|
  bool HasAliasedStore = false;
 | 
						|
  DenseSet<MachineBasicBlock *> HandledBlocks;
 | 
						|
  DenseSet<MachineBasicBlock *> HandledDomBlocks;
 | 
						|
  // Go through all reachable blocks from From.
 | 
						|
  for (MachineBasicBlock *BB : depth_first(From)) {
 | 
						|
    // We insert the instruction at the start of block To, so no need to worry
 | 
						|
    // about stores inside To.
 | 
						|
    // Store in block From should be already considered when just enter function
 | 
						|
    // SinkInstruction.
 | 
						|
    if (BB == To || BB == From)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We already handle this BB in previous iteration.
 | 
						|
    if (HandledBlocks.count(BB))
 | 
						|
      continue;
 | 
						|
 | 
						|
    HandledBlocks.insert(BB);
 | 
						|
    // To post dominates BB, it must be a path from block From.
 | 
						|
    if (PDT->dominates(To, BB)) {
 | 
						|
      if (!HandledDomBlocks.count(BB))
 | 
						|
        HandledDomBlocks.insert(BB);
 | 
						|
 | 
						|
      // If this BB is too big or the block number in straight line between From
 | 
						|
      // and To is too big, stop searching to save compiling time.
 | 
						|
      if (BB->size() > SinkLoadInstsPerBlockThreshold ||
 | 
						|
          HandledDomBlocks.size() > SinkLoadBlocksThreshold) {
 | 
						|
        for (auto *DomBB : HandledDomBlocks) {
 | 
						|
          if (DomBB != BB && DT->dominates(DomBB, BB))
 | 
						|
            HasStoreCache[std::make_pair(DomBB, To)] = true;
 | 
						|
          else if(DomBB != BB && DT->dominates(BB, DomBB))
 | 
						|
            HasStoreCache[std::make_pair(From, DomBB)] = true;
 | 
						|
        }
 | 
						|
        HasStoreCache[BlockPair] = true;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      for (MachineInstr &I : *BB) {
 | 
						|
        // Treat as alias conservatively for a call or an ordered memory
 | 
						|
        // operation.
 | 
						|
        if (I.isCall() || I.hasOrderedMemoryRef()) {
 | 
						|
          for (auto *DomBB : HandledDomBlocks) {
 | 
						|
            if (DomBB != BB && DT->dominates(DomBB, BB))
 | 
						|
              HasStoreCache[std::make_pair(DomBB, To)] = true;
 | 
						|
            else if(DomBB != BB && DT->dominates(BB, DomBB))
 | 
						|
              HasStoreCache[std::make_pair(From, DomBB)] = true;
 | 
						|
          }
 | 
						|
          HasStoreCache[BlockPair] = true;
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        if (I.mayStore()) {
 | 
						|
          SawStore = true;
 | 
						|
          // We still have chance to sink MI if all stores between are not
 | 
						|
          // aliased to MI.
 | 
						|
          // Cache all store instructions, so that we don't need to go through
 | 
						|
          // all From reachable blocks for next load instruction.
 | 
						|
          if (I.mayAlias(AA, MI, false))
 | 
						|
            HasAliasedStore = true;
 | 
						|
          StoreInstrCache[BlockPair].push_back(&I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If there is no store at all, cache the result.
 | 
						|
  if (!SawStore)
 | 
						|
    HasStoreCache[BlockPair] = false;
 | 
						|
  return HasAliasedStore;
 | 
						|
}
 | 
						|
 | 
						|
/// Sink instructions into loops if profitable. This especially tries to prevent
 | 
						|
/// register spills caused by register pressure if there is little to no
 | 
						|
/// overhead moving instructions into loops.
