9041 lines
		
	
	
		
			354 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			9041 lines
		
	
	
		
			354 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
 | 
						||
//
 | 
						||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						||
// See https://llvm.org/LICENSE.txt for license information.
 | 
						||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						||
//
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
//
 | 
						||
// This implements the TargetLowering class.
 | 
						||
//
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
 | 
						||
#include "llvm/CodeGen/TargetLowering.h"
 | 
						||
#include "llvm/ADT/STLExtras.h"
 | 
						||
#include "llvm/CodeGen/CallingConvLower.h"
 | 
						||
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						||
#include "llvm/CodeGen/MachineFunction.h"
 | 
						||
#include "llvm/CodeGen/MachineJumpTableInfo.h"
 | 
						||
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						||
#include "llvm/CodeGen/SelectionDAG.h"
 | 
						||
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						||
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						||
#include "llvm/IR/DataLayout.h"
 | 
						||
#include "llvm/IR/DerivedTypes.h"
 | 
						||
#include "llvm/IR/GlobalVariable.h"
 | 
						||
#include "llvm/IR/LLVMContext.h"
 | 
						||
#include "llvm/MC/MCAsmInfo.h"
 | 
						||
#include "llvm/MC/MCExpr.h"
 | 
						||
#include "llvm/Support/DivisionByConstantInfo.h"
 | 
						||
#include "llvm/Support/ErrorHandling.h"
 | 
						||
#include "llvm/Support/KnownBits.h"
 | 
						||
#include "llvm/Support/MathExtras.h"
 | 
						||
#include "llvm/Target/TargetLoweringObjectFile.h"
 | 
						||
#include "llvm/Target/TargetMachine.h"
 | 
						||
#include <cctype>
 | 
						||
using namespace llvm;
 | 
						||
 | 
						||
/// NOTE: The TargetMachine owns TLOF.
 | 
						||
TargetLowering::TargetLowering(const TargetMachine &tm)
 | 
						||
    : TargetLoweringBase(tm) {}
 | 
						||
 | 
						||
const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
 | 
						||
  return nullptr;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::isPositionIndependent() const {
 | 
						||
  return getTargetMachine().isPositionIndependent();
 | 
						||
}
 | 
						||
 | 
						||
/// Check whether a given call node is in tail position within its function. If
 | 
						||
/// so, it sets Chain to the input chain of the tail call.
 | 
						||
bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
 | 
						||
                                          SDValue &Chain) const {
 | 
						||
  const Function &F = DAG.getMachineFunction().getFunction();
 | 
						||
 | 
						||
  // First, check if tail calls have been disabled in this function.
 | 
						||
  if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Conservatively require the attributes of the call to match those of
 | 
						||
  // the return. Ignore following attributes because they don't affect the
 | 
						||
  // call sequence.
 | 
						||
  AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
 | 
						||
  for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
 | 
						||
                           Attribute::DereferenceableOrNull, Attribute::NoAlias,
 | 
						||
                           Attribute::NonNull})
 | 
						||
    CallerAttrs.removeAttribute(Attr);
 | 
						||
 | 
						||
  if (CallerAttrs.hasAttributes())
 | 
						||
    return false;
 | 
						||
 | 
						||
  // It's not safe to eliminate the sign / zero extension of the return value.
 | 
						||
  if (CallerAttrs.contains(Attribute::ZExt) ||
 | 
						||
      CallerAttrs.contains(Attribute::SExt))
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Check if the only use is a function return node.
 | 
						||
  return isUsedByReturnOnly(Node, Chain);
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
 | 
						||
    const uint32_t *CallerPreservedMask,
 | 
						||
    const SmallVectorImpl<CCValAssign> &ArgLocs,
 | 
						||
    const SmallVectorImpl<SDValue> &OutVals) const {
 | 
						||
  for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | 
						||
    const CCValAssign &ArgLoc = ArgLocs[I];
 | 
						||
    if (!ArgLoc.isRegLoc())
 | 
						||
      continue;
 | 
						||
    MCRegister Reg = ArgLoc.getLocReg();
 | 
						||
    // Only look at callee saved registers.
 | 
						||
    if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
 | 
						||
      continue;
 | 
						||
    // Check that we pass the value used for the caller.
 | 
						||
    // (We look for a CopyFromReg reading a virtual register that is used
 | 
						||
    //  for the function live-in value of register Reg)
 | 
						||
    SDValue Value = OutVals[I];
 | 
						||
    if (Value->getOpcode() != ISD::CopyFromReg)
 | 
						||
      return false;
 | 
						||
    Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
 | 
						||
    if (MRI.getLiveInPhysReg(ArgReg) != Reg)
 | 
						||
      return false;
 | 
						||
  }
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
/// Set CallLoweringInfo attribute flags based on a call instruction
 | 
						||
/// and called function attributes.
 | 
						||
void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
 | 
						||
                                                     unsigned ArgIdx) {
 | 
						||
  IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
 | 
						||
  IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
 | 
						||
  IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
 | 
						||
  IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
 | 
						||
  IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
 | 
						||
  IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
 | 
						||
  IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
 | 
						||
  IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
 | 
						||
  IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
 | 
						||
  IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
 | 
						||
  IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
 | 
						||
  IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
 | 
						||
  Alignment = Call->getParamStackAlign(ArgIdx);
 | 
						||
  IndirectType = nullptr;
 | 
						||
  assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
 | 
						||
         "multiple ABI attributes?");
 | 
						||
  if (IsByVal) {
 | 
						||
    IndirectType = Call->getParamByValType(ArgIdx);
 | 
						||
    if (!Alignment)
 | 
						||
      Alignment = Call->getParamAlign(ArgIdx);
 | 
						||
  }
 | 
						||
  if (IsPreallocated)
 | 
						||
    IndirectType = Call->getParamPreallocatedType(ArgIdx);
 | 
						||
  if (IsInAlloca)
 | 
						||
    IndirectType = Call->getParamInAllocaType(ArgIdx);
 | 
						||
}
 | 
						||
 | 
						||
/// Generate a libcall taking the given operands as arguments and returning a
 | 
						||
/// result of type RetVT.
 | 
						||
std::pair<SDValue, SDValue>
 | 
						||
TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
 | 
						||
                            ArrayRef<SDValue> Ops,
 | 
						||
                            MakeLibCallOptions CallOptions,
 | 
						||
                            const SDLoc &dl,
 | 
						||
                            SDValue InChain) const {
 | 
						||
  if (!InChain)
 | 
						||
    InChain = DAG.getEntryNode();
 | 
						||
 | 
						||
  TargetLowering::ArgListTy Args;
 | 
						||
  Args.reserve(Ops.size());
 | 
						||
 | 
						||
  TargetLowering::ArgListEntry Entry;
 | 
						||
  for (unsigned i = 0; i < Ops.size(); ++i) {
 | 
						||
    SDValue NewOp = Ops[i];
 | 
						||
    Entry.Node = NewOp;
 | 
						||
    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
 | 
						||
    Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
 | 
						||
                                                 CallOptions.IsSExt);
 | 
						||
    Entry.IsZExt = !Entry.IsSExt;
 | 
						||
 | 
						||
    if (CallOptions.IsSoften &&
 | 
						||
        !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
 | 
						||
      Entry.IsSExt = Entry.IsZExt = false;
 | 
						||
    }
 | 
						||
    Args.push_back(Entry);
 | 
						||
  }
 | 
						||
 | 
						||
  if (LC == RTLIB::UNKNOWN_LIBCALL)
 | 
						||
    report_fatal_error("Unsupported library call operation!");
 | 
						||
  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
 | 
						||
                                         getPointerTy(DAG.getDataLayout()));
 | 
						||
 | 
						||
  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
 | 
						||
  TargetLowering::CallLoweringInfo CLI(DAG);
 | 
						||
  bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
 | 
						||
  bool zeroExtend = !signExtend;
 | 
						||
 | 
						||
  if (CallOptions.IsSoften &&
 | 
						||
      !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
 | 
						||
    signExtend = zeroExtend = false;
 | 
						||
  }
 | 
						||
 | 
						||
  CLI.setDebugLoc(dl)
 | 
						||
      .setChain(InChain)
 | 
						||
      .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
 | 
						||
      .setNoReturn(CallOptions.DoesNotReturn)
 | 
						||
      .setDiscardResult(!CallOptions.IsReturnValueUsed)
 | 
						||
      .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
 | 
						||
      .setSExtResult(signExtend)
 | 
						||
      .setZExtResult(zeroExtend);
 | 
						||
  return LowerCallTo(CLI);
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::findOptimalMemOpLowering(
 | 
						||
    std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
 | 
						||
    unsigned SrcAS, const AttributeList &FuncAttributes) const {
 | 
						||
  if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
 | 
						||
    return false;
 | 
						||
 | 
						||
  EVT VT = getOptimalMemOpType(Op, FuncAttributes);
 | 
						||
 | 
						||
  if (VT == MVT::Other) {
 | 
						||
    // Use the largest integer type whose alignment constraints are satisfied.
 | 
						||
    // We only need to check DstAlign here as SrcAlign is always greater or
 | 
						||
    // equal to DstAlign (or zero).
 | 
						||
    VT = MVT::i64;
 | 
						||
    if (Op.isFixedDstAlign())
 | 
						||
      while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
 | 
						||
             !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
 | 
						||
        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
 | 
						||
    assert(VT.isInteger());
 | 
						||
 | 
						||
    // Find the largest legal integer type.
 | 
						||
    MVT LVT = MVT::i64;
 | 
						||
    while (!isTypeLegal(LVT))
 | 
						||
      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
 | 
						||
    assert(LVT.isInteger());
 | 
						||
 | 
						||
    // If the type we've chosen is larger than the largest legal integer type
 | 
						||
    // then use that instead.
 | 
						||
    if (VT.bitsGT(LVT))
 | 
						||
      VT = LVT;
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned NumMemOps = 0;
 | 
						||
  uint64_t Size = Op.size();
 | 
						||
  while (Size) {
 | 
						||
    unsigned VTSize = VT.getSizeInBits() / 8;
 | 
						||
    while (VTSize > Size) {
 | 
						||
      // For now, only use non-vector load / store's for the left-over pieces.
 | 
						||
      EVT NewVT = VT;
 | 
						||
      unsigned NewVTSize;
 | 
						||
 | 
						||
      bool Found = false;
 | 
						||
      if (VT.isVector() || VT.isFloatingPoint()) {
 | 
						||
        NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
 | 
						||
        if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
 | 
						||
            isSafeMemOpType(NewVT.getSimpleVT()))
 | 
						||
          Found = true;
 | 
						||
        else if (NewVT == MVT::i64 &&
 | 
						||
                 isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
 | 
						||
                 isSafeMemOpType(MVT::f64)) {
 | 
						||
          // i64 is usually not legal on 32-bit targets, but f64 may be.
 | 
						||
          NewVT = MVT::f64;
 | 
						||
          Found = true;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      if (!Found) {
 | 
						||
        do {
 | 
						||
          NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
 | 
						||
          if (NewVT == MVT::i8)
 | 
						||
            break;
 | 
						||
        } while (!isSafeMemOpType(NewVT.getSimpleVT()));
 | 
						||
      }
 | 
						||
      NewVTSize = NewVT.getSizeInBits() / 8;
 | 
						||
 | 
						||
      // If the new VT cannot cover all of the remaining bits, then consider
 | 
						||
      // issuing a (or a pair of) unaligned and overlapping load / store.
 | 
						||
      bool Fast;
 | 
						||
      if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
 | 
						||
          allowsMisalignedMemoryAccesses(
 | 
						||
              VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
 | 
						||
              MachineMemOperand::MONone, &Fast) &&
 | 
						||
          Fast)
 | 
						||
        VTSize = Size;
 | 
						||
      else {
 | 
						||
        VT = NewVT;
 | 
						||
        VTSize = NewVTSize;
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    if (++NumMemOps > Limit)
 | 
						||
      return false;
 | 
						||
 | 
						||
    MemOps.push_back(VT);
 | 
						||
    Size -= VTSize;
 | 
						||
  }
 | 
						||
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
/// Soften the operands of a comparison. This code is shared among BR_CC,
 | 
						||
/// SELECT_CC, and SETCC handlers.
 | 
						||
void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
 | 
						||
                                         SDValue &NewLHS, SDValue &NewRHS,
 | 
						||
                                         ISD::CondCode &CCCode,
 | 
						||
                                         const SDLoc &dl, const SDValue OldLHS,
 | 
						||
                                         const SDValue OldRHS) const {
 | 
						||
  SDValue Chain;
 | 
						||
  return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
 | 
						||
                             OldRHS, Chain);
 | 
						||
}
 | 
						||
 | 
						||
void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
 | 
						||
                                         SDValue &NewLHS, SDValue &NewRHS,
 | 
						||
                                         ISD::CondCode &CCCode,
 | 
						||
                                         const SDLoc &dl, const SDValue OldLHS,
 | 
						||
                                         const SDValue OldRHS,
 | 
						||
                                         SDValue &Chain,
 | 
						||
                                         bool IsSignaling) const {
 | 
						||
  // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
 | 
						||
  // not supporting it. We can update this code when libgcc provides such
 | 
						||
  // functions.
 | 
						||
 | 
						||
  assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
 | 
						||
         && "Unsupported setcc type!");
 | 
						||
 | 
						||
  // Expand into one or more soft-fp libcall(s).
 | 
						||
  RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
 | 
						||
  bool ShouldInvertCC = false;
 | 
						||
  switch (CCCode) {
 | 
						||
  case ISD::SETEQ:
 | 
						||
  case ISD::SETOEQ:
 | 
						||
    LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
 | 
						||
          (VT == MVT::f64) ? RTLIB::OEQ_F64 :
 | 
						||
          (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
 | 
						||
    break;
 | 
						||
  case ISD::SETNE:
 | 
						||
  case ISD::SETUNE:
 | 
						||
    LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
 | 
						||
          (VT == MVT::f64) ? RTLIB::UNE_F64 :
 | 
						||
          (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
 | 
						||
    break;
 | 
						||
  case ISD::SETGE:
 | 
						||
  case ISD::SETOGE:
 | 
						||
    LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
 | 
						||
          (VT == MVT::f64) ? RTLIB::OGE_F64 :
 | 
						||
          (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
 | 
						||
    break;
 | 
						||
  case ISD::SETLT:
 | 
						||
  case ISD::SETOLT:
 | 
						||
    LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
 | 
						||
          (VT == MVT::f64) ? RTLIB::OLT_F64 :
 | 
						||
          (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
 | 
						||
    break;
 | 
						||
  case ISD::SETLE:
 | 
						||
  case ISD::SETOLE:
 | 
						||
    LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
 | 
						||
          (VT == MVT::f64) ? RTLIB::OLE_F64 :
 | 
						||
          (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
 | 
						||
    break;
 | 
						||
  case ISD::SETGT:
 | 
						||
  case ISD::SETOGT:
 | 
						||
    LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
 | 
						||
          (VT == MVT::f64) ? RTLIB::OGT_F64 :
 | 
						||
          (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
 | 
						||
    break;
 | 
						||
  case ISD::SETO:
 | 
						||
    ShouldInvertCC = true;
 | 
						||
    LLVM_FALLTHROUGH;
 | 
						||
  case ISD::SETUO:
 | 
						||
    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
 | 
						||
          (VT == MVT::f64) ? RTLIB::UO_F64 :
 | 
						||
          (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
 | 
						||
    break;
 | 
						||
  case ISD::SETONE:
 | 
						||
    // SETONE = O && UNE
 | 
						||
    ShouldInvertCC = true;
 | 
						||
    LLVM_FALLTHROUGH;
 | 
						||
  case ISD::SETUEQ:
 | 
						||
    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
 | 
						||
          (VT == MVT::f64) ? RTLIB::UO_F64 :
 | 
						||
          (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
 | 
						||
    LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
 | 
						||
          (VT == MVT::f64) ? RTLIB::OEQ_F64 :
 | 
						||
          (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
 | 
						||
    break;
 | 
						||
  default:
 | 
						||
    // Invert CC for unordered comparisons
 | 
						||
    ShouldInvertCC = true;
 | 
						||
    switch (CCCode) {
 | 
						||
    case ISD::SETULT:
 | 
						||
      LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
 | 
						||
            (VT == MVT::f64) ? RTLIB::OGE_F64 :
 | 
						||
            (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
 | 
						||
      break;
 | 
						||
    case ISD::SETULE:
 | 
						||
      LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
 | 
						||
            (VT == MVT::f64) ? RTLIB::OGT_F64 :
 | 
						||
            (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
 | 
						||
      break;
 | 
						||
    case ISD::SETUGT:
 | 
						||
      LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
 | 
						||
            (VT == MVT::f64) ? RTLIB::OLE_F64 :
 | 
						||
            (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
 | 
						||
      break;
 | 
						||
    case ISD::SETUGE:
 | 
						||
      LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
 | 
						||
            (VT == MVT::f64) ? RTLIB::OLT_F64 :
 | 
						||
            (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
 | 
						||
      break;
 | 
						||
    default: llvm_unreachable("Do not know how to soften this setcc!");
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // Use the target specific return value for comparions lib calls.
 | 
						||
  EVT RetVT = getCmpLibcallReturnType();
 | 
						||
  SDValue Ops[2] = {NewLHS, NewRHS};
 | 
						||
  TargetLowering::MakeLibCallOptions CallOptions;
 | 
						||
  EVT OpsVT[2] = { OldLHS.getValueType(),
 | 
						||
                   OldRHS.getValueType() };
 | 
						||
  CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
 | 
						||
  auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
 | 
						||
  NewLHS = Call.first;
 | 
						||
  NewRHS = DAG.getConstant(0, dl, RetVT);
 | 
						||
 | 
						||
  CCCode = getCmpLibcallCC(LC1);
 | 
						||
  if (ShouldInvertCC) {
 | 
						||
    assert(RetVT.isInteger());
 | 
						||
    CCCode = getSetCCInverse(CCCode, RetVT);
 | 
						||
  }
 | 
						||
 | 
						||
  if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
 | 
						||
    // Update Chain.
 | 
						||
    Chain = Call.second;
 | 
						||
  } else {
 | 
						||
    EVT SetCCVT =
 | 
						||
        getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
 | 
						||
    SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
 | 
						||
    auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
 | 
						||
    CCCode = getCmpLibcallCC(LC2);
 | 
						||
    if (ShouldInvertCC)
 | 
						||
      CCCode = getSetCCInverse(CCCode, RetVT);
 | 
						||
    NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
 | 
						||
    if (Chain)
 | 
						||
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
 | 
						||
                          Call2.second);
 | 
						||
    NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
 | 
						||
                         Tmp.getValueType(), Tmp, NewLHS);
 | 
						||
    NewRHS = SDValue();
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
/// Return the entry encoding for a jump table in the current function. The
 | 
						||
/// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
 | 
						||
unsigned TargetLowering::getJumpTableEncoding() const {
 | 
						||
  // In non-pic modes, just use the address of a block.
 | 
						||
  if (!isPositionIndependent())
 | 
						||
    return MachineJumpTableInfo::EK_BlockAddress;
 | 
						||
 | 
						||
  // In PIC mode, if the target supports a GPRel32 directive, use it.
 | 
						||
  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
 | 
						||
    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
 | 
						||
 | 
						||
  // Otherwise, use a label difference.
 | 
						||
  return MachineJumpTableInfo::EK_LabelDifference32;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
 | 
						||
                                                 SelectionDAG &DAG) const {
 | 
						||
  // If our PIC model is GP relative, use the global offset table as the base.
 | 
						||
  unsigned JTEncoding = getJumpTableEncoding();
 | 
						||
 | 
						||
  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
 | 
						||
      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
 | 
						||
    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
 | 
						||
 | 
						||
  return Table;
 | 
						||
}
 | 
						||
 | 
						||
/// This returns the relocation base for the given PIC jumptable, the same as
 | 
						||
/// getPICJumpTableRelocBase, but as an MCExpr.
 | 
						||
const MCExpr *
 | 
						||
TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
 | 
						||
                                             unsigned JTI,MCContext &Ctx) const{
 | 
						||
  // The normal PIC reloc base is the label at the start of the jump table.
 | 
						||
  return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
 | 
						||
}
 | 
						||
 | 
						||
bool
 | 
						||
TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | 
						||
  const TargetMachine &TM = getTargetMachine();
 | 
						||
  const GlobalValue *GV = GA->getGlobal();
 | 
						||
 | 
						||
  // If the address is not even local to this DSO we will have to load it from
 | 
						||
  // a got and then add the offset.
 | 
						||
  if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
 | 
						||
    return false;
 | 
						||
 | 
						||
  // If the code is position independent we will have to add a base register.
 | 
						||
  if (isPositionIndependent())
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Otherwise we can do it.
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
//  Optimization Methods
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
 | 
						||
/// If the specified instruction has a constant integer operand and there are
 | 
						||
/// bits set in that constant that are not demanded, then clear those bits and
 | 
						||
/// return true.
 | 
						||
bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
 | 
						||
                                            const APInt &DemandedBits,
 | 
						||
                                            const APInt &DemandedElts,
 | 
						||
                                            TargetLoweringOpt &TLO) const {
 | 
						||
  SDLoc DL(Op);
 | 
						||
  unsigned Opcode = Op.getOpcode();
 | 
						||
 | 
						||
  // Do target-specific constant optimization.
 | 
						||
  if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
 | 
						||
    return TLO.New.getNode();
 | 
						||
 | 
						||
  // FIXME: ISD::SELECT, ISD::SELECT_CC
 | 
						||
  switch (Opcode) {
 | 
						||
  default:
 | 
						||
    break;
 | 
						||
  case ISD::XOR:
 | 
						||
  case ISD::AND:
 | 
						||
  case ISD::OR: {
 | 
						||
    auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
 | 
						||
    if (!Op1C || Op1C->isOpaque())
 | 
						||
      return false;
 | 
						||
 | 
						||
    // If this is a 'not' op, don't touch it because that's a canonical form.
 | 
						||
    const APInt &C = Op1C->getAPIntValue();
 | 
						||
    if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
 | 
						||
      return false;
 | 
						||
 | 
						||
    if (!C.isSubsetOf(DemandedBits)) {
 | 
						||
      EVT VT = Op.getValueType();
 | 
						||
      SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
 | 
						||
      SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
 | 
						||
      return TLO.CombineTo(Op, NewOp);
 | 
						||
    }
 | 
						||
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  }
 | 
						||
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
 | 
						||
                                            const APInt &DemandedBits,
 | 
						||
                                            TargetLoweringOpt &TLO) const {
 | 
						||
  EVT VT = Op.getValueType();
 | 
						||
  APInt DemandedElts = VT.isVector()
 | 
						||
                           ? APInt::getAllOnes(VT.getVectorNumElements())
 | 
						||
                           : APInt(1, 1);
 | 
						||
  return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
 | 
						||
}
 | 
						||
 | 
						||
/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
 | 
						||
/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
 | 
						||
/// generalized for targets with other types of implicit widening casts.
 | 
						||
bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
 | 
						||
                                      const APInt &Demanded,
 | 
						||
                                      TargetLoweringOpt &TLO) const {
 | 
						||
  assert(Op.getNumOperands() == 2 &&
 | 
						||
         "ShrinkDemandedOp only supports binary operators!");
 | 
						||
  assert(Op.getNode()->getNumValues() == 1 &&
 | 
						||
         "ShrinkDemandedOp only supports nodes with one result!");
 | 
						||
 | 
						||
  SelectionDAG &DAG = TLO.DAG;
 | 
						||
  SDLoc dl(Op);
 | 
						||
 | 
						||
  // Early return, as this function cannot handle vector types.
 | 
						||
  if (Op.getValueType().isVector())
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Don't do this if the node has another user, which may require the
 | 
						||
  // full value.
 | 
						||
  if (!Op.getNode()->hasOneUse())
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Search for the smallest integer type with free casts to and from
 | 
						||
  // Op's type. For expedience, just check power-of-2 integer types.
 | 
						||
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						||
  unsigned DemandedSize = Demanded.getActiveBits();
 | 
						||
  unsigned SmallVTBits = DemandedSize;
 | 
						||
  if (!isPowerOf2_32(SmallVTBits))
 | 
						||
    SmallVTBits = NextPowerOf2(SmallVTBits);
 | 
						||
  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
 | 
						||
    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
 | 
						||
    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
 | 
						||
        TLI.isZExtFree(SmallVT, Op.getValueType())) {
 | 
						||
      // We found a type with free casts.
 | 
						||
      SDValue X = DAG.getNode(
 | 
						||
          Op.getOpcode(), dl, SmallVT,
 | 
						||
          DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
 | 
						||
          DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
 | 
						||
      assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
 | 
						||
      SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
 | 
						||
      return TLO.CombineTo(Op, Z);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
 | 
						||
                                          DAGCombinerInfo &DCI) const {
 | 
						||
  SelectionDAG &DAG = DCI.DAG;
 | 
						||
  TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | 
						||
                        !DCI.isBeforeLegalizeOps());
 | 
						||
  KnownBits Known;
 | 
						||
 | 
						||
  bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
 | 
						||
  if (Simplified) {
 | 
						||
    DCI.AddToWorklist(Op.getNode());
 | 
						||
    DCI.CommitTargetLoweringOpt(TLO);
 | 
						||
  }
 | 
						||
  return Simplified;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
 | 
						||
                                          KnownBits &Known,
 | 
						||
                                          TargetLoweringOpt &TLO,
 | 
						||
                                          unsigned Depth,
 | 
						||
                                          bool AssumeSingleUse) const {
 | 
						||
  EVT VT = Op.getValueType();
 | 
						||
 | 
						||
  // TODO: We can probably do more work on calculating the known bits and
 | 
						||
  // simplifying the operations for scalable vectors, but for now we just
 | 
						||
  // bail out.
 | 
						||
  if (VT.isScalableVector()) {
 | 
						||
    // Pretend we don't know anything for now.
 | 
						||
    Known = KnownBits(DemandedBits.getBitWidth());
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
 | 
						||
  APInt DemandedElts = VT.isVector()
 | 
						||
                           ? APInt::getAllOnes(VT.getVectorNumElements())
 | 
						||
                           : APInt(1, 1);
 | 
						||
  return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
 | 
						||
                              AssumeSingleUse);
 | 
						||
}
 | 
						||
 | 
						||
// TODO: Can we merge SelectionDAG::GetDemandedBits into this?
 | 
						||
// TODO: Under what circumstances can we create nodes? Constant folding?
 | 
						||
SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
 | 
						||
    SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
 | 
						||
    SelectionDAG &DAG, unsigned Depth) const {
 | 
						||
  // Limit search depth.
 | 
						||
  if (Depth >= SelectionDAG::MaxRecursionDepth)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // Ignore UNDEFs.
 | 
						||
  if (Op.isUndef())
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // Not demanding any bits/elts from Op.
 | 
						||
  if (DemandedBits == 0 || DemandedElts == 0)
 | 
						||
    return DAG.getUNDEF(Op.getValueType());
 | 
						||
 | 
						||
  bool IsLE = DAG.getDataLayout().isLittleEndian();
 | 
						||
  unsigned NumElts = DemandedElts.getBitWidth();
 | 
						||
  unsigned BitWidth = DemandedBits.getBitWidth();
 | 
						||
  KnownBits LHSKnown, RHSKnown;
 | 
						||
  switch (Op.getOpcode()) {
 | 
						||
  case ISD::BITCAST: {
 | 
						||
    SDValue Src = peekThroughBitcasts(Op.getOperand(0));
 | 
						||
    EVT SrcVT = Src.getValueType();
 | 
						||
    EVT DstVT = Op.getValueType();
 | 
						||
    if (SrcVT == DstVT)
 | 
						||
      return Src;
 | 
						||
 | 
						||
    unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
 | 
						||
    unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
 | 
						||
    if (NumSrcEltBits == NumDstEltBits)
 | 
						||
      if (SDValue V = SimplifyMultipleUseDemandedBits(
 | 
						||
              Src, DemandedBits, DemandedElts, DAG, Depth + 1))
 | 
						||
        return DAG.getBitcast(DstVT, V);
 | 
						||
 | 
						||
    if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
 | 
						||
      unsigned Scale = NumDstEltBits / NumSrcEltBits;
 | 
						||
      unsigned NumSrcElts = SrcVT.getVectorNumElements();
 | 
						||
      APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
 | 
						||
      APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
 | 
						||
      for (unsigned i = 0; i != Scale; ++i) {
 | 
						||
        unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
 | 
						||
        unsigned BitOffset = EltOffset * NumSrcEltBits;
 | 
						||
        APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
 | 
						||
        if (!Sub.isZero()) {
 | 
						||
          DemandedSrcBits |= Sub;
 | 
						||
          for (unsigned j = 0; j != NumElts; ++j)
 | 
						||
            if (DemandedElts[j])
 | 
						||
              DemandedSrcElts.setBit((j * Scale) + i);
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      if (SDValue V = SimplifyMultipleUseDemandedBits(
 | 
						||
              Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
 | 
						||
        return DAG.getBitcast(DstVT, V);
 | 
						||
    }
 | 
						||
 | 
						||
    // TODO - bigendian once we have test coverage.
 | 
						||
    if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
 | 
						||
      unsigned Scale = NumSrcEltBits / NumDstEltBits;
 | 
						||
      unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
 | 
						||
      APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
 | 
						||
      APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
 | 
						||
      for (unsigned i = 0; i != NumElts; ++i)
 | 
						||
        if (DemandedElts[i]) {
 | 
						||
          unsigned Offset = (i % Scale) * NumDstEltBits;
 | 
						||
          DemandedSrcBits.insertBits(DemandedBits, Offset);
 | 
						||
          DemandedSrcElts.setBit(i / Scale);
 | 
						||
        }
 | 
						||
 | 
						||
      if (SDValue V = SimplifyMultipleUseDemandedBits(
 | 
						||
              Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
 | 
						||
        return DAG.getBitcast(DstVT, V);
 | 
						||
    }
 | 
						||
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::AND: {
 | 
						||
    LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
 | 
						||
    RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
 | 
						||
 | 
						||
    // If all of the demanded bits are known 1 on one side, return the other.
 | 
						||
    // These bits cannot contribute to the result of the 'and' in this
 | 
						||
    // context.
 | 
						||
    if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
 | 
						||
      return Op.getOperand(0);
 | 
						||
    if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
 | 
						||
      return Op.getOperand(1);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::OR: {
 | 
						||
    LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
 | 
						||
    RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
 | 
						||
 | 
						||
    // If all of the demanded bits are known zero on one side, return the
 | 
						||
    // other.  These bits cannot contribute to the result of the 'or' in this
 | 
						||
    // context.
 | 
						||
    if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
 | 
						||
      return Op.getOperand(0);
 | 
						||
    if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
 | 
						||
      return Op.getOperand(1);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::XOR: {
 | 
						||
    LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
 | 
						||
    RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
 | 
						||
 | 
						||
    // If all of the demanded bits are known zero on one side, return the
 | 
						||
    // other.
 | 
						||
    if (DemandedBits.isSubsetOf(RHSKnown.Zero))
 | 
						||
      return Op.getOperand(0);
 | 
						||
    if (DemandedBits.isSubsetOf(LHSKnown.Zero))
 | 
						||
      return Op.getOperand(1);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::SHL: {
 | 
						||
    // If we are only demanding sign bits then we can use the shift source
 | 
						||
    // directly.
 | 
						||
    if (const APInt *MaxSA =
 | 
						||
            DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
 | 
						||
      SDValue Op0 = Op.getOperand(0);
 | 
						||
      unsigned ShAmt = MaxSA->getZExtValue();
 | 
						||
      unsigned NumSignBits =
 | 
						||
          DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
 | 
						||
      unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
 | 
						||
      if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
 | 
						||
        return Op0;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::SETCC: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
    ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						||
    // If (1) we only need the sign-bit, (2) the setcc operands are the same
 | 
						||
    // width as the setcc result, and (3) the result of a setcc conforms to 0 or
 | 
						||
    // -1, we may be able to bypass the setcc.
 | 
						||
    if (DemandedBits.isSignMask() &&
 | 
						||
        Op0.getScalarValueSizeInBits() == BitWidth &&
 | 
						||
        getBooleanContents(Op0.getValueType()) ==
 | 
						||
            BooleanContent::ZeroOrNegativeOneBooleanContent) {
 | 
						||
      // If we're testing X < 0, then this compare isn't needed - just use X!
 | 
						||
      // FIXME: We're limiting to integer types here, but this should also work
 | 
						||
      // if we don't care about FP signed-zero. The use of SETLT with FP means
 | 
						||
      // that we don't care about NaNs.
 | 
						||
      if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
 | 
						||
          (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
 | 
						||
        return Op0;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::SIGN_EXTEND_INREG: {
 | 
						||
    // If none of the extended bits are demanded, eliminate the sextinreg.
