569 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			569 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements routines for translating functions from LLVM IR into
 | 
						|
// Machine IR.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
 | 
						|
#include "llvm/CodeGen/Analysis.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetFrameLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/CodeGen/WasmEHFuncInfo.h"
 | 
						|
#include "llvm/CodeGen/WinEHFuncInfo.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetOptions.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "function-lowering-info"
 | 
						|
 | 
						|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | 
						|
/// PHI nodes or outside of the basic block that defines it, or used by a
 | 
						|
/// switch or atomic instruction, which may expand to multiple basic blocks.
 | 
						|
static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
 | 
						|
  if (I->use_empty()) return false;
 | 
						|
  if (isa<PHINode>(I)) return true;
 | 
						|
  const BasicBlock *BB = I->getParent();
 | 
						|
  for (const User *U : I->users())
 | 
						|
    if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static ISD::NodeType getPreferredExtendForValue(const Value *V) {
 | 
						|
  // For the users of the source value being used for compare instruction, if
 | 
						|
  // the number of signed predicate is greater than unsigned predicate, we
 | 
						|
  // prefer to use SIGN_EXTEND.
 | 
						|
  //
 | 
						|
  // With this optimization, we would be able to reduce some redundant sign or
 | 
						|
  // zero extension instruction, and eventually more machine CSE opportunities
 | 
						|
  // can be exposed.
 | 
						|
  ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | 
						|
  unsigned NumOfSigned = 0, NumOfUnsigned = 0;
 | 
						|
  for (const User *U : V->users()) {
 | 
						|
    if (const auto *CI = dyn_cast<CmpInst>(U)) {
 | 
						|
      NumOfSigned += CI->isSigned();
 | 
						|
      NumOfUnsigned += CI->isUnsigned();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (NumOfSigned > NumOfUnsigned)
 | 
						|
    ExtendKind = ISD::SIGN_EXTEND;
 | 
						|
 | 
						|
  return ExtendKind;
 | 
						|
}
 | 
						|
 | 
						|
void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
 | 
						|
                               SelectionDAG *DAG) {
 | 
						|
  Fn = &fn;
 | 
						|
  MF = &mf;
 | 
						|
  TLI = MF->getSubtarget().getTargetLowering();
 | 
						|
  RegInfo = &MF->getRegInfo();
 | 
						|
  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
 | 
						|
  DA = DAG->getDivergenceAnalysis();
 | 
						|
 | 
						|
  // Check whether the function can return without sret-demotion.
 | 
						|
  SmallVector<ISD::OutputArg, 4> Outs;
 | 
						|
  CallingConv::ID CC = Fn->getCallingConv();
 | 
						|
 | 
						|
  GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
 | 
						|
                mf.getDataLayout());
 | 
						|
  CanLowerReturn =
 | 
						|
      TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
 | 
						|
 | 
						|
  // If this personality uses funclets, we need to do a bit more work.
 | 
						|
  DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
 | 
						|
  EHPersonality Personality = classifyEHPersonality(
 | 
						|
      Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
 | 
						|
  if (isFuncletEHPersonality(Personality)) {
 | 
						|
    // Calculate state numbers if we haven't already.
 | 
						|
    WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
 | 
						|
    if (Personality == EHPersonality::MSVC_CXX)
 | 
						|
      calculateWinCXXEHStateNumbers(&fn, EHInfo);
 | 
						|
    else if (isAsynchronousEHPersonality(Personality))
 | 
						|
      calculateSEHStateNumbers(&fn, EHInfo);
 | 
						|
    else if (Personality == EHPersonality::CoreCLR)
 | 
						|
      calculateClrEHStateNumbers(&fn, EHInfo);
 | 
						|
 | 
						|
    // Map all BB references in the WinEH data to MBBs.
 | 
						|
    for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
 | 
						|
      for (WinEHHandlerType &H : TBME.HandlerArray) {
 | 
						|
        if (const AllocaInst *AI = H.CatchObj.Alloca)
 | 
						|
          CatchObjects.insert({AI, {}}).first->second.push_back(
 | 
						|
              &H.CatchObj.FrameIndex);
 | 
						|
        else
 | 
						|
          H.CatchObj.FrameIndex = INT_MAX;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Personality == EHPersonality::Wasm_CXX) {
 | 
						|
    WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
 | 
						|
    calculateWasmEHInfo(&fn, EHInfo);
 | 
						|
  }
 | 
						|
 | 
						|
  // Initialize the mapping of values to registers.  This is only set up for
 | 
						|
  // instruction values that are used outside of the block that defines
 | 
						|
  // them.