 | 
						|
bool MachineSinking::SinkIntoLoop(MachineLoop *L, MachineInstr &I) {
 | 
						|
  LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I);
 | 
						|
  MachineBasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
  assert(Preheader && "Loop sink needs a preheader block");
 | 
						|
  MachineBasicBlock *SinkBlock = nullptr;
 | 
						|
  bool CanSink = true;
 | 
						|
  const MachineOperand &MO = I.getOperand(0);
 | 
						|
 | 
						|
  for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LoopSink:   Analysing use: " << MI);
 | 
						|
    if (!L->contains(&MI)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LoopSink:   Use not in loop, can't sink.\n");
 | 
						|
      CanSink = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: Come up with a proper cost model that estimates whether sinking
 | 
						|
    // the instruction (and thus possibly executing it on every loop
 | 
						|
    // iteration) is more expensive than a register.
 | 
						|
    // For now assumes that copies are cheap and thus almost always worth it.
 | 
						|
    if (!MI.isCopy()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LoopSink:   Use is not a copy\n");
 | 
						|
      CanSink = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (!SinkBlock) {
 | 
						|
      SinkBlock = MI.getParent();
 | 
						|
      LLVM_DEBUG(dbgs() << "LoopSink:   Setting sink block to: "
 | 
						|
                        << printMBBReference(*SinkBlock) << "\n");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent());
 | 
						|
    if (!SinkBlock) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LoopSink:   Can't find nearest dominator\n");
 | 
						|
      CanSink = false;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << "LoopSink:   Setting nearest common dom block: " <<
 | 
						|
               printMBBReference(*SinkBlock) << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CanSink) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (!SinkBlock) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (SinkBlock == Preheader) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n");
 | 
						|
  SinkBlock->splice(SinkBlock->getFirstNonPHI(), Preheader, I);
 | 
						|
 | 
						|
  // The instruction is moved from its basic block, so do not retain the
 | 
						|
  // debug information.
 | 
						|
  assert(!I.isDebugInstr() && "Should not sink debug inst");
 | 
						|
  I.setDebugLoc(DebugLoc());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// SinkInstruction - Determine whether it is safe to sink the specified machine
 | 
						|
/// instruction out of its current block into a successor.
 | 
						|
bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
 | 
						|
                                     AllSuccsCache &AllSuccessors) {
 | 
						|
  // Don't sink instructions that the target prefers not to sink.
 | 
						|
  if (!TII->shouldSink(MI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if it's safe to move the instruction.
 | 
						|
  if (!MI.isSafeToMove(AA, SawStore))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Convergent operations may not be made control-dependent on additional
 | 
						|
  // values.
 | 
						|
  if (MI.isConvergent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't break implicit null checks.  This is a performance heuristic, and not
 | 
						|
  // required for correctness.
 | 
						|
  if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: This should include support for sinking instructions within the
 | 
						|
  // block they are currently in to shorten the live ranges.  We often get
 | 
						|
  // instructions sunk into the top of a large block, but it would be better to
 | 
						|
  // also sink them down before their first use in the block.  This xform has to
 | 
						|
  // be careful not to *increase* register pressure though, e.g. sinking
 | 
						|
  // "x = y + z" down if it kills y and z would increase the live ranges of y
 | 
						|
  // and z and only shrink the live range of x.
 | 
						|
 | 
						|
  bool BreakPHIEdge = false;
 | 
						|
  MachineBasicBlock *ParentBlock = MI.getParent();
 | 
						|
  MachineBasicBlock *SuccToSinkTo =
 | 
						|
      FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
 | 
						|
 | 
						|
  // If there are no outputs, it must have side-effects.
 | 
						|
  if (!SuccToSinkTo)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the instruction to move defines a dead physical register which is live
 | 
						|
  // when leaving the basic block, don't move it because it could turn into a
 | 
						|
  // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    if (!MO.isReg() || MO.isUse())
 | 
						|
      continue;
 | 
						|
    Register Reg = MO.getReg();
 | 
						|
    if (Reg == 0 || !Register::isPhysicalRegister(Reg))
 | 
						|
      continue;
 | 
						|
    if (SuccToSinkTo->isLiveIn(Reg))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
 | 
						|
 | 
						|
  // If the block has multiple predecessors, this is a critical edge.
