1568 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1568 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the SelectionDAG::LegalizeVectors method.
 | 
						|
//
 | 
						|
// The vector legalizer looks for vector operations which might need to be
 | 
						|
// scalarized and legalizes them. This is a separate step from Legalize because
 | 
						|
// scalarizing can introduce illegal types.  For example, suppose we have an
 | 
						|
// ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
 | 
						|
// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
 | 
						|
// operation, which introduces nodes with the illegal type i64 which must be
 | 
						|
// expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
 | 
						|
// the operation must be unrolled, which introduces nodes with the illegal
 | 
						|
// type i8 which must be promoted.
 | 
						|
//
 | 
						|
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
 | 
						|
// or operations that happen to take a vector which are custom-lowered;
 | 
						|
// the legalization for such operations never produces nodes
 | 
						|
// with illegal types, so it's okay to put off legalizing them until
 | 
						|
// SelectionDAG::Legalize runs.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/APInt.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/CodeGen/ISDOpcodes.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGNodes.h"
 | 
						|
#include "llvm/CodeGen/TargetLowering.h"
 | 
						|
#include "llvm/CodeGen/ValueTypes.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MachineValueType.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "legalizevectorops"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class VectorLegalizer {
 | 
						|
  SelectionDAG& DAG;
 | 
						|
  const TargetLowering &TLI;
 | 
						|
  bool Changed = false; // Keep track of whether anything changed
 | 
						|
 | 
						|
  /// For nodes that are of legal width, and that have more than one use, this
 | 
						|
  /// map indicates what regularized operand to use.  This allows us to avoid
 | 
						|
  /// legalizing the same thing more than once.
 | 
						|
  SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
 | 
						|
 | 
						|
  /// Adds a node to the translation cache.
 | 
						|
  void AddLegalizedOperand(SDValue From, SDValue To) {
 | 
						|
    LegalizedNodes.insert(std::make_pair(From, To));
 | 
						|
    // If someone requests legalization of the new node, return itself.
 | 
						|
    if (From != To)
 | 
						|
      LegalizedNodes.insert(std::make_pair(To, To));
 | 
						|
  }
 | 
						|
 | 
						|
  /// Legalizes the given node.
 | 
						|
  SDValue LegalizeOp(SDValue Op);
 | 
						|
 | 
						|
  /// Assuming the node is legal, "legalize" the results.
 | 
						|
  SDValue TranslateLegalizeResults(SDValue Op, SDNode *Result);
 | 
						|
 | 
						|
  /// Make sure Results are legal and update the translation cache.
 | 
						|
  SDValue RecursivelyLegalizeResults(SDValue Op,
 | 
						|
                                     MutableArrayRef<SDValue> Results);
 | 
						|
 | 
						|
  /// Wrapper to interface LowerOperation with a vector of Results.
 | 
						|
  /// Returns false if the target wants to use default expansion. Otherwise
 | 
						|
  /// returns true. If return is true and the Results are empty, then the
 | 
						|
  /// target wants to keep the input node as is.
 | 
						|
  bool LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results);
 | 
						|
 | 
						|
  /// Implements unrolling a VSETCC.
 | 
						|
  SDValue UnrollVSETCC(SDNode *Node);
 | 
						|
 | 
						|
  /// Implement expand-based legalization of vector operations.
 | 
						|
  ///
 | 
						|
  /// This is just a high-level routine to dispatch to specific code paths for
 | 
						|
  /// operations to legalize them.
 | 
						|
  void Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
 | 
						|
  /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
 | 
						|
  /// FP_TO_SINT isn't legal.
 | 
						|
  void ExpandFP_TO_UINT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
 | 
						|
  /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
 | 
						|
  /// SINT_TO_FLOAT and SHR on vectors isn't legal.
 | 
						|
  void ExpandUINT_TO_FLOAT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
 | 
						|
  /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
 | 
						|
  SDValue ExpandSEXTINREG(SDNode *Node);
 | 
						|
 | 
						|
  /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
 | 
						|
  ///
 | 
						|
  /// Shuffles the low lanes of the operand into place and bitcasts to the proper
 | 
						|
  /// type. The contents of the bits in the extended part of each element are
 | 
						|
  /// undef.
 | 
						|
  SDValue ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node);
 | 
						|
 | 
						|
  /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
 | 
						|
  ///
 | 
						|
  /// Shuffles the low lanes of the operand into place, bitcasts to the proper
 | 
						|
  /// type, then shifts left and arithmetic shifts right to introduce a sign
 | 
						|
  /// extension.
 | 
						|
  SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node);
 | 
						|
 | 
						|
  /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
 | 
						|
  ///
 | 
						|
  /// Shuffles the low lanes of the operand into place and blends zeros into
 | 
						|
  /// the remaining lanes, finally bitcasting to the proper type.
 | 
						|
  SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node);
 | 
						|
 | 
						|
  /// Expand bswap of vectors into a shuffle if legal.
 | 
						|
  SDValue ExpandBSWAP(SDNode *Node);
 | 
						|
 | 
						|
  /// Implement vselect in terms of XOR, AND, OR when blend is not
 | 
						|
  /// supported by the target.
 | 
						|
  SDValue ExpandVSELECT(SDNode *Node);
 | 
						|
  SDValue ExpandVP_SELECT(SDNode *Node);
 | 
						|
  SDValue ExpandSELECT(SDNode *Node);
 | 
						|
  std::pair<SDValue, SDValue> ExpandLoad(SDNode *N);
 | 
						|
  SDValue ExpandStore(SDNode *N);
 | 
						|
  SDValue ExpandFNEG(SDNode *Node);
 | 
						|
  void ExpandFSUB(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
  void ExpandSETCC(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
  void ExpandBITREVERSE(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
  void ExpandUADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
  void ExpandSADDSUBO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
  void ExpandMULO(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
  void ExpandFixedPointDiv(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
  void ExpandStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
  void ExpandREM(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
 | 
						|
  void UnrollStrictFPOp(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
 | 
						|
  /// Implements vector promotion.
 | 
						|
  ///
 | 
						|
  /// This is essentially just bitcasting the operands to a different type and
 | 
						|
  /// bitcasting the result back to the original type.
 | 
						|
  void Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
 | 
						|
  /// Implements [SU]INT_TO_FP vector promotion.
 | 
						|
  ///
 | 
						|
  /// This is a [zs]ext of the input operand to a larger integer type.
 | 
						|
  void PromoteINT_TO_FP(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
 | 
						|
  /// Implements FP_TO_[SU]INT vector promotion of the result type.
 | 
						|
  ///
 | 
						|
  /// It is promoted to a larger integer type.  The result is then
 | 
						|
  /// truncated back to the original type.
 | 
						|
  void PromoteFP_TO_INT(SDNode *Node, SmallVectorImpl<SDValue> &Results);
 | 
						|
 | 
						|
public:
 | 
						|
  VectorLegalizer(SelectionDAG& dag) :
 | 
						|
      DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
 | 
						|
 | 
						|
  /// Begin legalizer the vector operations in the DAG.
 | 
						|
  bool Run();
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool VectorLegalizer::Run() {
 | 
						|
  // Before we start legalizing vector nodes, check if there are any vectors.
 | 
						|
  bool HasVectors = false;
 | 
						|
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
 | 
						|
       E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
 | 
						|
    // Check if the values of the nodes contain vectors. We don't need to check
 | 
						|
    // the operands because we are going to check their values at some point.
 | 
						|
    HasVectors = llvm::any_of(I->values(), [](EVT T) { return T.isVector(); });
 | 
						|
 | 
						|
    // If we found a vector node we can start the legalization.
 | 
						|
    if (HasVectors)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this basic block has no vectors then no need to legalize vectors.
 | 
						|
  if (!HasVectors)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The legalize process is inherently a bottom-up recursive process (users
 | 
						|
  // legalize their uses before themselves).  Given infinite stack space, we
 | 
						|
  // could just start legalizing on the root and traverse the whole graph.  In
 | 
						|
  // practice however, this causes us to run out of stack space on large basic
 | 
						|
  // blocks.  To avoid this problem, compute an ordering of the nodes where each
 | 
						|
  // node is only legalized after all of its operands are legalized.
 | 
						|
  DAG.AssignTopologicalOrder();
 | 
						|
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
 | 
						|
       E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
 | 
						|
    LegalizeOp(SDValue(&*I, 0));
 | 
						|
 | 
						|
  // Finally, it's possible the root changed.  Get the new root.
 | 
						|
  SDValue OldRoot = DAG.getRoot();
 | 
						|
  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
 | 
						|
  DAG.setRoot(LegalizedNodes[OldRoot]);
 | 
						|
 | 
						|
  LegalizedNodes.clear();
 | 
						|
 | 
						|
  // Remove dead nodes now.
 | 
						|
  DAG.RemoveDeadNodes();
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDNode *Result) {
 | 
						|
  assert(Op->getNumValues() == Result->getNumValues() &&
 | 
						|
         "Unexpected number of results");
 | 
						|
  // Generic legalization: just pass the operand through.