 | 
						|
  const Align StackAlign = TFI->getStackAlign();
 | 
						|
  for (const BasicBlock &BB : *Fn) {
 | 
						|
    for (const Instruction &I : BB) {
 | 
						|
      if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
 | 
						|
        Type *Ty = AI->getAllocatedType();
 | 
						|
        Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty);
 | 
						|
        // The "specified" alignment is the alignment written on the alloca,
 | 
						|
        // or the preferred alignment of the type if none is specified.
 | 
						|
        //
 | 
						|
        // (Unspecified alignment on allocas will be going away soon.)
 | 
						|
        Align SpecifiedAlign = AI->getAlign();
 | 
						|
 | 
						|
        // If the preferred alignment of the type is higher than the specified
 | 
						|
        // alignment of the alloca, promote the alignment, as long as it doesn't
 | 
						|
        // require realigning the stack.
 | 
						|
        //
 | 
						|
        // FIXME: Do we really want to second-guess the IR in isel?
 | 
						|
        Align Alignment =
 | 
						|
            std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign);
 | 
						|
 | 
						|
        // Static allocas can be folded into the initial stack frame
 | 
						|
        // adjustment. For targets that don't realign the stack, don't
 | 
						|
        // do this if there is an extra alignment requirement.
 | 
						|
        if (AI->isStaticAlloca() &&
 | 
						|
            (TFI->isStackRealignable() || (Alignment <= StackAlign))) {
 | 
						|
          const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
 | 
						|
          uint64_t TySize =
 | 
						|
              MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize();
 | 
						|
 | 
						|
          TySize *= CUI->getZExtValue();   // Get total allocated size.
 | 
						|
          if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | 
						|
          int FrameIndex = INT_MAX;
 | 
						|
          auto Iter = CatchObjects.find(AI);
 | 
						|
          if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
 | 
						|
            FrameIndex = MF->getFrameInfo().CreateFixedObject(
 | 
						|
                TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
 | 
						|
            MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
 | 
						|
          } else {
 | 
						|
            FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
 | 
						|
                                                              false, AI);
 | 
						|
          }
 | 
						|
 | 
						|
          // Scalable vectors may need a special StackID to distinguish
 | 
						|
          // them from other (fixed size) stack objects.
 | 
						|
          if (isa<ScalableVectorType>(Ty))
 | 
						|
            MF->getFrameInfo().setStackID(FrameIndex,
 | 
						|
                                          TFI->getStackIDForScalableVectors());
 | 
						|
 | 
						|
          StaticAllocaMap[AI] = FrameIndex;
 | 
						|
          // Update the catch handler information.
 | 
						|
          if (Iter != CatchObjects.end()) {
 | 
						|
            for (int *CatchObjPtr : Iter->second)
 | 
						|
              *CatchObjPtr = FrameIndex;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          // FIXME: Overaligned static allocas should be grouped into
 | 
						|
          // a single dynamic allocation instead of using a separate
 | 
						|
          // stack allocation for each one.
 | 
						|
          // Inform the Frame Information that we have variable-sized objects.
 | 
						|
          MF->getFrameInfo().CreateVariableSizedObject(
 | 
						|
              Alignment <= StackAlign ? Align(1) : Alignment, AI);
 | 
						|
        }
 | 
						|
      } else if (auto *Call = dyn_cast<CallBase>(&I)) {
 | 
						|
        // Look for inline asm that clobbers the SP register.
 | 
						|
        if (Call->isInlineAsm()) {
 | 
						|
          Register SP = TLI->getStackPointerRegisterToSaveRestore();
 | 
						|
          const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
 | 
						|
          std::vector<TargetLowering::AsmOperandInfo> Ops =
 | 
						|
              TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
 | 
						|
                                    *Call);
 | 
						|
          for (TargetLowering::AsmOperandInfo &Op : Ops) {
 | 
						|
            if (Op.Type == InlineAsm::isClobber) {
 | 
						|
              // Clobbers don't have SDValue operands, hence SDValue().
 | 
						|
              TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
 | 
						|
              std::pair<unsigned, const TargetRegisterClass *> PhysReg =
 | 
						|
                  TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
 | 
						|
                                                    Op.ConstraintVT);
 | 
						|
              if (PhysReg.first == SP)
 | 
						|
                MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
        // Look for calls to the @llvm.va_start intrinsic. We can omit some
 | 
						|
        // prologue boilerplate for variadic functions that don't examine their
 | 
						|
        // arguments.
 | 
						|
        if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
 | 
						|
          if (II->getIntrinsicID() == Intrinsic::vastart)
 | 
						|
            MF->getFrameInfo().setHasVAStart(true);
 | 
						|
        }
 | 
						|
 | 
						|
        // If we have a musttail call in a variadic function, we need to ensure
 | 
						|
        // we forward implicit register parameters.