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | 
						||
    unsigned ExBits = ExVT.getScalarSizeInBits();
 | 
						||
    if (DemandedBits.getActiveBits() <= ExBits)
 | 
						||
      return Op0;
 | 
						||
    // If the input is already sign extended, just drop the extension.
 | 
						||
    unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
 | 
						||
    if (NumSignBits >= (BitWidth - ExBits + 1))
 | 
						||
      return Op0;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::ANY_EXTEND_VECTOR_INREG:
 | 
						||
  case ISD::SIGN_EXTEND_VECTOR_INREG:
 | 
						||
  case ISD::ZERO_EXTEND_VECTOR_INREG: {
 | 
						||
    // If we only want the lowest element and none of extended bits, then we can
 | 
						||
    // return the bitcasted source vector.
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    EVT SrcVT = Src.getValueType();
 | 
						||
    EVT DstVT = Op.getValueType();
 | 
						||
    if (IsLE && DemandedElts == 1 &&
 | 
						||
        DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
 | 
						||
        DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
 | 
						||
      return DAG.getBitcast(DstVT, Src);
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::INSERT_VECTOR_ELT: {
 | 
						||
    // If we don't demand the inserted element, return the base vector.
 | 
						||
    SDValue Vec = Op.getOperand(0);
 | 
						||
    auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | 
						||
    EVT VecVT = Vec.getValueType();
 | 
						||
    if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
 | 
						||
        !DemandedElts[CIdx->getZExtValue()])
 | 
						||
      return Vec;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::INSERT_SUBVECTOR: {
 | 
						||
    SDValue Vec = Op.getOperand(0);
 | 
						||
    SDValue Sub = Op.getOperand(1);
 | 
						||
    uint64_t Idx = Op.getConstantOperandVal(2);
 | 
						||
    unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
 | 
						||
    APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
 | 
						||
    // If we don't demand the inserted subvector, return the base vector.
 | 
						||
    if (DemandedSubElts == 0)
 | 
						||
      return Vec;
 | 
						||
    // If this simply widens the lowest subvector, see if we can do it earlier.
 | 
						||
    if (Idx == 0 && Vec.isUndef()) {
 | 
						||
      if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
 | 
						||
              Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
 | 
						||
        return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
 | 
						||
                           Op.getOperand(0), NewSub, Op.getOperand(2));
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::VECTOR_SHUFFLE: {
 | 
						||
    ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
 | 
						||
 | 
						||
    // If all the demanded elts are from one operand and are inline,
 | 
						||
    // then we can use the operand directly.
 | 
						||
    bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
 | 
						||
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						||
      int M = ShuffleMask[i];
 | 
						||
      if (M < 0 || !DemandedElts[i])
 | 
						||
        continue;
 | 
						||
      AllUndef = false;
 | 
						||
      IdentityLHS &= (M == (int)i);
 | 
						||
      IdentityRHS &= ((M - NumElts) == i);
 | 
						||
    }
 | 
						||
 | 
						||
    if (AllUndef)
 | 
						||
      return DAG.getUNDEF(Op.getValueType());
 | 
						||
    if (IdentityLHS)
 | 
						||
      return Op.getOperand(0);
 | 
						||
    if (IdentityRHS)
 | 
						||
      return Op.getOperand(1);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  default:
 | 
						||
    if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
 | 
						||
      if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
 | 
						||
              Op, DemandedBits, DemandedElts, DAG, Depth))
 | 
						||
        return V;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
 | 
						||
    SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
 | 
						||
    unsigned Depth) const {
 | 
						||
  EVT VT = Op.getValueType();
 | 
						||
  APInt DemandedElts = VT.isVector()
 | 
						||
                           ? APInt::getAllOnes(VT.getVectorNumElements())
 | 
						||
                           : APInt(1, 1);
 | 
						||
  return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
 | 
						||
                                         Depth);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
 | 
						||
    SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
 | 
						||
    unsigned Depth) const {
 | 
						||
  APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
 | 
						||
  return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
 | 
						||
                                         Depth);
 | 
						||
}
 | 
						||
 | 
						||
/// Look at Op. At this point, we know that only the OriginalDemandedBits of the
 | 
						||
/// result of Op are ever used downstream. If we can use this information to
 | 
						||
/// simplify Op, create a new simplified DAG node and return true, returning the
 | 
						||
/// original and new nodes in Old and New. Otherwise, analyze the expression and
 | 
						||
/// return a mask of Known bits for the expression (used to simplify the
 | 
						||
/// caller).  The Known bits may only be accurate for those bits in the
 | 
						||
/// OriginalDemandedBits and OriginalDemandedElts.
 | 
						||
bool TargetLowering::SimplifyDemandedBits(
 | 
						||
    SDValue Op, const APInt &OriginalDemandedBits,
 | 
						||
    const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
 | 
						||
    unsigned Depth, bool AssumeSingleUse) const {
 | 
						||
  unsigned BitWidth = OriginalDemandedBits.getBitWidth();
 | 
						||
  assert(Op.getScalarValueSizeInBits() == BitWidth &&
 | 
						||
         "Mask size mismatches value type size!");
 | 
						||
 | 
						||
  // Don't know anything.
 | 
						||
  Known = KnownBits(BitWidth);
 | 
						||
 | 
						||
  // TODO: We can probably do more work on calculating the known bits and
 | 
						||
  // simplifying the operations for scalable vectors, but for now we just
 | 
						||
  // bail out.
 | 
						||
  if (Op.getValueType().isScalableVector())
 | 
						||
    return false;
 | 
						||
 | 
						||
  bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
 | 
						||
  unsigned NumElts = OriginalDemandedElts.getBitWidth();
 | 
						||
  assert((!Op.getValueType().isVector() ||
 | 
						||
          NumElts == Op.getValueType().getVectorNumElements()) &&
 | 
						||
         "Unexpected vector size");
 | 
						||
 | 
						||
  APInt DemandedBits = OriginalDemandedBits;
 | 
						||
  APInt DemandedElts = OriginalDemandedElts;
 | 
						||
  SDLoc dl(Op);
 | 
						||
  auto &DL = TLO.DAG.getDataLayout();
 | 
						||
 | 
						||
  // Undef operand.
 | 
						||
  if (Op.isUndef())
 | 
						||
    return false;
 | 
						||
 | 
						||
  if (Op.getOpcode() == ISD::Constant) {
 | 
						||
    // We know all of the bits for a constant!
 | 
						||
    Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
 | 
						||
  if (Op.getOpcode() == ISD::ConstantFP) {
 | 
						||
    // We know all of the bits for a floating point constant!
 | 
						||
    Known = KnownBits::makeConstant(
 | 
						||
        cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
 | 
						||
  // Other users may use these bits.
 | 
						||
  EVT VT = Op.getValueType();
 | 
						||
  if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
 | 
						||
    if (Depth != 0) {
 | 
						||
      // If not at the root, Just compute the Known bits to
 | 
						||
      // simplify things downstream.
 | 
						||
      Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | 
						||
      return false;
 | 
						||
    }
 | 
						||
    // If this is the root being simplified, allow it to have multiple uses,
 | 
						||
    // just set the DemandedBits/Elts to all bits.
 | 
						||
    DemandedBits = APInt::getAllOnes(BitWidth);
 | 
						||
    DemandedElts = APInt::getAllOnes(NumElts);
 | 
						||
  } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
 | 
						||
    // Not demanding any bits/elts from Op.
 | 
						||
    return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
 | 
						||
  } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
 | 
						||
    // Limit search depth.
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
 | 
						||
  KnownBits Known2;
 | 
						||
  switch (Op.getOpcode()) {
 | 
						||
  case ISD::TargetConstant:
 | 
						||
    llvm_unreachable("Can't simplify this node");
 | 
						||
  case ISD::SCALAR_TO_VECTOR: {
 | 
						||
    if (!DemandedElts[0])
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
 | 
						||
 | 
						||
    KnownBits SrcKnown;
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
 | 
						||
    APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
 | 
						||
    if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    // Upper elements are undef, so only get the knownbits if we just demand
 | 
						||
    // the bottom element.
 | 
						||
    if (DemandedElts == 1)
 | 
						||
      Known = SrcKnown.anyextOrTrunc(BitWidth);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::BUILD_VECTOR:
 | 
						||
    // Collect the known bits that are shared by every demanded element.
 | 
						||
    // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
 | 
						||
    Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | 
						||
    return false; // Don't fall through, will infinitely loop.
 | 
						||
  case ISD::LOAD: {
 | 
						||
    auto *LD = cast<LoadSDNode>(Op);
 | 
						||
    if (getTargetConstantFromLoad(LD)) {
 | 
						||
      Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | 
						||
      return false; // Don't fall through, will infinitely loop.
 | 
						||
    }
 | 
						||
    if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
 | 
						||
      // If this is a ZEXTLoad and we are looking at the loaded value.
 | 
						||
      EVT MemVT = LD->getMemoryVT();
 | 
						||
      unsigned MemBits = MemVT.getScalarSizeInBits();
 | 
						||
      Known.Zero.setBitsFrom(MemBits);
 | 
						||
      return false; // Don't fall through, will infinitely loop.
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::INSERT_VECTOR_ELT: {
 | 
						||
    SDValue Vec = Op.getOperand(0);
 | 
						||
    SDValue Scl = Op.getOperand(1);
 | 
						||
    auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | 
						||
    EVT VecVT = Vec.getValueType();
 | 
						||
 | 
						||
    // If index isn't constant, assume we need all vector elements AND the
 | 
						||
    // inserted element.
 | 
						||
    APInt DemandedVecElts(DemandedElts);
 | 
						||
    if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
 | 
						||
      unsigned Idx = CIdx->getZExtValue();
 | 
						||
      DemandedVecElts.clearBit(Idx);
 | 
						||
 | 
						||
      // Inserted element is not required.
 | 
						||
      if (!DemandedElts[Idx])
 | 
						||
        return TLO.CombineTo(Op, Vec);
 | 
						||
    }
 | 
						||
 | 
						||
    KnownBits KnownScl;
 | 
						||
    unsigned NumSclBits = Scl.getScalarValueSizeInBits();
 | 
						||
    APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
 | 
						||
    if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    Known = KnownScl.anyextOrTrunc(BitWidth);
 | 
						||
 | 
						||
    KnownBits KnownVec;
 | 
						||
    if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    if (!!DemandedVecElts)
 | 
						||
      Known = KnownBits::commonBits(Known, KnownVec);
 | 
						||
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
  case ISD::INSERT_SUBVECTOR: {
 | 
						||
    // Demand any elements from the subvector and the remainder from the src its
 | 
						||
    // inserted into.
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    SDValue Sub = Op.getOperand(1);
 | 
						||
    uint64_t Idx = Op.getConstantOperandVal(2);
 | 
						||
    unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
 | 
						||
    APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
 | 
						||
    APInt DemandedSrcElts = DemandedElts;
 | 
						||
    DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
 | 
						||
 | 
						||
    KnownBits KnownSub, KnownSrc;
 | 
						||
    if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    Known.Zero.setAllBits();
 | 
						||
    Known.One.setAllBits();
 | 
						||
    if (!!DemandedSubElts)
 | 
						||
      Known = KnownBits::commonBits(Known, KnownSub);
 | 
						||
    if (!!DemandedSrcElts)
 | 
						||
      Known = KnownBits::commonBits(Known, KnownSrc);
 | 
						||
 | 
						||
    // Attempt to avoid multi-use src if we don't need anything from it.
 | 
						||
    if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
 | 
						||
        !DemandedSrcElts.isAllOnes()) {
 | 
						||
      SDValue NewSub = SimplifyMultipleUseDemandedBits(
 | 
						||
          Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
 | 
						||
      SDValue NewSrc = SimplifyMultipleUseDemandedBits(
 | 
						||
          Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
 | 
						||
      if (NewSub || NewSrc) {
 | 
						||
        NewSub = NewSub ? NewSub : Sub;
 | 
						||
        NewSrc = NewSrc ? NewSrc : Src;
 | 
						||
        SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
 | 
						||
                                        Op.getOperand(2));
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::EXTRACT_SUBVECTOR: {
 | 
						||
    // Offset the demanded elts by the subvector index.
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    if (Src.getValueType().isScalableVector())
 | 
						||
      break;
 | 
						||
    uint64_t Idx = Op.getConstantOperandVal(1);
 | 
						||
    unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
 | 
						||
    APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
 | 
						||
 | 
						||
    if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    // Attempt to avoid multi-use src if we don't need anything from it.
 | 
						||
    if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
 | 
						||
      SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
 | 
						||
          Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
 | 
						||
      if (DemandedSrc) {
 | 
						||
        SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
 | 
						||
                                        Op.getOperand(1));
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::CONCAT_VECTORS: {
 | 
						||
    Known.Zero.setAllBits();
 | 
						||
    Known.One.setAllBits();
 | 
						||
    EVT SubVT = Op.getOperand(0).getValueType();
 | 
						||
    unsigned NumSubVecs = Op.getNumOperands();
 | 
						||
    unsigned NumSubElts = SubVT.getVectorNumElements();
 | 
						||
    for (unsigned i = 0; i != NumSubVecs; ++i) {
 | 
						||
      APInt DemandedSubElts =
 | 
						||
          DemandedElts.extractBits(NumSubElts, i * NumSubElts);
 | 
						||
      if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
 | 
						||
                               Known2, TLO, Depth + 1))
 | 
						||
        return true;
 | 
						||
      // Known bits are shared by every demanded subvector element.
 | 
						||
      if (!!DemandedSubElts)
 | 
						||
        Known = KnownBits::commonBits(Known, Known2);
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::VECTOR_SHUFFLE: {
 | 
						||
    ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
 | 
						||
 | 
						||
    // Collect demanded elements from shuffle operands..
 | 
						||
    APInt DemandedLHS(NumElts, 0);
 | 
						||
    APInt DemandedRHS(NumElts, 0);
 | 
						||
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						||
      if (!DemandedElts[i])
 | 
						||
        continue;
 | 
						||
      int M = ShuffleMask[i];
 | 
						||
      if (M < 0) {
 | 
						||
        // For UNDEF elements, we don't know anything about the common state of
 | 
						||
        // the shuffle result.
 | 
						||
        DemandedLHS.clearAllBits();
 | 
						||
        DemandedRHS.clearAllBits();
 | 
						||
        break;
 | 
						||
      }
 | 
						||
      assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
 | 
						||
      if (M < (int)NumElts)
 | 
						||
        DemandedLHS.setBit(M);
 | 
						||
      else
 | 
						||
        DemandedRHS.setBit(M - NumElts);
 | 
						||
    }
 | 
						||
 | 
						||
    if (!!DemandedLHS || !!DemandedRHS) {
 | 
						||
      SDValue Op0 = Op.getOperand(0);
 | 
						||
      SDValue Op1 = Op.getOperand(1);
 | 
						||
 | 
						||
      Known.Zero.setAllBits();
 | 
						||
      Known.One.setAllBits();
 | 
						||
      if (!!DemandedLHS) {
 | 
						||
        if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
 | 
						||
                                 Depth + 1))
 | 
						||
          return true;
 | 
						||
        Known = KnownBits::commonBits(Known, Known2);
 | 
						||
      }
 | 
						||
      if (!!DemandedRHS) {
 | 
						||
        if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
 | 
						||
                                 Depth + 1))
 | 
						||
          return true;
 | 
						||
        Known = KnownBits::commonBits(Known, Known2);
 | 
						||
      }
 | 
						||
 | 
						||
      // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
      SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | 
						||
          Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
 | 
						||
      SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | 
						||
          Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
 | 
						||
      if (DemandedOp0 || DemandedOp1) {
 | 
						||
        Op0 = DemandedOp0 ? DemandedOp0 : Op0;
 | 
						||
        Op1 = DemandedOp1 ? DemandedOp1 : Op1;
 | 
						||
        SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::AND: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
 | 
						||
    // If the RHS is a constant, check to see if the LHS would be zero without
 | 
						||
    // using the bits from the RHS.  Below, we use knowledge about the RHS to
 | 
						||
    // simplify the LHS, here we're using information from the LHS to simplify
 | 
						||
    // the RHS.
 | 
						||
    if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
 | 
						||
      // Do not increment Depth here; that can cause an infinite loop.
 | 
						||
      KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
 | 
						||
      // If the LHS already has zeros where RHSC does, this 'and' is dead.
 | 
						||
      if ((LHSKnown.Zero & DemandedBits) ==
 | 
						||
          (~RHSC->getAPIntValue() & DemandedBits))
 | 
						||
        return TLO.CombineTo(Op, Op0);
 | 
						||
 | 
						||
      // If any of the set bits in the RHS are known zero on the LHS, shrink
 | 
						||
      // the constant.
 | 
						||
      if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
 | 
						||
                                 DemandedElts, TLO))
 | 
						||
        return true;
 | 
						||
 | 
						||
      // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
 | 
						||
      // constant, but if this 'and' is only clearing bits that were just set by
 | 
						||
      // the xor, then this 'and' can be eliminated by shrinking the mask of
 | 
						||
      // the xor. For example, for a 32-bit X:
 | 
						||
      // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
 | 
						||
      if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
 | 
						||
          LHSKnown.One == ~RHSC->getAPIntValue()) {
 | 
						||
        SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
 | 
						||
        return TLO.CombineTo(Op, Xor);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
    if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
 | 
						||
                             Known2, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
 | 
						||
      SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | 
						||
          Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | 
						||
      SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | 
						||
          Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | 
						||
      if (DemandedOp0 || DemandedOp1) {
 | 
						||
        Op0 = DemandedOp0 ? DemandedOp0 : Op0;
 | 
						||
        Op1 = DemandedOp1 ? DemandedOp1 : Op1;
 | 
						||
        SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If all of the demanded bits are known one on one side, return the other.
 | 
						||
    // These bits cannot contribute to the result of the 'and'.
 | 
						||
    if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
 | 
						||
      return TLO.CombineTo(Op, Op0);
 | 
						||
    if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
 | 
						||
      return TLO.CombineTo(Op, Op1);
 | 
						||
    // If all of the demanded bits in the inputs are known zeros, return zero.
 | 
						||
    if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
 | 
						||
    // If the RHS is a constant, see if we can simplify it.
 | 
						||
    if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
 | 
						||
                               TLO))
 | 
						||
      return true;
 | 
						||
    // If the operation can be done in a smaller type, do so.
 | 
						||
    if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
 | 
						||
      return true;
 | 
						||
 | 
						||
    Known &= Known2;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::OR: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
 | 
						||
    if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
    if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
 | 
						||
                             Known2, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
 | 
						||
      SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | 
						||
          Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | 
						||
      SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | 
						||
          Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | 
						||
      if (DemandedOp0 || DemandedOp1) {
 | 
						||
        Op0 = DemandedOp0 ? DemandedOp0 : Op0;
 | 
						||
        Op1 = DemandedOp1 ? DemandedOp1 : Op1;
 | 
						||
        SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If all of the demanded bits are known zero on one side, return the other.
 | 
						||
    // These bits cannot contribute to the result of the 'or'.
 | 
						||
    if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
 | 
						||
      return TLO.CombineTo(Op, Op0);
 | 
						||
    if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
 | 
						||
      return TLO.CombineTo(Op, Op1);
 | 
						||
    // If the RHS is a constant, see if we can simplify it.
 | 
						||
    if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
 | 
						||
      return true;
 | 
						||
    // If the operation can be done in a smaller type, do so.
 | 
						||
    if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
 | 
						||
      return true;
 | 
						||
 | 
						||
    Known |= Known2;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::XOR: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
 | 
						||
    if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
    if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
 | 
						||
      SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | 
						||
          Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | 
						||
      SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | 
						||
          Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
 | 
						||
      if (DemandedOp0 || DemandedOp1) {
 | 
						||
        Op0 = DemandedOp0 ? DemandedOp0 : Op0;
 | 
						||
        Op1 = DemandedOp1 ? DemandedOp1 : Op1;
 | 
						||
        SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If all of the demanded bits are known zero on one side, return the other.
 | 
						||
    // These bits cannot contribute to the result of the 'xor'.
 | 
						||
    if (DemandedBits.isSubsetOf(Known.Zero))
 | 
						||
      return TLO.CombineTo(Op, Op0);
 | 
						||
    if (DemandedBits.isSubsetOf(Known2.Zero))
 | 
						||
      return TLO.CombineTo(Op, Op1);
 | 
						||
    // If the operation can be done in a smaller type, do so.
 | 
						||
    if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
 | 
						||
      return true;
 | 
						||
 | 
						||
    // If all of the unknown bits are known to be zero on one side or the other
 | 
						||
    // turn this into an *inclusive* or.
 | 
						||
    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | 
						||
    if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
 | 
						||
 | 
						||
    ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
 | 
						||
    if (C) {
 | 
						||
      // If one side is a constant, and all of the set bits in the constant are
 | 
						||
      // also known set on the other side, turn this into an AND, as we know
 | 
						||
      // the bits will be cleared.
 | 
						||
      //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | 
						||
      // NB: it is okay if more bits are known than are requested
 | 
						||
      if (C->getAPIntValue() == Known2.One) {
 | 
						||
        SDValue ANDC =
 | 
						||
            TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
 | 
						||
      }
 | 
						||
 | 
						||
      // If the RHS is a constant, see if we can change it. Don't alter a -1
 | 
						||
      // constant because that's a 'not' op, and that is better for combining
 | 
						||
      // and codegen.
 | 
						||
      if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
 | 
						||
        // We're flipping all demanded bits. Flip the undemanded bits too.
 | 
						||
        SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
 | 
						||
        return TLO.CombineTo(Op, New);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If we can't turn this into a 'not', try to shrink the constant.
 | 
						||
    if (!C || !C->isAllOnes())
 | 
						||
      if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
 | 
						||
        return true;
 | 
						||
 | 
						||
    Known ^= Known2;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::SELECT:
 | 
						||
    if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
    assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
 | 
						||
    // If the operands are constants, see if we can simplify them.
 | 
						||
    if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
 | 
						||
      return true;
 | 
						||
 | 
						||
    // Only known if known in both the LHS and RHS.
 | 
						||
    Known = KnownBits::commonBits(Known, Known2);
 | 
						||
    break;
 | 
						||
  case ISD::SELECT_CC:
 | 
						||
    if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
    assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
 | 
						||
    // If the operands are constants, see if we can simplify them.
 | 
						||
    if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
 | 
						||
      return true;
 | 
						||
 | 
						||
    // Only known if known in both the LHS and RHS.
 | 
						||
    Known = KnownBits::commonBits(Known, Known2);
 | 
						||
    break;
 | 
						||
  case ISD::SETCC: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
    ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						||
    // If (1) we only need the sign-bit, (2) the setcc operands are the same
 | 
						||
    // width as the setcc result, and (3) the result of a setcc conforms to 0 or
 | 
						||
    // -1, we may be able to bypass the setcc.
 | 
						||
    if (DemandedBits.isSignMask() &&
 | 
						||
        Op0.getScalarValueSizeInBits() == BitWidth &&
 | 
						||
        getBooleanContents(Op0.getValueType()) ==
 | 
						||
            BooleanContent::ZeroOrNegativeOneBooleanContent) {
 | 
						||
      // If we're testing X < 0, then this compare isn't needed - just use X!
 | 
						||
      // FIXME: We're limiting to integer types here, but this should also work
 | 
						||
      // if we don't care about FP signed-zero. The use of SETLT with FP means
 | 
						||
      // that we don't care about NaNs.
 | 
						||
      if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
 | 
						||
          (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
 | 
						||
        return TLO.CombineTo(Op, Op0);
 | 
						||
 | 
						||
      // TODO: Should we check for other forms of sign-bit comparisons?
 | 
						||
      // Examples: X <= -1, X >= 0
 | 
						||
    }
 | 
						||
    if (getBooleanContents(Op0.getValueType()) ==
 | 
						||
            TargetLowering::ZeroOrOneBooleanContent &&
 | 
						||
        BitWidth > 1)
 | 
						||
      Known.Zero.setBitsFrom(1);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::SHL: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
    EVT ShiftVT = Op1.getValueType();
 | 
						||
 | 
						||
    if (const APInt *SA =
 | 
						||
            TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
 | 
						||
      unsigned ShAmt = SA->getZExtValue();
 | 
						||
      if (ShAmt == 0)
 | 
						||
        return TLO.CombineTo(Op, Op0);
 | 
						||
 | 
						||
      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
 | 
						||
      // single shift.  We can do this if the bottom bits (which are shifted
 | 
						||
      // out) are never demanded.
 | 
						||
      // TODO - support non-uniform vector amounts.
 | 
						||
      if (Op0.getOpcode() == ISD::SRL) {
 | 
						||
        if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
 | 
						||
          if (const APInt *SA2 =
 | 
						||
                  TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
 | 
						||
            unsigned C1 = SA2->getZExtValue();
 | 
						||
            unsigned Opc = ISD::SHL;
 | 
						||
            int Diff = ShAmt - C1;
 | 
						||
            if (Diff < 0) {
 | 
						||
              Diff = -Diff;
 | 
						||
              Opc = ISD::SRL;
 | 
						||
            }
 | 
						||
            SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
 | 
						||
            return TLO.CombineTo(
 | 
						||
                Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
 | 
						||
      // are not demanded. This will likely allow the anyext to be folded away.
 | 
						||
      // TODO - support non-uniform vector amounts.
 | 
						||
      if (Op0.getOpcode() == ISD::ANY_EXTEND) {
 | 
						||
        SDValue InnerOp = Op0.getOperand(0);
 | 
						||
        EVT InnerVT = InnerOp.getValueType();
 | 
						||
        unsigned InnerBits = InnerVT.getScalarSizeInBits();
 | 
						||
        if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
 | 
						||
            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
 | 
						||
          EVT ShTy = getShiftAmountTy(InnerVT, DL);
 | 
						||
          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
 | 
						||
            ShTy = InnerVT;
 | 
						||
          SDValue NarrowShl =
 | 
						||
              TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
 | 
						||
                              TLO.DAG.getConstant(ShAmt, dl, ShTy));
 | 
						||
          return TLO.CombineTo(
 | 
						||
              Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
 | 
						||
        }
 | 
						||
 | 
						||
        // Repeat the SHL optimization above in cases where an extension
 | 
						||
        // intervenes: (shl (anyext (shr x, c1)), c2) to
 | 
						||
        // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
 | 
						||
        // aren't demanded (as above) and that the shifted upper c1 bits of
 | 
						||
        // x aren't demanded.
 | 
						||
        // TODO - support non-uniform vector amounts.
 | 
						||
        if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
 | 
						||
            InnerOp.hasOneUse()) {
 | 
						||
          if (const APInt *SA2 =
 | 
						||
                  TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
 | 
						||
            unsigned InnerShAmt = SA2->getZExtValue();
 | 
						||
            if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
 | 
						||
                DemandedBits.getActiveBits() <=
 | 
						||
                    (InnerBits - InnerShAmt + ShAmt) &&
 | 
						||
                DemandedBits.countTrailingZeros() >= ShAmt) {
 | 
						||
              SDValue NewSA =
 | 
						||
                  TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
 | 
						||
              SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
 | 
						||
                                               InnerOp.getOperand(0));
 | 
						||
              return TLO.CombineTo(
 | 
						||
                  Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
 | 
						||
            }
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      APInt InDemandedMask = DemandedBits.lshr(ShAmt);
 | 
						||
      if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
 | 
						||
                               Depth + 1))
 | 
						||
        return true;
 | 
						||
      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
      Known.Zero <<= ShAmt;
 | 
						||
      Known.One <<= ShAmt;
 | 
						||
      // low bits known zero.
 | 
						||
      Known.Zero.setLowBits(ShAmt);
 | 
						||
 | 
						||
      // Try shrinking the operation as long as the shift amount will still be
 | 
						||
      // in range.
 | 
						||
      if ((ShAmt < DemandedBits.getActiveBits()) &&
 | 
						||
          ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
 | 
						||
        return true;
 | 
						||
    }
 | 
						||
 | 
						||
    // If we are only demanding sign bits then we can use the shift source
 | 
						||
    // directly.