 | 
						|
  for (unsigned i = 0, e = Op->getNumValues(); i != e; ++i)
 | 
						|
    AddLegalizedOperand(Op.getValue(i), SDValue(Result, i));
 | 
						|
  return SDValue(Result, Op.getResNo());
 | 
						|
}
 | 
						|
 | 
						|
SDValue
 | 
						|
VectorLegalizer::RecursivelyLegalizeResults(SDValue Op,
 | 
						|
                                            MutableArrayRef<SDValue> Results) {
 | 
						|
  assert(Results.size() == Op->getNumValues() &&
 | 
						|
         "Unexpected number of results");
 | 
						|
  // Make sure that the generated code is itself legal.
 | 
						|
  for (unsigned i = 0, e = Results.size(); i != e; ++i) {
 | 
						|
    Results[i] = LegalizeOp(Results[i]);
 | 
						|
    AddLegalizedOperand(Op.getValue(i), Results[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  return Results[Op.getResNo()];
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
 | 
						|
  // Note that LegalizeOp may be reentered even from single-use nodes, which
 | 
						|
  // means that we always must cache transformed nodes.
 | 
						|
  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
 | 
						|
  if (I != LegalizedNodes.end()) return I->second;
 | 
						|
 | 
						|
  // Legalize the operands
 | 
						|
  SmallVector<SDValue, 8> Ops;
 | 
						|
  for (const SDValue &Oper : Op->op_values())
 | 
						|
    Ops.push_back(LegalizeOp(Oper));
 | 
						|
 | 
						|
  SDNode *Node = DAG.UpdateNodeOperands(Op.getNode(), Ops);
 | 
						|
 | 
						|
  bool HasVectorValueOrOp =
 | 
						|
      llvm::any_of(Node->values(), [](EVT T) { return T.isVector(); }) ||
 | 
						|
      llvm::any_of(Node->op_values(),
 | 
						|
                   [](SDValue O) { return O.getValueType().isVector(); });
 | 
						|
  if (!HasVectorValueOrOp)
 | 
						|
    return TranslateLegalizeResults(Op, Node);
 | 
						|
 | 
						|
  TargetLowering::LegalizeAction Action = TargetLowering::Legal;
 | 
						|
  EVT ValVT;
 | 
						|
  switch (Op.getOpcode()) {
 | 
						|
  default:
 | 
						|
    return TranslateLegalizeResults(Op, Node);
 | 
						|
  case ISD::LOAD: {
 | 
						|
    LoadSDNode *LD = cast<LoadSDNode>(Node);
 | 
						|
    ISD::LoadExtType ExtType = LD->getExtensionType();
 | 
						|
    EVT LoadedVT = LD->getMemoryVT();
 | 
						|
    if (LoadedVT.isVector() && ExtType != ISD::NON_EXTLOAD)
 | 
						|
      Action = TLI.getLoadExtAction(ExtType, LD->getValueType(0), LoadedVT);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::STORE: {
 | 
						|
    StoreSDNode *ST = cast<StoreSDNode>(Node);
 | 
						|
    EVT StVT = ST->getMemoryVT();
 | 
						|
    MVT ValVT = ST->getValue().getSimpleValueType();
 | 
						|
    if (StVT.isVector() && ST->isTruncatingStore())
 | 
						|
      Action = TLI.getTruncStoreAction(ValVT, StVT);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::MERGE_VALUES:
 | 
						|
    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
 | 
						|
    // This operation lies about being legal: when it claims to be legal,
 | 
						|
    // it should actually be expanded.
 | 
						|
    if (Action == TargetLowering::Legal)
 | 
						|
      Action = TargetLowering::Expand;
 | 
						|
    break;
 | 
						|
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
 | 
						|
  case ISD::STRICT_##DAGN:
 | 
						|
#include "llvm/IR/ConstrainedOps.def"
 | 
						|
    ValVT = Node->getValueType(0);
 | 
						|
    if (Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
 | 
						|
        Op.getOpcode() == ISD::STRICT_UINT_TO_FP)
 | 
						|
      ValVT = Node->getOperand(1).getValueType();
 | 
						|
    Action = TLI.getOperationAction(Node->getOpcode(), ValVT);
 | 
						|
    // If we're asked to expand a strict vector floating-point operation,
 | 
						|
    // by default we're going to simply unroll it.  That is usually the
 | 
						|
    // best approach, except in the case where the resulting strict (scalar)
 | 
						|
    // operations would themselves use the fallback mutation to non-strict.
 | 
						|
    // In that specific case, just do the fallback on the vector op.
 | 
						|
    if (Action == TargetLowering::Expand && !TLI.isStrictFPEnabled() &&
 | 
						|
        TLI.getStrictFPOperationAction(Node->getOpcode(), ValVT) ==
 | 
						|
            TargetLowering::Legal) {
 | 
						|
      EVT EltVT = ValVT.getVectorElementType();
 | 
						|
      if (TLI.getOperationAction(Node->getOpcode(), EltVT)
 | 
						|
          == TargetLowering::Expand &&
 | 
						|
          TLI.getStrictFPOperationAction(Node->getOpcode(), EltVT)
 | 
						|
          == TargetLowering::Legal)
 | 
						|
        Action = TargetLowering::Legal;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::ADD:
 | 
						|
  case ISD::SUB:
 | 
						|
  case ISD::MUL:
 | 
						|
  case ISD::MULHS:
 | 
						|
  case ISD::MULHU:
 | 
						|
  case ISD::SDIV:
 | 
						|
  case ISD::UDIV:
 | 
						|
  case ISD::SREM:
 | 
						|
  case ISD::UREM:
 | 
						|
  case ISD::SDIVREM:
 | 
						|
  case ISD::UDIVREM:
 | 
						|
  case ISD::FADD:
 | 
						|
  case ISD::FSUB:
 | 
						|
  case ISD::FMUL:
 | 
						|
  case ISD::FDIV:
 | 
						|
  case ISD::FREM:
 | 
						|
  case ISD::AND:
 | 
						|
  case ISD::OR:
 | 
						|
  case ISD::XOR:
 | 
						|
  case ISD::SHL:
 | 
						|
  case ISD::SRA:
 | 
						|
  case ISD::SRL:
 | 
						|
  case ISD::FSHL:
 | 
						|
  case ISD::FSHR:
 | 
						|
  case ISD::ROTL:
 | 
						|
  case ISD::ROTR:
 | 
						|
  case ISD::ABS:
 | 
						|
  case ISD::BSWAP:
 | 
						|
  case ISD::BITREVERSE:
 | 
						|
  case ISD::CTLZ:
 | 
						|
  case ISD::CTTZ:
 | 
						|
  case ISD::CTLZ_ZERO_UNDEF:
 | 
						|
  case ISD::CTTZ_ZERO_UNDEF:
 | 
						|
  case ISD::CTPOP:
 | 
						|
  case ISD::SELECT:
 | 
						|
  case ISD::VSELECT:
 | 
						|
  case ISD::SELECT_CC:
 | 
						|
  case ISD::ZERO_EXTEND:
 | 
						|
  case ISD::ANY_EXTEND:
 | 
						|
  case ISD::TRUNCATE:
 | 
						|
  case ISD::SIGN_EXTEND:
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
  case ISD::FNEG:
 | 
						|
  case ISD::FABS:
 | 
						|
  case ISD::FMINNUM:
 | 
						|
  case ISD::FMAXNUM:
 | 
						|
  case ISD::FMINNUM_IEEE:
 | 
						|
  case ISD::FMAXNUM_IEEE:
 | 
						|
  case ISD::FMINIMUM:
 | 
						|
  case ISD::FMAXIMUM:
 | 
						|
  case ISD::FCOPYSIGN:
 | 
						|
  case ISD::FSQRT:
 | 
						|
  case ISD::FSIN:
 | 
						|
  case ISD::FCOS:
 | 
						|
  case ISD::FPOWI:
 | 
						|
  case ISD::FPOW:
 | 
						|
  case ISD::FLOG:
 | 
						|
  case ISD::FLOG2:
 | 
						|
  case ISD::FLOG10:
 | 
						|
  case ISD::FEXP:
 | 
						|
  case ISD::FEXP2:
 | 
						|
  case ISD::FCEIL:
 | 
						|
  case ISD::FTRUNC:
 | 
						|
  case ISD::FRINT:
 | 
						|
  case ISD::FNEARBYINT:
 | 
						|
  case ISD::FROUND:
 | 
						|
  case ISD::FROUNDEVEN:
 | 
						|
  case ISD::FFLOOR:
 | 
						|
  case ISD::FP_ROUND:
 | 
						|
  case ISD::FP_EXTEND:
 | 
						|
  case ISD::FMA:
 | 
						|
  case ISD::SIGN_EXTEND_INREG:
 | 
						|
  case ISD::ANY_EXTEND_VECTOR_INREG:
 | 
						|
  case ISD::SIGN_EXTEND_VECTOR_INREG:
 | 
						|
  case ISD::ZERO_EXTEND_VECTOR_INREG:
 | 
						|
  case ISD::SMIN:
 | 
						|
  case ISD::SMAX:
 | 
						|
  case ISD::UMIN:
 | 
						|
  case ISD::UMAX:
 | 
						|
  case ISD::SMUL_LOHI:
 | 
						|
  case ISD::UMUL_LOHI:
 | 
						|
  case ISD::SADDO:
 | 
						|
  case ISD::UADDO:
 | 
						|
  case ISD::SSUBO:
 | 
						|
  case ISD::USUBO:
 | 
						|
  case ISD::SMULO:
 | 
						|
  case ISD::UMULO:
 | 
						|
  case ISD::FCANONICALIZE:
 | 
						|
  case ISD::SADDSAT:
 | 
						|
  case ISD::UADDSAT:
 | 
						|
  case ISD::SSUBSAT:
 | 
						|
  case ISD::USUBSAT:
 | 
						|
  case ISD::SSHLSAT:
 | 
						|
  case ISD::USHLSAT:
 | 
						|
  case ISD::FP_TO_SINT_SAT:
 | 
						|
  case ISD::FP_TO_UINT_SAT:
 | 
						|
  case ISD::MGATHER:
 | 
						|
    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
 | 
						|
    break;
 | 
						|
  case ISD::SMULFIX:
 | 
						|
  case ISD::SMULFIXSAT:
 | 
						|
  case ISD::UMULFIX:
 | 
						|
  case ISD::UMULFIXSAT:
 | 
						|
  case ISD::SDIVFIX:
 | 
						|
  case ISD::SDIVFIXSAT:
 | 
						|
  case ISD::UDIVFIX:
 | 
						|