 | 
						|
  // Decide if we can sink along it or need to break the edge.
 | 
						|
  if (SuccToSinkTo->pred_size() > 1) {
 | 
						|
    // We cannot sink a load across a critical edge - there may be stores in
 | 
						|
    // other code paths.
 | 
						|
    bool TryBreak = false;
 | 
						|
    bool Store =
 | 
						|
        MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true;
 | 
						|
    if (!MI.isSafeToMove(AA, Store)) {
 | 
						|
      LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
 | 
						|
      TryBreak = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // We don't want to sink across a critical edge if we don't dominate the
 | 
						|
    // successor. We could be introducing calculations to new code paths.
 | 
						|
    if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
 | 
						|
      LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
 | 
						|
      TryBreak = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't sink instructions into a loop.
 | 
						|
    if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
 | 
						|
      LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
 | 
						|
      TryBreak = true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise we are OK with sinking along a critical edge.
 | 
						|
    if (!TryBreak)
 | 
						|
      LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
 | 
						|
    else {
 | 
						|
      // Mark this edge as to be split.
 | 
						|
      // If the edge can actually be split, the next iteration of the main loop
 | 
						|
      // will sink MI in the newly created block.
 | 
						|
      bool Status =
 | 
						|
        PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
 | 
						|
      if (!Status)
 | 
						|
        LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
 | 
						|
                             "break critical edge\n");
 | 
						|
      // The instruction will not be sunk this time.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (BreakPHIEdge) {
 | 
						|
    // BreakPHIEdge is true if all the uses are in the successor MBB being
 | 
						|
    // sunken into and they are all PHI nodes. In this case, machine-sink must
 | 
						|
    // break the critical edge first.
 | 
						|
    bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
 | 
						|
                                            SuccToSinkTo, BreakPHIEdge);
 | 
						|
    if (!Status)
 | 
						|
      LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
 | 
						|
                           "break critical edge\n");
 | 
						|
    // The instruction will not be sunk this time.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine where to insert into. Skip phi nodes.
 | 
						|
  MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
 | 
						|
  while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
 | 
						|
    ++InsertPos;
 | 
						|
 | 
						|
  // Collect debug users of any vreg that this inst defines.
 | 
						|
  SmallVector<MIRegs, 4> DbgUsersToSink;
 | 
						|
  for (auto &MO : MI.operands()) {
 | 
						|
    if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
 | 
						|
      continue;
 | 
						|
    if (!SeenDbgUsers.count(MO.getReg()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Sink any users that don't pass any other DBG_VALUEs for this variable.
 | 
						|
    auto &Users = SeenDbgUsers[MO.getReg()];
 | 
						|
    for (auto &User : Users) {
 | 
						|
      MachineInstr *DbgMI = User.getPointer();
 | 
						|
      if (User.getInt()) {
 | 
						|
        // This DBG_VALUE would re-order assignments. If we can't copy-propagate
 | 
						|
        // it, it can't be recovered. Set it undef.
 | 
						|
        if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg()))
 | 
						|
          DbgMI->setDebugValueUndef();
 | 
						|
      } else {
 | 
						|
        DbgUsersToSink.push_back(
 | 
						|
            {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())});
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // After sinking, some debug users may not be dominated any more. If possible,
 | 
						|
  // copy-propagate their operands. As it's expensive, don't do this if there's
 | 
						|
  // no debuginfo in the program.
 | 
						|
  if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
 | 
						|
    SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
 | 
						|
 | 
						|
  performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
 | 
						|
 | 
						|
  // Conservatively, clear any kill flags, since it's possible that they are no
 | 
						|
  // longer correct.
 | 
						|
  // Note that we have to clear the kill flags for any register this instruction
 | 
						|
  // uses as we may sink over another instruction which currently kills the
 | 
						|
  // used registers.
 | 
						|
  for (MachineOperand &MO : MI.operands()) {
 | 
						|
    if (MO.isReg() && MO.isUse())
 | 
						|
      RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags.