 | 
						||
    if (const APInt *MaxSA =
 | 
						||
            TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
 | 
						||
      unsigned ShAmt = MaxSA->getZExtValue();
 | 
						||
      unsigned NumSignBits =
 | 
						||
          TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
 | 
						||
      unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
 | 
						||
      if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
 | 
						||
        return TLO.CombineTo(Op, Op0);
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::SRL: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
    EVT ShiftVT = Op1.getValueType();
 | 
						||
 | 
						||
    if (const APInt *SA =
 | 
						||
            TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
 | 
						||
      unsigned ShAmt = SA->getZExtValue();
 | 
						||
      if (ShAmt == 0)
 | 
						||
        return TLO.CombineTo(Op, Op0);
 | 
						||
 | 
						||
      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
 | 
						||
      // single shift.  We can do this if the top bits (which are shifted out)
 | 
						||
      // are never demanded.
 | 
						||
      // TODO - support non-uniform vector amounts.
 | 
						||
      if (Op0.getOpcode() == ISD::SHL) {
 | 
						||
        if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
 | 
						||
          if (const APInt *SA2 =
 | 
						||
                  TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
 | 
						||
            unsigned C1 = SA2->getZExtValue();
 | 
						||
            unsigned Opc = ISD::SRL;
 | 
						||
            int Diff = ShAmt - C1;
 | 
						||
            if (Diff < 0) {
 | 
						||
              Diff = -Diff;
 | 
						||
              Opc = ISD::SHL;
 | 
						||
            }
 | 
						||
            SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
 | 
						||
            return TLO.CombineTo(
 | 
						||
                Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      APInt InDemandedMask = (DemandedBits << ShAmt);
 | 
						||
 | 
						||
      // If the shift is exact, then it does demand the low bits (and knows that
 | 
						||
      // they are zero).
 | 
						||
      if (Op->getFlags().hasExact())
 | 
						||
        InDemandedMask.setLowBits(ShAmt);
 | 
						||
 | 
						||
      // Compute the new bits that are at the top now.
 | 
						||
      if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
 | 
						||
                               Depth + 1))
 | 
						||
        return true;
 | 
						||
      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
      Known.Zero.lshrInPlace(ShAmt);
 | 
						||
      Known.One.lshrInPlace(ShAmt);
 | 
						||
      // High bits known zero.
 | 
						||
      Known.Zero.setHighBits(ShAmt);
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::SRA: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
    EVT ShiftVT = Op1.getValueType();
 | 
						||
 | 
						||
    // If we only want bits that already match the signbit then we don't need
 | 
						||
    // to shift.
 | 
						||
    unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
 | 
						||
    if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
 | 
						||
        NumHiDemandedBits)
 | 
						||
      return TLO.CombineTo(Op, Op0);
 | 
						||
 | 
						||
    // If this is an arithmetic shift right and only the low-bit is set, we can
 | 
						||
    // always convert this into a logical shr, even if the shift amount is
 | 
						||
    // variable.  The low bit of the shift cannot be an input sign bit unless
 | 
						||
    // the shift amount is >= the size of the datatype, which is undefined.
 | 
						||
    if (DemandedBits.isOne())
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
 | 
						||
 | 
						||
    if (const APInt *SA =
 | 
						||
            TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
 | 
						||
      unsigned ShAmt = SA->getZExtValue();
 | 
						||
      if (ShAmt == 0)
 | 
						||
        return TLO.CombineTo(Op, Op0);
 | 
						||
 | 
						||
      APInt InDemandedMask = (DemandedBits << ShAmt);
 | 
						||
 | 
						||
      // If the shift is exact, then it does demand the low bits (and knows that
 | 
						||
      // they are zero).
 | 
						||
      if (Op->getFlags().hasExact())
 | 
						||
        InDemandedMask.setLowBits(ShAmt);
 | 
						||
 | 
						||
      // If any of the demanded bits are produced by the sign extension, we also
 | 
						||
      // demand the input sign bit.
 | 
						||
      if (DemandedBits.countLeadingZeros() < ShAmt)
 | 
						||
        InDemandedMask.setSignBit();
 | 
						||
 | 
						||
      if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
 | 
						||
                               Depth + 1))
 | 
						||
        return true;
 | 
						||
      assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
      Known.Zero.lshrInPlace(ShAmt);
 | 
						||
      Known.One.lshrInPlace(ShAmt);
 | 
						||
 | 
						||
      // If the input sign bit is known to be zero, or if none of the top bits
 | 
						||
      // are demanded, turn this into an unsigned shift right.
 | 
						||
      if (Known.Zero[BitWidth - ShAmt - 1] ||
 | 
						||
          DemandedBits.countLeadingZeros() >= ShAmt) {
 | 
						||
        SDNodeFlags Flags;
 | 
						||
        Flags.setExact(Op->getFlags().hasExact());
 | 
						||
        return TLO.CombineTo(
 | 
						||
            Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
 | 
						||
      }
 | 
						||
 | 
						||
      int Log2 = DemandedBits.exactLogBase2();
 | 
						||
      if (Log2 >= 0) {
 | 
						||
        // The bit must come from the sign.
 | 
						||
        SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
 | 
						||
      }
 | 
						||
 | 
						||
      if (Known.One[BitWidth - ShAmt - 1])
 | 
						||
        // New bits are known one.
 | 
						||
        Known.One.setHighBits(ShAmt);
 | 
						||
 | 
						||
      // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
      if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
 | 
						||
        SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | 
						||
            Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
 | 
						||
        if (DemandedOp0) {
 | 
						||
          SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
 | 
						||
          return TLO.CombineTo(Op, NewOp);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::FSHL:
 | 
						||
  case ISD::FSHR: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
    SDValue Op2 = Op.getOperand(2);
 | 
						||
    bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
 | 
						||
 | 
						||
    if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
 | 
						||
      unsigned Amt = SA->getAPIntValue().urem(BitWidth);
 | 
						||
 | 
						||
      // For fshl, 0-shift returns the 1st arg.
 | 
						||
      // For fshr, 0-shift returns the 2nd arg.
 | 
						||
      if (Amt == 0) {
 | 
						||
        if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
 | 
						||
                                 Known, TLO, Depth + 1))
 | 
						||
          return true;
 | 
						||
        break;
 | 
						||
      }
 | 
						||
 | 
						||
      // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
 | 
						||
      // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
 | 
						||
      APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
 | 
						||
      APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
 | 
						||
      if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
 | 
						||
                               Depth + 1))
 | 
						||
        return true;
 | 
						||
      if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
 | 
						||
                               Depth + 1))
 | 
						||
        return true;
 | 
						||
 | 
						||
      Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
 | 
						||
      Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
 | 
						||
      Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
 | 
						||
      Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
 | 
						||
      Known.One |= Known2.One;
 | 
						||
      Known.Zero |= Known2.Zero;
 | 
						||
    }
 | 
						||
 | 
						||
    // For pow-2 bitwidths we only demand the bottom modulo amt bits.
 | 
						||
    if (isPowerOf2_32(BitWidth)) {
 | 
						||
      APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
 | 
						||
      if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
 | 
						||
                               Known2, TLO, Depth + 1))
 | 
						||
        return true;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::ROTL:
 | 
						||
  case ISD::ROTR: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
    bool IsROTL = (Op.getOpcode() == ISD::ROTL);
 | 
						||
 | 
						||
    // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
 | 
						||
    if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
 | 
						||
      return TLO.CombineTo(Op, Op0);
 | 
						||
 | 
						||
    if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
 | 
						||
      unsigned Amt = SA->getAPIntValue().urem(BitWidth);
 | 
						||
      unsigned RevAmt = BitWidth - Amt;
 | 
						||
 | 
						||
      // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
 | 
						||
      // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
 | 
						||
      APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
 | 
						||
      if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
 | 
						||
                               Depth + 1))
 | 
						||
        return true;
 | 
						||
 | 
						||
      // rot*(x, 0) --> x
 | 
						||
      if (Amt == 0)
 | 
						||
        return TLO.CombineTo(Op, Op0);
 | 
						||
 | 
						||
      // See if we don't demand either half of the rotated bits.
 | 
						||
      if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
 | 
						||
          DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
 | 
						||
        Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
 | 
						||
      }
 | 
						||
      if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
 | 
						||
          DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
 | 
						||
        Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // For pow-2 bitwidths we only demand the bottom modulo amt bits.
 | 
						||
    if (isPowerOf2_32(BitWidth)) {
 | 
						||
      APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
 | 
						||
      if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
 | 
						||
                               Depth + 1))
 | 
						||
        return true;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::UMIN: {
 | 
						||
    // Check if one arg is always less than (or equal) to the other arg.
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
    KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
 | 
						||
    KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
 | 
						||
    Known = KnownBits::umin(Known0, Known1);
 | 
						||
    if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
 | 
						||
      return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
 | 
						||
    if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
 | 
						||
      return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::UMAX: {
 | 
						||
    // Check if one arg is always greater than (or equal) to the other arg.
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
    KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
 | 
						||
    KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
 | 
						||
    Known = KnownBits::umax(Known0, Known1);
 | 
						||
    if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
 | 
						||
      return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
 | 
						||
    if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
 | 
						||
      return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::BITREVERSE: {
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    APInt DemandedSrcBits = DemandedBits.reverseBits();
 | 
						||
    if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    Known.One = Known2.One.reverseBits();
 | 
						||
    Known.Zero = Known2.Zero.reverseBits();
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::BSWAP: {
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
 | 
						||
    // If the only bits demanded come from one byte of the bswap result,
 | 
						||
    // just shift the input byte into position to eliminate the bswap.
 | 
						||
    unsigned NLZ = DemandedBits.countLeadingZeros();
 | 
						||
    unsigned NTZ = DemandedBits.countTrailingZeros();
 | 
						||
 | 
						||
    // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
 | 
						||
    // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
 | 
						||
    // have 14 leading zeros, round to 8.
 | 
						||
    NLZ &= ~7;
 | 
						||
    NTZ &= ~7;
 | 
						||
    // If we need exactly one byte, we can do this transformation.
 | 
						||
    if (BitWidth - NLZ - NTZ == 8) {
 | 
						||
      unsigned ResultBit = NTZ;
 | 
						||
      unsigned InputBit = BitWidth - NTZ - 8;
 | 
						||
 | 
						||
      // Replace this with either a left or right shift to get the byte into
 | 
						||
      // the right place.
 | 
						||
      unsigned ShiftOpcode = InputBit > ResultBit ? ISD::SRL : ISD::SHL;
 | 
						||
      if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
 | 
						||
        EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
 | 
						||
        unsigned ShiftAmount =
 | 
						||
            InputBit > ResultBit ? InputBit - ResultBit : ResultBit - InputBit;
 | 
						||
        SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
 | 
						||
        SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    APInt DemandedSrcBits = DemandedBits.byteSwap();
 | 
						||
    if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    Known.One = Known2.One.byteSwap();
 | 
						||
    Known.Zero = Known2.Zero.byteSwap();
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::CTPOP: {
 | 
						||
    // If only 1 bit is demanded, replace with PARITY as long as we're before
 | 
						||
    // op legalization.
 | 
						||
    // FIXME: Limit to scalars for now.
 | 
						||
    if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
 | 
						||
                                               Op.getOperand(0)));
 | 
						||
 | 
						||
    Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::SIGN_EXTEND_INREG: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | 
						||
    unsigned ExVTBits = ExVT.getScalarSizeInBits();
 | 
						||
 | 
						||
    // If we only care about the highest bit, don't bother shifting right.
 | 
						||
    if (DemandedBits.isSignMask()) {
 | 
						||
      unsigned MinSignedBits =
 | 
						||
          TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
 | 
						||
      bool AlreadySignExtended = ExVTBits >= MinSignedBits;
 | 
						||
      // However if the input is already sign extended we expect the sign
 | 
						||
      // extension to be dropped altogether later and do not simplify.
 | 
						||
      if (!AlreadySignExtended) {
 | 
						||
        // Compute the correct shift amount type, which must be getShiftAmountTy
 | 
						||
        // for scalar types after legalization.
 | 
						||
        SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
 | 
						||
                                               getShiftAmountTy(VT, DL));
 | 
						||
        return TLO.CombineTo(Op,
 | 
						||
                             TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If none of the extended bits are demanded, eliminate the sextinreg.
 | 
						||
    if (DemandedBits.getActiveBits() <= ExVTBits)
 | 
						||
      return TLO.CombineTo(Op, Op0);
 | 
						||
 | 
						||
    APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
 | 
						||
 | 
						||
    // Since the sign extended bits are demanded, we know that the sign
 | 
						||
    // bit is demanded.
 | 
						||
    InputDemandedBits.setBit(ExVTBits - 1);
 | 
						||
 | 
						||
    if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
 | 
						||
    // If the sign bit of the input is known set or clear, then we know the
 | 
						||
    // top bits of the result.
 | 
						||
 | 
						||
    // If the input sign bit is known zero, convert this into a zero extension.
 | 
						||
    if (Known.Zero[ExVTBits - 1])
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
 | 
						||
 | 
						||
    APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
 | 
						||
    if (Known.One[ExVTBits - 1]) { // Input sign bit known set
 | 
						||
      Known.One.setBitsFrom(ExVTBits);
 | 
						||
      Known.Zero &= Mask;
 | 
						||
    } else { // Input sign bit unknown
 | 
						||
      Known.Zero &= Mask;
 | 
						||
      Known.One &= Mask;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::BUILD_PAIR: {
 | 
						||
    EVT HalfVT = Op.getOperand(0).getValueType();
 | 
						||
    unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
 | 
						||
 | 
						||
    APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
 | 
						||
    APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
 | 
						||
 | 
						||
    KnownBits KnownLo, KnownHi;
 | 
						||
 | 
						||
    if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    Known.Zero = KnownLo.Zero.zext(BitWidth) |
 | 
						||
                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
 | 
						||
 | 
						||
    Known.One = KnownLo.One.zext(BitWidth) |
 | 
						||
                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::ZERO_EXTEND:
 | 
						||
  case ISD::ZERO_EXTEND_VECTOR_INREG: {
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    EVT SrcVT = Src.getValueType();
 | 
						||
    unsigned InBits = SrcVT.getScalarSizeInBits();
 | 
						||
    unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
 | 
						||
    bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
 | 
						||
 | 
						||
    // If none of the top bits are demanded, convert this into an any_extend.
 | 
						||
    if (DemandedBits.getActiveBits() <= InBits) {
 | 
						||
      // If we only need the non-extended bits of the bottom element
 | 
						||
      // then we can just bitcast to the result.
 | 
						||
      if (IsLE && IsVecInReg && DemandedElts == 1 &&
 | 
						||
          VT.getSizeInBits() == SrcVT.getSizeInBits())
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
 | 
						||
 | 
						||
      unsigned Opc =
 | 
						||
          IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
 | 
						||
      if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
 | 
						||
    }
 | 
						||
 | 
						||
    APInt InDemandedBits = DemandedBits.trunc(InBits);
 | 
						||
    APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
 | 
						||
    if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
    assert(Known.getBitWidth() == InBits && "Src width has changed?");
 | 
						||
    Known = Known.zext(BitWidth);
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
 | 
						||
            Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::SIGN_EXTEND:
 | 
						||
  case ISD::SIGN_EXTEND_VECTOR_INREG: {
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    EVT SrcVT = Src.getValueType();
 | 
						||
    unsigned InBits = SrcVT.getScalarSizeInBits();
 | 
						||
    unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
 | 
						||
    bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
 | 
						||
 | 
						||
    // If none of the top bits are demanded, convert this into an any_extend.
 | 
						||
    if (DemandedBits.getActiveBits() <= InBits) {
 | 
						||
      // If we only need the non-extended bits of the bottom element
 | 
						||
      // then we can just bitcast to the result.
 | 
						||
      if (IsLE && IsVecInReg && DemandedElts == 1 &&
 | 
						||
          VT.getSizeInBits() == SrcVT.getSizeInBits())
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
 | 
						||
 | 
						||
      unsigned Opc =
 | 
						||
          IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
 | 
						||
      if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
 | 
						||
    }
 | 
						||
 | 
						||
    APInt InDemandedBits = DemandedBits.trunc(InBits);
 | 
						||
    APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
 | 
						||
 | 
						||
    // Since some of the sign extended bits are demanded, we know that the sign
 | 
						||
    // bit is demanded.
 | 
						||
    InDemandedBits.setBit(InBits - 1);
 | 
						||
 | 
						||
    if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
    assert(Known.getBitWidth() == InBits && "Src width has changed?");
 | 
						||
 | 
						||
    // If the sign bit is known one, the top bits match.
 | 
						||
    Known = Known.sext(BitWidth);
 | 
						||
 | 
						||
    // If the sign bit is known zero, convert this to a zero extend.
 | 
						||
    if (Known.isNonNegative()) {
 | 
						||
      unsigned Opc =
 | 
						||
          IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
 | 
						||
      if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
 | 
						||
    }
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
 | 
						||
            Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::ANY_EXTEND:
 | 
						||
  case ISD::ANY_EXTEND_VECTOR_INREG: {
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    EVT SrcVT = Src.getValueType();
 | 
						||
    unsigned InBits = SrcVT.getScalarSizeInBits();
 | 
						||
    unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
 | 
						||
    bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
 | 
						||
 | 
						||
    // If we only need the bottom element then we can just bitcast.
 | 
						||
    // TODO: Handle ANY_EXTEND?
 | 
						||
    if (IsLE && IsVecInReg && DemandedElts == 1 &&
 | 
						||
        VT.getSizeInBits() == SrcVT.getSizeInBits())
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
 | 
						||
 | 
						||
    APInt InDemandedBits = DemandedBits.trunc(InBits);
 | 
						||
    APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
 | 
						||
    if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
    assert(Known.getBitWidth() == InBits && "Src width has changed?");
 | 
						||
    Known = Known.anyext(BitWidth);
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
 | 
						||
            Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::TRUNCATE: {
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
 | 
						||
    // Simplify the input, using demanded bit information, and compute the known
 | 
						||
    // zero/one bits live out.
 | 
						||
    unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
 | 
						||
    APInt TruncMask = DemandedBits.zext(OperandBitWidth);
 | 
						||
    if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
    Known = Known.trunc(BitWidth);
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
 | 
						||
            Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
 | 
						||
 | 
						||
    // If the input is only used by this truncate, see if we can shrink it based
 | 
						||
    // on the known demanded bits.
 | 
						||
    if (Src.getNode()->hasOneUse()) {
 | 
						||
      switch (Src.getOpcode()) {
 | 
						||
      default:
 | 
						||
        break;
 | 
						||
      case ISD::SRL:
 | 
						||
        // Shrink SRL by a constant if none of the high bits shifted in are
 | 
						||
        // demanded.
 | 
						||
        if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
 | 
						||
          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
 | 
						||
          // undesirable.
 | 
						||
          break;
 | 
						||
 | 
						||
        const APInt *ShAmtC =
 | 
						||
            TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
 | 
						||
        if (!ShAmtC || ShAmtC->uge(BitWidth))
 | 
						||
          break;
 | 
						||
        uint64_t ShVal = ShAmtC->getZExtValue();
 | 
						||
 | 
						||
        APInt HighBits =
 | 
						||
            APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
 | 
						||
        HighBits.lshrInPlace(ShVal);
 | 
						||
        HighBits = HighBits.trunc(BitWidth);
 | 
						||
 | 
						||
        if (!(HighBits & DemandedBits)) {
 | 
						||
          // None of the shifted in bits are needed.  Add a truncate of the
 | 
						||
          // shift input, then shift it.
 | 
						||
          SDValue NewShAmt = TLO.DAG.getConstant(
 | 
						||
              ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
 | 
						||
          SDValue NewTrunc =
 | 
						||
              TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
 | 
						||
          return TLO.CombineTo(
 | 
						||
              Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
 | 
						||
        }
 | 
						||
        break;
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::AssertZext: {
 | 
						||
    // AssertZext demands all of the high bits, plus any of the low bits
 | 
						||
    // demanded by its users.
 | 
						||
    EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
 | 
						||
    APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
 | 
						||
    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
 | 
						||
                             TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
    assert(!Known.hasConflict() && "Bits known to be one AND zero?");
 | 
						||
 | 
						||
    Known.Zero |= ~InMask;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::EXTRACT_VECTOR_ELT: {
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    SDValue Idx = Op.getOperand(1);
 | 
						||
    ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
 | 
						||
    unsigned EltBitWidth = Src.getScalarValueSizeInBits();
 | 
						||
 | 
						||
    if (SrcEltCnt.isScalable())
 | 
						||
      return false;
 | 
						||
 | 
						||
    // Demand the bits from every vector element without a constant index.
 | 
						||
    unsigned NumSrcElts = SrcEltCnt.getFixedValue();
 | 
						||
    APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
 | 
						||
    if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
 | 
						||
      if (CIdx->getAPIntValue().ult(NumSrcElts))
 | 
						||
        DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
 | 
						||
 | 
						||
    // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
 | 
						||
    // anything about the extended bits.
 | 
						||
    APInt DemandedSrcBits = DemandedBits;
 | 
						||
    if (BitWidth > EltBitWidth)
 | 
						||
      DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
 | 
						||
 | 
						||
    if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
 | 
						||
                             Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
 | 
						||
      if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
 | 
						||
              Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
 | 
						||
        SDValue NewOp =
 | 
						||
            TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    Known = Known2;
 | 
						||
    if (BitWidth > EltBitWidth)
 | 
						||
      Known = Known.anyext(BitWidth);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::BITCAST: {
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    EVT SrcVT = Src.getValueType();
 | 
						||
    unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
 | 
						||
 | 
						||
    // If this is an FP->Int bitcast and if the sign bit is the only
 | 
						||
    // thing demanded, turn this into a FGETSIGN.
 | 
						||
    if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
 | 
						||
        DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
 | 
						||
        SrcVT.isFloatingPoint()) {
 | 
						||
      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
 | 
						||
      bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
 | 
						||
      if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
 | 
						||
          SrcVT != MVT::f128) {
 | 
						||
        // Cannot eliminate/lower SHL for f128 yet.
 | 
						||
        EVT Ty = OpVTLegal ? VT : MVT::i32;
 | 
						||
        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
 | 
						||
        // place.  We expect the SHL to be eliminated by other optimizations.
 | 
						||
        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
 | 
						||
        unsigned OpVTSizeInBits = Op.getValueSizeInBits();
 | 
						||
        if (!OpVTLegal && OpVTSizeInBits > 32)
 | 
						||
          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
 | 
						||
        unsigned ShVal = Op.getValueSizeInBits() - 1;
 | 
						||
        SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
 | 
						||
        return TLO.CombineTo(Op,
 | 
						||
                             TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
 | 
						||
    // Demand the elt/bit if any of the original elts/bits are demanded.
 | 
						||
    if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
 | 
						||
      unsigned Scale = BitWidth / NumSrcEltBits;
 | 
						||
      unsigned NumSrcElts = SrcVT.getVectorNumElements();
 | 
						||
      APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
 | 
						||
      APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
 | 
						||
      for (unsigned i = 0; i != Scale; ++i) {
 | 
						||
        unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
 | 
						||
        unsigned BitOffset = EltOffset * NumSrcEltBits;
 | 
						||
        APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
 | 
						||
        if (!Sub.isZero()) {
 | 
						||
          DemandedSrcBits |= Sub;
 | 
						||
          for (unsigned j = 0; j != NumElts; ++j)
 | 
						||
            if (DemandedElts[j])
 | 
						||
              DemandedSrcElts.setBit((j * Scale) + i);
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      APInt KnownSrcUndef, KnownSrcZero;
 | 
						||
      if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
 | 
						||
                                     KnownSrcZero, TLO, Depth + 1))
 | 
						||
        return true;
 | 
						||
 | 
						||
      KnownBits KnownSrcBits;
 | 
						||
      if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
 | 
						||
                               KnownSrcBits, TLO, Depth + 1))
 | 
						||
        return true;
 | 
						||
    } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
 | 
						||
      // TODO - bigendian once we have test coverage.
 | 
						||
      unsigned Scale = NumSrcEltBits / BitWidth;
 | 
						||
      unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
 | 
						||
      APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
 | 
						||
      APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
 | 
						||
      for (unsigned i = 0; i != NumElts; ++i)
 | 
						||
        if (DemandedElts[i]) {
 | 
						||
          unsigned Offset = (i % Scale) * BitWidth;
 | 
						||
          DemandedSrcBits.insertBits(DemandedBits, Offset);
 | 
						||
          DemandedSrcElts.setBit(i / Scale);
 | 
						||
        }
 | 
						||
 | 
						||
      if (SrcVT.isVector()) {
 | 
						||
        APInt KnownSrcUndef, KnownSrcZero;
 | 
						||
        if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
 | 
						||
                                       KnownSrcZero, TLO, Depth + 1))
 | 
						||
          return true;
 | 
						||
      }
 | 
						||
 | 
						||
      KnownBits KnownSrcBits;
 | 
						||
      if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
 | 
						||
                               KnownSrcBits, TLO, Depth + 1))
 | 
						||
        return true;
 | 
						||
    }
 | 
						||
 | 
						||
    // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
 | 
						||
    // recursive call where Known may be useful to the caller.
 | 
						||
    if (Depth > 0) {
 | 
						||
      Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | 
						||
      return false;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::ADD:
 | 
						||
  case ISD::MUL:
 | 
						||
  case ISD::SUB: {
 | 
						||
    // Add, Sub, and Mul don't demand any bits in positions beyond that
 | 
						||
    // of the highest bit demanded of them.
 | 
						||
    SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
 | 
						||
    SDNodeFlags Flags = Op.getNode()->getFlags();
 | 
						||
    unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
 | 
						||
    APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
 | 
						||
    if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
 | 
						||
                             Depth + 1) ||
 | 
						||
        SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
 | 
						||
                             Depth + 1) ||
 | 
						||
        // See if the operation should be performed at a smaller bit width.
 | 
						||
        ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
 | 
						||
      if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
 | 
						||
        // Disable the nsw and nuw flags. We can no longer guarantee that we
 | 
						||
        // won't wrap after simplification.
 | 
						||
        Flags.setNoSignedWrap(false);
 | 
						||
        Flags.setNoUnsignedWrap(false);
 | 
						||
        SDValue NewOp =
 | 
						||
            TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
      return true;
 | 
						||
    }
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
 | 
						||
      SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
 | 
						||
          Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
 | 
						||
      SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
 | 
						||
          Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
 | 
						||
      if (DemandedOp0 || DemandedOp1) {
 | 
						||
        Flags.setNoSignedWrap(false);
 | 
						||
        Flags.setNoUnsignedWrap(false);
 | 
						||
        Op0 = DemandedOp0 ? DemandedOp0 : Op0;
 | 
						||
        Op1 = DemandedOp1 ? DemandedOp1 : Op1;
 | 
						||
        SDValue NewOp =
 | 
						||
            TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If we have a constant operand, we may be able to turn it into -1 if we
 | 
						||
    // do not demand the high bits. This can make the constant smaller to
 | 
						||
    // encode, allow more general folding, or match specialized instruction
 | 
						||
    // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
 | 
						||
    // is probably not useful (and could be detrimental).
 | 
						||
    ConstantSDNode *C = isConstOrConstSplat(Op1);
 | 
						||
    APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
 | 
						||
    if (C && !C->isAllOnes() && !C->isOne() &&
 | 
						||
        (C->getAPIntValue() | HighMask).isAllOnes()) {
 | 
						||
      SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
 | 
						||
      // Disable the nsw and nuw flags. We can no longer guarantee that we
 | 
						||
      // won't wrap after simplification.
 | 
						||
      Flags.setNoSignedWrap(false);
 | 
						||
      Flags.setNoUnsignedWrap(false);
 | 
						||
      SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
 | 
						||
      return TLO.CombineTo(Op, NewOp);
 | 
						||
    }
 | 
						||
 | 
						||
    LLVM_FALLTHROUGH;
 | 
						||
  }
 | 
						||
  default:
 | 
						||
    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
 | 
						||
      if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
 | 
						||
                                            Known, TLO, Depth))
 | 
						||
        return true;
 | 
						||
      break;
 | 
						||
    }
 | 
						||
 | 
						||
    // Just use computeKnownBits to compute output bits.
 | 
						||
    Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
 | 
						||
  // If we know the value of all of the demanded bits, return this as a
 | 
						||
  // constant.
 | 
						||
  if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
 | 
						||
    // Avoid folding to a constant if any OpaqueConstant is involved.
 | 
						||
    const SDNode *N = Op.getNode();
 | 
						||
    for (SDNode *Op :
 | 
						||
         llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
 | 
						||
      if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
 | 
						||
        if (C->isOpaque())
 | 
						||
          return false;
 | 
						||
    }
 | 
						||
    if (VT.isInteger())
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
 | 
						||
    if (VT.isFloatingPoint())
 | 
						||
      return TLO.CombineTo(
 | 
						||
          Op,
 | 
						||
          TLO.DAG.getConstantFP(
 | 
						||
              APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
 | 
						||
  }
 | 
						||
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
 | 
						||
                                                const APInt &DemandedElts,
 | 
						||
                                                APInt &KnownUndef,
 | 
						||
                                                APInt &KnownZero,
 | 
						||
                                                DAGCombinerInfo &DCI) const {
 | 
						||
  SelectionDAG &DAG = DCI.DAG;
 | 
						||
  TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
 | 
						||
                        !DCI.isBeforeLegalizeOps());
 | 
						||
 | 
						||
  bool Simplified =
 | 
						||
      SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
 | 
						||
  if (Simplified) {
 | 
						||
    DCI.AddToWorklist(Op.getNode());
 | 
						||
    DCI.CommitTargetLoweringOpt(TLO);
 | 
						||
  }
 | 
						||
 | 
						||
  return Simplified;
 | 
						||
}
 | 
						||
 | 
						||
/// Given a vector binary operation and known undefined elements for each input
 | 
						||
/// operand, compute whether each element of the output is undefined.