  case ISD::UDIVFIXSAT: {
 | 
						|
    unsigned Scale = Node->getConstantOperandVal(2);
 | 
						|
    Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
 | 
						|
                                              Node->getValueType(0), Scale);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
  case ISD::VECREDUCE_ADD:
 | 
						|
  case ISD::VECREDUCE_MUL:
 | 
						|
  case ISD::VECREDUCE_AND:
 | 
						|
  case ISD::VECREDUCE_OR:
 | 
						|
  case ISD::VECREDUCE_XOR:
 | 
						|
  case ISD::VECREDUCE_SMAX:
 | 
						|
  case ISD::VECREDUCE_SMIN:
 | 
						|
  case ISD::VECREDUCE_UMAX:
 | 
						|
  case ISD::VECREDUCE_UMIN:
 | 
						|
  case ISD::VECREDUCE_FADD:
 | 
						|
  case ISD::VECREDUCE_FMUL:
 | 
						|
  case ISD::VECREDUCE_FMAX:
 | 
						|
  case ISD::VECREDUCE_FMIN:
 | 
						|
    Action = TLI.getOperationAction(Node->getOpcode(),
 | 
						|
                                    Node->getOperand(0).getValueType());
 | 
						|
    break;
 | 
						|
  case ISD::VECREDUCE_SEQ_FADD:
 | 
						|
  case ISD::VECREDUCE_SEQ_FMUL:
 | 
						|
    Action = TLI.getOperationAction(Node->getOpcode(),
 | 
						|
                                    Node->getOperand(1).getValueType());
 | 
						|
    break;
 | 
						|
  case ISD::SETCC: {
 | 
						|
    MVT OpVT = Node->getOperand(0).getSimpleValueType();
 | 
						|
    ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
 | 
						|
    Action = TLI.getCondCodeAction(CCCode, OpVT);
 | 
						|
    if (Action == TargetLowering::Legal)
 | 
						|
      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
#define BEGIN_REGISTER_VP_SDNODE(VPID, LEGALPOS, ...)                          \
 | 
						|
  case ISD::VPID: {                                                            \
 | 
						|
    EVT LegalizeVT = LEGALPOS < 0 ? Node->getValueType(-(1 + LEGALPOS))        \
 | 
						|
                                  : Node->getOperand(LEGALPOS).getValueType(); \
 | 
						|
    Action = TLI.getOperationAction(Node->getOpcode(), LegalizeVT);            \
 | 
						|
  } break;
 | 
						|
#include "llvm/IR/VPIntrinsics.def"
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
 | 
						|
 | 
						|
  SmallVector<SDValue, 8> ResultVals;
 | 
						|
  switch (Action) {
 | 
						|
  default: llvm_unreachable("This action is not supported yet!");
 | 
						|
  case TargetLowering::Promote:
 | 
						|
    assert((Op.getOpcode() != ISD::LOAD && Op.getOpcode() != ISD::STORE) &&
 | 
						|
           "This action is not supported yet!");
 | 
						|
    LLVM_DEBUG(dbgs() << "Promoting\n");
 | 
						|
    Promote(Node, ResultVals);
 | 
						|
    assert(!ResultVals.empty() && "No results for promotion?");
 | 
						|
    break;
 | 
						|
  case TargetLowering::Legal:
 | 
						|
    LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
 | 
						|
    break;
 | 
						|
  case TargetLowering::Custom:
 | 
						|
    LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
 | 
						|
    if (LowerOperationWrapper(Node, ResultVals))
 | 
						|
      break;
 | 
						|
    LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  case TargetLowering::Expand:
 | 
						|
    LLVM_DEBUG(dbgs() << "Expanding\n");
 | 
						|
    Expand(Node, ResultVals);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ResultVals.empty())
 | 
						|
    return TranslateLegalizeResults(Op, Node);
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
  return RecursivelyLegalizeResults(Op, ResultVals);
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: This is very similar to TargetLowering::LowerOperationWrapper. Can we
 | 
						|
// merge them somehow?
 | 
						|
bool VectorLegalizer::LowerOperationWrapper(SDNode *Node,
 | 
						|
                                            SmallVectorImpl<SDValue> &Results) {
 | 
						|
  SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
 | 
						|
 | 
						|
  if (!Res.getNode())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Res == SDValue(Node, 0))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the original node has one result, take the return value from
 | 
						|
  // LowerOperation as is. It might not be result number 0.
 | 
						|
  if (Node->getNumValues() == 1) {
 | 
						|
    Results.push_back(Res);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the original node has multiple results, then the return node should
 | 
						|
  // have the same number of results.
 | 
						|
  assert((Node->getNumValues() == Res->getNumValues()) &&
 | 
						|
         "Lowering returned the wrong number of results!");
 | 
						|
 | 
						|
  // Places new result values base on N result number.
 | 
						|
  for (unsigned I = 0, E = Node->getNumValues(); I != E; ++I)
 | 
						|
    Results.push_back(Res.getValue(I));
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::Promote(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
 | 
						|
  // For a few operations there is a specific concept for promotion based on
 | 
						|
  // the operand's type.
 | 
						|
  switch (Node->getOpcode()) {
 | 
						|
  case ISD::SINT_TO_FP:
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
  case ISD::STRICT_SINT_TO_FP:
 | 
						|
  case ISD::STRICT_UINT_TO_FP:
 | 
						|
    // "Promote" the operation by extending the operand.
 | 
						|
    PromoteINT_TO_FP(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
  case ISD::FP_TO_SINT:
 | 
						|
  case ISD::STRICT_FP_TO_UINT:
 | 
						|
  case ISD::STRICT_FP_TO_SINT:
 | 
						|
    // Promote the operation by extending the operand.
 | 
						|
    PromoteFP_TO_INT(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::FP_ROUND:
 | 
						|
  case ISD::FP_EXTEND:
 | 
						|
    // These operations are used to do promotion so they can't be promoted
 | 
						|
    // themselves.
 | 
						|
    llvm_unreachable("Don't know how to promote this operation!");
 | 
						|
  }
 | 
						|
 | 
						|
  // There are currently two cases of vector promotion:
 | 
						|
  // 1) Bitcasting a vector of integers to a different type to a vector of the
 | 
						|
  //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
 | 
						|
  // 2) Extending a vector of floats to a vector of the same number of larger
 | 
						|
  //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
 | 
						|
  assert(Node->getNumValues() == 1 &&
 | 
						|
         "Can't promote a vector with multiple results!");
 | 
						|
  MVT VT = Node->getSimpleValueType(0);
 | 
						|
  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
 | 
						|
  SDLoc dl(Node);
 | 
						|
  SmallVector<SDValue, 4> Operands(Node->getNumOperands());
 | 
						|
 | 
						|
  for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
 | 
						|
    if (Node->getOperand(j).getValueType().isVector())
 | 
						|
      if (Node->getOperand(j)
 | 
						|
              .getValueType()
 | 
						|
              .getVectorElementType()
 | 
						|
              .isFloatingPoint() &&
 | 
						|
          NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
 | 
						|
        Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(j));
 | 
						|
      else
 | 
						|
        Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(j));
 | 
						|
    else
 | 
						|
      Operands[j] = Node->getOperand(j);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Res =
 | 
						|
      DAG.getNode(Node->getOpcode(), dl, NVT, Operands, Node->getFlags());
 | 
						|
 | 
						|
  if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
 | 
						|
      (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
 | 
						|
       NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
 | 
						|
    Res = DAG.getNode(ISD::FP_ROUND, dl, VT, Res, DAG.getIntPtrConstant(0, dl));
 | 
						|
  else
 | 
						|
    Res = DAG.getNode(ISD::BITCAST, dl, VT, Res);
 | 
						|
 | 
						|
  Results.push_back(Res);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::PromoteINT_TO_FP(SDNode *Node,
 | 
						|
                                       SmallVectorImpl<SDValue> &Results) {
 | 
						|
  // INT_TO_FP operations may require the input operand be promoted even
 | 
						|
  // when the type is otherwise legal.