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
 | 
						|
    MachineInstr &MI, MachineBasicBlock *TargetBlock) {
 | 
						|
  assert(MI.isCopy());
 | 
						|
  assert(MI.getOperand(1).isReg());
 | 
						|
 | 
						|
  // Enumerate all users of vreg operands that are def'd. Skip those that will
 | 
						|
  // be sunk. For the rest, if they are not dominated by the block we will sink
 | 
						|
  // MI into, propagate the copy source to them.
 | 
						|
  SmallVector<MachineInstr *, 4> DbgDefUsers;
 | 
						|
  SmallVector<Register, 4> DbgUseRegs;
 | 
						|
  const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
 | 
						|
  for (auto &MO : MI.operands()) {
 | 
						|
    if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
 | 
						|
      continue;
 | 
						|
    DbgUseRegs.push_back(MO.getReg());
 | 
						|
    for (auto &User : MRI.use_instructions(MO.getReg())) {
 | 
						|
      if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If is in same block, will either sink or be use-before-def.
 | 
						|
      if (User.getParent() == MI.getParent())
 | 
						|
        continue;
 | 
						|
 | 
						|
      assert(User.hasDebugOperandForReg(MO.getReg()) &&
 | 
						|
             "DBG_VALUE user of vreg, but has no operand for it?");
 | 
						|
      DbgDefUsers.push_back(&User);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Point the users of this copy that are no longer dominated, at the source
 | 
						|
  // of the copy.
 | 
						|
  for (auto *User : DbgDefUsers) {
 | 
						|
    for (auto &Reg : DbgUseRegs) {
 | 
						|
      for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) {
 | 
						|
        DbgOp.setReg(MI.getOperand(1).getReg());
 | 
						|
        DbgOp.setSubReg(MI.getOperand(1).getSubReg());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// This pass is not intended to be a replacement or a complete alternative
 | 
						|
// for the pre-ra machine sink pass. It is only designed to sink COPY
 | 
						|
// instructions which should be handled after RA.
 | 
						|
//
 | 
						|
// This pass sinks COPY instructions into a successor block, if the COPY is not
 | 
						|
// used in the current block and the COPY is live-in to a single successor
 | 
						|
// (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
 | 
						|
// copy on paths where their results aren't needed.  This also exposes
 | 
						|
// additional opportunites for dead copy elimination and shrink wrapping.
 | 
						|
//
 | 
						|
// These copies were either not handled by or are inserted after the MachineSink
 | 
						|
// pass. As an example of the former case, the MachineSink pass cannot sink
 | 
						|
// COPY instructions with allocatable source registers; for AArch64 these type
 | 
						|
// of copy instructions are frequently used to move function parameters (PhyReg)
 | 
						|
// into virtual registers in the entry block.
 | 
						|
//
 | 
						|
// For the machine IR below, this pass will sink %w19 in the entry into its
 | 
						|
// successor (%bb.1) because %w19 is only live-in in %bb.1.
 | 
						|
// %bb.0:
 | 
						|
//   %wzr = SUBSWri %w1, 1
 | 
						|
//   %w19 = COPY %w0
 | 
						|
//   Bcc 11, %bb.2
 | 
						|
// %bb.1:
 | 
						|
//   Live Ins: %w19
 | 
						|
//   BL @fun
 | 
						|
//   %w0 = ADDWrr %w0, %w19
 | 
						|
//   RET %w0
 | 
						|
// %bb.2:
 | 
						|
//   %w0 = COPY %wzr
 | 
						|
//   RET %w0
 | 
						|
// As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
 | 
						|
// able to see %bb.0 as a candidate.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
namespace {
 | 
						|
 | 
						|
class PostRAMachineSinking : public MachineFunctionPass {
 | 
						|
public:
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
  static char ID;
 | 
						|
  PostRAMachineSinking() : MachineFunctionPass(ID) {}
 | 
						|
  StringRef getPassName() const override { return "PostRA Machine Sink"; }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
    return MachineFunctionProperties().set(
 | 
						|
        MachineFunctionProperties::Property::NoVRegs);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  /// Track which register units have been modified and used.