 | 
						|
        if (const auto *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
          if (CI->isMustTailCall() && Fn->isVarArg())
 | 
						|
            MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Mark values used outside their block as exported, by allocating
 | 
						|
      // a virtual register for them.
 | 
						|
      if (isUsedOutsideOfDefiningBlock(&I))
 | 
						|
        if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
 | 
						|
          InitializeRegForValue(&I);
 | 
						|
 | 
						|
      // Decide the preferred extend type for a value.
 | 
						|
      PreferredExtendType[&I] = getPreferredExtendForValue(&I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | 
						|
  // also creates the initial PHI MachineInstrs, though none of the input
 | 
						|
  // operands are populated.
 | 
						|
  for (const BasicBlock &BB : *Fn) {
 | 
						|
    // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
 | 
						|
    // are really data, and no instructions can live here.
 | 
						|
    if (BB.isEHPad()) {
 | 
						|
      const Instruction *PadInst = BB.getFirstNonPHI();
 | 
						|
      // If this is a non-landingpad EH pad, mark this function as using
 | 
						|
      // funclets.
 | 
						|
      // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
 | 
						|
      // setting this in such cases in order to improve frame layout.
 | 
						|
      if (!isa<LandingPadInst>(PadInst)) {
 | 
						|
        MF->setHasEHScopes(true);
 | 
						|
        MF->setHasEHFunclets(true);
 | 
						|
        MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
 | 
						|
      }
 | 
						|
      if (isa<CatchSwitchInst>(PadInst)) {
 | 
						|
        assert(&*BB.begin() == PadInst &&
 | 
						|
               "WinEHPrepare failed to remove PHIs from imaginary BBs");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (isa<FuncletPadInst>(PadInst))
 | 
						|
        assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
 | 
						|
    }
 | 
						|
 | 
						|
    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
 | 
						|
    MBBMap[&BB] = MBB;
 | 
						|
    MF->push_back(MBB);
 | 
						|
 | 
						|
    // Transfer the address-taken flag. This is necessary because there could
 | 
						|
    // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
 | 
						|
    // the first one should be marked.
 | 
						|
    if (BB.hasAddressTaken())
 | 
						|
      MBB->setHasAddressTaken();
 | 
						|
 | 
						|
    // Mark landing pad blocks.
 | 
						|
    if (BB.isEHPad())
 | 
						|
      MBB->setIsEHPad();
 | 
						|
 | 
						|
    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | 
						|
    // appropriate.
 | 
						|
    for (const PHINode &PN : BB.phis()) {
 | 
						|
      if (PN.use_empty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Skip empty types
 | 
						|
      if (PN.getType()->isEmptyTy())
 | 
						|
        continue;
 | 
						|
 | 
						|
      DebugLoc DL = PN.getDebugLoc();
 | 
						|
      unsigned PHIReg = ValueMap[&PN];
 | 
						|
      assert(PHIReg && "PHI node does not have an assigned virtual register!");
 | 
						|
 | 
						|
      SmallVector<EVT, 4> ValueVTs;
 | 
						|
      ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
 | 
						|
      for (EVT VT : ValueVTs) {
 | 
						|
        unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
 | 
						|
        const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | 
						|
        for (unsigned i = 0; i != NumRegisters; ++i)
 | 
						|
          BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
 | 
						|
        PHIReg += NumRegisters;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isFuncletEHPersonality(Personality)) {
 | 
						|
    WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
 | 
						|
 | 
						|
    // Map all BB references in the WinEH data to MBBs.
 | 
						|
    for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
 | 
						|
      for (WinEHHandlerType &H : TBME.HandlerArray) {
 | 
						|
        if (H.Handler)
 | 
						|
          H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
 | 
						|
      if (UME.Cleanup)
 | 
						|
        UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
 | 
						|
    for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
 | 
						|
      const auto *BB = UME.Handler.get<const BasicBlock *>();
 | 
						|
      UME.Handler = MBBMap[BB];
 | 
						|
    }
 | 
						|
    for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
 | 
						|
      const auto *BB = CME.Handler.get<const BasicBlock *>();
 | 
						|
      CME.Handler = MBBMap[BB];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  else if (Personality == EHPersonality::Wasm_CXX) {
 | 
						|
    WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
 | 
						|
    // Map all BB references in the Wasm EH data to MBBs.