 | 
						|
  bool IsStrict = Node->isStrictFPOpcode();
 | 
						|
  MVT VT = Node->getOperand(IsStrict ? 1 : 0).getSimpleValueType();
 | 
						|
  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
 | 
						|
  assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
 | 
						|
         "Vectors have different number of elements!");
 | 
						|
 | 
						|
  SDLoc dl(Node);
 | 
						|
  SmallVector<SDValue, 4> Operands(Node->getNumOperands());
 | 
						|
 | 
						|
  unsigned Opc = (Node->getOpcode() == ISD::UINT_TO_FP ||
 | 
						|
                  Node->getOpcode() == ISD::STRICT_UINT_TO_FP)
 | 
						|
                     ? ISD::ZERO_EXTEND
 | 
						|
                     : ISD::SIGN_EXTEND;
 | 
						|
  for (unsigned j = 0; j != Node->getNumOperands(); ++j) {
 | 
						|
    if (Node->getOperand(j).getValueType().isVector())
 | 
						|
      Operands[j] = DAG.getNode(Opc, dl, NVT, Node->getOperand(j));
 | 
						|
    else
 | 
						|
      Operands[j] = Node->getOperand(j);
 | 
						|
  }
 | 
						|
 | 
						|
  if (IsStrict) {
 | 
						|
    SDValue Res = DAG.getNode(Node->getOpcode(), dl,
 | 
						|
                              {Node->getValueType(0), MVT::Other}, Operands);
 | 
						|
    Results.push_back(Res);
 | 
						|
    Results.push_back(Res.getValue(1));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Res =
 | 
						|
      DAG.getNode(Node->getOpcode(), dl, Node->getValueType(0), Operands);
 | 
						|
  Results.push_back(Res);
 | 
						|
}
 | 
						|
 | 
						|
// For FP_TO_INT we promote the result type to a vector type with wider
 | 
						|
// elements and then truncate the result.  This is different from the default
 | 
						|
// PromoteVector which uses bitcast to promote thus assumning that the
 | 
						|
// promoted vector type has the same overall size.
 | 
						|
void VectorLegalizer::PromoteFP_TO_INT(SDNode *Node,
 | 
						|
                                       SmallVectorImpl<SDValue> &Results) {
 | 
						|
  MVT VT = Node->getSimpleValueType(0);
 | 
						|
  MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
 | 
						|
  bool IsStrict = Node->isStrictFPOpcode();
 | 
						|
  assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
 | 
						|
         "Vectors have different number of elements!");
 | 
						|
 | 
						|
  unsigned NewOpc = Node->getOpcode();
 | 
						|
  // Change FP_TO_UINT to FP_TO_SINT if possible.
 | 
						|
  // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
 | 
						|
  if (NewOpc == ISD::FP_TO_UINT &&
 | 
						|
      TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
 | 
						|
    NewOpc = ISD::FP_TO_SINT;
 | 
						|
 | 
						|
  if (NewOpc == ISD::STRICT_FP_TO_UINT &&
 | 
						|
      TLI.isOperationLegalOrCustom(ISD::STRICT_FP_TO_SINT, NVT))
 | 
						|
    NewOpc = ISD::STRICT_FP_TO_SINT;
 | 
						|
 | 
						|
  SDLoc dl(Node);
 | 
						|
  SDValue Promoted, Chain;
 | 
						|
  if (IsStrict) {
 | 
						|
    Promoted = DAG.getNode(NewOpc, dl, {NVT, MVT::Other},
 | 
						|
                           {Node->getOperand(0), Node->getOperand(1)});
 | 
						|
    Chain = Promoted.getValue(1);
 | 
						|
  } else
 | 
						|
    Promoted = DAG.getNode(NewOpc, dl, NVT, Node->getOperand(0));
 | 
						|
 | 
						|
  // Assert that the converted value fits in the original type.  If it doesn't
 | 
						|
  // (eg: because the value being converted is too big), then the result of the
 | 
						|
  // original operation was undefined anyway, so the assert is still correct.
 | 
						|
  if (Node->getOpcode() == ISD::FP_TO_UINT ||
 | 
						|
      Node->getOpcode() == ISD::STRICT_FP_TO_UINT)
 | 
						|
    NewOpc = ISD::AssertZext;
 | 
						|
  else
 | 
						|
    NewOpc = ISD::AssertSext;
 | 
						|
 | 
						|
  Promoted = DAG.getNode(NewOpc, dl, NVT, Promoted,
 | 
						|
                         DAG.getValueType(VT.getScalarType()));
 | 
						|
  Promoted = DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
 | 
						|
  Results.push_back(Promoted);
 | 
						|
  if (IsStrict)
 | 
						|
    Results.push_back(Chain);
 | 
						|
}
 | 
						|
 | 
						|
std::pair<SDValue, SDValue> VectorLegalizer::ExpandLoad(SDNode *N) {
 | 
						|
  LoadSDNode *LD = cast<LoadSDNode>(N);
 | 
						|
  return TLI.scalarizeVectorLoad(LD, DAG);
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::ExpandStore(SDNode *N) {
 | 
						|
  StoreSDNode *ST = cast<StoreSDNode>(N);
 | 
						|
  SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
 | 
						|
  return TF;
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::Expand(SDNode *Node, SmallVectorImpl<SDValue> &Results) {
 | 
						|
  switch (Node->getOpcode()) {
 | 
						|
  case ISD::LOAD: {
 | 
						|
    std::pair<SDValue, SDValue> Tmp = ExpandLoad(Node);
 | 
						|
    Results.push_back(Tmp.first);
 | 
						|
    Results.push_back(Tmp.second);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  case ISD::STORE:
 | 
						|
    Results.push_back(ExpandStore(Node));
 | 
						|
    return;
 | 
						|
  case ISD::MERGE_VALUES:
 | 
						|
    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
 | 
						|
      Results.push_back(Node->getOperand(i));
 | 
						|
    return;
 | 
						|
  case ISD::SIGN_EXTEND_INREG:
 | 
						|
    Results.push_back(ExpandSEXTINREG(Node));
 | 
						|
    return;
 | 
						|
  case ISD::ANY_EXTEND_VECTOR_INREG:
 | 
						|
    Results.push_back(ExpandANY_EXTEND_VECTOR_INREG(Node));
 | 
						|
    return;
 | 
						|
  case ISD::SIGN_EXTEND_VECTOR_INREG:
 | 
						|
    Results.push_back(ExpandSIGN_EXTEND_VECTOR_INREG(Node));
 | 
						|
    return;
 | 
						|
  case ISD::ZERO_EXTEND_VECTOR_INREG:
 | 
						|
    Results.push_back(ExpandZERO_EXTEND_VECTOR_INREG(Node));
 | 
						|
    return;
 | 
						|
  case ISD::BSWAP:
 | 
						|
    Results.push_back(ExpandBSWAP(Node));
 | 
						|
    return;
 | 
						|
  case ISD::VSELECT:
 | 
						|
    Results.push_back(ExpandVSELECT(Node));
 | 
						|
    return;
 | 
						|
  case ISD::VP_SELECT:
 | 
						|
    Results.push_back(ExpandVP_SELECT(Node));
 | 
						|
    return;
 | 
						|
  case ISD::SELECT:
 | 
						|
    Results.push_back(ExpandSELECT(Node));
 | 
						|
    return;
 | 
						|
  case ISD::FP_TO_UINT:
 | 
						|
    ExpandFP_TO_UINT(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::UINT_TO_FP:
 | 
						|
    ExpandUINT_TO_FLOAT(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::FNEG:
 | 
						|
    Results.push_back(ExpandFNEG(Node));
 | 
						|
    return;
 | 
						|
  case ISD::FSUB:
 | 
						|
    ExpandFSUB(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::SETCC:
 | 
						|
    ExpandSETCC(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::ABS:
 | 
						|
    if (SDValue Expanded = TLI.expandABS(Node, DAG)) {
 | 
						|
      Results.push_back(Expanded);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::BITREVERSE:
 | 
						|
    ExpandBITREVERSE(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::CTPOP:
 | 
						|
    if (SDValue Expanded = TLI.expandCTPOP(Node, DAG)) {
 | 
						|
      Results.push_back(Expanded);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::CTLZ:
 | 
						|
  case ISD::CTLZ_ZERO_UNDEF:
 | 
						|
    if (SDValue Expanded = TLI.expandCTLZ(Node, DAG)) {
 | 
						|
      Results.push_back(Expanded);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::CTTZ:
 | 
						|
  case ISD::CTTZ_ZERO_UNDEF:
 | 
						|
    if (SDValue Expanded = TLI.expandCTTZ(Node, DAG)) {
 | 
						|
      Results.push_back(Expanded);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::FSHL:
 | 
						|
  case ISD::FSHR:
 | 
						|
    if (SDValue Expanded = TLI.expandFunnelShift(Node, DAG)) {
 | 
						|
      Results.push_back(Expanded);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::ROTL:
 | 
						|
  case ISD::ROTR:
 | 
						|
    if (SDValue Expanded = TLI.expandROT(Node, false /*AllowVectorOps*/, DAG)) {
 | 
						|
      Results.push_back(Expanded);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::FMINNUM:
 | 
						|
  case ISD::FMAXNUM:
 | 
						|
    if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG)) {
 | 
						|
      Results.push_back(Expanded);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::SMIN:
 | 
						|
  case ISD::SMAX:
 | 
						|
  case ISD::UMIN:
 | 
						|
  case ISD::UMAX:
 | 
						|
    if (SDValue Expanded = TLI.expandIntMINMAX(Node, DAG)) {
 | 
						|
      Results.push_back(Expanded);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::UADDO:
 | 
						|
  case ISD::USUBO:
 | 
						|
    ExpandUADDSUBO(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::SADDO:
 | 
						|
  case ISD::SSUBO:
 | 
						|
    ExpandSADDSUBO(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::UMULO:
 | 
						|
  case ISD::SMULO:
 | 
						|
    ExpandMULO(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::USUBSAT:
 | 
						|
  case ISD::SSUBSAT:
 | 
						|
  case ISD::UADDSAT:
 | 
						|
  case ISD::SADDSAT:
 | 
						|
    if (SDValue Expanded = TLI.expandAddSubSat(Node, DAG)) {
 | 
						|
      Results.push_back(Expanded);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::SMULFIX:
 | 
						|
  case ISD::UMULFIX:
 | 
						|
    if (SDValue Expanded = TLI.expandFixedPointMul(Node, DAG)) {
 | 
						|
      Results.push_back(Expanded);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case ISD::SMULFIXSAT:
 | 
						|
  case ISD::UMULFIXSAT:
 | 
						|
    // FIXME: We do not expand SMULFIXSAT/UMULFIXSAT here yet, not sure exactly
 | 
						|
    // why. Maybe it results in worse codegen compared to the unroll for some
 | 
						|
    // targets? This should probably be investigated. And if we still prefer to
 | 
						|
    // unroll an explanation could be helpful.