 | 
						|
  LiveRegUnits ModifiedRegUnits, UsedRegUnits;
 | 
						|
 | 
						|
  /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
 | 
						|
  /// entry in this map for each unit it touches. The DBG_VALUE's entry
 | 
						|
  /// consists of a pointer to the instruction itself, and a vector of registers
 | 
						|
  /// referred to by the instruction that overlap the key register unit.
 | 
						|
  DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs;
 | 
						|
 | 
						|
  /// Sink Copy instructions unused in the same block close to their uses in
 | 
						|
  /// successors.
 | 
						|
  bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
 | 
						|
                     const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
char PostRAMachineSinking::ID = 0;
 | 
						|
char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
 | 
						|
                "PostRA Machine Sink", false, false)
 | 
						|
 | 
						|
static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
 | 
						|
                                  const TargetRegisterInfo *TRI) {
 | 
						|
  LiveRegUnits LiveInRegUnits(*TRI);
 | 
						|
  LiveInRegUnits.addLiveIns(MBB);
 | 
						|
  return !LiveInRegUnits.available(Reg);
 | 
						|
}
 | 
						|
 | 
						|
static MachineBasicBlock *
 | 
						|
getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
 | 
						|
                      const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
 | 
						|
                      unsigned Reg, const TargetRegisterInfo *TRI) {
 | 
						|
  // Try to find a single sinkable successor in which Reg is live-in.
 | 
						|
  MachineBasicBlock *BB = nullptr;
 | 
						|
  for (auto *SI : SinkableBBs) {
 | 
						|
    if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
 | 
						|
      // If BB is set here, Reg is live-in to at least two sinkable successors,
 | 
						|
      // so quit.
 | 
						|
      if (BB)
 | 
						|
        return nullptr;
 | 
						|
      BB = SI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Reg is not live-in to any sinkable successors.
 | 
						|
  if (!BB)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Check if any register aliased with Reg is live-in in other successors.
 | 
						|
  for (auto *SI : CurBB.successors()) {
 | 
						|
    if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
static MachineBasicBlock *
 | 
						|
getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
 | 
						|
                      const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
 | 
						|
                      ArrayRef<unsigned> DefedRegsInCopy,
 | 
						|
                      const TargetRegisterInfo *TRI) {
 | 
						|
  MachineBasicBlock *SingleBB = nullptr;
 | 
						|
  for (auto DefReg : DefedRegsInCopy) {
 | 
						|
    MachineBasicBlock *BB =
 | 
						|
        getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
 | 
						|
    if (!BB || (SingleBB && SingleBB != BB))
 | 
						|
      return nullptr;
 | 
						|
    SingleBB = BB;
 | 
						|
  }
 | 
						|
  return SingleBB;
 | 
						|
}
 | 
						|
 | 
						|
static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
 | 
						|
                           SmallVectorImpl<unsigned> &UsedOpsInCopy,
 | 
						|
                           LiveRegUnits &UsedRegUnits,
 | 
						|
                           const TargetRegisterInfo *TRI) {
 | 
						|
  for (auto U : UsedOpsInCopy) {
 | 
						|
    MachineOperand &MO = MI->getOperand(U);
 | 
						|
    Register SrcReg = MO.getReg();
 | 
						|
    if (!UsedRegUnits.available(SrcReg)) {
 | 
						|
      MachineBasicBlock::iterator NI = std::next(MI->getIterator());
 | 
						|
      for (MachineInstr &UI : make_range(NI, CurBB.end())) {
 | 
						|
        if (UI.killsRegister(SrcReg, TRI)) {
 | 
						|
          UI.clearRegisterKills(SrcReg, TRI);
 | 
						|
          MO.setIsKill(true);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
 | 
						|
                         SmallVectorImpl<unsigned> &UsedOpsInCopy,
 | 
						|