 | 
						|
    DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest;
 | 
						|
    for (auto &KV : EHInfo.SrcToUnwindDest) {
 | 
						|
      const auto *Src = KV.first.get<const BasicBlock *>();
 | 
						|
      const auto *Dest = KV.second.get<const BasicBlock *>();
 | 
						|
      SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest];
 | 
						|
    }
 | 
						|
    EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest);
 | 
						|
    DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs;
 | 
						|
    for (auto &KV : EHInfo.UnwindDestToSrcs) {
 | 
						|
      const auto *Dest = KV.first.get<const BasicBlock *>();
 | 
						|
      UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>();
 | 
						|
      for (const auto P : KV.second)
 | 
						|
        UnwindDestToSrcs[MBBMap[Dest]].insert(
 | 
						|
            MBBMap[P.get<const BasicBlock *>()]);
 | 
						|
    }
 | 
						|
    EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// clear - Clear out all the function-specific state. This returns this
 | 
						|
/// FunctionLoweringInfo to an empty state, ready to be used for a
 | 
						|
/// different function.
 | 
						|
void FunctionLoweringInfo::clear() {
 | 
						|
  MBBMap.clear();
 | 
						|
  ValueMap.clear();
 | 
						|
  VirtReg2Value.clear();
 | 
						|
  StaticAllocaMap.clear();
 | 
						|
  LiveOutRegInfo.clear();
 | 
						|
  VisitedBBs.clear();
 | 
						|
  ArgDbgValues.clear();
 | 
						|
  DescribedArgs.clear();
 | 
						|
  ByValArgFrameIndexMap.clear();
 | 
						|
  RegFixups.clear();
 | 
						|
  RegsWithFixups.clear();
 | 
						|
  StatepointStackSlots.clear();
 | 
						|
  StatepointRelocationMaps.clear();
 | 
						|
  PreferredExtendType.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// CreateReg - Allocate a single virtual register for the given type.
 | 
						|
Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
 | 
						|
  return RegInfo->createVirtualRegister(
 | 
						|
      MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
 | 
						|
}
 | 
						|
 | 
						|
/// CreateRegs - Allocate the appropriate number of virtual registers of
 | 
						|
/// the correctly promoted or expanded types.  Assign these registers
 | 
						|
/// consecutive vreg numbers and return the first assigned number.
 | 
						|
///
 | 
						|
/// In the case that the given value has struct or array type, this function
 | 
						|
/// will assign registers for each member or element.
 | 
						|
///
 | 
						|
Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
 | 
						|
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
 | 
						|
 | 
						|
  SmallVector<EVT, 4> ValueVTs;
 | 
						|
  ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
 | 
						|
 | 
						|
  Register FirstReg;
 | 
						|
  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | 
						|
    EVT ValueVT = ValueVTs[Value];
 | 
						|
    MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
 | 
						|
 | 
						|
    unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
 | 
						|
    for (unsigned i = 0; i != NumRegs; ++i) {
 | 
						|
      Register R = CreateReg(RegisterVT, isDivergent);
 | 
						|
      if (!FirstReg) FirstReg = R;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return FirstReg;
 | 
						|
}
 | 
						|
 | 
						|
Register FunctionLoweringInfo::CreateRegs(const Value *V) {
 | 
						|
  return CreateRegs(V->getType(), DA && DA->isDivergent(V) &&
 | 
						|
                    !TLI->requiresUniformRegister(*MF, V));
 | 
						|
}
 | 
						|
 | 
						|
/// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
 | 
						|
/// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
 | 
						|
/// the register's LiveOutInfo is for a smaller bit width, it is extended to
 | 
						|
/// the larger bit width by zero extension. The bit width must be no smaller
 | 
						|
/// than the LiveOutInfo's existing bit width.
 | 
						|
const FunctionLoweringInfo::LiveOutInfo *
 | 
						|
FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
 | 
						|
  if (!LiveOutRegInfo.inBounds(Reg))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
 | 
						|
  if (!LOI->IsValid)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (BitWidth > LOI->Known.getBitWidth()) {
 | 
						|
    LOI->NumSignBits = 1;
 | 
						|
    LOI->Known = LOI->Known.anyext(BitWidth);
 | 
						|
  }
 | 
						|
 | 
						|
  return LOI;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
 | 
						|
/// register based on the LiveOutInfo of its operands.