 | 
						|
    break;
 | 
						|
  case ISD::SDIVFIX:
 | 
						|
  case ISD::UDIVFIX:
 | 
						|
    ExpandFixedPointDiv(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::SDIVFIXSAT:
 | 
						|
  case ISD::UDIVFIXSAT:
 | 
						|
    break;
 | 
						|
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
 | 
						|
  case ISD::STRICT_##DAGN:
 | 
						|
#include "llvm/IR/ConstrainedOps.def"
 | 
						|
    ExpandStrictFPOp(Node, Results);
 | 
						|
    return;
 | 
						|
  case ISD::VECREDUCE_ADD:
 | 
						|
  case ISD::VECREDUCE_MUL:
 | 
						|
  case ISD::VECREDUCE_AND:
 | 
						|
  case ISD::VECREDUCE_OR:
 | 
						|
  case ISD::VECREDUCE_XOR:
 | 
						|
  case ISD::VECREDUCE_SMAX:
 | 
						|
  case ISD::VECREDUCE_SMIN:
 | 
						|
  case ISD::VECREDUCE_UMAX:
 | 
						|
  case ISD::VECREDUCE_UMIN:
 | 
						|
  case ISD::VECREDUCE_FADD:
 | 
						|
  case ISD::VECREDUCE_FMUL:
 | 
						|
  case ISD::VECREDUCE_FMAX:
 | 
						|
  case ISD::VECREDUCE_FMIN:
 | 
						|
    Results.push_back(TLI.expandVecReduce(Node, DAG));
 | 
						|
    return;
 | 
						|
  case ISD::VECREDUCE_SEQ_FADD:
 | 
						|
  case ISD::VECREDUCE_SEQ_FMUL:
 | 
						|
    Results.push_back(TLI.expandVecReduceSeq(Node, DAG));
 | 
						|
    return;
 | 
						|
  case ISD::SREM:
 | 
						|
  case ISD::UREM:
 | 
						|
    ExpandREM(Node, Results);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Results.push_back(DAG.UnrollVectorOp(Node));
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::ExpandSELECT(SDNode *Node) {
 | 
						|
  // Lower a select instruction where the condition is a scalar and the
 | 
						|
  // operands are vectors. Lower this select to VSELECT and implement it
 | 
						|
  // using XOR AND OR. The selector bit is broadcasted.
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
  SDLoc DL(Node);
 | 
						|
 | 
						|
  SDValue Mask = Node->getOperand(0);
 | 
						|
  SDValue Op1 = Node->getOperand(1);
 | 
						|
  SDValue Op2 = Node->getOperand(2);
 | 
						|
 | 
						|
  assert(VT.isVector() && !Mask.getValueType().isVector()
 | 
						|
         && Op1.getValueType() == Op2.getValueType() && "Invalid type");
 | 
						|
 | 
						|
  // If we can't even use the basic vector operations of
 | 
						|
  // AND,OR,XOR, we will have to scalarize the op.
 | 
						|
  // Notice that the operation may be 'promoted' which means that it is
 | 
						|
  // 'bitcasted' to another type which is handled.
 | 
						|
  // Also, we need to be able to construct a splat vector using either
 | 
						|
  // BUILD_VECTOR or SPLAT_VECTOR.
 | 
						|
  // FIXME: Should we also permit fixed-length SPLAT_VECTOR as a fallback to
 | 
						|
  // BUILD_VECTOR?
 | 
						|
  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
 | 
						|
      TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
 | 
						|
      TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
 | 
						|
      TLI.getOperationAction(VT.isFixedLengthVector() ? ISD::BUILD_VECTOR
 | 
						|
                                                      : ISD::SPLAT_VECTOR,
 | 
						|
                             VT) == TargetLowering::Expand)
 | 
						|
    return DAG.UnrollVectorOp(Node);
 | 
						|
 | 
						|
  // Generate a mask operand.
 | 
						|
  EVT MaskTy = VT.changeVectorElementTypeToInteger();
 | 
						|
 | 
						|
  // What is the size of each element in the vector mask.
 | 
						|
  EVT BitTy = MaskTy.getScalarType();
 | 
						|
 | 
						|
  Mask = DAG.getSelect(DL, BitTy, Mask, DAG.getAllOnesConstant(DL, BitTy),
 | 
						|
                       DAG.getConstant(0, DL, BitTy));
 | 
						|
 | 
						|
  // Broadcast the mask so that the entire vector is all one or all zero.
 | 
						|
  if (VT.isFixedLengthVector())
 | 
						|
    Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
 | 
						|
  else
 | 
						|
    Mask = DAG.getSplatVector(MaskTy, DL, Mask);
 | 
						|
 | 
						|
  // Bitcast the operands to be the same type as the mask.
 | 
						|
  // This is needed when we select between FP types because
 | 
						|
  // the mask is a vector of integers.
 | 
						|
  Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
 | 
						|
  Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
 | 
						|
 | 
						|
  SDValue NotMask = DAG.getNOT(DL, Mask, MaskTy);
 | 
						|
 | 
						|
  Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
 | 
						|
  Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
 | 
						|
  SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
 | 
						|
  return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::ExpandSEXTINREG(SDNode *Node) {
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
 | 
						|
  // Make sure that the SRA and SHL instructions are available.
 | 
						|
  if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
 | 
						|
      TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
 | 
						|
    return DAG.UnrollVectorOp(Node);
 | 
						|
 | 
						|
  SDLoc DL(Node);
 | 
						|
  EVT OrigTy = cast<VTSDNode>(Node->getOperand(1))->getVT();
 | 
						|
 | 
						|
  unsigned BW = VT.getScalarSizeInBits();
 | 
						|
  unsigned OrigBW = OrigTy.getScalarSizeInBits();
 | 
						|
  SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
 | 
						|
 | 
						|
  SDValue Op = DAG.getNode(ISD::SHL, DL, VT, Node->getOperand(0), ShiftSz);
 | 
						|
  return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
 | 
						|
}
 | 
						|
 | 
						|
// Generically expand a vector anyext in register to a shuffle of the relevant
 | 
						|
// lanes into the appropriate locations, with other lanes left undef.
 | 
						|
SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDNode *Node) {
 | 
						|
  SDLoc DL(Node);
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
  int NumElements = VT.getVectorNumElements();
 | 
						|
  SDValue Src = Node->getOperand(0);
 | 
						|
  EVT SrcVT = Src.getValueType();
 | 
						|
  int NumSrcElements = SrcVT.getVectorNumElements();
 | 
						|
 | 
						|
  // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
 | 
						|
  // into a larger vector type.
 | 
						|
  if (SrcVT.bitsLE(VT)) {
 | 
						|
    assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
 | 
						|
           "ANY_EXTEND_VECTOR_INREG vector size mismatch");
 | 
						|
    NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
 | 
						|
    SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
 | 
						|
                             NumSrcElements);
 | 
						|
    Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
 | 
						|
                      Src, DAG.getVectorIdxConstant(0, DL));
 | 
						|
  }
 | 
						|
 | 
						|
  // Build a base mask of undef shuffles.
 | 
						|
  SmallVector<int, 16> ShuffleMask;
 | 
						|
  ShuffleMask.resize(NumSrcElements, -1);
 | 
						|
 | 
						|
  // Place the extended lanes into the correct locations.