 | 
						||
static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
 | 
						||
                                         const APInt &UndefOp0,
 | 
						||
                                         const APInt &UndefOp1) {
 | 
						||
  EVT VT = BO.getValueType();
 | 
						||
  assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
 | 
						||
         "Vector binop only");
 | 
						||
 | 
						||
  EVT EltVT = VT.getVectorElementType();
 | 
						||
  unsigned NumElts = VT.getVectorNumElements();
 | 
						||
  assert(UndefOp0.getBitWidth() == NumElts &&
 | 
						||
         UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
 | 
						||
 | 
						||
  auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
 | 
						||
                                   const APInt &UndefVals) {
 | 
						||
    if (UndefVals[Index])
 | 
						||
      return DAG.getUNDEF(EltVT);
 | 
						||
 | 
						||
    if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
 | 
						||
      // Try hard to make sure that the getNode() call is not creating temporary
 | 
						||
      // nodes. Ignore opaque integers because they do not constant fold.
 | 
						||
      SDValue Elt = BV->getOperand(Index);
 | 
						||
      auto *C = dyn_cast<ConstantSDNode>(Elt);
 | 
						||
      if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
 | 
						||
        return Elt;
 | 
						||
    }
 | 
						||
 | 
						||
    return SDValue();
 | 
						||
  };
 | 
						||
 | 
						||
  APInt KnownUndef = APInt::getZero(NumElts);
 | 
						||
  for (unsigned i = 0; i != NumElts; ++i) {
 | 
						||
    // If both inputs for this element are either constant or undef and match
 | 
						||
    // the element type, compute the constant/undef result for this element of
 | 
						||
    // the vector.
 | 
						||
    // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
 | 
						||
    // not handle FP constants. The code within getNode() should be refactored
 | 
						||
    // to avoid the danger of creating a bogus temporary node here.
 | 
						||
    SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
 | 
						||
    SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
 | 
						||
    if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
 | 
						||
      if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
 | 
						||
        KnownUndef.setBit(i);
 | 
						||
  }
 | 
						||
  return KnownUndef;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::SimplifyDemandedVectorElts(
 | 
						||
    SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
 | 
						||
    APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
 | 
						||
    bool AssumeSingleUse) const {
 | 
						||
  EVT VT = Op.getValueType();
 | 
						||
  unsigned Opcode = Op.getOpcode();
 | 
						||
  APInt DemandedElts = OriginalDemandedElts;
 | 
						||
  unsigned NumElts = DemandedElts.getBitWidth();
 | 
						||
  assert(VT.isVector() && "Expected vector op");
 | 
						||
 | 
						||
  KnownUndef = KnownZero = APInt::getZero(NumElts);
 | 
						||
 | 
						||
  // TODO: For now we assume we know nothing about scalable vectors.
 | 
						||
  if (VT.isScalableVector())
 | 
						||
    return false;
 | 
						||
 | 
						||
  assert(VT.getVectorNumElements() == NumElts &&
 | 
						||
         "Mask size mismatches value type element count!");
 | 
						||
 | 
						||
  // Undef operand.
 | 
						||
  if (Op.isUndef()) {
 | 
						||
    KnownUndef.setAllBits();
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
 | 
						||
  // If Op has other users, assume that all elements are needed.
 | 
						||
  if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
 | 
						||
    DemandedElts.setAllBits();
 | 
						||
 | 
						||
  // Not demanding any elements from Op.
 | 
						||
  if (DemandedElts == 0) {
 | 
						||
    KnownUndef.setAllBits();
 | 
						||
    return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
 | 
						||
  }
 | 
						||
 | 
						||
  // Limit search depth.
 | 
						||
  if (Depth >= SelectionDAG::MaxRecursionDepth)
 | 
						||
    return false;
 | 
						||
 | 
						||
  SDLoc DL(Op);
 | 
						||
  unsigned EltSizeInBits = VT.getScalarSizeInBits();
 | 
						||
  bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
 | 
						||
 | 
						||
  // Helper for demanding the specified elements and all the bits of both binary
 | 
						||
  // operands.
 | 
						||
  auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
 | 
						||
    SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
 | 
						||
                                                           TLO.DAG, Depth + 1);
 | 
						||
    SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
 | 
						||
                                                           TLO.DAG, Depth + 1);
 | 
						||
    if (NewOp0 || NewOp1) {
 | 
						||
      SDValue NewOp = TLO.DAG.getNode(
 | 
						||
          Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
 | 
						||
      return TLO.CombineTo(Op, NewOp);
 | 
						||
    }
 | 
						||
    return false;
 | 
						||
  };
 | 
						||
 | 
						||
  switch (Opcode) {
 | 
						||
  case ISD::SCALAR_TO_VECTOR: {
 | 
						||
    if (!DemandedElts[0]) {
 | 
						||
      KnownUndef.setAllBits();
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
 | 
						||
    }
 | 
						||
    SDValue ScalarSrc = Op.getOperand(0);
 | 
						||
    if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
 | 
						||
      SDValue Src = ScalarSrc.getOperand(0);
 | 
						||
      SDValue Idx = ScalarSrc.getOperand(1);
 | 
						||
      EVT SrcVT = Src.getValueType();
 | 
						||
 | 
						||
      ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
 | 
						||
 | 
						||
      if (SrcEltCnt.isScalable())
 | 
						||
        return false;
 | 
						||
 | 
						||
      unsigned NumSrcElts = SrcEltCnt.getFixedValue();
 | 
						||
      if (isNullConstant(Idx)) {
 | 
						||
        APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
 | 
						||
        APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
 | 
						||
        APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
 | 
						||
        if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
 | 
						||
                                       TLO, Depth + 1))
 | 
						||
          return true;
 | 
						||
      }
 | 
						||
    }
 | 
						||
    KnownUndef.setHighBits(NumElts - 1);
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::BITCAST: {
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    EVT SrcVT = Src.getValueType();
 | 
						||
 | 
						||
    // We only handle vectors here.
 | 
						||
    // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
 | 
						||
    if (!SrcVT.isVector())
 | 
						||
      break;
 | 
						||
 | 
						||
    // Fast handling of 'identity' bitcasts.
 | 
						||
    unsigned NumSrcElts = SrcVT.getVectorNumElements();
 | 
						||
    if (NumSrcElts == NumElts)
 | 
						||
      return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
 | 
						||
                                        KnownZero, TLO, Depth + 1);
 | 
						||
 | 
						||
    APInt SrcDemandedElts, SrcZero, SrcUndef;
 | 
						||
 | 
						||
    // Bitcast from 'large element' src vector to 'small element' vector, we
 | 
						||
    // must demand a source element if any DemandedElt maps to it.
 | 
						||
    if ((NumElts % NumSrcElts) == 0) {
 | 
						||
      unsigned Scale = NumElts / NumSrcElts;
 | 
						||
      SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
 | 
						||
      if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
 | 
						||
                                     TLO, Depth + 1))
 | 
						||
        return true;
 | 
						||
 | 
						||
      // Try calling SimplifyDemandedBits, converting demanded elts to the bits
 | 
						||
      // of the large element.
 | 
						||
      // TODO - bigendian once we have test coverage.
 | 
						||
      if (IsLE) {
 | 
						||
        unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
 | 
						||
        APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
 | 
						||
        for (unsigned i = 0; i != NumElts; ++i)
 | 
						||
          if (DemandedElts[i]) {
 | 
						||
            unsigned Ofs = (i % Scale) * EltSizeInBits;
 | 
						||
            SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
 | 
						||
          }
 | 
						||
 | 
						||
        KnownBits Known;
 | 
						||
        if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
 | 
						||
                                 TLO, Depth + 1))
 | 
						||
          return true;
 | 
						||
      }
 | 
						||
 | 
						||
      // If the src element is zero/undef then all the output elements will be -
 | 
						||
      // only demanded elements are guaranteed to be correct.
 | 
						||
      for (unsigned i = 0; i != NumSrcElts; ++i) {
 | 
						||
        if (SrcDemandedElts[i]) {
 | 
						||
          if (SrcZero[i])
 | 
						||
            KnownZero.setBits(i * Scale, (i + 1) * Scale);
 | 
						||
          if (SrcUndef[i])
 | 
						||
            KnownUndef.setBits(i * Scale, (i + 1) * Scale);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // Bitcast from 'small element' src vector to 'large element' vector, we
 | 
						||
    // demand all smaller source elements covered by the larger demanded element
 | 
						||
    // of this vector.
 | 
						||
    if ((NumSrcElts % NumElts) == 0) {
 | 
						||
      unsigned Scale = NumSrcElts / NumElts;
 | 
						||
      SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
 | 
						||
      if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
 | 
						||
                                     TLO, Depth + 1))
 | 
						||
        return true;
 | 
						||
 | 
						||
      // If all the src elements covering an output element are zero/undef, then
 | 
						||
      // the output element will be as well, assuming it was demanded.
 | 
						||
      for (unsigned i = 0; i != NumElts; ++i) {
 | 
						||
        if (DemandedElts[i]) {
 | 
						||
          if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
 | 
						||
            KnownZero.setBit(i);
 | 
						||
          if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
 | 
						||
            KnownUndef.setBit(i);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::BUILD_VECTOR: {
 | 
						||
    // Check all elements and simplify any unused elements with UNDEF.
 | 
						||
    if (!DemandedElts.isAllOnes()) {
 | 
						||
      // Don't simplify BROADCASTS.
 | 
						||
      if (llvm::any_of(Op->op_values(),
 | 
						||
                       [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
 | 
						||
        SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
 | 
						||
        bool Updated = false;
 | 
						||
        for (unsigned i = 0; i != NumElts; ++i) {
 | 
						||
          if (!DemandedElts[i] && !Ops[i].isUndef()) {
 | 
						||
            Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
 | 
						||
            KnownUndef.setBit(i);
 | 
						||
            Updated = true;
 | 
						||
          }
 | 
						||
        }
 | 
						||
        if (Updated)
 | 
						||
          return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
 | 
						||
      }
 | 
						||
    }
 | 
						||
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						||
      SDValue SrcOp = Op.getOperand(i);
 | 
						||
      if (SrcOp.isUndef()) {
 | 
						||
        KnownUndef.setBit(i);
 | 
						||
      } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
 | 
						||
                 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
 | 
						||
        KnownZero.setBit(i);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::CONCAT_VECTORS: {
 | 
						||
    EVT SubVT = Op.getOperand(0).getValueType();
 | 
						||
    unsigned NumSubVecs = Op.getNumOperands();
 | 
						||
    unsigned NumSubElts = SubVT.getVectorNumElements();
 | 
						||
    for (unsigned i = 0; i != NumSubVecs; ++i) {
 | 
						||
      SDValue SubOp = Op.getOperand(i);
 | 
						||
      APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
 | 
						||
      APInt SubUndef, SubZero;
 | 
						||
      if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
 | 
						||
                                     Depth + 1))
 | 
						||
        return true;
 | 
						||
      KnownUndef.insertBits(SubUndef, i * NumSubElts);
 | 
						||
      KnownZero.insertBits(SubZero, i * NumSubElts);
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::INSERT_SUBVECTOR: {
 | 
						||
    // Demand any elements from the subvector and the remainder from the src its
 | 
						||
    // inserted into.
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    SDValue Sub = Op.getOperand(1);
 | 
						||
    uint64_t Idx = Op.getConstantOperandVal(2);
 | 
						||
    unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
 | 
						||
    APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
 | 
						||
    APInt DemandedSrcElts = DemandedElts;
 | 
						||
    DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
 | 
						||
 | 
						||
    APInt SubUndef, SubZero;
 | 
						||
    if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
 | 
						||
                                   Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    // If none of the src operand elements are demanded, replace it with undef.
 | 
						||
    if (!DemandedSrcElts && !Src.isUndef())
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
 | 
						||
                                               TLO.DAG.getUNDEF(VT), Sub,
 | 
						||
                                               Op.getOperand(2)));
 | 
						||
 | 
						||
    if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
 | 
						||
                                   TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
    KnownUndef.insertBits(SubUndef, Idx);
 | 
						||
    KnownZero.insertBits(SubZero, Idx);
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
 | 
						||
      SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
 | 
						||
          Src, DemandedSrcElts, TLO.DAG, Depth + 1);
 | 
						||
      SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
 | 
						||
          Sub, DemandedSubElts, TLO.DAG, Depth + 1);
 | 
						||
      if (NewSrc || NewSub) {
 | 
						||
        NewSrc = NewSrc ? NewSrc : Src;
 | 
						||
        NewSub = NewSub ? NewSub : Sub;
 | 
						||
        SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
 | 
						||
                                        NewSub, Op.getOperand(2));
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::EXTRACT_SUBVECTOR: {
 | 
						||
    // Offset the demanded elts by the subvector index.
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    if (Src.getValueType().isScalableVector())
 | 
						||
      break;
 | 
						||
    uint64_t Idx = Op.getConstantOperandVal(1);
 | 
						||
    unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
 | 
						||
    APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
 | 
						||
 | 
						||
    APInt SrcUndef, SrcZero;
 | 
						||
    if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
 | 
						||
                                   Depth + 1))
 | 
						||
      return true;
 | 
						||
    KnownUndef = SrcUndef.extractBits(NumElts, Idx);
 | 
						||
    KnownZero = SrcZero.extractBits(NumElts, Idx);
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    if (!DemandedElts.isAllOnes()) {
 | 
						||
      SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
 | 
						||
          Src, DemandedSrcElts, TLO.DAG, Depth + 1);
 | 
						||
      if (NewSrc) {
 | 
						||
        SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
 | 
						||
                                        Op.getOperand(1));
 | 
						||
        return TLO.CombineTo(Op, NewOp);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::INSERT_VECTOR_ELT: {
 | 
						||
    SDValue Vec = Op.getOperand(0);
 | 
						||
    SDValue Scl = Op.getOperand(1);
 | 
						||
    auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
 | 
						||
 | 
						||
    // For a legal, constant insertion index, if we don't need this insertion
 | 
						||
    // then strip it, else remove it from the demanded elts.
 | 
						||
    if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
 | 
						||
      unsigned Idx = CIdx->getZExtValue();
 | 
						||
      if (!DemandedElts[Idx])
 | 
						||
        return TLO.CombineTo(Op, Vec);
 | 
						||
 | 
						||
      APInt DemandedVecElts(DemandedElts);
 | 
						||
      DemandedVecElts.clearBit(Idx);
 | 
						||
      if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
 | 
						||
                                     KnownZero, TLO, Depth + 1))
 | 
						||
        return true;
 | 
						||
 | 
						||
      KnownUndef.setBitVal(Idx, Scl.isUndef());
 | 
						||
 | 
						||
      KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
 | 
						||
      break;
 | 
						||
    }
 | 
						||
 | 
						||
    APInt VecUndef, VecZero;
 | 
						||
    if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
 | 
						||
                                   Depth + 1))
 | 
						||
      return true;
 | 
						||
    // Without knowing the insertion index we can't set KnownUndef/KnownZero.
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::VSELECT: {
 | 
						||
    // Try to transform the select condition based on the current demanded
 | 
						||
    // elements.
 | 
						||
    // TODO: If a condition element is undef, we can choose from one arm of the
 | 
						||
    //       select (and if one arm is undef, then we can propagate that to the
 | 
						||
    //       result).
 | 
						||
    // TODO - add support for constant vselect masks (see IR version of this).
 | 
						||
    APInt UnusedUndef, UnusedZero;
 | 
						||
    if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
 | 
						||
                                   UnusedZero, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    // See if we can simplify either vselect operand.
 | 
						||
    APInt DemandedLHS(DemandedElts);
 | 
						||
    APInt DemandedRHS(DemandedElts);
 | 
						||
    APInt UndefLHS, ZeroLHS;
 | 
						||
    APInt UndefRHS, ZeroRHS;
 | 
						||
    if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
 | 
						||
                                   ZeroLHS, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
    if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
 | 
						||
                                   ZeroRHS, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    KnownUndef = UndefLHS & UndefRHS;
 | 
						||
    KnownZero = ZeroLHS & ZeroRHS;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::VECTOR_SHUFFLE: {
 | 
						||
    ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
 | 
						||
 | 
						||
    // Collect demanded elements from shuffle operands..
 | 
						||
    APInt DemandedLHS(NumElts, 0);
 | 
						||
    APInt DemandedRHS(NumElts, 0);
 | 
						||
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						||
      int M = ShuffleMask[i];
 | 
						||
      if (M < 0 || !DemandedElts[i])
 | 
						||
        continue;
 | 
						||
      assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
 | 
						||
      if (M < (int)NumElts)
 | 
						||
        DemandedLHS.setBit(M);
 | 
						||
      else
 | 
						||
        DemandedRHS.setBit(M - NumElts);
 | 
						||
    }
 | 
						||
 | 
						||
    // See if we can simplify either shuffle operand.
 | 
						||
    APInt UndefLHS, ZeroLHS;
 | 
						||
    APInt UndefRHS, ZeroRHS;
 | 
						||
    if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
 | 
						||
                                   ZeroLHS, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
    if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
 | 
						||
                                   ZeroRHS, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    // Simplify mask using undef elements from LHS/RHS.
 | 
						||
    bool Updated = false;
 | 
						||
    bool IdentityLHS = true, IdentityRHS = true;
 | 
						||
    SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
 | 
						||
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						||
      int &M = NewMask[i];
 | 
						||
      if (M < 0)
 | 
						||
        continue;
 | 
						||
      if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
 | 
						||
          (M >= (int)NumElts && UndefRHS[M - NumElts])) {
 | 
						||
        Updated = true;
 | 
						||
        M = -1;
 | 
						||
      }
 | 
						||
      IdentityLHS &= (M < 0) || (M == (int)i);
 | 
						||
      IdentityRHS &= (M < 0) || ((M - NumElts) == i);
 | 
						||
    }
 | 
						||
 | 
						||
    // Update legal shuffle masks based on demanded elements if it won't reduce
 | 
						||
    // to Identity which can cause premature removal of the shuffle mask.
 | 
						||
    if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
 | 
						||
      SDValue LegalShuffle =
 | 
						||
          buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
 | 
						||
                                  NewMask, TLO.DAG);
 | 
						||
      if (LegalShuffle)
 | 
						||
        return TLO.CombineTo(Op, LegalShuffle);
 | 
						||
    }
 | 
						||
 | 
						||
    // Propagate undef/zero elements from LHS/RHS.
 | 
						||
    for (unsigned i = 0; i != NumElts; ++i) {
 | 
						||
      int M = ShuffleMask[i];
 | 
						||
      if (M < 0) {
 | 
						||
        KnownUndef.setBit(i);
 | 
						||
      } else if (M < (int)NumElts) {
 | 
						||
        if (UndefLHS[M])
 | 
						||
          KnownUndef.setBit(i);
 | 
						||
        if (ZeroLHS[M])
 | 
						||
          KnownZero.setBit(i);
 | 
						||
      } else {
 | 
						||
        if (UndefRHS[M - NumElts])
 | 
						||
          KnownUndef.setBit(i);
 | 
						||
        if (ZeroRHS[M - NumElts])
 | 
						||
          KnownZero.setBit(i);
 | 
						||
      }
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::ANY_EXTEND_VECTOR_INREG:
 | 
						||
  case ISD::SIGN_EXTEND_VECTOR_INREG:
 | 
						||
  case ISD::ZERO_EXTEND_VECTOR_INREG: {
 | 
						||
    APInt SrcUndef, SrcZero;
 | 
						||
    SDValue Src = Op.getOperand(0);
 | 
						||
    unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
 | 
						||
    APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
 | 
						||
    if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
 | 
						||
                                   Depth + 1))
 | 
						||
      return true;
 | 
						||
    KnownZero = SrcZero.zextOrTrunc(NumElts);
 | 
						||
    KnownUndef = SrcUndef.zextOrTrunc(NumElts);
 | 
						||
 | 
						||
    if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
 | 
						||
        Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
 | 
						||
        DemandedSrcElts == 1) {
 | 
						||
      // aext - if we just need the bottom element then we can bitcast.
 | 
						||
      return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
 | 
						||
    }
 | 
						||
 | 
						||
    if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
 | 
						||
      // zext(undef) upper bits are guaranteed to be zero.
 | 
						||
      if (DemandedElts.isSubsetOf(KnownUndef))
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
 | 
						||
      KnownUndef.clearAllBits();
 | 
						||
 | 
						||
      // zext - if we just need the bottom element then we can mask:
 | 
						||
      // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
 | 
						||
      if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
 | 
						||
          Op->isOnlyUserOf(Src.getNode()) &&
 | 
						||
          Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
 | 
						||
        SDLoc DL(Op);
 | 
						||
        EVT SrcVT = Src.getValueType();
 | 
						||
        EVT SrcSVT = SrcVT.getScalarType();
 | 
						||
        SmallVector<SDValue> MaskElts;
 | 
						||
        MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
 | 
						||
        MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
 | 
						||
        SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
 | 
						||
        if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
 | 
						||
                ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
 | 
						||
          Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
 | 
						||
          return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
 | 
						||
  // TODO: There are more binop opcodes that could be handled here - MIN,
 | 
						||
  // MAX, saturated math, etc.
 | 
						||
  case ISD::ADD: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
    if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
 | 
						||
      APInt UndefLHS, ZeroLHS;
 | 
						||
      if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
 | 
						||
                                     Depth + 1, /*AssumeSingleUse*/ true))
 | 
						||
        return true;
 | 
						||
    }
 | 
						||
    LLVM_FALLTHROUGH;
 | 
						||
  }
 | 
						||
  case ISD::OR:
 | 
						||
  case ISD::XOR:
 | 
						||
  case ISD::SUB:
 | 
						||
  case ISD::FADD:
 | 
						||
  case ISD::FSUB:
 | 
						||
  case ISD::FMUL:
 | 
						||
  case ISD::FDIV:
 | 
						||
  case ISD::FREM: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
 | 
						||
    APInt UndefRHS, ZeroRHS;
 | 
						||
    if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
 | 
						||
                                   Depth + 1))
 | 
						||
      return true;
 | 
						||
    APInt UndefLHS, ZeroLHS;
 | 
						||
    if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
 | 
						||
                                   Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    KnownZero = ZeroLHS & ZeroRHS;
 | 
						||
    KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    // TODO - use KnownUndef to relax the demandedelts?
 | 
						||
    if (!DemandedElts.isAllOnes())
 | 
						||
      if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
 | 
						||
        return true;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::SHL:
 | 
						||
  case ISD::SRL:
 | 
						||
  case ISD::SRA:
 | 
						||
  case ISD::ROTL:
 | 
						||
  case ISD::ROTR: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
 | 
						||
    APInt UndefRHS, ZeroRHS;
 | 
						||
    if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
 | 
						||
                                   Depth + 1))
 | 
						||
      return true;
 | 
						||
    APInt UndefLHS, ZeroLHS;
 | 
						||
    if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
 | 
						||
                                   Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    KnownZero = ZeroLHS;
 | 
						||
    KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    // TODO - use KnownUndef to relax the demandedelts?
 | 
						||
    if (!DemandedElts.isAllOnes())
 | 
						||
      if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
 | 
						||
        return true;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::MUL:
 | 
						||
  case ISD::AND: {
 | 
						||
    SDValue Op0 = Op.getOperand(0);
 | 
						||
    SDValue Op1 = Op.getOperand(1);
 | 
						||
 | 
						||
    APInt SrcUndef, SrcZero;
 | 
						||
    if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
 | 
						||
                                   Depth + 1))
 | 
						||
      return true;
 | 
						||
    if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
 | 
						||
                                   TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    // If either side has a zero element, then the result element is zero, even
 | 
						||
    // if the other is an UNDEF.
 | 
						||
    // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
 | 
						||
    // and then handle 'and' nodes with the rest of the binop opcodes.
 | 
						||
    KnownZero |= SrcZero;
 | 
						||
    KnownUndef &= SrcUndef;
 | 
						||
    KnownUndef &= ~KnownZero;
 | 
						||
 | 
						||
    // Attempt to avoid multi-use ops if we don't need anything from them.
 | 
						||
    // TODO - use KnownUndef to relax the demandedelts?
 | 
						||
    if (!DemandedElts.isAllOnes())
 | 
						||
      if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
 | 
						||
        return true;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::TRUNCATE:
 | 
						||
  case ISD::SIGN_EXTEND:
 | 
						||
  case ISD::ZERO_EXTEND:
 | 
						||
    if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
 | 
						||
                                   KnownZero, TLO, Depth + 1))
 | 
						||
      return true;
 | 
						||
 | 
						||
    if (Op.getOpcode() == ISD::ZERO_EXTEND) {
 | 
						||
      // zext(undef) upper bits are guaranteed to be zero.
 | 
						||
      if (DemandedElts.isSubsetOf(KnownUndef))
 | 
						||
        return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
 | 
						||
      KnownUndef.clearAllBits();
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  default: {
 | 
						||
    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
 | 
						||
      if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
 | 
						||
                                                  KnownZero, TLO, Depth))
 | 
						||
        return true;
 | 
						||
    } else {
 | 
						||
      KnownBits Known;
 | 
						||
      APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
 | 
						||
      if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
 | 
						||
                               TLO, Depth, AssumeSingleUse))
 | 
						||
        return true;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  }
 | 
						||
  assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
 | 
						||
 | 
						||
  // Constant fold all undef cases.
 | 
						||
  // TODO: Handle zero cases as well.
 | 
						||
  if (DemandedElts.isSubsetOf(KnownUndef))
 | 
						||
    return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
 | 
						||
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
/// Determine which of the bits specified in Mask are known to be either zero or
 | 
						||
/// one and return them in the Known.
 | 
						||
void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
 | 
						||
                                                   KnownBits &Known,
 | 
						||
                                                   const APInt &DemandedElts,
 | 
						||
                                                   const SelectionDAG &DAG,
 | 
						||
                                                   unsigned Depth) const {
 | 
						||
  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | 
						||
         "Should use MaskedValueIsZero if you don't know whether Op"
 | 
						||
         " is a target node!");
 | 
						||
  Known.resetAll();
 | 
						||
}
 | 
						||
 | 
						||
void TargetLowering::computeKnownBitsForTargetInstr(
 | 
						||
    GISelKnownBits &Analysis, Register R, KnownBits &Known,
 | 
						||
    const APInt &DemandedElts, const MachineRegisterInfo &MRI,
 | 
						||
    unsigned Depth) const {
 | 
						||
  Known.resetAll();
 | 
						||
}
 | 
						||
 | 
						||
void TargetLowering::computeKnownBitsForFrameIndex(
 | 
						||
  const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
 | 
						||
  // The low bits are known zero if the pointer is aligned.
 | 
						||
  Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
 | 
						||
}
 | 
						||
 | 
						||
Align TargetLowering::computeKnownAlignForTargetInstr(
 | 
						||
  GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
 | 
						||
  unsigned Depth) const {
 | 
						||
  return Align(1);
 | 
						||
}
 | 
						||
 | 
						||
/// This method can be implemented by targets that want to expose additional
 | 
						||
/// information about sign bits to the DAG Combiner.
 | 
						||
unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
 | 
						||
                                                         const APInt &,
 | 
						||
                                                         const SelectionDAG &,
 | 
						||
                                                         unsigned Depth) const {
 | 
						||
  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | 
						||
         "Should use ComputeNumSignBits if you don't know whether Op"
 | 
						||
         " is a target node!");
 | 
						||
  return 1;
 | 
						||
}
 | 
						||
 | 
						||
unsigned TargetLowering::computeNumSignBitsForTargetInstr(
 | 
						||
  GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
 | 
						||
  const MachineRegisterInfo &MRI, unsigned Depth) const {
 | 
						||
  return 1;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
 | 
						||
    SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
 | 
						||
    TargetLoweringOpt &TLO, unsigned Depth) const {
 | 
						||
  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | 
						||
         "Should use SimplifyDemandedVectorElts if you don't know whether Op"
 | 
						||
         " is a target node!");
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::SimplifyDemandedBitsForTargetNode(
 | 
						||
    SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
 | 
						||
    KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
 | 
						||
  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | 
						||
         "Should use SimplifyDemandedBits if you don't know whether Op"
 | 
						||
         " is a target node!");
 | 
						||
  computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
 | 
						||
    SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
 | 
						||
    SelectionDAG &DAG, unsigned Depth) const {
 | 
						||
  assert(
 | 
						||
      (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | 
						||
       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | 
						||
       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | 
						||
       Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | 
						||
      "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
 | 
						||
      " is a target node!");
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
SDValue
 | 
						||
TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
 | 
						||
                                        SDValue N1, MutableArrayRef<int> Mask,
 | 
						||
                                        SelectionDAG &DAG) const {
 | 
						||
  bool LegalMask = isShuffleMaskLegal(Mask, VT);
 | 
						||
  if (!LegalMask) {
 | 
						||
    std::swap(N0, N1);
 | 
						||
    ShuffleVectorSDNode::commuteMask(Mask);
 | 
						||
    LegalMask = isShuffleMaskLegal(Mask, VT);
 | 
						||
  }
 | 
						||
 | 
						||
  if (!LegalMask)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
 | 
						||
}
 | 
						||
 | 
						||
const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
 | 
						||
  return nullptr;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
 | 
						||
    SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
 | 
						||
    bool PoisonOnly, unsigned Depth) const {
 | 
						||
  assert(
 | 
						||
      (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | 
						||
       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | 
						||
       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | 
						||
       Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | 
						||
      "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
 | 
						||
      " is a target node!");
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
 | 
						||
                                                  const SelectionDAG &DAG,
 | 
						||
                                                  bool SNaN,
 | 
						||
                                                  unsigned Depth) const {
 | 
						||
  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | 
						||
         "Should use isKnownNeverNaN if you don't know whether Op"
 | 
						||
         " is a target node!");
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
 | 
						||
                                               const APInt &DemandedElts,
 | 
						||
                                               APInt &UndefElts,
 | 
						||
                                               unsigned Depth) const {
 | 
						||
  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
 | 
						||
          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
 | 
						||
         "Should use isSplatValue if you don't know whether Op"
 | 
						||
         " is a target node!");
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
// FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
 | 
						||
// work with truncating build vectors and vectors with elements of less than
 | 
						||
// 8 bits.
 | 
						||
bool TargetLowering::isConstTrueVal(const SDNode *N) const {
 | 
						||
  if (!N)
 | 
						||
    return false;
 | 
						||
 | 
						||
  APInt CVal;
 | 
						||
  if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
 | 
						||
    CVal = CN->getAPIntValue();
 | 
						||
  } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
 | 
						||
    auto *CN = BV->getConstantSplatNode();
 | 
						||
    if (!CN)
 | 
						||
      return false;
 | 
						||
 | 
						||
    // If this is a truncating build vector, truncate the splat value.