 | 
						|
void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
 | 
						|
  Type *Ty = PN->getType();
 | 
						|
  if (!Ty->isIntegerTy() || Ty->isVectorTy())
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<EVT, 1> ValueVTs;
 | 
						|
  ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
 | 
						|
  assert(ValueVTs.size() == 1 &&
 | 
						|
         "PHIs with non-vector integer types should have a single VT.");
 | 
						|
  EVT IntVT = ValueVTs[0];
 | 
						|
 | 
						|
  if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
 | 
						|
    return;
 | 
						|
  IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
 | 
						|
  unsigned BitWidth = IntVT.getSizeInBits();
 | 
						|
 | 
						|
  Register DestReg = ValueMap[PN];
 | 
						|
  if (!Register::isVirtualRegister(DestReg))
 | 
						|
    return;
 | 
						|
  LiveOutRegInfo.grow(DestReg);
 | 
						|
  LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
 | 
						|
 | 
						|
  Value *V = PN->getIncomingValue(0);
 | 
						|
  if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
 | 
						|
    DestLOI.NumSignBits = 1;
 | 
						|
    DestLOI.Known = KnownBits(BitWidth);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    APInt Val = CI->getValue().zextOrTrunc(BitWidth);
 | 
						|
    DestLOI.NumSignBits = Val.getNumSignBits();
 | 
						|
    DestLOI.Known = KnownBits::makeConstant(Val);
 | 
						|
  } else {
 | 
						|
    assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
 | 
						|
                                "CopyToReg node was created.");
 | 
						|
    Register SrcReg = ValueMap[V];
 | 
						|
    if (!Register::isVirtualRegister(SrcReg)) {
 | 
						|
      DestLOI.IsValid = false;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
 | 
						|
    if (!SrcLOI) {
 | 
						|
      DestLOI.IsValid = false;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    DestLOI = *SrcLOI;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
 | 
						|
         DestLOI.Known.One.getBitWidth() == BitWidth &&
 | 
						|
         "Masks should have the same bit width as the type.");
 | 
						|
 | 
						|
  for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *V = PN->getIncomingValue(i);
 | 
						|
    if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
 | 
						|
      DestLOI.NumSignBits = 1;
 | 
						|
      DestLOI.Known = KnownBits(BitWidth);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
      APInt Val = CI->getValue().zextOrTrunc(BitWidth);
 | 
						|
      DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
 | 
						|
      DestLOI.Known.Zero &= ~Val;
 | 
						|
      DestLOI.Known.One &= Val;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
 | 
						|
                                "its CopyToReg node was created.");
 | 
						|
    Register SrcReg = ValueMap[V];
 | 
						|
    if (!SrcReg.isVirtual()) {
 | 
						|
      DestLOI.IsValid = false;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
 | 
						|
    if (!SrcLOI) {
 | 
						|
      DestLOI.IsValid = false;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
 | 
						|
    DestLOI.Known = KnownBits::commonBits(DestLOI.Known, SrcLOI->Known);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// setArgumentFrameIndex - Record frame index for the byval
 | 
						|
/// argument. This overrides previous frame index entry for this argument,
 | 
						|
/// if any.
 | 
						|
void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
 | 
						|
                                                 int FI) {
 | 
						|
  ByValArgFrameIndexMap[A] = FI;
 | 
						|
}
 | 
						|
 | 
						|
/// getArgumentFrameIndex - Get frame index for the byval argument.
 | 
						|
/// If the argument does not have any assigned frame index then 0 is
 | 
						|
/// returned.
 | 
						|
int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
 | 
						|
  auto I = ByValArgFrameIndexMap.find(A);
 | 
						|
  if (I != ByValArgFrameIndexMap.end())
 | 
						|
    return I->second;
 | 
						|
  LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
 | 
						|
  return INT_MAX;
 | 
						|
}
 | 
						|
 | 
						|
Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
 | 
						|
    const Value *CPI, const TargetRegisterClass *RC) {
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
  auto I = CatchPadExceptionPointers.insert({CPI, 0});
 | 
						|
  Register &VReg = I.first->second;
 | 
						|
  if (I.second)
 | 
						|
    VReg = MRI.createVirtualRegister(RC);
 | 
						|
  assert(VReg && "null vreg in exception pointer table!");
 | 
						|
  return VReg;
 | 
						|
}
 | 
						|
 | 
						|
const Value *
 | 
						|
FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
 | 
						|
  if (VirtReg2Value.empty()) {
 | 
						|
    SmallVector<EVT, 4> ValueVTs;
 | 
						|
    for (auto &P : ValueMap) {
 | 
						|
      ValueVTs.clear();
 | 
						|
      ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
 | 
						|
                      P.first->getType(), ValueVTs);
 | 
						|
      unsigned Reg = P.second;
 | 
						|
      for (EVT VT : ValueVTs) {
 | 
						|
        unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
 | 
						|
        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
 | 
						|
          VirtReg2Value[Reg++] = P.first;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return VirtReg2Value.lookup(Vreg);
 | 
						|
}
 |