 | 
						|
  int ExtLaneScale = NumSrcElements / NumElements;
 | 
						|
  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
 | 
						|
  for (int i = 0; i < NumElements; ++i)
 | 
						|
    ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
 | 
						|
 | 
						|
  return DAG.getNode(
 | 
						|
      ISD::BITCAST, DL, VT,
 | 
						|
      DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDNode *Node) {
 | 
						|
  SDLoc DL(Node);
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
  SDValue Src = Node->getOperand(0);
 | 
						|
  EVT SrcVT = Src.getValueType();
 | 
						|
 | 
						|
  // First build an any-extend node which can be legalized above when we
 | 
						|
  // recurse through it.
 | 
						|
  SDValue Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
 | 
						|
 | 
						|
  // Now we need sign extend. Do this by shifting the elements. Even if these
 | 
						|
  // aren't legal operations, they have a better chance of being legalized
 | 
						|
  // without full scalarization than the sign extension does.
 | 
						|
  unsigned EltWidth = VT.getScalarSizeInBits();
 | 
						|
  unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
 | 
						|
  SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
 | 
						|
  return DAG.getNode(ISD::SRA, DL, VT,
 | 
						|
                     DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
 | 
						|
                     ShiftAmount);
 | 
						|
}
 | 
						|
 | 
						|
// Generically expand a vector zext in register to a shuffle of the relevant
 | 
						|
// lanes into the appropriate locations, a blend of zero into the high bits,
 | 
						|
// and a bitcast to the wider element type.
 | 
						|
SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDNode *Node) {
 | 
						|
  SDLoc DL(Node);
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
  int NumElements = VT.getVectorNumElements();
 | 
						|
  SDValue Src = Node->getOperand(0);
 | 
						|
  EVT SrcVT = Src.getValueType();
 | 
						|
  int NumSrcElements = SrcVT.getVectorNumElements();
 | 
						|
 | 
						|
  // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
 | 
						|
  // into a larger vector type.
 | 
						|
  if (SrcVT.bitsLE(VT)) {
 | 
						|
    assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
 | 
						|
           "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
 | 
						|
    NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
 | 
						|
    SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
 | 
						|
                             NumSrcElements);
 | 
						|
    Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT),
 | 
						|
                      Src, DAG.getVectorIdxConstant(0, DL));
 | 
						|
  }
 | 
						|
 | 
						|
  // Build up a zero vector to blend into this one.
 | 
						|
  SDValue Zero = DAG.getConstant(0, DL, SrcVT);
 | 
						|
 | 
						|
  // Shuffle the incoming lanes into the correct position, and pull all other
 | 
						|
  // lanes from the zero vector.
 | 
						|
  SmallVector<int, 16> ShuffleMask;
 | 
						|
  ShuffleMask.reserve(NumSrcElements);
 | 
						|
  for (int i = 0; i < NumSrcElements; ++i)
 | 
						|
    ShuffleMask.push_back(i);
 | 
						|
 | 
						|
  int ExtLaneScale = NumSrcElements / NumElements;
 | 
						|
  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
 | 
						|
  for (int i = 0; i < NumElements; ++i)
 | 
						|
    ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
 | 
						|
 | 
						|
  return DAG.getNode(ISD::BITCAST, DL, VT,
 | 
						|
                     DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
 | 
						|
}
 | 
						|
 | 
						|
static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
 | 
						|
  int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
 | 
						|
  for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
 | 
						|
    for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
 | 
						|
      ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::ExpandBSWAP(SDNode *Node) {
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
 | 
						|
  // Scalable vectors can't use shuffle expansion.
 | 
						|
  if (VT.isScalableVector())
 | 
						|
    return TLI.expandBSWAP(Node, DAG);
 | 
						|
 | 
						|
  // Generate a byte wise shuffle mask for the BSWAP.
 | 
						|
  SmallVector<int, 16> ShuffleMask;
 | 
						|
  createBSWAPShuffleMask(VT, ShuffleMask);
 | 
						|
  EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
 | 
						|
 | 
						|
  // Only emit a shuffle if the mask is legal.
 | 
						|
  if (TLI.isShuffleMaskLegal(ShuffleMask, ByteVT)) {
 | 
						|
    SDLoc DL(Node);
 | 
						|
    SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
 | 
						|
    Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
 | 
						|
    return DAG.getNode(ISD::BITCAST, DL, VT, Op);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have the appropriate vector bit operations, it is better to use them
 | 
						|
  // than unrolling and expanding each component.
 | 
						|
  if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
 | 
						|
      TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
 | 
						|
      TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
 | 
						|
      TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
 | 
						|
    return TLI.expandBSWAP(Node, DAG);
 | 
						|
 | 
						|
  // Otherwise unroll.
 | 
						|
  return DAG.UnrollVectorOp(Node);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandBITREVERSE(SDNode *Node,
 | 
						|
                                       SmallVectorImpl<SDValue> &Results) {
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
 | 
						|
  // We can't unroll or use shuffles for scalable vectors.
 | 
						|
  if (VT.isScalableVector()) {
 | 
						|
    Results.push_back(TLI.expandBITREVERSE(Node, DAG));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have the scalar operation, it's probably cheaper to unroll it.
 | 
						|
  if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType())) {
 | 
						|
    SDValue Tmp = DAG.UnrollVectorOp(Node);
 | 
						|
    Results.push_back(Tmp);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the vector element width is a whole number of bytes, test if its legal
 | 
						|
  // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
 | 
						|
  // vector. This greatly reduces the number of bit shifts necessary.
 | 
						|
  unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
 | 
						|
  if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
 | 
						|
    SmallVector<int, 16> BSWAPMask;
 | 
						|
    createBSWAPShuffleMask(VT, BSWAPMask);
 | 
						|
 | 
						|
    EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
 | 
						|
    if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
 | 
						|
        (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
 | 
						|
         (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
 | 
						|
          TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
 | 
						|
          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
 | 
						|
          TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
 | 
						|
      SDLoc DL(Node);
 | 
						|
      SDValue Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Node->getOperand(0));
 | 
						|
      Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
 | 
						|
                                BSWAPMask);
 | 
						|
      Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
 | 
						|
      Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
 | 
						|
      Results.push_back(Op);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have the appropriate vector bit operations, it is better to use them
 | 
						|
  // than unrolling and expanding each component.
 | 
						|
  if (TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
 | 
						|
      TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
 | 
						|
      TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) &&
 | 
						|
      TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT)) {
 | 
						|
    Results.push_back(TLI.expandBITREVERSE(Node, DAG));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise unroll.
 | 
						|
  SDValue Tmp = DAG.UnrollVectorOp(Node);
 | 
						|
  Results.push_back(Tmp);
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::ExpandVSELECT(SDNode *Node) {
 | 
						|
  // Implement VSELECT in terms of XOR, AND, OR
 | 
						|
  // on platforms which do not support blend natively.
 | 
						|
  SDLoc DL(Node);
 | 
						|
 | 
						|
  SDValue Mask = Node->getOperand(0);
 | 
						|
  SDValue Op1 = Node->getOperand(1);
 | 
						|
  SDValue Op2 = Node->getOperand(2);
 | 
						|
 | 
						|
  EVT VT = Mask.getValueType();
 | 
						|
 | 
						|
  // If we can't even use the basic vector operations of
 | 
						|
  // AND,OR,XOR, we will have to scalarize the op.
 | 
						|
  // Notice that the operation may be 'promoted' which means that it is
 | 
						|
  // 'bitcasted' to another type which is handled.
 | 
						|
  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
 | 
						|
      TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
 | 
						|
      TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand)
 | 
						|
    return DAG.UnrollVectorOp(Node);
 | 
						|
 | 
						|
  // This operation also isn't safe with AND, OR, XOR when the boolean type is
 | 
						|
  // 0/1 and the select operands aren't also booleans, as we need an all-ones
 | 
						|
  // vector constant to mask with.
 | 
						|
  // FIXME: Sign extend 1 to all ones if that's legal on the target.
 | 
						|
  auto BoolContents = TLI.getBooleanContents(Op1.getValueType());
 | 
						|
  if (BoolContents != TargetLowering::ZeroOrNegativeOneBooleanContent &&
 | 
						|
      !(BoolContents == TargetLowering::ZeroOrOneBooleanContent &&
 | 
						|
        Op1.getValueType().getVectorElementType() == MVT::i1))
 | 
						|
    return DAG.UnrollVectorOp(Node);
 | 
						|
 | 
						|
  // If the mask and the type are different sizes, unroll the vector op. This
 | 
						|
  // can occur when getSetCCResultType returns something that is different in
 | 
						|
  // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
 | 
						|
  if (VT.getSizeInBits() != Op1.getValueSizeInBits())
 | 
						|
    return DAG.UnrollVectorOp(Node);
 | 
						|
 | 
						|
  // Bitcast the operands to be the same type as the mask.
 | 
						|
  // This is needed when we select between FP types because
 | 
						|
  // the mask is a vector of integers.
 | 
						|
  Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
 | 
						|
  Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
 | 
						|
 | 
						|
  SDValue NotMask = DAG.getNOT(DL, Mask, VT);
 | 
						|
 | 
						|
  Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
 | 
						|
  Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
 | 
						|
  SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
 | 
						|
  return DAG.getNode(ISD::BITCAST, DL, Node->getValueType(0), Val);
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::ExpandVP_SELECT(SDNode *Node) {
 | 
						|
  // Implement VP_SELECT in terms of VP_XOR, VP_AND and VP_OR on platforms which
 | 
						|
  // do not support it natively.