                         SmallVectorImpl<unsigned> &DefedRegsInCopy) {
 | 
						|
  MachineFunction &MF = *SuccBB->getParent();
 | 
						|
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  for (unsigned DefReg : DefedRegsInCopy)
 | 
						|
    for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
 | 
						|
      SuccBB->removeLiveIn(*S);
 | 
						|
  for (auto U : UsedOpsInCopy) {
 | 
						|
    Register SrcReg = MI->getOperand(U).getReg();
 | 
						|
    LaneBitmask Mask;
 | 
						|
    for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
 | 
						|
      Mask |= (*S).second;
 | 
						|
    }
 | 
						|
    SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
 | 
						|
  }
 | 
						|
  SuccBB->sortUniqueLiveIns();
 | 
						|
}
 | 
						|
 | 
						|
static bool hasRegisterDependency(MachineInstr *MI,
 | 
						|
                                  SmallVectorImpl<unsigned> &UsedOpsInCopy,
 | 
						|
                                  SmallVectorImpl<unsigned> &DefedRegsInCopy,
 | 
						|
                                  LiveRegUnits &ModifiedRegUnits,
 | 
						|
                                  LiveRegUnits &UsedRegUnits) {
 | 
						|
  bool HasRegDependency = false;
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = MI->getOperand(i);
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
    Register Reg = MO.getReg();
 | 
						|
    if (!Reg)
 | 
						|
      continue;
 | 
						|
    if (MO.isDef()) {
 | 
						|
      if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
 | 
						|
        HasRegDependency = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      DefedRegsInCopy.push_back(Reg);
 | 
						|
 | 
						|
      // FIXME: instead of isUse(), readsReg() would be a better fix here,
 | 
						|
      // For example, we can ignore modifications in reg with undef. However,
 | 
						|
      // it's not perfectly clear if skipping the internal read is safe in all
 | 
						|
      // other targets.
 | 
						|
    } else if (MO.isUse()) {
 | 
						|
      if (!ModifiedRegUnits.available(Reg)) {
 | 
						|
        HasRegDependency = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      UsedOpsInCopy.push_back(i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return HasRegDependency;
 | 
						|
}
 | 
						|
 | 
						|
static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg,
 | 
						|
                                           const TargetRegisterInfo *TRI) {
 | 
						|
  SmallSet<MCRegister, 4> RegUnits;
 | 
						|
  for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
 | 
						|
    RegUnits.insert(*RI);
 | 
						|
  return RegUnits;
 | 
						|
}
 | 
						|
 | 
						|
bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
 | 
						|
                                         MachineFunction &MF,
 | 
						|
                                         const TargetRegisterInfo *TRI,
 | 
						|
                                         const TargetInstrInfo *TII) {
 | 
						|
  SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
 | 
						|
  // FIXME: For now, we sink only to a successor which has a single predecessor
 | 
						|
  // so that we can directly sink COPY instructions to the successor without
 | 
						|
  // adding any new block or branch instruction.
 | 
						|
  for (MachineBasicBlock *SI : CurBB.successors())
 | 
						|
    if (!SI->livein_empty() && SI->pred_size() == 1)
 | 
						|
      SinkableBBs.insert(SI);
 | 
						|
 | 
						|
  if (SinkableBBs.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Track which registers have been modified and used between the end of the
 | 
						|
  // block and the current instruction.
 | 
						|
  ModifiedRegUnits.clear();
 | 
						|
  UsedRegUnits.clear();
 | 
						|
  SeenDbgInstrs.clear();
 | 
						|
 | 
						|
  for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) {
 | 
						|
    // Track the operand index for use in Copy.
 | 
						|
    SmallVector<unsigned, 2> UsedOpsInCopy;
 | 
						|
    // Track the register number defed in Copy.