 | 
						||
    // Otherwise, we may fail to match the expected values below.
 | 
						||
    unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
 | 
						||
    CVal = CN->getAPIntValue();
 | 
						||
    if (BVEltWidth < CVal.getBitWidth())
 | 
						||
      CVal = CVal.trunc(BVEltWidth);
 | 
						||
  } else {
 | 
						||
    return false;
 | 
						||
  }
 | 
						||
 | 
						||
  switch (getBooleanContents(N->getValueType(0))) {
 | 
						||
  case UndefinedBooleanContent:
 | 
						||
    return CVal[0];
 | 
						||
  case ZeroOrOneBooleanContent:
 | 
						||
    return CVal.isOne();
 | 
						||
  case ZeroOrNegativeOneBooleanContent:
 | 
						||
    return CVal.isAllOnes();
 | 
						||
  }
 | 
						||
 | 
						||
  llvm_unreachable("Invalid boolean contents");
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::isConstFalseVal(const SDNode *N) const {
 | 
						||
  if (!N)
 | 
						||
    return false;
 | 
						||
 | 
						||
  const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
 | 
						||
  if (!CN) {
 | 
						||
    const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
 | 
						||
    if (!BV)
 | 
						||
      return false;
 | 
						||
 | 
						||
    // Only interested in constant splats, we don't care about undef
 | 
						||
    // elements in identifying boolean constants and getConstantSplatNode
 | 
						||
    // returns NULL if all ops are undef;
 | 
						||
    CN = BV->getConstantSplatNode();
 | 
						||
    if (!CN)
 | 
						||
      return false;
 | 
						||
  }
 | 
						||
 | 
						||
  if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
 | 
						||
    return !CN->getAPIntValue()[0];
 | 
						||
 | 
						||
  return CN->isZero();
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
 | 
						||
                                       bool SExt) const {
 | 
						||
  if (VT == MVT::i1)
 | 
						||
    return N->isOne();
 | 
						||
 | 
						||
  TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
 | 
						||
  switch (Cnt) {
 | 
						||
  case TargetLowering::ZeroOrOneBooleanContent:
 | 
						||
    // An extended value of 1 is always true, unless its original type is i1,
 | 
						||
    // in which case it will be sign extended to -1.
 | 
						||
    return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
 | 
						||
  case TargetLowering::UndefinedBooleanContent:
 | 
						||
  case TargetLowering::ZeroOrNegativeOneBooleanContent:
 | 
						||
    return N->isAllOnes() && SExt;
 | 
						||
  }
 | 
						||
  llvm_unreachable("Unexpected enumeration.");
 | 
						||
}
 | 
						||
 | 
						||
/// This helper function of SimplifySetCC tries to optimize the comparison when
 | 
						||
/// either operand of the SetCC node is a bitwise-and instruction.
 | 
						||
SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
 | 
						||
                                         ISD::CondCode Cond, const SDLoc &DL,
 | 
						||
                                         DAGCombinerInfo &DCI) const {
 | 
						||
  // Match these patterns in any of their permutations:
 | 
						||
  // (X & Y) == Y
 | 
						||
  // (X & Y) != Y
 | 
						||
  if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
 | 
						||
    std::swap(N0, N1);
 | 
						||
 | 
						||
  EVT OpVT = N0.getValueType();
 | 
						||
  if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
 | 
						||
      (Cond != ISD::SETEQ && Cond != ISD::SETNE))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  SDValue X, Y;
 | 
						||
  if (N0.getOperand(0) == N1) {
 | 
						||
    X = N0.getOperand(1);
 | 
						||
    Y = N0.getOperand(0);
 | 
						||
  } else if (N0.getOperand(1) == N1) {
 | 
						||
    X = N0.getOperand(0);
 | 
						||
    Y = N0.getOperand(1);
 | 
						||
  } else {
 | 
						||
    return SDValue();
 | 
						||
  }
 | 
						||
 | 
						||
  SelectionDAG &DAG = DCI.DAG;
 | 
						||
  SDValue Zero = DAG.getConstant(0, DL, OpVT);
 | 
						||
  if (DAG.isKnownToBeAPowerOfTwo(Y)) {
 | 
						||
    // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
 | 
						||
    // Note that where Y is variable and is known to have at most one bit set
 | 
						||
    // (for example, if it is Z & 1) we cannot do this; the expressions are not
 | 
						||
    // equivalent when Y == 0.
 | 
						||
    assert(OpVT.isInteger());
 | 
						||
    Cond = ISD::getSetCCInverse(Cond, OpVT);
 | 
						||
    if (DCI.isBeforeLegalizeOps() ||
 | 
						||
        isCondCodeLegal(Cond, N0.getSimpleValueType()))
 | 
						||
      return DAG.getSetCC(DL, VT, N0, Zero, Cond);
 | 
						||
  } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
 | 
						||
    // If the target supports an 'and-not' or 'and-complement' logic operation,
 | 
						||
    // try to use that to make a comparison operation more efficient.
 | 
						||
    // But don't do this transform if the mask is a single bit because there are
 | 
						||
    // more efficient ways to deal with that case (for example, 'bt' on x86 or
 | 
						||
    // 'rlwinm' on PPC).
 | 
						||
 | 
						||
    // Bail out if the compare operand that we want to turn into a zero is
 | 
						||
    // already a zero (otherwise, infinite loop).
 | 
						||
    auto *YConst = dyn_cast<ConstantSDNode>(Y);
 | 
						||
    if (YConst && YConst->isZero())
 | 
						||
      return SDValue();
 | 
						||
 | 
						||
    // Transform this into: ~X & Y == 0.
 | 
						||
    SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
 | 
						||
    SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
 | 
						||
    return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
 | 
						||
  }
 | 
						||
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
/// There are multiple IR patterns that could be checking whether certain
 | 
						||
/// truncation of a signed number would be lossy or not. The pattern which is
 | 
						||
/// best at IR level, may not lower optimally. Thus, we want to unfold it.
 | 
						||
/// We are looking for the following pattern: (KeptBits is a constant)
 | 
						||
///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
 | 
						||
/// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
 | 
						||
/// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
 | 
						||
/// We will unfold it into the natural trunc+sext pattern:
 | 
						||
///   ((%x << C) a>> C) dstcond %x
 | 
						||
/// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
 | 
						||
SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
 | 
						||
    EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
 | 
						||
    const SDLoc &DL) const {
 | 
						||
  // We must be comparing with a constant.
 | 
						||
  ConstantSDNode *C1;
 | 
						||
  if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // N0 should be:  add %x, (1 << (KeptBits-1))
 | 
						||
  if (N0->getOpcode() != ISD::ADD)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // And we must be 'add'ing a constant.
 | 
						||
  ConstantSDNode *C01;
 | 
						||
  if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  SDValue X = N0->getOperand(0);
 | 
						||
  EVT XVT = X.getValueType();
 | 
						||
 | 
						||
  // Validate constants ...
 | 
						||
 | 
						||
  APInt I1 = C1->getAPIntValue();
 | 
						||
 | 
						||
  ISD::CondCode NewCond;
 | 
						||
  if (Cond == ISD::CondCode::SETULT) {
 | 
						||
    NewCond = ISD::CondCode::SETEQ;
 | 
						||
  } else if (Cond == ISD::CondCode::SETULE) {
 | 
						||
    NewCond = ISD::CondCode::SETEQ;
 | 
						||
    // But need to 'canonicalize' the constant.
 | 
						||
    I1 += 1;
 | 
						||
  } else if (Cond == ISD::CondCode::SETUGT) {
 | 
						||
    NewCond = ISD::CondCode::SETNE;
 | 
						||
    // But need to 'canonicalize' the constant.
 | 
						||
    I1 += 1;
 | 
						||
  } else if (Cond == ISD::CondCode::SETUGE) {
 | 
						||
    NewCond = ISD::CondCode::SETNE;
 | 
						||
  } else
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  APInt I01 = C01->getAPIntValue();
 | 
						||
 | 
						||
  auto checkConstants = [&I1, &I01]() -> bool {
 | 
						||
    // Both of them must be power-of-two, and the constant from setcc is bigger.
 | 
						||
    return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
 | 
						||
  };
 | 
						||
 | 
						||
  if (checkConstants()) {
 | 
						||
    // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
 | 
						||
  } else {
 | 
						||
    // What if we invert constants? (and the target predicate)
 | 
						||
    I1.negate();
 | 
						||
    I01.negate();
 | 
						||
    assert(XVT.isInteger());
 | 
						||
    NewCond = getSetCCInverse(NewCond, XVT);
 | 
						||
    if (!checkConstants())
 | 
						||
      return SDValue();
 | 
						||
    // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
 | 
						||
  }
 | 
						||
 | 
						||
  // They are power-of-two, so which bit is set?
 | 
						||
  const unsigned KeptBits = I1.logBase2();
 | 
						||
  const unsigned KeptBitsMinusOne = I01.logBase2();
 | 
						||
 | 
						||
  // Magic!
 | 
						||
  if (KeptBits != (KeptBitsMinusOne + 1))
 | 
						||
    return SDValue();
 | 
						||
  assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
 | 
						||
 | 
						||
  // We don't want to do this in every single case.
 | 
						||
  SelectionDAG &DAG = DCI.DAG;
 | 
						||
  if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
 | 
						||
          XVT, KeptBits))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
 | 
						||
  assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
 | 
						||
 | 
						||
  // Unfold into:  ((%x << C) a>> C) cond %x
 | 
						||
  // Where 'cond' will be either 'eq' or 'ne'.
 | 
						||
  SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
 | 
						||
  SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
 | 
						||
  SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
 | 
						||
  SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
 | 
						||
 | 
						||
  return T2;
 | 
						||
}
 | 
						||
 | 
						||
// (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
 | 
						||
SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
 | 
						||
    EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
 | 
						||
    DAGCombinerInfo &DCI, const SDLoc &DL) const {
 | 
						||
  assert(isConstOrConstSplat(N1C) &&
 | 
						||
         isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
 | 
						||
         "Should be a comparison with 0.");
 | 
						||
  assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | 
						||
         "Valid only for [in]equality comparisons.");
 | 
						||
 | 
						||
  unsigned NewShiftOpcode;
 | 
						||
  SDValue X, C, Y;
 | 
						||
 | 
						||
  SelectionDAG &DAG = DCI.DAG;
 | 
						||
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						||
 | 
						||
  // Look for '(C l>>/<< Y)'.
 | 
						||
  auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
 | 
						||
    // The shift should be one-use.
 | 
						||
    if (!V.hasOneUse())
 | 
						||
      return false;
 | 
						||
    unsigned OldShiftOpcode = V.getOpcode();
 | 
						||
    switch (OldShiftOpcode) {
 | 
						||
    case ISD::SHL:
 | 
						||
      NewShiftOpcode = ISD::SRL;
 | 
						||
      break;
 | 
						||
    case ISD::SRL:
 | 
						||
      NewShiftOpcode = ISD::SHL;
 | 
						||
      break;
 | 
						||
    default:
 | 
						||
      return false; // must be a logical shift.
 | 
						||
    }
 | 
						||
    // We should be shifting a constant.
 | 
						||
    // FIXME: best to use isConstantOrConstantVector().
 | 
						||
    C = V.getOperand(0);
 | 
						||
    ConstantSDNode *CC =
 | 
						||
        isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
 | 
						||
    if (!CC)
 | 
						||
      return false;
 | 
						||
    Y = V.getOperand(1);
 | 
						||
 | 
						||
    ConstantSDNode *XC =
 | 
						||
        isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
 | 
						||
    return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
 | 
						||
        X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
 | 
						||
  };
 | 
						||
 | 
						||
  // LHS of comparison should be an one-use 'and'.
 | 
						||
  if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  X = N0.getOperand(0);
 | 
						||
  SDValue Mask = N0.getOperand(1);
 | 
						||
 | 
						||
  // 'and' is commutative!
 | 
						||
  if (!Match(Mask)) {
 | 
						||
    std::swap(X, Mask);
 | 
						||
    if (!Match(Mask))
 | 
						||
      return SDValue();
 | 
						||
  }
 | 
						||
 | 
						||
  EVT VT = X.getValueType();
 | 
						||
 | 
						||
  // Produce:
 | 
						||
  // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
 | 
						||
  SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
 | 
						||
  SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
 | 
						||
  SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
 | 
						||
  return T2;
 | 
						||
}
 | 
						||
 | 
						||
/// Try to fold an equality comparison with a {add/sub/xor} binary operation as
 | 
						||
/// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
 | 
						||
/// handle the commuted versions of these patterns.
 | 
						||
SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
 | 
						||
                                           ISD::CondCode Cond, const SDLoc &DL,
 | 
						||
                                           DAGCombinerInfo &DCI) const {
 | 
						||
  unsigned BOpcode = N0.getOpcode();
 | 
						||
  assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
 | 
						||
         "Unexpected binop");
 | 
						||
  assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
 | 
						||
 | 
						||
  // (X + Y) == X --> Y == 0
 | 
						||
  // (X - Y) == X --> Y == 0
 | 
						||
  // (X ^ Y) == X --> Y == 0
 | 
						||
  SelectionDAG &DAG = DCI.DAG;
 | 
						||
  EVT OpVT = N0.getValueType();
 | 
						||
  SDValue X = N0.getOperand(0);
 | 
						||
  SDValue Y = N0.getOperand(1);
 | 
						||
  if (X == N1)
 | 
						||
    return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
 | 
						||
 | 
						||
  if (Y != N1)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // (X + Y) == Y --> X == 0
 | 
						||
  // (X ^ Y) == Y --> X == 0
 | 
						||
  if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
 | 
						||
    return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
 | 
						||
 | 
						||
  // The shift would not be valid if the operands are boolean (i1).
 | 
						||
  if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // (X - Y) == Y --> X == Y << 1
 | 
						||
  EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
 | 
						||
                                 !DCI.isBeforeLegalize());
 | 
						||
  SDValue One = DAG.getConstant(1, DL, ShiftVT);
 | 
						||
  SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
 | 
						||
  if (!DCI.isCalledByLegalizer())
 | 
						||
    DCI.AddToWorklist(YShl1.getNode());
 | 
						||
  return DAG.getSetCC(DL, VT, X, YShl1, Cond);
 | 
						||
}
 | 
						||
 | 
						||
static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
 | 
						||
                                      SDValue N0, const APInt &C1,
 | 
						||
                                      ISD::CondCode Cond, const SDLoc &dl,
 | 
						||
                                      SelectionDAG &DAG) {
 | 
						||
  // Look through truncs that don't change the value of a ctpop.
 | 
						||
  // FIXME: Add vector support? Need to be careful with setcc result type below.
 | 
						||
  SDValue CTPOP = N0;
 | 
						||
  if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
 | 
						||
      N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
 | 
						||
    CTPOP = N0.getOperand(0);
 | 
						||
 | 
						||
  if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  EVT CTVT = CTPOP.getValueType();
 | 
						||
  SDValue CTOp = CTPOP.getOperand(0);
 | 
						||
 | 
						||
  // If this is a vector CTPOP, keep the CTPOP if it is legal.
 | 
						||
  // TODO: Should we check if CTPOP is legal(or custom) for scalars?
 | 
						||
  if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // (ctpop x) u< 2 -> (x & x-1) == 0
 | 
						||
  // (ctpop x) u> 1 -> (x & x-1) != 0
 | 
						||
  if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
 | 
						||
    unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
 | 
						||
    if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
 | 
						||
      return SDValue();
 | 
						||
    if (C1 == 0 && (Cond == ISD::SETULT))
 | 
						||
      return SDValue(); // This is handled elsewhere.
 | 
						||
 | 
						||
    unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
 | 
						||
 | 
						||
    SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
 | 
						||
    SDValue Result = CTOp;
 | 
						||
    for (unsigned i = 0; i < Passes; i++) {
 | 
						||
      SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
 | 
						||
      Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
 | 
						||
    }
 | 
						||
    ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
 | 
						||
    return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
 | 
						||
  }
 | 
						||
 | 
						||
  // If ctpop is not supported, expand a power-of-2 comparison based on it.
 | 
						||
  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
 | 
						||
    // For scalars, keep CTPOP if it is legal or custom.
 | 
						||
    if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
 | 
						||
      return SDValue();
 | 
						||
    // This is based on X86's custom lowering for CTPOP which produces more
 | 
						||
    // instructions than the expansion here.
 | 
						||
 | 
						||
    // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
 | 
						||
    // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
 | 
						||
    SDValue Zero = DAG.getConstant(0, dl, CTVT);
 | 
						||
    SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
 | 
						||
    assert(CTVT.isInteger());
 | 
						||
    ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
 | 
						||
    SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
 | 
						||
    SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
 | 
						||
    SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
 | 
						||
    SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
 | 
						||
    unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
 | 
						||
    return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
 | 
						||
  }
 | 
						||
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
/// Try to simplify a setcc built with the specified operands and cc. If it is
 | 
						||
/// unable to simplify it, return a null SDValue.
 | 
						||
SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
 | 
						||
                                      ISD::CondCode Cond, bool foldBooleans,
 | 
						||
                                      DAGCombinerInfo &DCI,
 | 
						||
                                      const SDLoc &dl) const {
 | 
						||
  SelectionDAG &DAG = DCI.DAG;
 | 
						||
  const DataLayout &Layout = DAG.getDataLayout();
 | 
						||
  EVT OpVT = N0.getValueType();
 | 
						||
 | 
						||
  // Constant fold or commute setcc.
 | 
						||
  if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
 | 
						||
    return Fold;
 | 
						||
 | 
						||
  // Ensure that the constant occurs on the RHS and fold constant comparisons.
 | 
						||
  // TODO: Handle non-splat vector constants. All undef causes trouble.
 | 
						||
  // FIXME: We can't yet fold constant scalable vector splats, so avoid an
 | 
						||
  // infinite loop here when we encounter one.
 | 
						||
  ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
 | 
						||
  if (isConstOrConstSplat(N0) &&
 | 
						||
      (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
 | 
						||
      (DCI.isBeforeLegalizeOps() ||
 | 
						||
       isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
 | 
						||
    return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
 | 
						||
 | 
						||
  // If we have a subtract with the same 2 non-constant operands as this setcc
 | 
						||
  // -- but in reverse order -- then try to commute the operands of this setcc
 | 
						||
  // to match. A matching pair of setcc (cmp) and sub may be combined into 1
 | 
						||
  // instruction on some targets.
 | 
						||
  if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
 | 
						||
      (DCI.isBeforeLegalizeOps() ||
 | 
						||
       isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
 | 
						||
      DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
 | 
						||
      !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
 | 
						||
    return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
 | 
						||
 | 
						||
  if (auto *N1C = isConstOrConstSplat(N1)) {
 | 
						||
    const APInt &C1 = N1C->getAPIntValue();
 | 
						||
 | 
						||
    // Optimize some CTPOP cases.
 | 
						||
    if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
 | 
						||
      return V;
 | 
						||
 | 
						||
    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
 | 
						||
    // equality comparison, then we're just comparing whether X itself is
 | 
						||
    // zero.
 | 
						||
    if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
 | 
						||
        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
 | 
						||
        isPowerOf2_32(N0.getScalarValueSizeInBits())) {
 | 
						||
      if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
 | 
						||
        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | 
						||
            ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
 | 
						||
          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
 | 
						||
            // (srl (ctlz x), 5) == 0  -> X != 0
 | 
						||
            // (srl (ctlz x), 5) != 1  -> X != 0
 | 
						||
            Cond = ISD::SETNE;
 | 
						||
          } else {
 | 
						||
            // (srl (ctlz x), 5) != 0  -> X == 0
 | 
						||
            // (srl (ctlz x), 5) == 1  -> X == 0
 | 
						||
            Cond = ISD::SETEQ;
 | 
						||
          }
 | 
						||
          SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
 | 
						||
          return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
 | 
						||
                              Cond);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // FIXME: Support vectors.
 | 
						||
  if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
 | 
						||
    const APInt &C1 = N1C->getAPIntValue();
 | 
						||
 | 
						||
    // (zext x) == C --> x == (trunc C)
 | 
						||
    // (sext x) == C --> x == (trunc C)
 | 
						||
    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | 
						||
        DCI.isBeforeLegalize() && N0->hasOneUse()) {
 | 
						||
      unsigned MinBits = N0.getValueSizeInBits();
 | 
						||
      SDValue PreExt;
 | 
						||
      bool Signed = false;
 | 
						||
      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
 | 
						||
        // ZExt
 | 
						||
        MinBits = N0->getOperand(0).getValueSizeInBits();
 | 
						||
        PreExt = N0->getOperand(0);
 | 
						||
      } else if (N0->getOpcode() == ISD::AND) {
 | 
						||
        // DAGCombine turns costly ZExts into ANDs
 | 
						||
        if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
 | 
						||
          if ((C->getAPIntValue()+1).isPowerOf2()) {
 | 
						||
            MinBits = C->getAPIntValue().countTrailingOnes();
 | 
						||
            PreExt = N0->getOperand(0);
 | 
						||
          }
 | 
						||
      } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
 | 
						||
        // SExt
 | 
						||
        MinBits = N0->getOperand(0).getValueSizeInBits();
 | 
						||
        PreExt = N0->getOperand(0);
 | 
						||
        Signed = true;
 | 
						||
      } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
 | 
						||
        // ZEXTLOAD / SEXTLOAD
 | 
						||
        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
 | 
						||
          MinBits = LN0->getMemoryVT().getSizeInBits();
 | 
						||
          PreExt = N0;
 | 
						||
        } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
 | 
						||
          Signed = true;
 | 
						||
          MinBits = LN0->getMemoryVT().getSizeInBits();
 | 
						||
          PreExt = N0;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      // Figure out how many bits we need to preserve this constant.
 | 
						||
      unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
 | 
						||
 | 
						||
      // Make sure we're not losing bits from the constant.
 | 
						||
      if (MinBits > 0 &&
 | 
						||
          MinBits < C1.getBitWidth() &&
 | 
						||
          MinBits >= ReqdBits) {
 | 
						||
        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
 | 
						||
        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
 | 
						||
          // Will get folded away.
 | 
						||
          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
 | 
						||
          if (MinBits == 1 && C1 == 1)
 | 
						||
            // Invert the condition.
 | 
						||
            return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
 | 
						||
                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | 
						||
          SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
 | 
						||
          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
 | 
						||
        }
 | 
						||
 | 
						||
        // If truncating the setcc operands is not desirable, we can still
 | 
						||
        // simplify the expression in some cases:
 | 
						||
        // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
 | 
						||
        // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
 | 
						||
        // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
 | 
						||
        // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
 | 
						||
        // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
 | 
						||
        // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
 | 
						||
        SDValue TopSetCC = N0->getOperand(0);
 | 
						||
        unsigned N0Opc = N0->getOpcode();
 | 
						||
        bool SExt = (N0Opc == ISD::SIGN_EXTEND);
 | 
						||
        if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
 | 
						||
            TopSetCC.getOpcode() == ISD::SETCC &&
 | 
						||
            (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
 | 
						||
            (isConstFalseVal(N1C) ||
 | 
						||
             isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
 | 
						||
 | 
						||
          bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
 | 
						||
                         (!N1C->isZero() && Cond == ISD::SETNE);
 | 
						||
 | 
						||
          if (!Inverse)
 | 
						||
            return TopSetCC;
 | 
						||
 | 
						||
          ISD::CondCode InvCond = ISD::getSetCCInverse(
 | 
						||
              cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
 | 
						||
              TopSetCC.getOperand(0).getValueType());
 | 
						||
          return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
 | 
						||
                                      TopSetCC.getOperand(1),
 | 
						||
                                      InvCond);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If the LHS is '(and load, const)', the RHS is 0, the test is for
 | 
						||
    // equality or unsigned, and all 1 bits of the const are in the same
 | 
						||
    // partial word, see if we can shorten the load.
 | 
						||
    if (DCI.isBeforeLegalize() &&
 | 
						||
        !ISD::isSignedIntSetCC(Cond) &&
 | 
						||
        N0.getOpcode() == ISD::AND && C1 == 0 &&
 | 
						||
        N0.getNode()->hasOneUse() &&
 | 
						||
        isa<LoadSDNode>(N0.getOperand(0)) &&
 | 
						||
        N0.getOperand(0).getNode()->hasOneUse() &&
 | 
						||
        isa<ConstantSDNode>(N0.getOperand(1))) {
 | 
						||
      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
 | 
						||
      APInt bestMask;
 | 
						||
      unsigned bestWidth = 0, bestOffset = 0;
 | 
						||
      if (Lod->isSimple() && Lod->isUnindexed()) {
 | 
						||
        unsigned origWidth = N0.getValueSizeInBits();
 | 
						||
        unsigned maskWidth = origWidth;
 | 
						||
        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
 | 
						||
        // 8 bits, but have to be careful...
 | 
						||
        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
 | 
						||
          origWidth = Lod->getMemoryVT().getSizeInBits();
 | 
						||
        const APInt &Mask = N0.getConstantOperandAPInt(1);
 | 
						||
        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
 | 
						||
          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
 | 
						||
          for (unsigned offset=0; offset<origWidth/width; offset++) {
 | 
						||
            if (Mask.isSubsetOf(newMask)) {
 | 
						||
              if (Layout.isLittleEndian())
 | 
						||
                bestOffset = (uint64_t)offset * (width/8);
 | 
						||
              else
 | 
						||
                bestOffset = (origWidth/width - offset - 1) * (width/8);
 | 
						||
              bestMask = Mask.lshr(offset * (width/8) * 8);
 | 
						||
              bestWidth = width;
 | 
						||
              break;
 | 
						||
            }
 | 
						||
            newMask <<= width;
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
      if (bestWidth) {
 | 
						||
        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
 | 
						||
        if (newVT.isRound() &&
 | 
						||
            shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
 | 
						||
          SDValue Ptr = Lod->getBasePtr();
 | 
						||
          if (bestOffset != 0)
 | 
						||
            Ptr =
 | 
						||
                DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
 | 
						||
          SDValue NewLoad =
 | 
						||
              DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
 | 
						||
                          Lod->getPointerInfo().getWithOffset(bestOffset),
 | 
						||
                          Lod->getOriginalAlign());
 | 
						||
          return DAG.getSetCC(dl, VT,
 | 
						||
                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
 | 
						||
                                      DAG.getConstant(bestMask.trunc(bestWidth),
 | 
						||
                                                      dl, newVT)),
 | 
						||
                              DAG.getConstant(0LL, dl, newVT), Cond);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
 | 
						||
    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
 | 
						||
      unsigned InSize = N0.getOperand(0).getValueSizeInBits();
 | 
						||
 | 
						||
      // If the comparison constant has bits in the upper part, the
 | 
						||
      // zero-extended value could never match.
 | 
						||
      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
 | 
						||
                                              C1.getBitWidth() - InSize))) {
 | 
						||
        switch (Cond) {
 | 
						||
        case ISD::SETUGT:
 | 
						||
        case ISD::SETUGE:
 | 
						||
        case ISD::SETEQ:
 | 
						||
          return DAG.getConstant(0, dl, VT);
 | 
						||
        case ISD::SETULT:
 | 
						||
        case ISD::SETULE:
 | 
						||
        case ISD::SETNE:
 | 
						||
          return DAG.getConstant(1, dl, VT);
 | 
						||
        case ISD::SETGT:
 | 
						||
        case ISD::SETGE:
 | 
						||
          // True if the sign bit of C1 is set.
 | 
						||
          return DAG.getConstant(C1.isNegative(), dl, VT);
 | 
						||
        case ISD::SETLT:
 | 
						||
        case ISD::SETLE:
 | 
						||
          // True if the sign bit of C1 isn't set.
 | 
						||
          return DAG.getConstant(C1.isNonNegative(), dl, VT);
 | 
						||
        default:
 | 
						||
          break;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      // Otherwise, we can perform the comparison with the low bits.
 | 
						||
      switch (Cond) {
 | 
						||
      case ISD::SETEQ:
 | 
						||
      case ISD::SETNE:
 | 
						||
      case ISD::SETUGT:
 | 
						||
      case ISD::SETUGE:
 | 
						||
      case ISD::SETULT:
 | 
						||
      case ISD::SETULE: {
 | 
						||
        EVT newVT = N0.getOperand(0).getValueType();
 | 
						||
        if (DCI.isBeforeLegalizeOps() ||
 | 
						||
            (isOperationLegal(ISD::SETCC, newVT) &&
 | 
						||
             isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
 | 
						||
          EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
 | 
						||
          SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
 | 
						||
 | 
						||
          SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
 | 
						||
                                          NewConst, Cond);
 | 
						||
          return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
 | 
						||
        }
 | 
						||
        break;
 | 
						||
      }
 | 
						||
      default:
 | 
						||
        break; // todo, be more careful with signed comparisons
 | 
						||
      }
 | 
						||
    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | 
						||
               (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | 
						||
               !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
 | 
						||
                                      OpVT)) {
 | 
						||
      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
 | 
						||
      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
 | 
						||
      EVT ExtDstTy = N0.getValueType();
 | 
						||
      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
 | 
						||
 | 
						||
      // If the constant doesn't fit into the number of bits for the source of
 | 
						||
      // the sign extension, it is impossible for both sides to be equal.
 | 
						||
      if (C1.getMinSignedBits() > ExtSrcTyBits)
 | 
						||
        return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
 | 
						||
 | 
						||
      assert(ExtDstTy == N0.getOperand(0).getValueType() &&
 | 
						||
             ExtDstTy != ExtSrcTy && "Unexpected types!");
 | 
						||
      APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
 | 
						||
      SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
 | 
						||
                                   DAG.getConstant(Imm, dl, ExtDstTy));
 | 
						||
      if (!DCI.isCalledByLegalizer())
 | 
						||
        DCI.AddToWorklist(ZextOp.getNode());
 | 
						||
      // Otherwise, make this a use of a zext.
 | 
						||
      return DAG.getSetCC(dl, VT, ZextOp,
 | 
						||
                          DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
 | 
						||
    } else if ((N1C->isZero() || N1C->isOne()) &&
 | 
						||
               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | 
						||
      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
 | 
						||
      if (N0.getOpcode() == ISD::SETCC &&
 | 
						||
          isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
 | 
						||
          (N0.getValueType() == MVT::i1 ||
 | 
						||
           getBooleanContents(N0.getOperand(0).getValueType()) ==
 | 
						||
                       ZeroOrOneBooleanContent)) {
 | 
						||
        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
 | 
						||
        if (TrueWhenTrue)
 | 
						||
          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
 | 
						||
        // Invert the condition.