 | 
						|
  SDLoc DL(Node);
 | 
						|
 | 
						|
  SDValue Mask = Node->getOperand(0);
 | 
						|
  SDValue Op1 = Node->getOperand(1);
 | 
						|
  SDValue Op2 = Node->getOperand(2);
 | 
						|
  SDValue EVL = Node->getOperand(3);
 | 
						|
 | 
						|
  EVT VT = Mask.getValueType();
 | 
						|
 | 
						|
  // If we can't even use the basic vector operations of
 | 
						|
  // VP_AND,VP_OR,VP_XOR, we will have to scalarize the op.
 | 
						|
  if (TLI.getOperationAction(ISD::VP_AND, VT) == TargetLowering::Expand ||
 | 
						|
      TLI.getOperationAction(ISD::VP_XOR, VT) == TargetLowering::Expand ||
 | 
						|
      TLI.getOperationAction(ISD::VP_OR, VT) == TargetLowering::Expand)
 | 
						|
    return DAG.UnrollVectorOp(Node);
 | 
						|
 | 
						|
  // This operation also isn't safe when the operands aren't also booleans.
 | 
						|
  if (Op1.getValueType().getVectorElementType() != MVT::i1)
 | 
						|
    return DAG.UnrollVectorOp(Node);
 | 
						|
 | 
						|
  SDValue Ones = DAG.getAllOnesConstant(DL, VT);
 | 
						|
  SDValue NotMask = DAG.getNode(ISD::VP_XOR, DL, VT, Mask, Ones, Mask, EVL);
 | 
						|
 | 
						|
  Op1 = DAG.getNode(ISD::VP_AND, DL, VT, Op1, Mask, Mask, EVL);
 | 
						|
  Op2 = DAG.getNode(ISD::VP_AND, DL, VT, Op2, NotMask, Mask, EVL);
 | 
						|
  return DAG.getNode(ISD::VP_OR, DL, VT, Op1, Op2, Mask, EVL);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandFP_TO_UINT(SDNode *Node,
 | 
						|
                                       SmallVectorImpl<SDValue> &Results) {
 | 
						|
  // Attempt to expand using TargetLowering.
 | 
						|
  SDValue Result, Chain;
 | 
						|
  if (TLI.expandFP_TO_UINT(Node, Result, Chain, DAG)) {
 | 
						|
    Results.push_back(Result);
 | 
						|
    if (Node->isStrictFPOpcode())
 | 
						|
      Results.push_back(Chain);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise go ahead and unroll.
 | 
						|
  if (Node->isStrictFPOpcode()) {
 | 
						|
    UnrollStrictFPOp(Node, Results);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Results.push_back(DAG.UnrollVectorOp(Node));
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandUINT_TO_FLOAT(SDNode *Node,
 | 
						|
                                          SmallVectorImpl<SDValue> &Results) {
 | 
						|
  bool IsStrict = Node->isStrictFPOpcode();
 | 
						|
  unsigned OpNo = IsStrict ? 1 : 0;
 | 
						|
  SDValue Src = Node->getOperand(OpNo);
 | 
						|
  EVT VT = Src.getValueType();
 | 
						|
  SDLoc DL(Node);
 | 
						|
 | 
						|
  // Attempt to expand using TargetLowering.
 | 
						|
  SDValue Result;
 | 
						|
  SDValue Chain;
 | 
						|
  if (TLI.expandUINT_TO_FP(Node, Result, Chain, DAG)) {
 | 
						|
    Results.push_back(Result);
 | 
						|
    if (IsStrict)
 | 
						|
      Results.push_back(Chain);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure that the SINT_TO_FP and SRL instructions are available.
 | 
						|
  if (((!IsStrict && TLI.getOperationAction(ISD::SINT_TO_FP, VT) ==
 | 
						|
                         TargetLowering::Expand) ||
 | 
						|
       (IsStrict && TLI.getOperationAction(ISD::STRICT_SINT_TO_FP, VT) ==
 | 
						|
                        TargetLowering::Expand)) ||
 | 
						|
      TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand) {
 | 
						|
    if (IsStrict) {
 | 
						|
      UnrollStrictFPOp(Node, Results);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    Results.push_back(DAG.UnrollVectorOp(Node));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned BW = VT.getScalarSizeInBits();
 | 
						|
  assert((BW == 64 || BW == 32) &&
 | 
						|
         "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
 | 
						|
 | 
						|
  SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
 | 
						|
 | 
						|
  // Constants to clear the upper part of the word.
 | 
						|
  // Notice that we can also use SHL+SHR, but using a constant is slightly
 | 
						|
  // faster on x86.
 | 
						|
  uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
 | 
						|
  SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
 | 
						|
 | 
						|
  // Two to the power of half-word-size.
 | 
						|
  SDValue TWOHW =
 | 
						|
      DAG.getConstantFP(1ULL << (BW / 2), DL, Node->getValueType(0));
 | 
						|
 | 
						|
  // Clear upper part of LO, lower HI
 | 
						|
  SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Src, HalfWord);
 | 
						|
  SDValue LO = DAG.getNode(ISD::AND, DL, VT, Src, HalfWordMask);
 | 
						|
 | 
						|
  if (IsStrict) {
 | 
						|
    // Convert hi and lo to floats
 | 
						|
    // Convert the hi part back to the upper values
 | 
						|
    // TODO: Can any fast-math-flags be set on these nodes?
 | 
						|
    SDValue fHI = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
 | 
						|
                              {Node->getValueType(0), MVT::Other},
 | 
						|
                              {Node->getOperand(0), HI});
 | 
						|
    fHI = DAG.getNode(ISD::STRICT_FMUL, DL, {Node->getValueType(0), MVT::Other},
 | 
						|
                      {fHI.getValue(1), fHI, TWOHW});
 | 
						|
    SDValue fLO = DAG.getNode(ISD::STRICT_SINT_TO_FP, DL,
 | 
						|
                              {Node->getValueType(0), MVT::Other},
 | 
						|
                              {Node->getOperand(0), LO});
 | 
						|
 | 
						|
    SDValue TF = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, fHI.getValue(1),
 | 
						|
                             fLO.getValue(1));
 | 
						|
 | 
						|
    // Add the two halves
 | 
						|
    SDValue Result =
 | 
						|
        DAG.getNode(ISD::STRICT_FADD, DL, {Node->getValueType(0), MVT::Other},
 | 
						|
                    {TF, fHI, fLO});
 | 
						|
 | 
						|
    Results.push_back(Result);
 | 
						|
    Results.push_back(Result.getValue(1));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert hi and lo to floats
 | 
						|
  // Convert the hi part back to the upper values
 | 
						|
  // TODO: Can any fast-math-flags be set on these nodes?
 | 
						|
  SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), HI);
 | 
						|
  fHI = DAG.getNode(ISD::FMUL, DL, Node->getValueType(0), fHI, TWOHW);
 | 
						|
  SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Node->getValueType(0), LO);
 | 
						|
 | 
						|
  // Add the two halves
 | 
						|
  Results.push_back(
 | 
						|
      DAG.getNode(ISD::FADD, DL, Node->getValueType(0), fHI, fLO));
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::ExpandFNEG(SDNode *Node) {
 | 
						|
  if (TLI.isOperationLegalOrCustom(ISD::FSUB, Node->getValueType(0))) {
 | 
						|
    SDLoc DL(Node);
 | 
						|
    SDValue Zero = DAG.getConstantFP(-0.0, DL, Node->getValueType(0));
 | 
						|
    // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
 | 
						|
    return DAG.getNode(ISD::FSUB, DL, Node->getValueType(0), Zero,
 | 
						|
                       Node->getOperand(0));
 | 
						|
  }
 | 
						|
  return DAG.UnrollVectorOp(Node);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandFSUB(SDNode *Node,
 | 
						|
                                 SmallVectorImpl<SDValue> &Results) {
 | 
						|
  // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
 | 
						|
  // we can defer this to operation legalization where it will be lowered as
 | 
						|
  // a+(-b).