 | 
						|
    SmallVector<unsigned, 2> DefedRegsInCopy;
 | 
						|
 | 
						|
    // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
 | 
						|
    // for DBG_VALUEs later, record them when they're encountered.
 | 
						|
    if (MI.isDebugValue()) {
 | 
						|
      SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits;
 | 
						|
      bool IsValid = true;
 | 
						|
      for (MachineOperand &MO : MI.debug_operands()) {
 | 
						|
        if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
 | 
						|
          // Bail if we can already tell the sink would be rejected, rather
 | 
						|
          // than needlessly accumulating lots of DBG_VALUEs.
 | 
						|
          if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
 | 
						|
                                    ModifiedRegUnits, UsedRegUnits)) {
 | 
						|
            IsValid = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          // Record debug use of each reg unit.
 | 
						|
          SmallSet<MCRegister, 4> RegUnits = getRegUnits(MO.getReg(), TRI);
 | 
						|
          for (MCRegister Reg : RegUnits)
 | 
						|
            MIUnits[Reg].push_back(MO.getReg());
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (IsValid) {
 | 
						|
        for (auto RegOps : MIUnits)
 | 
						|
          SeenDbgInstrs[RegOps.first].push_back({&MI, RegOps.second});
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (MI.isDebugOrPseudoInstr())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Do not move any instruction across function call.
 | 
						|
    if (MI.isCall())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) {
 | 
						|
      LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
 | 
						|
                                        TRI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Don't sink the COPY if it would violate a register dependency.
 | 
						|
    if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
 | 
						|
                              ModifiedRegUnits, UsedRegUnits)) {
 | 
						|
      LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
 | 
						|
                                        TRI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
 | 
						|
           "Unexpect SrcReg or DefReg");
 | 
						|
    MachineBasicBlock *SuccBB =
 | 
						|
        getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
 | 
						|
    // Don't sink if we cannot find a single sinkable successor in which Reg
 | 
						|
    // is live-in.
 | 
						|
    if (!SuccBB) {
 | 
						|
      LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
 | 
						|
                                        TRI);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
 | 
						|
           "Unexpected predecessor");
 | 
						|
 | 
						|
    // Collect DBG_VALUEs that must sink with this copy. We've previously
 | 
						|
    // recorded which reg units that DBG_VALUEs read, if this instruction
 | 
						|
    // writes any of those units then the corresponding DBG_VALUEs must sink.
 | 
						|
    MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap;
 | 
						|
    for (auto &MO : MI.operands()) {
 | 
						|
      if (!MO.isReg() || !MO.isDef())
 | 
						|
        continue;
 | 
						|
 | 
						|
      SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI);
 | 
						|
      for (MCRegister Reg : Units) {
 | 
						|
        for (auto MIRegs : SeenDbgInstrs.lookup(Reg)) {
 | 
						|
          auto &Regs = DbgValsToSinkMap[MIRegs.first];
 | 
						|
          for (unsigned Reg : MIRegs.second)
 | 
						|
            Regs.push_back(Reg);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    SmallVector<MIRegs, 4> DbgValsToSink(DbgValsToSinkMap.begin(),
 | 
						|
                                         DbgValsToSinkMap.end());
 | 
						|
 | 
						|
    // Clear the kill flag if SrcReg is killed between MI and the end of the
 | 
						|
    // block.
 | 
						|
    clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
 | 
						|
    MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
 | 
						|
    performSink(MI, *SuccBB, InsertPos, DbgValsToSink);
 | 
						|
    updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
    ++NumPostRACopySink;
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (skipFunction(MF.getFunction()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
 | 
						|
 | 
						|
  ModifiedRegUnits.init(*TRI);
 | 
						|
  UsedRegUnits.init(*TRI);
 | 
						|
  for (auto &BB : MF)
 | 
						|
    Changed |= tryToSinkCopy(BB, MF, TRI, TII);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 |