 | 
						||
        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
 | 
						||
        CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
 | 
						||
        if (DCI.isBeforeLegalizeOps() ||
 | 
						||
            isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
 | 
						||
          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
 | 
						||
      }
 | 
						||
 | 
						||
      if ((N0.getOpcode() == ISD::XOR ||
 | 
						||
           (N0.getOpcode() == ISD::AND &&
 | 
						||
            N0.getOperand(0).getOpcode() == ISD::XOR &&
 | 
						||
            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
 | 
						||
          isOneConstant(N0.getOperand(1))) {
 | 
						||
        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
 | 
						||
        // can only do this if the top bits are known zero.
 | 
						||
        unsigned BitWidth = N0.getValueSizeInBits();
 | 
						||
        if (DAG.MaskedValueIsZero(N0,
 | 
						||
                                  APInt::getHighBitsSet(BitWidth,
 | 
						||
                                                        BitWidth-1))) {
 | 
						||
          // Okay, get the un-inverted input value.
 | 
						||
          SDValue Val;
 | 
						||
          if (N0.getOpcode() == ISD::XOR) {
 | 
						||
            Val = N0.getOperand(0);
 | 
						||
          } else {
 | 
						||
            assert(N0.getOpcode() == ISD::AND &&
 | 
						||
                    N0.getOperand(0).getOpcode() == ISD::XOR);
 | 
						||
            // ((X^1)&1)^1 -> X & 1
 | 
						||
            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
 | 
						||
                              N0.getOperand(0).getOperand(0),
 | 
						||
                              N0.getOperand(1));
 | 
						||
          }
 | 
						||
 | 
						||
          return DAG.getSetCC(dl, VT, Val, N1,
 | 
						||
                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | 
						||
        }
 | 
						||
      } else if (N1C->isOne()) {
 | 
						||
        SDValue Op0 = N0;
 | 
						||
        if (Op0.getOpcode() == ISD::TRUNCATE)
 | 
						||
          Op0 = Op0.getOperand(0);
 | 
						||
 | 
						||
        if ((Op0.getOpcode() == ISD::XOR) &&
 | 
						||
            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
 | 
						||
            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
 | 
						||
          SDValue XorLHS = Op0.getOperand(0);
 | 
						||
          SDValue XorRHS = Op0.getOperand(1);
 | 
						||
          // Ensure that the input setccs return an i1 type or 0/1 value.
 | 
						||
          if (Op0.getValueType() == MVT::i1 ||
 | 
						||
              (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
 | 
						||
                      ZeroOrOneBooleanContent &&
 | 
						||
               getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
 | 
						||
                        ZeroOrOneBooleanContent)) {
 | 
						||
            // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
 | 
						||
            Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
 | 
						||
            return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
 | 
						||
          }
 | 
						||
        }
 | 
						||
        if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
 | 
						||
          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
 | 
						||
          if (Op0.getValueType().bitsGT(VT))
 | 
						||
            Op0 = DAG.getNode(ISD::AND, dl, VT,
 | 
						||
                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
 | 
						||
                          DAG.getConstant(1, dl, VT));
 | 
						||
          else if (Op0.getValueType().bitsLT(VT))
 | 
						||
            Op0 = DAG.getNode(ISD::AND, dl, VT,
 | 
						||
                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
 | 
						||
                        DAG.getConstant(1, dl, VT));
 | 
						||
 | 
						||
          return DAG.getSetCC(dl, VT, Op0,
 | 
						||
                              DAG.getConstant(0, dl, Op0.getValueType()),
 | 
						||
                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | 
						||
        }
 | 
						||
        if (Op0.getOpcode() == ISD::AssertZext &&
 | 
						||
            cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
 | 
						||
          return DAG.getSetCC(dl, VT, Op0,
 | 
						||
                              DAG.getConstant(0, dl, Op0.getValueType()),
 | 
						||
                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // Given:
 | 
						||
    //   icmp eq/ne (urem %x, %y), 0
 | 
						||
    // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
 | 
						||
    //   icmp eq/ne %x, 0
 | 
						||
    if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
 | 
						||
        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | 
						||
      KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
 | 
						||
      KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
 | 
						||
      if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
 | 
						||
        return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
 | 
						||
    }
 | 
						||
 | 
						||
    // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
 | 
						||
    //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
 | 
						||
    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | 
						||
        N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
 | 
						||
        N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
 | 
						||
        N1C && N1C->isAllOnes()) {
 | 
						||
      return DAG.getSetCC(dl, VT, N0.getOperand(0),
 | 
						||
                          DAG.getConstant(0, dl, OpVT),
 | 
						||
                          Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
 | 
						||
    }
 | 
						||
 | 
						||
    if (SDValue V =
 | 
						||
            optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
 | 
						||
      return V;
 | 
						||
  }
 | 
						||
 | 
						||
  // These simplifications apply to splat vectors as well.
 | 
						||
  // TODO: Handle more splat vector cases.
 | 
						||
  if (auto *N1C = isConstOrConstSplat(N1)) {
 | 
						||
    const APInt &C1 = N1C->getAPIntValue();
 | 
						||
 | 
						||
    APInt MinVal, MaxVal;
 | 
						||
    unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
 | 
						||
    if (ISD::isSignedIntSetCC(Cond)) {
 | 
						||
      MinVal = APInt::getSignedMinValue(OperandBitSize);
 | 
						||
      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
 | 
						||
    } else {
 | 
						||
      MinVal = APInt::getMinValue(OperandBitSize);
 | 
						||
      MaxVal = APInt::getMaxValue(OperandBitSize);
 | 
						||
    }
 | 
						||
 | 
						||
    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
 | 
						||
    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
 | 
						||
      // X >= MIN --> true
 | 
						||
      if (C1 == MinVal)
 | 
						||
        return DAG.getBoolConstant(true, dl, VT, OpVT);
 | 
						||
 | 
						||
      if (!VT.isVector()) { // TODO: Support this for vectors.
 | 
						||
        // X >= C0 --> X > (C0 - 1)
 | 
						||
        APInt C = C1 - 1;
 | 
						||
        ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
 | 
						||
        if ((DCI.isBeforeLegalizeOps() ||
 | 
						||
             isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
 | 
						||
            (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
 | 
						||
                                  isLegalICmpImmediate(C.getSExtValue())))) {
 | 
						||
          return DAG.getSetCC(dl, VT, N0,
 | 
						||
                              DAG.getConstant(C, dl, N1.getValueType()),
 | 
						||
                              NewCC);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
 | 
						||
      // X <= MAX --> true
 | 
						||
      if (C1 == MaxVal)
 | 
						||
        return DAG.getBoolConstant(true, dl, VT, OpVT);
 | 
						||
 | 
						||
      // X <= C0 --> X < (C0 + 1)
 | 
						||
      if (!VT.isVector()) { // TODO: Support this for vectors.
 | 
						||
        APInt C = C1 + 1;
 | 
						||
        ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
 | 
						||
        if ((DCI.isBeforeLegalizeOps() ||
 | 
						||
             isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
 | 
						||
            (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
 | 
						||
                                  isLegalICmpImmediate(C.getSExtValue())))) {
 | 
						||
          return DAG.getSetCC(dl, VT, N0,
 | 
						||
                              DAG.getConstant(C, dl, N1.getValueType()),
 | 
						||
                              NewCC);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
 | 
						||
      if (C1 == MinVal)
 | 
						||
        return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
 | 
						||
 | 
						||
      // TODO: Support this for vectors after legalize ops.
 | 
						||
      if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
 | 
						||
        // Canonicalize setlt X, Max --> setne X, Max
 | 
						||
        if (C1 == MaxVal)
 | 
						||
          return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
 | 
						||
 | 
						||
        // If we have setult X, 1, turn it into seteq X, 0
 | 
						||
        if (C1 == MinVal+1)
 | 
						||
          return DAG.getSetCC(dl, VT, N0,
 | 
						||
                              DAG.getConstant(MinVal, dl, N0.getValueType()),
 | 
						||
                              ISD::SETEQ);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
 | 
						||
      if (C1 == MaxVal)
 | 
						||
        return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
 | 
						||
 | 
						||
      // TODO: Support this for vectors after legalize ops.
 | 
						||
      if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
 | 
						||
        // Canonicalize setgt X, Min --> setne X, Min
 | 
						||
        if (C1 == MinVal)
 | 
						||
          return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
 | 
						||
 | 
						||
        // If we have setugt X, Max-1, turn it into seteq X, Max
 | 
						||
        if (C1 == MaxVal-1)
 | 
						||
          return DAG.getSetCC(dl, VT, N0,
 | 
						||
                              DAG.getConstant(MaxVal, dl, N0.getValueType()),
 | 
						||
                              ISD::SETEQ);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
 | 
						||
      // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
 | 
						||
      if (C1.isZero())
 | 
						||
        if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
 | 
						||
                VT, N0, N1, Cond, DCI, dl))
 | 
						||
          return CC;
 | 
						||
 | 
						||
      // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
 | 
						||
      // For example, when high 32-bits of i64 X are known clear:
 | 
						||
      // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
 | 
						||
      // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
 | 
						||
      bool CmpZero = N1C->getAPIntValue().isZero();
 | 
						||
      bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
 | 
						||
      if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
 | 
						||
        // Match or(lo,shl(hi,bw/2)) pattern.
 | 
						||
        auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
 | 
						||
          unsigned EltBits = V.getScalarValueSizeInBits();
 | 
						||
          if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
 | 
						||
            return false;
 | 
						||
          SDValue LHS = V.getOperand(0);
 | 
						||
          SDValue RHS = V.getOperand(1);
 | 
						||
          APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
 | 
						||
          // Unshifted element must have zero upperbits.
 | 
						||
          if (RHS.getOpcode() == ISD::SHL &&
 | 
						||
              isa<ConstantSDNode>(RHS.getOperand(1)) &&
 | 
						||
              RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
 | 
						||
              DAG.MaskedValueIsZero(LHS, HiBits)) {
 | 
						||
            Lo = LHS;
 | 
						||
            Hi = RHS.getOperand(0);
 | 
						||
            return true;
 | 
						||
          }
 | 
						||
          if (LHS.getOpcode() == ISD::SHL &&
 | 
						||
              isa<ConstantSDNode>(LHS.getOperand(1)) &&
 | 
						||
              LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
 | 
						||
              DAG.MaskedValueIsZero(RHS, HiBits)) {
 | 
						||
            Lo = RHS;
 | 
						||
            Hi = LHS.getOperand(0);
 | 
						||
            return true;
 | 
						||
          }
 | 
						||
          return false;
 | 
						||
        };
 | 
						||
 | 
						||
        auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
 | 
						||
          unsigned EltBits = N0.getScalarValueSizeInBits();
 | 
						||
          unsigned HalfBits = EltBits / 2;
 | 
						||
          APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
 | 
						||
          SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
 | 
						||
          SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
 | 
						||
          SDValue NewN0 =
 | 
						||
              DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
 | 
						||
          SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
 | 
						||
          return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
 | 
						||
        };
 | 
						||
 | 
						||
        SDValue Lo, Hi;
 | 
						||
        if (IsConcat(N0, Lo, Hi))
 | 
						||
          return MergeConcat(Lo, Hi);
 | 
						||
 | 
						||
        if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
 | 
						||
          SDValue Lo0, Lo1, Hi0, Hi1;
 | 
						||
          if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
 | 
						||
              IsConcat(N0.getOperand(1), Lo1, Hi1)) {
 | 
						||
            return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
 | 
						||
                               DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If we have "setcc X, C0", check to see if we can shrink the immediate
 | 
						||
    // by changing cc.
 | 
						||
    // TODO: Support this for vectors after legalize ops.
 | 
						||
    if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
 | 
						||
      // SETUGT X, SINTMAX  -> SETLT X, 0
 | 
						||
      // SETUGE X, SINTMIN -> SETLT X, 0
 | 
						||
      if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
 | 
						||
          (Cond == ISD::SETUGE && C1.isMinSignedValue()))
 | 
						||
        return DAG.getSetCC(dl, VT, N0,
 | 
						||
                            DAG.getConstant(0, dl, N1.getValueType()),
 | 
						||
                            ISD::SETLT);
 | 
						||
 | 
						||
      // SETULT X, SINTMIN  -> SETGT X, -1
 | 
						||
      // SETULE X, SINTMAX  -> SETGT X, -1
 | 
						||
      if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
 | 
						||
          (Cond == ISD::SETULE && C1.isMaxSignedValue()))
 | 
						||
        return DAG.getSetCC(dl, VT, N0,
 | 
						||
                            DAG.getAllOnesConstant(dl, N1.getValueType()),
 | 
						||
                            ISD::SETGT);
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // Back to non-vector simplifications.
 | 
						||
  // TODO: Can we do these for vector splats?
 | 
						||
  if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
 | 
						||
    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						||
    const APInt &C1 = N1C->getAPIntValue();
 | 
						||
    EVT ShValTy = N0.getValueType();
 | 
						||
 | 
						||
    // Fold bit comparisons when we can. This will result in an
 | 
						||
    // incorrect value when boolean false is negative one, unless
 | 
						||
    // the bitsize is 1 in which case the false value is the same
 | 
						||
    // in practice regardless of the representation.
 | 
						||
    if ((VT.getSizeInBits() == 1 ||
 | 
						||
         getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
 | 
						||
        (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | 
						||
        (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
 | 
						||
        N0.getOpcode() == ISD::AND) {
 | 
						||
      if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | 
						||
        EVT ShiftTy =
 | 
						||
            getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
 | 
						||
        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
 | 
						||
          // Perform the xform if the AND RHS is a single bit.
 | 
						||
          unsigned ShCt = AndRHS->getAPIntValue().logBase2();
 | 
						||
          if (AndRHS->getAPIntValue().isPowerOf2() &&
 | 
						||
              !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
 | 
						||
            return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | 
						||
                               DAG.getNode(ISD::SRL, dl, ShValTy, N0,
 | 
						||
                                           DAG.getConstant(ShCt, dl, ShiftTy)));
 | 
						||
          }
 | 
						||
        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
 | 
						||
          // (X & 8) == 8  -->  (X & 8) >> 3
 | 
						||
          // Perform the xform if C1 is a single bit.
 | 
						||
          unsigned ShCt = C1.logBase2();
 | 
						||
          if (C1.isPowerOf2() &&
 | 
						||
              !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
 | 
						||
            return DAG.getNode(ISD::TRUNCATE, dl, VT,
 | 
						||
                               DAG.getNode(ISD::SRL, dl, ShValTy, N0,
 | 
						||
                                           DAG.getConstant(ShCt, dl, ShiftTy)));
 | 
						||
          }
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    if (C1.getMinSignedBits() <= 64 &&
 | 
						||
        !isLegalICmpImmediate(C1.getSExtValue())) {
 | 
						||
      EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
 | 
						||
      // (X & -256) == 256 -> (X >> 8) == 1
 | 
						||
      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | 
						||
          N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
 | 
						||
        if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | 
						||
          const APInt &AndRHSC = AndRHS->getAPIntValue();
 | 
						||
          if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
 | 
						||
            unsigned ShiftBits = AndRHSC.countTrailingZeros();
 | 
						||
            if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
 | 
						||
              SDValue Shift =
 | 
						||
                DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
 | 
						||
                            DAG.getConstant(ShiftBits, dl, ShiftTy));
 | 
						||
              SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
 | 
						||
              return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
 | 
						||
            }
 | 
						||
          }
 | 
						||
        }
 | 
						||
      } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
 | 
						||
                 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
 | 
						||
        bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
 | 
						||
        // X <  0x100000000 -> (X >> 32) <  1
 | 
						||
        // X >= 0x100000000 -> (X >> 32) >= 1
 | 
						||
        // X <= 0x0ffffffff -> (X >> 32) <  1
 | 
						||
        // X >  0x0ffffffff -> (X >> 32) >= 1
 | 
						||
        unsigned ShiftBits;
 | 
						||
        APInt NewC = C1;
 | 
						||
        ISD::CondCode NewCond = Cond;
 | 
						||
        if (AdjOne) {
 | 
						||
          ShiftBits = C1.countTrailingOnes();
 | 
						||
          NewC = NewC + 1;
 | 
						||
          NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
 | 
						||
        } else {
 | 
						||
          ShiftBits = C1.countTrailingZeros();
 | 
						||
        }
 | 
						||
        NewC.lshrInPlace(ShiftBits);
 | 
						||
        if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
 | 
						||
            isLegalICmpImmediate(NewC.getSExtValue()) &&
 | 
						||
            !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
 | 
						||
          SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
 | 
						||
                                      DAG.getConstant(ShiftBits, dl, ShiftTy));
 | 
						||
          SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
 | 
						||
          return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
 | 
						||
    auto *CFP = cast<ConstantFPSDNode>(N1);
 | 
						||
    assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
 | 
						||
 | 
						||
    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
 | 
						||
    // constant if knowing that the operand is non-nan is enough.  We prefer to
 | 
						||
    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
 | 
						||
    // materialize 0.0.
 | 
						||
    if (Cond == ISD::SETO || Cond == ISD::SETUO)
 | 
						||
      return DAG.getSetCC(dl, VT, N0, N0, Cond);
 | 
						||
 | 
						||
    // setcc (fneg x), C -> setcc swap(pred) x, -C
 | 
						||
    if (N0.getOpcode() == ISD::FNEG) {
 | 
						||
      ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
 | 
						||
      if (DCI.isBeforeLegalizeOps() ||
 | 
						||
          isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
 | 
						||
        SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
 | 
						||
        return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // If the condition is not legal, see if we can find an equivalent one
 | 
						||
    // which is legal.
 | 
						||
    if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
 | 
						||
      // If the comparison was an awkward floating-point == or != and one of
 | 
						||
      // the comparison operands is infinity or negative infinity, convert the
 | 
						||
      // condition to a less-awkward <= or >=.
 | 
						||
      if (CFP->getValueAPF().isInfinity()) {
 | 
						||
        bool IsNegInf = CFP->getValueAPF().isNegative();
 | 
						||
        ISD::CondCode NewCond = ISD::SETCC_INVALID;
 | 
						||
        switch (Cond) {
 | 
						||
        case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
 | 
						||
        case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
 | 
						||
        case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
 | 
						||
        case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
 | 
						||
        default: break;
 | 
						||
        }
 | 
						||
        if (NewCond != ISD::SETCC_INVALID &&
 | 
						||
            isCondCodeLegal(NewCond, N0.getSimpleValueType()))
 | 
						||
          return DAG.getSetCC(dl, VT, N0, N1, NewCond);
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  if (N0 == N1) {
 | 
						||
    // The sext(setcc()) => setcc() optimization relies on the appropriate
 | 
						||
    // constant being emitted.
 | 
						||
    assert(!N0.getValueType().isInteger() &&
 | 
						||
           "Integer types should be handled by FoldSetCC");
 | 
						||
 | 
						||
    bool EqTrue = ISD::isTrueWhenEqual(Cond);
 | 
						||
    unsigned UOF = ISD::getUnorderedFlavor(Cond);
 | 
						||
    if (UOF == 2) // FP operators that are undefined on NaNs.
 | 
						||
      return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
 | 
						||
    if (UOF == unsigned(EqTrue))
 | 
						||
      return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
 | 
						||
    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
 | 
						||
    // if it is not already.
 | 
						||
    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
 | 
						||
    if (NewCond != Cond &&
 | 
						||
        (DCI.isBeforeLegalizeOps() ||
 | 
						||
                            isCondCodeLegal(NewCond, N0.getSimpleValueType())))
 | 
						||
      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
 | 
						||
  }
 | 
						||
 | 
						||
  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | 
						||
      N0.getValueType().isInteger()) {
 | 
						||
    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
 | 
						||
        N0.getOpcode() == ISD::XOR) {
 | 
						||
      // Simplify (X+Y) == (X+Z) -->  Y == Z
 | 
						||
      if (N0.getOpcode() == N1.getOpcode()) {
 | 
						||
        if (N0.getOperand(0) == N1.getOperand(0))
 | 
						||
          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
 | 
						||
        if (N0.getOperand(1) == N1.getOperand(1))
 | 
						||
          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
 | 
						||
        if (isCommutativeBinOp(N0.getOpcode())) {
 | 
						||
          // If X op Y == Y op X, try other combinations.
 | 
						||
          if (N0.getOperand(0) == N1.getOperand(1))
 | 
						||
            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
 | 
						||
                                Cond);
 | 
						||
          if (N0.getOperand(1) == N1.getOperand(0))
 | 
						||
            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
 | 
						||
                                Cond);
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      // If RHS is a legal immediate value for a compare instruction, we need
 | 
						||
      // to be careful about increasing register pressure needlessly.
 | 
						||
      bool LegalRHSImm = false;
 | 
						||
 | 
						||
      if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
 | 
						||
        if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
 | 
						||
          // Turn (X+C1) == C2 --> X == C2-C1
 | 
						||
          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
 | 
						||
            return DAG.getSetCC(dl, VT, N0.getOperand(0),
 | 
						||
                                DAG.getConstant(RHSC->getAPIntValue()-
 | 
						||
                                                LHSR->getAPIntValue(),
 | 
						||
                                dl, N0.getValueType()), Cond);
 | 
						||
          }
 | 
						||
 | 
						||
          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
 | 
						||
          if (N0.getOpcode() == ISD::XOR)
 | 
						||
            // If we know that all of the inverted bits are zero, don't bother
 | 
						||
            // performing the inversion.
 | 
						||
            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
 | 
						||
              return
 | 
						||
                DAG.getSetCC(dl, VT, N0.getOperand(0),
 | 
						||
                             DAG.getConstant(LHSR->getAPIntValue() ^
 | 
						||
                                               RHSC->getAPIntValue(),
 | 
						||
                                             dl, N0.getValueType()),
 | 
						||
                             Cond);
 | 
						||
        }
 | 
						||
 | 
						||
        // Turn (C1-X) == C2 --> X == C1-C2
 | 
						||
        if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
 | 
						||
          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
 | 
						||
            return
 | 
						||
              DAG.getSetCC(dl, VT, N0.getOperand(1),
 | 
						||
                           DAG.getConstant(SUBC->getAPIntValue() -
 | 
						||
                                             RHSC->getAPIntValue(),
 | 
						||
                                           dl, N0.getValueType()),
 | 
						||
                           Cond);
 | 
						||
          }
 | 
						||
        }
 | 
						||
 | 
						||
        // Could RHSC fold directly into a compare?
 | 
						||
        if (RHSC->getValueType(0).getSizeInBits() <= 64)
 | 
						||
          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
 | 
						||
      }
 | 
						||
 | 
						||
      // (X+Y) == X --> Y == 0 and similar folds.
 | 
						||
      // Don't do this if X is an immediate that can fold into a cmp
 | 
						||
      // instruction and X+Y has other uses. It could be an induction variable
 | 
						||
      // chain, and the transform would increase register pressure.
 | 
						||
      if (!LegalRHSImm || N0.hasOneUse())
 | 
						||
        if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
 | 
						||
          return V;
 | 
						||
    }
 | 
						||
 | 
						||
    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
 | 
						||
        N1.getOpcode() == ISD::XOR)
 | 
						||
      if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
 | 
						||
        return V;
 | 
						||
 | 
						||
    if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
 | 
						||
      return V;
 | 
						||
  }
 | 
						||
 | 
						||
  // Fold remainder of division by a constant.
 | 
						||
  if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
 | 
						||
      N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
 | 
						||
    AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
 | 
						||
 | 
						||
    // When division is cheap or optimizing for minimum size,
 | 
						||
    // fall through to DIVREM creation by skipping this fold.
 | 
						||
    if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
 | 
						||
      if (N0.getOpcode() == ISD::UREM) {
 | 
						||
        if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
 | 
						||
          return Folded;
 | 
						||
      } else if (N0.getOpcode() == ISD::SREM) {
 | 
						||
        if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
 | 
						||
          return Folded;
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // Fold away ALL boolean setcc's.
 | 
						||
  if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
 | 
						||
    SDValue Temp;
 | 
						||
    switch (Cond) {
 | 
						||
    default: llvm_unreachable("Unknown integer setcc!");
 | 
						||
    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
 | 
						||
      Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
 | 
						||
      N0 = DAG.getNOT(dl, Temp, OpVT);
 | 
						||
      if (!DCI.isCalledByLegalizer())
 | 
						||
        DCI.AddToWorklist(Temp.getNode());
 | 
						||
      break;
 | 
						||
    case ISD::SETNE:  // X != Y   -->  (X^Y)
 | 
						||
      N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
 | 
						||
      break;
 | 
						||
    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
 | 
						||
    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
 | 
						||
      Temp = DAG.getNOT(dl, N0, OpVT);
 | 
						||
      N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
 | 
						||
      if (!DCI.isCalledByLegalizer())
 | 
						||
        DCI.AddToWorklist(Temp.getNode());
 | 
						||
      break;
 | 
						||
    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
 | 
						||
    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
 | 
						||
      Temp = DAG.getNOT(dl, N1, OpVT);
 | 
						||
      N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
 | 
						||
      if (!DCI.isCalledByLegalizer())
 | 
						||
        DCI.AddToWorklist(Temp.getNode());
 | 
						||
      break;
 | 
						||
    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
 | 
						||
    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
 | 
						||
      Temp = DAG.getNOT(dl, N0, OpVT);
 | 
						||
      N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
 | 
						||
      if (!DCI.isCalledByLegalizer())
 | 
						||
        DCI.AddToWorklist(Temp.getNode());
 | 
						||
      break;
 | 
						||
    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
 | 
						||
    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
 | 
						||
      Temp = DAG.getNOT(dl, N1, OpVT);
 | 
						||
      N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
 | 
						||
      break;
 | 
						||
    }
 | 
						||
    if (VT.getScalarType() != MVT::i1) {
 | 
						||
      if (!DCI.isCalledByLegalizer())
 | 
						||
        DCI.AddToWorklist(N0.getNode());
 | 
						||
      // FIXME: If running after legalize, we probably can't do this.
 | 
						||
      ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
 | 
						||
      N0 = DAG.getNode(ExtendCode, dl, VT, N0);
 | 
						||
    }
 | 
						||
    return N0;
 | 
						||
  }
 | 
						||
 | 
						||
  // Could not fold it.
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
/// Returns true (and the GlobalValue and the offset) if the node is a
 | 
						||
/// GlobalAddress + offset.
 | 
						||
bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
 | 
						||
                                    int64_t &Offset) const {
 | 
						||
 | 
						||
  SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
 | 
						||
 | 
						||
  if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
 | 
						||
    GA = GASD->getGlobal();
 | 
						||
    Offset += GASD->getOffset();
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
 | 
						||
  if (N->getOpcode() == ISD::ADD) {
 | 
						||
    SDValue N1 = N->getOperand(0);
 | 
						||
    SDValue N2 = N->getOperand(1);
 | 
						||
    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
 | 
						||
      if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
 | 
						||
        Offset += V->getSExtValue();
 | 
						||
        return true;
 | 
						||
      }
 | 
						||
    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
 | 
						||
      if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
 | 
						||
        Offset += V->getSExtValue();
 | 
						||
        return true;
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::PerformDAGCombine(SDNode *N,
 | 
						||
                                          DAGCombinerInfo &DCI) const {
 | 
						||
  // Default implementation: no optimization.