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
  if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
 | 
						|
      TLI.isOperationLegalOrCustom(ISD::FADD, VT))
 | 
						|
    return; // Defer to LegalizeDAG
 | 
						|
 | 
						|
  SDValue Tmp = DAG.UnrollVectorOp(Node);
 | 
						|
  Results.push_back(Tmp);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandSETCC(SDNode *Node,
 | 
						|
                                  SmallVectorImpl<SDValue> &Results) {
 | 
						|
  bool NeedInvert = false;
 | 
						|
  SDLoc dl(Node);
 | 
						|
  MVT OpVT = Node->getOperand(0).getSimpleValueType();
 | 
						|
  ISD::CondCode CCCode = cast<CondCodeSDNode>(Node->getOperand(2))->get();
 | 
						|
 | 
						|
  if (TLI.getCondCodeAction(CCCode, OpVT) != TargetLowering::Expand) {
 | 
						|
    Results.push_back(UnrollVSETCC(Node));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Chain;
 | 
						|
  SDValue LHS = Node->getOperand(0);
 | 
						|
  SDValue RHS = Node->getOperand(1);
 | 
						|
  SDValue CC = Node->getOperand(2);
 | 
						|
  bool Legalized = TLI.LegalizeSetCCCondCode(DAG, Node->getValueType(0), LHS,
 | 
						|
                                             RHS, CC, NeedInvert, dl, Chain);
 | 
						|
 | 
						|
  if (Legalized) {
 | 
						|
    // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
 | 
						|
    // condition code, create a new SETCC node.
 | 
						|
    if (CC.getNode())
 | 
						|
      LHS = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), LHS, RHS, CC,
 | 
						|
                        Node->getFlags());
 | 
						|
 | 
						|
    // If we expanded the SETCC by inverting the condition code, then wrap
 | 
						|
    // the existing SETCC in a NOT to restore the intended condition.
 | 
						|
    if (NeedInvert)
 | 
						|
      LHS = DAG.getLogicalNOT(dl, LHS, LHS->getValueType(0));
 | 
						|
  } else {
 | 
						|
    // Otherwise, SETCC for the given comparison type must be completely
 | 
						|
    // illegal; expand it into a SELECT_CC.
 | 
						|
    EVT VT = Node->getValueType(0);
 | 
						|
    LHS =
 | 
						|
        DAG.getNode(ISD::SELECT_CC, dl, VT, LHS, RHS,
 | 
						|
                    DAG.getBoolConstant(true, dl, VT, LHS.getValueType()),
 | 
						|
                    DAG.getBoolConstant(false, dl, VT, LHS.getValueType()), CC);
 | 
						|
    LHS->setFlags(Node->getFlags());
 | 
						|
  }
 | 
						|
 | 
						|
  Results.push_back(LHS);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandUADDSUBO(SDNode *Node,
 | 
						|
                                     SmallVectorImpl<SDValue> &Results) {
 | 
						|
  SDValue Result, Overflow;
 | 
						|
  TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
 | 
						|
  Results.push_back(Result);
 | 
						|
  Results.push_back(Overflow);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandSADDSUBO(SDNode *Node,
 | 
						|
                                     SmallVectorImpl<SDValue> &Results) {
 | 
						|
  SDValue Result, Overflow;
 | 
						|
  TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
 | 
						|
  Results.push_back(Result);
 | 
						|
  Results.push_back(Overflow);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandMULO(SDNode *Node,
 | 
						|
                                 SmallVectorImpl<SDValue> &Results) {
 | 
						|
  SDValue Result, Overflow;
 | 
						|
  if (!TLI.expandMULO(Node, Result, Overflow, DAG))
 | 
						|
    std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Node);
 | 
						|
 | 
						|
  Results.push_back(Result);
 | 
						|
  Results.push_back(Overflow);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandFixedPointDiv(SDNode *Node,
 | 
						|
                                          SmallVectorImpl<SDValue> &Results) {
 | 
						|
  SDNode *N = Node;
 | 
						|
  if (SDValue Expanded = TLI.expandFixedPointDiv(N->getOpcode(), SDLoc(N),
 | 
						|
          N->getOperand(0), N->getOperand(1), N->getConstantOperandVal(2), DAG))
 | 
						|
    Results.push_back(Expanded);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandStrictFPOp(SDNode *Node,
 | 
						|
                                       SmallVectorImpl<SDValue> &Results) {
 | 
						|
  if (Node->getOpcode() == ISD::STRICT_UINT_TO_FP) {
 | 
						|
    ExpandUINT_TO_FLOAT(Node, Results);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  if (Node->getOpcode() == ISD::STRICT_FP_TO_UINT) {
 | 
						|
    ExpandFP_TO_UINT(Node, Results);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  UnrollStrictFPOp(Node, Results);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::ExpandREM(SDNode *Node,
 | 
						|
                                SmallVectorImpl<SDValue> &Results) {
 | 
						|
  assert((Node->getOpcode() == ISD::SREM || Node->getOpcode() == ISD::UREM) &&
 | 
						|
         "Expected REM node");
 | 
						|
 | 
						|
  SDValue Result;
 | 
						|
  if (!TLI.expandREM(Node, Result, DAG))
 | 
						|
    Result = DAG.UnrollVectorOp(Node);
 | 
						|
  Results.push_back(Result);
 | 
						|
}
 | 
						|
 | 
						|
void VectorLegalizer::UnrollStrictFPOp(SDNode *Node,
 | 
						|
                                       SmallVectorImpl<SDValue> &Results) {
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
  EVT EltVT = VT.getVectorElementType();
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  unsigned NumOpers = Node->getNumOperands();
 | 
						|
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						|
 | 
						|
  EVT TmpEltVT = EltVT;
 | 
						|
  if (Node->getOpcode() == ISD::STRICT_FSETCC ||
 | 
						|
      Node->getOpcode() == ISD::STRICT_FSETCCS)
 | 
						|
    TmpEltVT = TLI.getSetCCResultType(DAG.getDataLayout(),
 | 
						|
                                      *DAG.getContext(), TmpEltVT);
 | 
						|
 | 
						|
  EVT ValueVTs[] = {TmpEltVT, MVT::Other};
 | 
						|
  SDValue Chain = Node->getOperand(0);
 | 
						|
  SDLoc dl(Node);
 | 
						|
 | 
						|
  SmallVector<SDValue, 32> OpValues;
 | 
						|
  SmallVector<SDValue, 32> OpChains;
 | 
						|
  for (unsigned i = 0; i < NumElems; ++i) {
 | 
						|
    SmallVector<SDValue, 4> Opers;
 | 
						|
    SDValue Idx = DAG.getVectorIdxConstant(i, dl);
 | 
						|
 | 
						|
    // The Chain is the first operand.
 | 
						|
    Opers.push_back(Chain);
 | 
						|
 | 
						|
    // Now process the remaining operands.
 | 
						|
    for (unsigned j = 1; j < NumOpers; ++j) {
 | 
						|
      SDValue Oper = Node->getOperand(j);
 | 
						|
      EVT OperVT = Oper.getValueType();
 | 
						|
 | 
						|
      if (OperVT.isVector())
 | 
						|
        Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
 | 
						|
                           OperVT.getVectorElementType(), Oper, Idx);
 | 
						|
 | 
						|
      Opers.push_back(Oper);
 | 
						|
    }
 | 
						|
 | 
						|
    SDValue ScalarOp = DAG.getNode(Node->getOpcode(), dl, ValueVTs, Opers);
 | 
						|
    SDValue ScalarResult = ScalarOp.getValue(0);
 | 
						|
    SDValue ScalarChain = ScalarOp.getValue(1);
 | 
						|
 | 
						|
    if (Node->getOpcode() == ISD::STRICT_FSETCC ||
 | 
						|
        Node->getOpcode() == ISD::STRICT_FSETCCS)
 | 
						|
      ScalarResult = DAG.getSelect(dl, EltVT, ScalarResult,
 | 
						|
                                   DAG.getAllOnesConstant(dl, EltVT),
 | 
						|
                                   DAG.getConstant(0, dl, EltVT));
 | 
						|
 | 
						|
    OpValues.push_back(ScalarResult);
 | 
						|
    OpChains.push_back(ScalarChain);
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
 | 
						|
  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
 | 
						|
 | 
						|
  Results.push_back(Result);
 | 
						|
  Results.push_back(NewChain);
 | 
						|
}
 | 
						|
 | 
						|
SDValue VectorLegalizer::UnrollVSETCC(SDNode *Node) {
 | 
						|
  EVT VT = Node->getValueType(0);
 | 
						|
  unsigned NumElems = VT.getVectorNumElements();
 | 
						|
  EVT EltVT = VT.getVectorElementType();
 | 
						|
  SDValue LHS = Node->getOperand(0);
 | 
						|
  SDValue RHS = Node->getOperand(1);
 | 
						|
  SDValue CC = Node->getOperand(2);
 | 
						|
  EVT TmpEltVT = LHS.getValueType().getVectorElementType();
 | 
						|
  SDLoc dl(Node);
 | 
						|
  SmallVector<SDValue, 8> Ops(NumElems);
 | 
						|
  for (unsigned i = 0; i < NumElems; ++i) {
 | 
						|
    SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
 | 
						|
                                  DAG.getVectorIdxConstant(i, dl));
 | 
						|
    SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
 | 
						|
                                  DAG.getVectorIdxConstant(i, dl));
 | 
						|
    Ops[i] = DAG.getNode(ISD::SETCC, dl,
 | 
						|
                         TLI.getSetCCResultType(DAG.getDataLayout(),
 | 
						|
                                                *DAG.getContext(), TmpEltVT),
 | 
						|
                         LHSElem, RHSElem, CC);
 | 
						|
    Ops[i] = DAG.getSelect(dl, EltVT, Ops[i], DAG.getAllOnesConstant(dl, EltVT),
 | 
						|
                           DAG.getConstant(0, dl, EltVT));
 | 
						|
  }
 | 
						|
  return DAG.getBuildVector(VT, dl, Ops);
 | 
						|
}
 | 
						|
 | 
						|
bool SelectionDAG::LegalizeVectors() {
 | 
						|
  return VectorLegalizer(*this).Run();
 | 
						|
}
 |