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
//  Inline Assembler Implementation Methods
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
 | 
						||
TargetLowering::ConstraintType
 | 
						||
TargetLowering::getConstraintType(StringRef Constraint) const {
 | 
						||
  unsigned S = Constraint.size();
 | 
						||
 | 
						||
  if (S == 1) {
 | 
						||
    switch (Constraint[0]) {
 | 
						||
    default: break;
 | 
						||
    case 'r':
 | 
						||
      return C_RegisterClass;
 | 
						||
    case 'm': // memory
 | 
						||
    case 'o': // offsetable
 | 
						||
    case 'V': // not offsetable
 | 
						||
      return C_Memory;
 | 
						||
    case 'n': // Simple Integer
 | 
						||
    case 'E': // Floating Point Constant
 | 
						||
    case 'F': // Floating Point Constant
 | 
						||
      return C_Immediate;
 | 
						||
    case 'i': // Simple Integer or Relocatable Constant
 | 
						||
    case 's': // Relocatable Constant
 | 
						||
    case 'p': // Address.
 | 
						||
    case 'X': // Allow ANY value.
 | 
						||
    case 'I': // Target registers.
 | 
						||
    case 'J':
 | 
						||
    case 'K':
 | 
						||
    case 'L':
 | 
						||
    case 'M':
 | 
						||
    case 'N':
 | 
						||
    case 'O':
 | 
						||
    case 'P':
 | 
						||
    case '<':
 | 
						||
    case '>':
 | 
						||
      return C_Other;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
 | 
						||
    if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
 | 
						||
      return C_Memory;
 | 
						||
    return C_Register;
 | 
						||
  }
 | 
						||
  return C_Unknown;
 | 
						||
}
 | 
						||
 | 
						||
/// Try to replace an X constraint, which matches anything, with another that
 | 
						||
/// has more specific requirements based on the type of the corresponding
 | 
						||
/// operand.
 | 
						||
const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
 | 
						||
  if (ConstraintVT.isInteger())
 | 
						||
    return "r";
 | 
						||
  if (ConstraintVT.isFloatingPoint())
 | 
						||
    return "f"; // works for many targets
 | 
						||
  return nullptr;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::LowerAsmOutputForConstraint(
 | 
						||
    SDValue &Chain, SDValue &Flag, const SDLoc &DL,
 | 
						||
    const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
/// Lower the specified operand into the Ops vector.
 | 
						||
/// If it is invalid, don't add anything to Ops.
 | 
						||
void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
 | 
						||
                                                  std::string &Constraint,
 | 
						||
                                                  std::vector<SDValue> &Ops,
 | 
						||
                                                  SelectionDAG &DAG) const {
 | 
						||
 | 
						||
  if (Constraint.length() > 1) return;
 | 
						||
 | 
						||
  char ConstraintLetter = Constraint[0];
 | 
						||
  switch (ConstraintLetter) {
 | 
						||
  default: break;
 | 
						||
  case 'X':    // Allows any operand
 | 
						||
  case 'i':    // Simple Integer or Relocatable Constant
 | 
						||
  case 'n':    // Simple Integer
 | 
						||
  case 's': {  // Relocatable Constant
 | 
						||
 | 
						||
    ConstantSDNode *C;
 | 
						||
    uint64_t Offset = 0;
 | 
						||
 | 
						||
    // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
 | 
						||
    // etc., since getelementpointer is variadic. We can't use
 | 
						||
    // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
 | 
						||
    // while in this case the GA may be furthest from the root node which is
 | 
						||
    // likely an ISD::ADD.
 | 
						||
    while (true) {
 | 
						||
      if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
 | 
						||
        // gcc prints these as sign extended.  Sign extend value to 64 bits
 | 
						||
        // now; without this it would get ZExt'd later in
 | 
						||
        // ScheduleDAGSDNodes::EmitNode, which is very generic.
 | 
						||
        bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
 | 
						||
        BooleanContent BCont = getBooleanContents(MVT::i64);
 | 
						||
        ISD::NodeType ExtOpc =
 | 
						||
            IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
 | 
						||
        int64_t ExtVal =
 | 
						||
            ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
 | 
						||
        Ops.push_back(
 | 
						||
            DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
 | 
						||
        return;
 | 
						||
      }
 | 
						||
      if (ConstraintLetter != 'n') {
 | 
						||
        if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
 | 
						||
          Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
 | 
						||
                                                   GA->getValueType(0),
 | 
						||
                                                   Offset + GA->getOffset()));
 | 
						||
          return;
 | 
						||
        }
 | 
						||
        if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
 | 
						||
          Ops.push_back(DAG.getTargetBlockAddress(
 | 
						||
              BA->getBlockAddress(), BA->getValueType(0),
 | 
						||
              Offset + BA->getOffset(), BA->getTargetFlags()));
 | 
						||
          return;
 | 
						||
        }
 | 
						||
        if (isa<BasicBlockSDNode>(Op)) {
 | 
						||
          Ops.push_back(Op);
 | 
						||
          return;
 | 
						||
        }
 | 
						||
      }
 | 
						||
      const unsigned OpCode = Op.getOpcode();
 | 
						||
      if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
 | 
						||
        if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
 | 
						||
          Op = Op.getOperand(1);
 | 
						||
        // Subtraction is not commutative.
 | 
						||
        else if (OpCode == ISD::ADD &&
 | 
						||
                 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
 | 
						||
          Op = Op.getOperand(0);
 | 
						||
        else
 | 
						||
          return;
 | 
						||
        Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      return;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
std::pair<unsigned, const TargetRegisterClass *>
 | 
						||
TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
 | 
						||
                                             StringRef Constraint,
 | 
						||
                                             MVT VT) const {
 | 
						||
  if (Constraint.empty() || Constraint[0] != '{')
 | 
						||
    return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
 | 
						||
  assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
 | 
						||
 | 
						||
  // Remove the braces from around the name.
 | 
						||
  StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
 | 
						||
 | 
						||
  std::pair<unsigned, const TargetRegisterClass *> R =
 | 
						||
      std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
 | 
						||
 | 
						||
  // Figure out which register class contains this reg.
 | 
						||
  for (const TargetRegisterClass *RC : RI->regclasses()) {
 | 
						||
    // If none of the value types for this register class are valid, we
 | 
						||
    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
 | 
						||
    if (!isLegalRC(*RI, *RC))
 | 
						||
      continue;
 | 
						||
 | 
						||
    for (const MCPhysReg &PR : *RC) {
 | 
						||
      if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
 | 
						||
        std::pair<unsigned, const TargetRegisterClass *> S =
 | 
						||
            std::make_pair(PR, RC);
 | 
						||
 | 
						||
        // If this register class has the requested value type, return it,
 | 
						||
        // otherwise keep searching and return the first class found
 | 
						||
        // if no other is found which explicitly has the requested type.
 | 
						||
        if (RI->isTypeLegalForClass(*RC, VT))
 | 
						||
          return S;
 | 
						||
        if (!R.second)
 | 
						||
          R = S;
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  return R;
 | 
						||
}
 | 
						||
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
// Constraint Selection.
 | 
						||
 | 
						||
/// Return true of this is an input operand that is a matching constraint like
 | 
						||
/// "4".
 | 
						||
bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
 | 
						||
  assert(!ConstraintCode.empty() && "No known constraint!");
 | 
						||
  return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
 | 
						||
}
 | 
						||
 | 
						||
/// If this is an input matching constraint, this method returns the output
 | 
						||
/// operand it matches.
 | 
						||
unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
 | 
						||
  assert(!ConstraintCode.empty() && "No known constraint!");
 | 
						||
  return atoi(ConstraintCode.c_str());
 | 
						||
}
 | 
						||
 | 
						||
/// Split up the constraint string from the inline assembly value into the
 | 
						||
/// specific constraints and their prefixes, and also tie in the associated
 | 
						||
/// operand values.
 | 
						||
/// If this returns an empty vector, and if the constraint string itself
 | 
						||
/// isn't empty, there was an error parsing.
 | 
						||
TargetLowering::AsmOperandInfoVector
 | 
						||
TargetLowering::ParseConstraints(const DataLayout &DL,
 | 
						||
                                 const TargetRegisterInfo *TRI,
 | 
						||
                                 const CallBase &Call) const {
 | 
						||
  /// Information about all of the constraints.
 | 
						||
  AsmOperandInfoVector ConstraintOperands;
 | 
						||
  const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
 | 
						||
  unsigned maCount = 0; // Largest number of multiple alternative constraints.
 | 
						||
 | 
						||
  // Do a prepass over the constraints, canonicalizing them, and building up the
 | 
						||
  // ConstraintOperands list.
 | 
						||
  unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
 | 
						||
  unsigned ResNo = 0; // ResNo - The result number of the next output.
 | 
						||
 | 
						||
  for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
 | 
						||
    ConstraintOperands.emplace_back(std::move(CI));
 | 
						||
    AsmOperandInfo &OpInfo = ConstraintOperands.back();
 | 
						||
 | 
						||
    // Update multiple alternative constraint count.
 | 
						||
    if (OpInfo.multipleAlternatives.size() > maCount)
 | 
						||
      maCount = OpInfo.multipleAlternatives.size();
 | 
						||
 | 
						||
    OpInfo.ConstraintVT = MVT::Other;
 | 
						||
 | 
						||
    // Compute the value type for each operand.
 | 
						||
    switch (OpInfo.Type) {
 | 
						||
    case InlineAsm::isOutput:
 | 
						||
      // Indirect outputs just consume an argument.
 | 
						||
      if (OpInfo.isIndirect) {
 | 
						||
        OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
 | 
						||
        break;
 | 
						||
      }
 | 
						||
 | 
						||
      // The return value of the call is this value.  As such, there is no
 | 
						||
      // corresponding argument.
 | 
						||
      assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
 | 
						||
      if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
 | 
						||
        OpInfo.ConstraintVT =
 | 
						||
            getSimpleValueType(DL, STy->getElementType(ResNo));
 | 
						||
      } else {
 | 
						||
        assert(ResNo == 0 && "Asm only has one result!");
 | 
						||
        OpInfo.ConstraintVT =
 | 
						||
            getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
 | 
						||
      }
 | 
						||
      ++ResNo;
 | 
						||
      break;
 | 
						||
    case InlineAsm::isInput:
 | 
						||
      OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
 | 
						||
      break;
 | 
						||
    case InlineAsm::isClobber:
 | 
						||
      // Nothing to do.
 | 
						||
      break;
 | 
						||
    }
 | 
						||
 | 
						||
    if (OpInfo.CallOperandVal) {
 | 
						||
      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
 | 
						||
      if (OpInfo.isIndirect) {
 | 
						||
        OpTy = Call.getAttributes().getParamElementType(ArgNo);
 | 
						||
        assert(OpTy && "Indirect opernad must have elementtype attribute");
 | 
						||
      }
 | 
						||
 | 
						||
      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
 | 
						||
      if (StructType *STy = dyn_cast<StructType>(OpTy))
 | 
						||
        if (STy->getNumElements() == 1)
 | 
						||
          OpTy = STy->getElementType(0);
 | 
						||
 | 
						||
      // If OpTy is not a single value, it may be a struct/union that we
 | 
						||
      // can tile with integers.
 | 
						||
      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
 | 
						||
        unsigned BitSize = DL.getTypeSizeInBits(OpTy);
 | 
						||
        switch (BitSize) {
 | 
						||
        default: break;
 | 
						||
        case 1:
 | 
						||
        case 8:
 | 
						||
        case 16:
 | 
						||
        case 32:
 | 
						||
        case 64:
 | 
						||
        case 128:
 | 
						||
          OpInfo.ConstraintVT =
 | 
						||
              MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
 | 
						||
          break;
 | 
						||
        }
 | 
						||
      } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
 | 
						||
        unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
 | 
						||
        OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
 | 
						||
      } else {
 | 
						||
        OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
 | 
						||
      }
 | 
						||
 | 
						||
      ArgNo++;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // If we have multiple alternative constraints, select the best alternative.
 | 
						||
  if (!ConstraintOperands.empty()) {
 | 
						||
    if (maCount) {
 | 
						||
      unsigned bestMAIndex = 0;
 | 
						||
      int bestWeight = -1;
 | 
						||
      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
 | 
						||
      int weight = -1;
 | 
						||
      unsigned maIndex;
 | 
						||
      // Compute the sums of the weights for each alternative, keeping track
 | 
						||
      // of the best (highest weight) one so far.
 | 
						||
      for (maIndex = 0; maIndex < maCount; ++maIndex) {
 | 
						||
        int weightSum = 0;
 | 
						||
        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
 | 
						||
             cIndex != eIndex; ++cIndex) {
 | 
						||
          AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
 | 
						||
          if (OpInfo.Type == InlineAsm::isClobber)
 | 
						||
            continue;
 | 
						||
 | 
						||
          // If this is an output operand with a matching input operand,
 | 
						||
          // look up the matching input. If their types mismatch, e.g. one
 | 
						||
          // is an integer, the other is floating point, or their sizes are
 | 
						||
          // different, flag it as an maCantMatch.
 | 
						||
          if (OpInfo.hasMatchingInput()) {
 | 
						||
            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | 
						||
            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
 | 
						||
              if ((OpInfo.ConstraintVT.isInteger() !=
 | 
						||
                   Input.ConstraintVT.isInteger()) ||
 | 
						||
                  (OpInfo.ConstraintVT.getSizeInBits() !=
 | 
						||
                   Input.ConstraintVT.getSizeInBits())) {
 | 
						||
                weightSum = -1; // Can't match.
 | 
						||
                break;
 | 
						||
              }
 | 
						||
            }
 | 
						||
          }
 | 
						||
          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
 | 
						||
          if (weight == -1) {
 | 
						||
            weightSum = -1;
 | 
						||
            break;
 | 
						||
          }
 | 
						||
          weightSum += weight;
 | 
						||
        }
 | 
						||
        // Update best.
 | 
						||
        if (weightSum > bestWeight) {
 | 
						||
          bestWeight = weightSum;
 | 
						||
          bestMAIndex = maIndex;
 | 
						||
        }
 | 
						||
      }
 | 
						||
 | 
						||
      // Now select chosen alternative in each constraint.
 | 
						||
      for (AsmOperandInfo &cInfo : ConstraintOperands)
 | 
						||
        if (cInfo.Type != InlineAsm::isClobber)
 | 
						||
          cInfo.selectAlternative(bestMAIndex);
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // Check and hook up tied operands, choose constraint code to use.
 | 
						||
  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
 | 
						||
       cIndex != eIndex; ++cIndex) {
 | 
						||
    AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
 | 
						||
 | 
						||
    // If this is an output operand with a matching input operand, look up the
 | 
						||
    // matching input. If their types mismatch, e.g. one is an integer, the
 | 
						||
    // other is floating point, or their sizes are different, flag it as an
 | 
						||
    // error.
 | 
						||
    if (OpInfo.hasMatchingInput()) {
 | 
						||
      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
 | 
						||
 | 
						||
      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
 | 
						||
        std::pair<unsigned, const TargetRegisterClass *> MatchRC =
 | 
						||
            getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
 | 
						||
                                         OpInfo.ConstraintVT);
 | 
						||
        std::pair<unsigned, const TargetRegisterClass *> InputRC =
 | 
						||
            getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
 | 
						||
                                         Input.ConstraintVT);
 | 
						||
        if ((OpInfo.ConstraintVT.isInteger() !=
 | 
						||
             Input.ConstraintVT.isInteger()) ||
 | 
						||
            (MatchRC.second != InputRC.second)) {
 | 
						||
          report_fatal_error("Unsupported asm: input constraint"
 | 
						||
                             " with a matching output constraint of"
 | 
						||
                             " incompatible type!");
 | 
						||
        }
 | 
						||
      }
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  return ConstraintOperands;
 | 
						||
}
 | 
						||
 | 
						||
/// Return an integer indicating how general CT is.
 | 
						||
static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
 | 
						||
  switch (CT) {
 | 
						||
  case TargetLowering::C_Immediate:
 | 
						||
  case TargetLowering::C_Other:
 | 
						||
  case TargetLowering::C_Unknown:
 | 
						||
    return 0;
 | 
						||
  case TargetLowering::C_Register:
 | 
						||
    return 1;
 | 
						||
  case TargetLowering::C_RegisterClass:
 | 
						||
    return 2;
 | 
						||
  case TargetLowering::C_Memory:
 | 
						||
    return 3;
 | 
						||
  }
 | 
						||
  llvm_unreachable("Invalid constraint type");
 | 
						||
}
 | 
						||
 | 
						||
/// Examine constraint type and operand type and determine a weight value.
 | 
						||
/// This object must already have been set up with the operand type
 | 
						||
/// and the current alternative constraint selected.
 | 
						||
TargetLowering::ConstraintWeight
 | 
						||
  TargetLowering::getMultipleConstraintMatchWeight(
 | 
						||
    AsmOperandInfo &info, int maIndex) const {
 | 
						||
  InlineAsm::ConstraintCodeVector *rCodes;
 | 
						||
  if (maIndex >= (int)info.multipleAlternatives.size())
 | 
						||
    rCodes = &info.Codes;
 | 
						||
  else
 | 
						||
    rCodes = &info.multipleAlternatives[maIndex].Codes;
 | 
						||
  ConstraintWeight BestWeight = CW_Invalid;
 | 
						||
 | 
						||
  // Loop over the options, keeping track of the most general one.
 | 
						||
  for (const std::string &rCode : *rCodes) {
 | 
						||
    ConstraintWeight weight =
 | 
						||
        getSingleConstraintMatchWeight(info, rCode.c_str());
 | 
						||
    if (weight > BestWeight)
 | 
						||
      BestWeight = weight;
 | 
						||
  }
 | 
						||
 | 
						||
  return BestWeight;
 | 
						||
}
 | 
						||
 | 
						||
/// Examine constraint type and operand type and determine a weight value.
 | 
						||
/// This object must already have been set up with the operand type
 | 
						||
/// and the current alternative constraint selected.
 | 
						||
TargetLowering::ConstraintWeight
 | 
						||
  TargetLowering::getSingleConstraintMatchWeight(
 | 
						||
    AsmOperandInfo &info, const char *constraint) const {
 | 
						||
  ConstraintWeight weight = CW_Invalid;
 | 
						||
  Value *CallOperandVal = info.CallOperandVal;
 | 
						||
    // If we don't have a value, we can't do a match,
 | 
						||
    // but allow it at the lowest weight.
 | 
						||
  if (!CallOperandVal)
 | 
						||
    return CW_Default;
 | 
						||
  // Look at the constraint type.
 | 
						||
  switch (*constraint) {
 | 
						||
    case 'i': // immediate integer.
 | 
						||
    case 'n': // immediate integer with a known value.
 | 
						||
      if (isa<ConstantInt>(CallOperandVal))
 | 
						||
        weight = CW_Constant;
 | 
						||
      break;
 | 
						||
    case 's': // non-explicit intregal immediate.
 | 
						||
      if (isa<GlobalValue>(CallOperandVal))
 | 
						||
        weight = CW_Constant;
 | 
						||
      break;
 | 
						||
    case 'E': // immediate float if host format.
 | 
						||
    case 'F': // immediate float.
 | 
						||
      if (isa<ConstantFP>(CallOperandVal))
 | 
						||
        weight = CW_Constant;
 | 
						||
      break;
 | 
						||
    case '<': // memory operand with autodecrement.
 | 
						||
    case '>': // memory operand with autoincrement.
 | 
						||
    case 'm': // memory operand.
 | 
						||
    case 'o': // offsettable memory operand
 | 
						||
    case 'V': // non-offsettable memory operand
 | 
						||
      weight = CW_Memory;
 | 
						||
      break;
 | 
						||
    case 'r': // general register.
 | 
						||
    case 'g': // general register, memory operand or immediate integer.
 | 
						||
              // note: Clang converts "g" to "imr".
 | 
						||
      if (CallOperandVal->getType()->isIntegerTy())
 | 
						||
        weight = CW_Register;
 | 
						||
      break;
 | 
						||
    case 'X': // any operand.
 | 
						||
  default:
 | 
						||
    weight = CW_Default;
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  return weight;
 | 
						||
}
 | 
						||
 | 
						||
/// If there are multiple different constraints that we could pick for this
 | 
						||
/// operand (e.g. "imr") try to pick the 'best' one.
 | 
						||
/// This is somewhat tricky: constraints fall into four classes:
 | 
						||
///    Other         -> immediates and magic values
 | 
						||
///    Register      -> one specific register
 | 
						||
///    RegisterClass -> a group of regs
 | 
						||
///    Memory        -> memory
 | 
						||
/// Ideally, we would pick the most specific constraint possible: if we have
 | 
						||
/// something that fits into a register, we would pick it.  The problem here
 | 
						||
/// is that if we have something that could either be in a register or in
 | 
						||
/// memory that use of the register could cause selection of *other*
 | 
						||
/// operands to fail: they might only succeed if we pick memory.  Because of
 | 
						||
/// this the heuristic we use is:
 | 
						||
///
 | 
						||
///  1) If there is an 'other' constraint, and if the operand is valid for
 | 
						||
///     that constraint, use it.  This makes us take advantage of 'i'
 | 
						||
///     constraints when available.
 | 
						||
///  2) Otherwise, pick the most general constraint present.  This prefers
 | 
						||
///     'm' over 'r', for example.
 | 
						||
///
 | 
						||
static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
 | 
						||
                             const TargetLowering &TLI,
 | 
						||
                             SDValue Op, SelectionDAG *DAG) {
 | 
						||
  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
 | 
						||
  unsigned BestIdx = 0;
 | 
						||
  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
 | 
						||
  int BestGenerality = -1;
 | 
						||
 | 
						||
  // Loop over the options, keeping track of the most general one.
 | 
						||
  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
 | 
						||
    TargetLowering::ConstraintType CType =
 | 
						||
      TLI.getConstraintType(OpInfo.Codes[i]);
 | 
						||
 | 
						||
    // Indirect 'other' or 'immediate' constraints are not allowed.
 | 
						||
    if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
 | 
						||
                               CType == TargetLowering::C_Register ||
 | 
						||
                               CType == TargetLowering::C_RegisterClass))
 | 
						||
      continue;
 | 
						||
 | 
						||
    // If this is an 'other' or 'immediate' constraint, see if the operand is
 | 
						||
    // valid for it. For example, on X86 we might have an 'rI' constraint. If
 | 
						||
    // the operand is an integer in the range [0..31] we want to use I (saving a
 | 
						||
    // load of a register), otherwise we must use 'r'.
 | 
						||
    if ((CType == TargetLowering::C_Other ||
 | 
						||
         CType == TargetLowering::C_Immediate) && Op.getNode()) {
 | 
						||
      assert(OpInfo.Codes[i].size() == 1 &&
 | 
						||
             "Unhandled multi-letter 'other' constraint");
 | 
						||
      std::vector<SDValue> ResultOps;
 | 
						||
      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
 | 
						||
                                       ResultOps, *DAG);
 | 
						||
      if (!ResultOps.empty()) {
 | 
						||
        BestType = CType;
 | 
						||
        BestIdx = i;
 | 
						||
        break;
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    // Things with matching constraints can only be registers, per gcc
 | 
						||
    // documentation.  This mainly affects "g" constraints.
 | 
						||
    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
 | 
						||
      continue;
 | 
						||
 | 
						||
    // This constraint letter is more general than the previous one, use it.
 | 
						||
    int Generality = getConstraintGenerality(CType);
 | 
						||
    if (Generality > BestGenerality) {
 | 
						||
      BestType = CType;
 | 
						||
      BestIdx = i;
 | 
						||
      BestGenerality = Generality;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
 | 
						||
  OpInfo.ConstraintType = BestType;
 | 
						||
}
 | 
						||
 | 
						||
/// Determines the constraint code and constraint type to use for the specific
 | 
						||
/// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
 | 
						||
void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
 | 
						||
                                            SDValue Op,
 | 
						||
                                            SelectionDAG *DAG) const {
 | 
						||
  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
 | 
						||
 | 
						||
  // Single-letter constraints ('r') are very common.
 | 
						||
  if (OpInfo.Codes.size() == 1) {
 | 
						||
    OpInfo.ConstraintCode = OpInfo.Codes[0];
 | 
						||
    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
 | 
						||
  } else {
 | 
						||
    ChooseConstraint(OpInfo, *this, Op, DAG);
 | 
						||
  }
 | 
						||
 | 
						||
  // 'X' matches anything.
 | 
						||
  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
 | 
						||
    // Constants are handled elsewhere.  For Functions, the type here is the
 | 
						||
    // type of the result, which is not what we want to look at; leave them
 | 
						||
    // alone.
 | 
						||
    Value *v = OpInfo.CallOperandVal;
 | 
						||
    if (isa<ConstantInt>(v) || isa<Function>(v)) {
 | 
						||
      return;
 | 
						||
    }
 | 
						||
 | 
						||
    if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
 | 
						||
      OpInfo.ConstraintCode = "i";
 | 
						||
      return;
 | 
						||
    }
 | 
						||
 | 
						||
    // Otherwise, try to resolve it to something we know about by looking at
 | 
						||
    // the actual operand type.
 | 
						||
    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
 | 
						||
      OpInfo.ConstraintCode = Repl;
 | 
						||
      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
 | 
						||
    }
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
/// Given an exact SDIV by a constant, create a multiplication
 | 
						||
/// with the multiplicative inverse of the constant.
 | 
						||
static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
 | 
						||
                              const SDLoc &dl, SelectionDAG &DAG,
 | 
						||
                              SmallVectorImpl<SDNode *> &Created) {
 | 
						||
  SDValue Op0 = N->getOperand(0);
 | 
						||
  SDValue Op1 = N->getOperand(1);
 | 
						||
  EVT VT = N->getValueType(0);
 | 
						||
  EVT SVT = VT.getScalarType();
 | 
						||
  EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  EVT ShSVT = ShVT.getScalarType();
 | 
						||
 | 
						||
  bool UseSRA = false;
 | 
						||
  SmallVector<SDValue, 16> Shifts, Factors;
 | 
						||
 | 
						||
  auto BuildSDIVPattern = [&](ConstantSDNode *C) {
 | 
						||
    if (C->isZero())
 | 
						||
      return false;
 | 
						||
    APInt Divisor = C->getAPIntValue();
 | 
						||
    unsigned Shift = Divisor.countTrailingZeros();
 | 
						||
    if (Shift) {
 | 
						||
      Divisor.ashrInPlace(Shift);
 | 
						||
      UseSRA = true;
 | 
						||
    }
 | 
						||
    // Calculate the multiplicative inverse, using Newton's method.
 | 
						||
    APInt t;
 | 
						||
    APInt Factor = Divisor;
 | 
						||
    while ((t = Divisor * Factor) != 1)
 | 
						||
      Factor *= APInt(Divisor.getBitWidth(), 2) - t;
 | 
						||
    Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
 | 
						||
    Factors.push_back(DAG.getConstant(Factor, dl, SVT));
 | 
						||
    return true;
 | 
						||
  };
 | 
						||
 | 
						||
  // Collect all magic values from the build vector.
 | 
						||
  if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  SDValue Shift, Factor;
 | 
						||
  if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
 | 
						||
    Shift = DAG.getBuildVector(ShVT, dl, Shifts);
 | 
						||
    Factor = DAG.getBuildVector(VT, dl, Factors);
 | 
						||
  } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
 | 
						||
    assert(Shifts.size() == 1 && Factors.size() == 1 &&
 | 
						||
           "Expected matchUnaryPredicate to return one element for scalable "
 | 
						||
           "vectors");
 | 
						||
    Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
 | 
						||
    Factor = DAG.getSplatVector(VT, dl, Factors[0]);
 | 
						||
  } else {
 | 
						||
    assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
 | 
						||
    Shift = Shifts[0];
 | 
						||
    Factor = Factors[0];
 | 
						||
  }
 | 
						||
 | 
						||
  SDValue Res = Op0;
 | 
						||
 | 
						||
  // Shift the value upfront if it is even, so the LSB is one.
 | 
						||
  if (UseSRA) {
 | 
						||
    // TODO: For UDIV use SRL instead of SRA.
 | 
						||
    SDNodeFlags Flags;
 | 
						||
    Flags.setExact(true);
 | 
						||
    Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
 | 
						||
    Created.push_back(Res.getNode());
 | 
						||
  }
 | 
						||
 | 
						||
  return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
 | 
						||
                              SelectionDAG &DAG,
 | 
						||
                              SmallVectorImpl<SDNode *> &Created) const {
 | 
						||
  AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
 | 
						||
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						||
  if (TLI.isIntDivCheap(N->getValueType(0), Attr))
 | 
						||
    return SDValue(N, 0); // Lower SDIV as SDIV
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
/// Given an ISD::SDIV node expressing a divide by constant,
 | 
						||
/// return a DAG expression to select that will generate the same value by
 | 
						||
/// multiplying by a magic number.
 | 
						||
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
 | 
						||
SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
 | 
						||
                                  bool IsAfterLegalization,
 | 
						||
                                  SmallVectorImpl<SDNode *> &Created) const {
 | 
						||
  SDLoc dl(N);
 | 
						||
  EVT VT = N->getValueType(0);
 | 
						||
  EVT SVT = VT.getScalarType();
 | 
						||
  EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  EVT ShSVT = ShVT.getScalarType();
 | 
						||
  unsigned EltBits = VT.getScalarSizeInBits();
 | 
						||
  EVT MulVT;
 | 
						||
 | 
						||
  // Check to see if we can do this.
 | 
						||
  // FIXME: We should be more aggressive here.
 | 
						||
  if (!isTypeLegal(VT)) {
 | 
						||
    // Limit this to simple scalars for now.
 | 
						||
    if (VT.isVector() || !VT.isSimple())
 | 
						||
      return SDValue();
 | 
						||
 | 
						||
    // If this type will be promoted to a large enough type with a legal
 | 
						||
    // multiply operation, we can go ahead and do this transform.
 | 
						||
    if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
 | 
						||
      return SDValue();
 | 
						||
 | 
						||
    MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
 | 
						||
    if (MulVT.getSizeInBits() < (2 * EltBits) ||
 | 
						||
        !isOperationLegal(ISD::MUL, MulVT))
 | 
						||
      return SDValue();
 | 
						||
  }
 | 
						||
 | 
						||
  // If the sdiv has an 'exact' bit we can use a simpler lowering.
 | 
						||
  if (N->getFlags().hasExact())
 | 
						||
    return BuildExactSDIV(*this, N, dl, DAG, Created);
 | 
						||
 | 
						||
  SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
 | 
						||
 | 
						||
  auto BuildSDIVPattern = [&](ConstantSDNode *C) {
 | 
						||
    if (C->isZero())
 | 
						||
      return false;
 | 
						||
 | 
						||
    const APInt &Divisor = C->getAPIntValue();
 | 
						||
    SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
 | 
						||
    int NumeratorFactor = 0;
 | 
						||
    int ShiftMask = -1;
 | 
						||
 | 
						||
    if (Divisor.isOne() || Divisor.isAllOnes()) {
 | 
						||
      // If d is +1/-1, we just multiply the numerator by +1/-1.
 | 
						||
      NumeratorFactor = Divisor.getSExtValue();
 | 
						||
      magics.Magic = 0;
 | 
						||
      magics.ShiftAmount = 0;
 | 
						||
      ShiftMask = 0;
 | 
						||
    } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
 | 
						||
      // If d > 0 and m < 0, add the numerator.
 | 
						||
      NumeratorFactor = 1;
 | 
						||
    } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
 | 
						||
      // If d < 0 and m > 0, subtract the numerator.
 | 
						||
      NumeratorFactor = -1;
 | 
						||
    }
 | 
						||
 | 
						||
    MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
 | 
						||
    Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
 | 
						||
    Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
 | 
						||
    ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
 | 
						||
    return true;
 | 
						||
  };
 | 
						||
 | 
						||
  SDValue N0 = N->getOperand(0);
 | 
						||
  SDValue N1 = N->getOperand(1);
 | 
						||
 | 
						||
  // Collect the shifts / magic values from each element.
 | 
						||
  if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  SDValue MagicFactor, Factor, Shift, ShiftMask;
 | 
						||
  if (N1.getOpcode() == ISD::BUILD_VECTOR) {
 | 
						||
    MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
 | 
						||
    Factor = DAG.getBuildVector(VT, dl, Factors);
 | 
						||
    Shift = DAG.getBuildVector(ShVT, dl, Shifts);
 | 
						||
    ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
 | 
						||
  } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
 | 
						||
    assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
 | 
						||
           Shifts.size() == 1 && ShiftMasks.size() == 1 &&
 | 
						||
           "Expected matchUnaryPredicate to return one element for scalable "
 | 
						||
           "vectors");
 | 
						||
    MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
 | 
						||
    Factor = DAG.getSplatVector(VT, dl, Factors[0]);
 | 
						||
    Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
 | 
						||
    ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
 | 
						||
  } else {
 | 
						||
    assert(isa<ConstantSDNode>(N1) && "Expected a constant");
 | 
						||
    MagicFactor = MagicFactors[0];
 | 
						||
    Factor = Factors[0];
 | 
						||
    Shift = Shifts[0];
 | 
						||
    ShiftMask = ShiftMasks[0];
 | 
						||
  }
 | 
						||
 | 
						||
  // Multiply the numerator (operand 0) by the magic value.
 | 
						||
  // FIXME: We should support doing a MUL in a wider type.
 | 
						||
  auto GetMULHS = [&](SDValue X, SDValue Y) {
 | 
						||
    // If the type isn't legal, use a wider mul of the the type calculated
 | 
						||
    // earlier.
 | 
						||
    if (!isTypeLegal(VT)) {
 | 
						||
      X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
 | 
						||
      Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
 | 
						||
      Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
 | 
						||
      Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
 | 
						||
                      DAG.getShiftAmountConstant(EltBits, MulVT, dl));
 | 
						||
      return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
 | 
						||
    }
 | 
						||
 | 
						||
    if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
 | 
						||
      return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
 | 
						||
    if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
 | 
						||
      SDValue LoHi =
 | 
						||
          DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
 | 
						||
      return SDValue(LoHi.getNode(), 1);
 | 
						||
    }
 | 
						||
    return SDValue();
 | 
						||
  };
 | 
						||
 | 
						||
  SDValue Q = GetMULHS(N0, MagicFactor);
 | 
						||
  if (!Q)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  Created.push_back(Q.getNode());
 | 
						||
 | 
						||
  // (Optionally) Add/subtract the numerator using Factor.
 | 
						||
  Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
 | 
						||
  Created.push_back(Factor.getNode());
 | 
						||
  Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
 | 
						||
  Created.push_back(Q.getNode());
 | 
						||
 | 
						||
  // Shift right algebraic by shift value.
 | 
						||
  Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
 | 
						||
  Created.push_back(Q.getNode());
 | 
						||
 | 
						||
  // Extract the sign bit, mask it and add it to the quotient.
 | 
						||
  SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
 | 
						||
  SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
 | 
						||
  Created.push_back(T.getNode());
 | 
						||
  T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
 | 
						||
  Created.push_back(T.getNode());
 | 
						||
  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
 | 
						||
}
 | 
						||
 | 
						||
/// Given an ISD::UDIV node expressing a divide by constant,
 | 
						||
/// return a DAG expression to select that will generate the same value by
 | 
						||
/// multiplying by a magic number.
 | 
						||
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
 | 
						||
SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
 | 
						||
                                  bool IsAfterLegalization,
 | 
						||
                                  SmallVectorImpl<SDNode *> &Created) const {
 | 
						||
  SDLoc dl(N);
 | 
						||
  EVT VT = N->getValueType(0);
 | 
						||
  EVT SVT = VT.getScalarType();
 | 
						||
  EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  EVT ShSVT = ShVT.getScalarType();
 | 
						||
  unsigned EltBits = VT.getScalarSizeInBits();
 | 
						||
  EVT MulVT;
 | 
						||
 | 
						||
  // Check to see if we can do this.
 | 
						||
  // FIXME: We should be more aggressive here.
 | 
						||
  if (!isTypeLegal(VT)) {
 | 
						||
    // Limit this to simple scalars for now.
 | 
						||
    if (VT.isVector() || !VT.isSimple())
 | 
						||
      return SDValue();
 | 
						||
 | 
						||
    // If this type will be promoted to a large enough type with a legal
 | 
						||
    // multiply operation, we can go ahead and do this transform.
 | 
						||
    if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
 | 
						||
      return SDValue();
 | 
						||
 | 
						||
    MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
 | 
						||
    if (MulVT.getSizeInBits() < (2 * EltBits) ||
 | 
						||
        !isOperationLegal(ISD::MUL, MulVT))
 | 
						||
      return SDValue();
 | 
						||
  }
 | 
						||
 | 
						||
  bool UseNPQ = false;
 | 
						||
  SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
 | 
						||
 | 
						||
  auto BuildUDIVPattern = [&](ConstantSDNode *C) {
 | 
						||
    if (C->isZero())
 | 
						||
      return false;
 | 
						||
    // FIXME: We should use a narrower constant when the upper
 | 
						||
    // bits are known to be zero.
 | 
						||
    const APInt& Divisor = C->getAPIntValue();
 | 
						||
    UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
 | 
						||
    unsigned PreShift = 0, PostShift = 0;
 | 
						||
 | 
						||
    // If the divisor is even, we can avoid using the expensive fixup by
 | 
						||
    // shifting the divided value upfront.
 | 
						||
    if (magics.IsAdd != 0 && !Divisor[0]) {
 | 
						||
      PreShift = Divisor.countTrailingZeros();
 | 
						||
      // Get magic number for the shifted divisor.
 | 
						||
      magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
 | 
						||
      assert(magics.IsAdd == 0 && "Should use cheap fixup now");
 | 
						||
    }
 | 
						||
 | 
						||
    APInt Magic = magics.Magic;
 | 
						||
 | 
						||
    unsigned SelNPQ;
 | 
						||
    if (magics.IsAdd == 0 || Divisor.isOne()) {
 | 
						||
      assert(magics.ShiftAmount < Divisor.getBitWidth() &&
 | 
						||
             "We shouldn't generate an undefined shift!");
 | 
						||
      PostShift = magics.ShiftAmount;
 | 
						||
      SelNPQ = false;
 | 
						||
    } else {
 | 
						||
      PostShift = magics.ShiftAmount - 1;
 | 
						||
      SelNPQ = true;
 | 
						||
    }
 | 
						||
 | 
						||
    PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
 | 
						||
    MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
 | 
						||
    NPQFactors.push_back(
 | 
						||
        DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
 | 
						||
                               : APInt::getZero(EltBits),
 | 
						||
                        dl, SVT));
 | 
						||
    PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
 | 
						||
    UseNPQ |= SelNPQ;
 | 
						||
    return true;
 | 
						||
  };
 | 
						||
 | 
						||
  SDValue N0 = N->getOperand(0);
 | 
						||
  SDValue N1 = N->getOperand(1);
 | 
						||
 | 
						||
  // Collect the shifts/magic values from each element.
 | 
						||
  if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  SDValue PreShift, PostShift, MagicFactor, NPQFactor;
 | 
						||
  if (N1.getOpcode() == ISD::BUILD_VECTOR) {
 | 
						||
    PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
 | 
						||
    MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
 | 
						||
    NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
 | 
						||
    PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
 | 
						||
  } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
 | 
						||
    assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
 | 
						||
           NPQFactors.size() == 1 && PostShifts.size() == 1 &&
 | 
						||
           "Expected matchUnaryPredicate to return one for scalable vectors");
 | 
						||
    PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
 | 
						||
    MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
 | 
						||
    NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
 | 
						||
    PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
 | 
						||
  } else {
 | 
						||
    assert(isa<ConstantSDNode>(N1) && "Expected a constant");
 | 
						||
    PreShift = PreShifts[0];
 | 
						||
    MagicFactor = MagicFactors[0];
 | 
						||
    PostShift = PostShifts[0];
 | 
						||
  }
 | 
						||
 | 
						||
  SDValue Q = N0;
 | 
						||
  Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
 | 
						||
  Created.push_back(Q.getNode());
 | 
						||
 | 
						||
  // FIXME: We should support doing a MUL in a wider type.
 | 
						||
  auto GetMULHU = [&](SDValue X, SDValue Y) {
 | 
						||
    // If the type isn't legal, use a wider mul of the the type calculated
 | 
						||
    // earlier.
 | 
						||
    if (!isTypeLegal(VT)) {
 | 
						||
      X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
 | 
						||
      Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
 | 
						||
      Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
 | 
						||
      Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
 | 
						||
                      DAG.getShiftAmountConstant(EltBits, MulVT, dl));
 | 
						||
      return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
 | 
						||
    }
 | 
						||
 | 
						||
    if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
 | 
						||
      return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
 | 
						||
    if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
 | 
						||
      SDValue LoHi =
 | 
						||
          DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
 | 
						||
      return SDValue(LoHi.getNode(), 1);
 | 
						||
    }
 | 
						||
    return SDValue(); // No mulhu or equivalent
 | 
						||
  };
 | 
						||
 | 
						||
  // Multiply the numerator (operand 0) by the magic value.
 | 
						||
  Q = GetMULHU(Q, MagicFactor);
 | 
						||
  if (!Q)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  Created.push_back(Q.getNode());
 | 
						||
 | 
						||
  if (UseNPQ) {
 | 
						||
    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
 | 
						||
    Created.push_back(NPQ.getNode());
 | 
						||
 | 
						||
    // For vectors we might have a mix of non-NPQ/NPQ paths, so use
 | 
						||
    // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
 | 
						||
    if (VT.isVector())
 | 
						||
      NPQ = GetMULHU(NPQ, NPQFactor);
 | 
						||
    else
 | 
						||
      NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
 | 
						||
 | 
						||
    Created.push_back(NPQ.getNode());
 | 
						||
 | 
						||
    Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
 | 
						||
    Created.push_back(Q.getNode());
 | 
						||
  }
 | 
						||
 | 
						||
  Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
 | 
						||
  Created.push_back(Q.getNode());
 | 
						||
 | 
						||
  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						||
 | 
						||
  SDValue One = DAG.getConstant(1, dl, VT);
 | 
						||
  SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
 | 
						||
  return DAG.getSelect(dl, VT, IsOne, N0, Q);
 | 
						||
}
 | 
						||
 | 
						||
/// If all values in Values that *don't* match the predicate are same 'splat'
 | 
						||
/// value, then replace all values with that splat value.
 | 
						||
/// Else, if AlternativeReplacement was provided, then replace all values that
 | 
						||
/// do match predicate with AlternativeReplacement value.
 | 
						||
static void
 | 
						||
turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
 | 
						||
                          std::function<bool(SDValue)> Predicate,
 | 
						||
                          SDValue AlternativeReplacement = SDValue()) {
 | 
						||
  SDValue Replacement;
 | 
						||
  // Is there a value for which the Predicate does *NOT* match? What is it?
 | 
						||
  auto SplatValue = llvm::find_if_not(Values, Predicate);
 | 
						||
  if (SplatValue != Values.end()) {
 | 
						||
    // Does Values consist only of SplatValue's and values matching Predicate?
 | 
						||
    if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
 | 
						||
          return Value == *SplatValue || Predicate(Value);
 | 
						||
        })) // Then we shall replace values matching predicate with SplatValue.
 | 
						||
      Replacement = *SplatValue;
 | 
						||
  }
 | 
						||
  if (!Replacement) {
 | 
						||
    // Oops, we did not find the "baseline" splat value.
 | 
						||
    if (!AlternativeReplacement)
 | 
						||
      return; // Nothing to do.
 | 
						||
    // Let's replace with provided value then.
 | 
						||
    Replacement = AlternativeReplacement;
 | 
						||
  }
 | 
						||
  std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
 | 
						||
}
 | 
						||
 | 
						||
/// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
 | 
						||
/// where the divisor is constant and the comparison target is zero,
 | 
						||
/// return a DAG expression that will generate the same comparison result
 | 
						||
/// using only multiplications, additions and shifts/rotations.
 | 
						||
/// Ref: "Hacker's Delight" 10-17.
 | 
						||
SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
 | 
						||
                                        SDValue CompTargetNode,
 | 
						||
                                        ISD::CondCode Cond,
 | 
						||
                                        DAGCombinerInfo &DCI,
 | 
						||
                                        const SDLoc &DL) const {
 | 
						||
  SmallVector<SDNode *, 5> Built;
 | 
						||
  if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
 | 
						||
                                         DCI, DL, Built)) {
 | 
						||
    for (SDNode *N : Built)
 | 
						||
      DCI.AddToWorklist(N);
 | 
						||
    return Folded;
 | 
						||
  }
 | 
						||
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
SDValue
 | 
						||
TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
 | 
						||
                                  SDValue CompTargetNode, ISD::CondCode Cond,
 | 
						||
                                  DAGCombinerInfo &DCI, const SDLoc &DL,
 | 
						||
                                  SmallVectorImpl<SDNode *> &Created) const {
 | 
						||
  // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
 | 
						||
  // - D must be constant, with D = D0 * 2^K where D0 is odd
 | 
						||
  // - P is the multiplicative inverse of D0 modulo 2^W
 | 
						||
  // - Q = floor(((2^W) - 1) / D)
 | 
						||
  // where W is the width of the common type of N and D.
 | 
						||
  assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | 
						||
         "Only applicable for (in)equality comparisons.");
 | 
						||
 | 
						||
  SelectionDAG &DAG = DCI.DAG;
 | 
						||
 | 
						||
  EVT VT = REMNode.getValueType();
 | 
						||
  EVT SVT = VT.getScalarType();
 | 
						||
  EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
 | 
						||
  EVT ShSVT = ShVT.getScalarType();
 | 
						||
 | 
						||
  // If MUL is unavailable, we cannot proceed in any case.
 | 
						||
  if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  bool ComparingWithAllZeros = true;
 | 
						||
  bool AllComparisonsWithNonZerosAreTautological = true;
 | 
						||
  bool HadTautologicalLanes = false;
 | 
						||
  bool AllLanesAreTautological = true;
 | 
						||
  bool HadEvenDivisor = false;
 | 
						||
  bool AllDivisorsArePowerOfTwo = true;
 | 
						||
  bool HadTautologicalInvertedLanes = false;
 | 
						||
  SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
 | 
						||
 | 
						||
  auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
 | 
						||
    // Division by 0 is UB. Leave it to be constant-folded elsewhere.
 | 
						||
    if (CDiv->isZero())
 | 
						||
      return false;
 | 
						||
 | 
						||
    const APInt &D = CDiv->getAPIntValue();
 | 
						||
    const APInt &Cmp = CCmp->getAPIntValue();
 | 
						||
 | 
						||
    ComparingWithAllZeros &= Cmp.isZero();
 | 
						||
 | 
						||
    // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
 | 
						||
    // if C2 is not less than C1, the comparison is always false.
 | 
						||
    // But we will only be able to produce the comparison that will give the
 | 
						||
    // opposive tautological answer. So this lane would need to be fixed up.
 | 
						||
    bool TautologicalInvertedLane = D.ule(Cmp);
 | 
						||
    HadTautologicalInvertedLanes |= TautologicalInvertedLane;
 | 
						||
 | 
						||
    // If all lanes are tautological (either all divisors are ones, or divisor
 | 
						||
    // is not greater than the constant we are comparing with),
 | 
						||
    // we will prefer to avoid the fold.
 | 
						||
    bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
 | 
						||
    HadTautologicalLanes |= TautologicalLane;
 | 
						||
    AllLanesAreTautological &= TautologicalLane;
 | 
						||
 | 
						||
    // If we are comparing with non-zero, we need'll need  to subtract said
 | 
						||
    // comparison value from the LHS. But there is no point in doing that if
 | 
						||
    // every lane where we are comparing with non-zero is tautological..
 | 
						||
    if (!Cmp.isZero())
 | 
						||
      AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
 | 
						||
 | 
						||
    // Decompose D into D0 * 2^K
 | 
						||
    unsigned K = D.countTrailingZeros();
 | 
						||
    assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
 | 
						||
    APInt D0 = D.lshr(K);
 | 
						||
 | 
						||
    // D is even if it has trailing zeros.
 | 
						||
    HadEvenDivisor |= (K != 0);
 | 
						||
    // D is a power-of-two if D0 is one.
 | 
						||
    // If all divisors are power-of-two, we will prefer to avoid the fold.
 | 
						||
    AllDivisorsArePowerOfTwo &= D0.isOne();
 | 
						||
 | 
						||
    // P = inv(D0, 2^W)
 | 
						||
    // 2^W requires W + 1 bits, so we have to extend and then truncate.
 | 
						||
    unsigned W = D.getBitWidth();
 | 
						||
    APInt P = D0.zext(W + 1)
 | 
						||
                  .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
 | 
						||
                  .trunc(W);
 | 
						||
    assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
 | 
						||
    assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
 | 
						||
 | 
						||
    // Q = floor((2^W - 1) u/ D)
 | 
						||
    // R = ((2^W - 1) u% D)
 | 
						||
    APInt Q, R;
 | 
						||
    APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
 | 
						||
 | 
						||
    // If we are comparing with zero, then that comparison constant is okay,
 | 
						||
    // else it may need to be one less than that.
 | 
						||
    if (Cmp.ugt(R))
 | 
						||
      Q -= 1;
 | 
						||
 | 
						||
    assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
 | 
						||
           "We are expecting that K is always less than all-ones for ShSVT");
 | 
						||
 | 
						||
    // If the lane is tautological the result can be constant-folded.
 | 
						||
    if (TautologicalLane) {
 | 
						||
      // Set P and K amount to a bogus values so we can try to splat them.
 | 
						||
      P = 0;
 | 
						||
      K = -1;
 | 
						||
      // And ensure that comparison constant is tautological,
 | 
						||
      // it will always compare true/false.
 | 
						||
      Q = -1;
 | 
						||
    }
 | 
						||
 | 
						||
    PAmts.push_back(DAG.getConstant(P, DL, SVT));
 | 
						||
    KAmts.push_back(
 | 
						||
        DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
 | 
						||
    QAmts.push_back(DAG.getConstant(Q, DL, SVT));
 | 
						||
    return true;
 | 
						||
  };
 | 
						||
 | 
						||
  SDValue N = REMNode.getOperand(0);
 | 
						||
  SDValue D = REMNode.getOperand(1);
 | 
						||
 | 
						||
  // Collect the values from each element.
 | 
						||
  if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // If all lanes are tautological, the result can be constant-folded.
 | 
						||
  if (AllLanesAreTautological)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // If this is a urem by a powers-of-two, avoid the fold since it can be
 | 
						||
  // best implemented as a bit test.
 | 
						||
  if (AllDivisorsArePowerOfTwo)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  SDValue PVal, KVal, QVal;
 | 
						||
  if (D.getOpcode() == ISD::BUILD_VECTOR) {
 | 
						||
    if (HadTautologicalLanes) {
 | 
						||
      // Try to turn PAmts into a splat, since we don't care about the values
 | 
						||
      // that are currently '0'. If we can't, just keep '0'`s.
 | 
						||
      turnVectorIntoSplatVector(PAmts, isNullConstant);
 | 
						||
      // Try to turn KAmts into a splat, since we don't care about the values
 | 
						||
      // that are currently '-1'. If we can't, change them to '0'`s.
 | 
						||
      turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
 | 
						||
                                DAG.getConstant(0, DL, ShSVT));
 | 
						||
    }
 | 
						||
 | 
						||
    PVal = DAG.getBuildVector(VT, DL, PAmts);
 | 
						||
    KVal = DAG.getBuildVector(ShVT, DL, KAmts);
 | 
						||
    QVal = DAG.getBuildVector(VT, DL, QAmts);
 | 
						||
  } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
 | 
						||
    assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
 | 
						||
           "Expected matchBinaryPredicate to return one element for "
 | 
						||
           "SPLAT_VECTORs");
 | 
						||
    PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
 | 
						||
    KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
 | 
						||
    QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
 | 
						||
  } else {
 | 
						||
    PVal = PAmts[0];
 | 
						||
    KVal = KAmts[0];
 | 
						||
    QVal = QAmts[0];
 | 
						||
  }
 | 
						||
 | 
						||
  if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
 | 
						||
    if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
 | 
						||
      return SDValue(); // FIXME: Could/should use `ISD::ADD`?
 | 
						||
    assert(CompTargetNode.getValueType() == N.getValueType() &&
 | 
						||
           "Expecting that the types on LHS and RHS of comparisons match.");
 | 
						||
    N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
 | 
						||
  }
 | 
						||
 | 
						||
  // (mul N, P)
 | 
						||
  SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
 | 
						||
  Created.push_back(Op0.getNode());
 | 
						||
 | 
						||
  // Rotate right only if any divisor was even. We avoid rotates for all-odd
 | 
						||
  // divisors as a performance improvement, since rotating by 0 is a no-op.
 | 
						||
  if (HadEvenDivisor) {
 | 
						||
    // We need ROTR to do this.
 | 
						||
    if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
 | 
						||
      return SDValue();
 | 
						||
    // UREM: (rotr (mul N, P), K)
 | 
						||
    Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
 | 
						||
    Created.push_back(Op0.getNode());
 | 
						||
  }
 | 
						||
 | 
						||
  // UREM: (setule/setugt (rotr (mul N, P), K), Q)
 | 
						||
  SDValue NewCC =
 | 
						||
      DAG.getSetCC(DL, SETCCVT, Op0, QVal,
 | 
						||
                   ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
 | 
						||
  if (!HadTautologicalInvertedLanes)
 | 
						||
    return NewCC;
 | 
						||
 | 
						||
  // If any lanes previously compared always-false, the NewCC will give
 | 
						||
  // always-true result for them, so we need to fixup those lanes.
 | 
						||
  // Or the other way around for inequality predicate.
 | 
						||
  assert(VT.isVector() && "Can/should only get here for vectors.");
 | 
						||
  Created.push_back(NewCC.getNode());
 | 
						||
 | 
						||
  // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
 | 
						||
  // if C2 is not less than C1, the comparison is always false.
 | 
						||
  // But we have produced the comparison that will give the
 | 
						||
  // opposive tautological answer. So these lanes would need to be fixed up.
 | 
						||
  SDValue TautologicalInvertedChannels =
 | 
						||
      DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
 | 
						||
  Created.push_back(TautologicalInvertedChannels.getNode());
 | 
						||
 | 
						||
  // NOTE: we avoid letting illegal types through even if we're before legalize
 | 
						||
  // ops – legalization has a hard time producing good code for this.
 | 
						||
  if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
 | 
						||
    // If we have a vector select, let's replace the comparison results in the
 | 
						||
    // affected lanes with the correct tautological result.
 | 
						||
    SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
 | 
						||
                                              DL, SETCCVT, SETCCVT);
 | 
						||
    return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
 | 
						||
                       Replacement, NewCC);
 | 
						||
  }
 | 
						||
 | 
						||
  // Else, we can just invert the comparison result in the appropriate lanes.
 | 
						||
  //
 | 
						||
  // NOTE: see the note above VSELECT above.
 | 
						||
  if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
 | 
						||
    return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
 | 
						||
                       TautologicalInvertedChannels);
 | 
						||
 | 
						||
  return SDValue(); // Don't know how to lower.
 | 
						||
}
 | 
						||
 | 
						||
/// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
 | 
						||
/// where the divisor is constant and the comparison target is zero,
 | 
						||
/// return a DAG expression that will generate the same comparison result
 | 
						||
/// using only multiplications, additions and shifts/rotations.
 | 
						||
/// Ref: "Hacker's Delight" 10-17.
 | 
						||
SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
 | 
						||
                                        SDValue CompTargetNode,
 | 
						||
                                        ISD::CondCode Cond,
 | 
						||
                                        DAGCombinerInfo &DCI,
 | 
						||
                                        const SDLoc &DL) const {
 | 
						||
  SmallVector<SDNode *, 7> Built;
 | 
						||
  if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
 | 
						||
                                         DCI, DL, Built)) {
 | 
						||
    assert(Built.size() <= 7 && "Max size prediction failed.");
 | 
						||
    for (SDNode *N : Built)
 | 
						||
      DCI.AddToWorklist(N);
 | 
						||
    return Folded;
 | 
						||
  }
 | 
						||
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
SDValue
 | 
						||
TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
 | 
						||
                                  SDValue CompTargetNode, ISD::CondCode Cond,
 | 
						||
                                  DAGCombinerInfo &DCI, const SDLoc &DL,
 | 
						||
                                  SmallVectorImpl<SDNode *> &Created) const {
 | 
						||
  // Fold:
 | 
						||
  //   (seteq/ne (srem N, D), 0)
 | 
						||
  // To:
 | 
						||
  //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
 | 
						||
  //
 | 
						||
  // - D must be constant, with D = D0 * 2^K where D0 is odd
 | 
						||
  // - P is the multiplicative inverse of D0 modulo 2^W
 | 
						||
  // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
 | 
						||
  // - Q = floor((2 * A) / (2^K))
 | 
						||
  // where W is the width of the common type of N and D.
 | 
						||
  assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
 | 
						||
         "Only applicable for (in)equality comparisons.");
 | 
						||
 | 
						||
  SelectionDAG &DAG = DCI.DAG;
 | 
						||
 | 
						||
  EVT VT = REMNode.getValueType();
 | 
						||
  EVT SVT = VT.getScalarType();
 | 
						||
  EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
 | 
						||
  EVT ShSVT = ShVT.getScalarType();
 | 
						||
 | 
						||
  // If we are after ops legalization, and MUL is unavailable, we can not
 | 
						||
  // proceed.
 | 
						||
  if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // TODO: Could support comparing with non-zero too.
 | 
						||
  ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
 | 
						||
  if (!CompTarget || !CompTarget->isZero())
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  bool HadIntMinDivisor = false;
 | 
						||
  bool HadOneDivisor = false;
 | 
						||
  bool AllDivisorsAreOnes = true;
 | 
						||
  bool HadEvenDivisor = false;
 | 
						||
  bool NeedToApplyOffset = false;
 | 
						||
  bool AllDivisorsArePowerOfTwo = true;
 | 
						||
  SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
 | 
						||
 | 
						||
  auto BuildSREMPattern = [&](ConstantSDNode *C) {
 | 
						||
    // Division by 0 is UB. Leave it to be constant-folded elsewhere.
 | 
						||
    if (C->isZero())
 | 
						||
      return false;
 | 
						||
 | 
						||
    // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
 | 
						||
 | 
						||
    // WARNING: this fold is only valid for positive divisors!
 | 
						||
    APInt D = C->getAPIntValue();
 | 
						||
    if (D.isNegative())
 | 
						||
      D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
 | 
						||
 | 
						||
    HadIntMinDivisor |= D.isMinSignedValue();
 | 
						||
 | 
						||
    // If all divisors are ones, we will prefer to avoid the fold.
 | 
						||
    HadOneDivisor |= D.isOne();
 | 
						||
    AllDivisorsAreOnes &= D.isOne();
 | 
						||
 | 
						||
    // Decompose D into D0 * 2^K
 | 
						||
    unsigned K = D.countTrailingZeros();
 | 
						||
    assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
 | 
						||
    APInt D0 = D.lshr(K);
 | 
						||
 | 
						||
    if (!D.isMinSignedValue()) {
 | 
						||
      // D is even if it has trailing zeros; unless it's INT_MIN, in which case
 | 
						||
      // we don't care about this lane in this fold, we'll special-handle it.
 | 
						||
      HadEvenDivisor |= (K != 0);
 | 
						||
    }
 | 
						||
 | 
						||
    // D is a power-of-two if D0 is one. This includes INT_MIN.
 | 
						||
    // If all divisors are power-of-two, we will prefer to avoid the fold.
 | 
						||
    AllDivisorsArePowerOfTwo &= D0.isOne();
 | 
						||
 | 
						||
    // P = inv(D0, 2^W)
 | 
						||
    // 2^W requires W + 1 bits, so we have to extend and then truncate.
 | 
						||
    unsigned W = D.getBitWidth();
 | 
						||
    APInt P = D0.zext(W + 1)
 | 
						||
                  .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
 | 
						||
                  .trunc(W);
 | 
						||
    assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
 | 
						||
    assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
 | 
						||
 | 
						||
    // A = floor((2^(W - 1) - 1) / D0) & -2^K
 | 
						||
    APInt A = APInt::getSignedMaxValue(W).udiv(D0);
 | 
						||
    A.clearLowBits(K);
 | 
						||
 | 
						||
    if (!D.isMinSignedValue()) {
 | 
						||
      // If divisor INT_MIN, then we don't care about this lane in this fold,
 | 
						||
      // we'll special-handle it.
 | 
						||
      NeedToApplyOffset |= A != 0;
 | 
						||
    }
 | 
						||
 | 
						||
    // Q = floor((2 * A) / (2^K))
 | 
						||
    APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
 | 
						||
 | 
						||
    assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
 | 
						||
           "We are expecting that A is always less than all-ones for SVT");
 | 
						||
    assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
 | 
						||
           "We are expecting that K is always less than all-ones for ShSVT");
 | 
						||
 | 
						||
    // If the divisor is 1 the result can be constant-folded. Likewise, we
 | 
						||
    // don't care about INT_MIN lanes, those can be set to undef if appropriate.
 | 
						||
    if (D.isOne()) {
 | 
						||
      // Set P, A and K to a bogus values so we can try to splat them.
 | 
						||
      P = 0;
 | 
						||
      A = -1;
 | 
						||
      K = -1;
 | 
						||
 | 
						||
      // x ?% 1 == 0  <-->  true  <-->  x u<= -1
 | 
						||
      Q = -1;
 | 
						||
    }
 | 
						||
 | 
						||
    PAmts.push_back(DAG.getConstant(P, DL, SVT));
 | 
						||
    AAmts.push_back(DAG.getConstant(A, DL, SVT));
 | 
						||
    KAmts.push_back(
 | 
						||
        DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
 | 
						||
    QAmts.push_back(DAG.getConstant(Q, DL, SVT));
 | 
						||
    return true;
 | 
						||
  };
 | 
						||
 | 
						||
  SDValue N = REMNode.getOperand(0);
 | 
						||
  SDValue D = REMNode.getOperand(1);
 | 
						||
 | 
						||
  // Collect the values from each element.
 | 
						||
  if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // If this is a srem by a one, avoid the fold since it can be constant-folded.
 | 
						||
  if (AllDivisorsAreOnes)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
 | 
						||
  // since it can be best implemented as a bit test.
 | 
						||
  if (AllDivisorsArePowerOfTwo)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  SDValue PVal, AVal, KVal, QVal;
 | 
						||
  if (D.getOpcode() == ISD::BUILD_VECTOR) {
 | 
						||
    if (HadOneDivisor) {
 | 
						||
      // Try to turn PAmts into a splat, since we don't care about the values
 | 
						||
      // that are currently '0'. If we can't, just keep '0'`s.
 | 
						||
      turnVectorIntoSplatVector(PAmts, isNullConstant);
 | 
						||
      // Try to turn AAmts into a splat, since we don't care about the
 | 
						||
      // values that are currently '-1'. If we can't, change them to '0'`s.
 | 
						||
      turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
 | 
						||
                                DAG.getConstant(0, DL, SVT));
 | 
						||
      // Try to turn KAmts into a splat, since we don't care about the values
 | 
						||
      // that are currently '-1'. If we can't, change them to '0'`s.
 | 
						||
      turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
 | 
						||
                                DAG.getConstant(0, DL, ShSVT));
 | 
						||
    }
 | 
						||
 | 
						||
    PVal = DAG.getBuildVector(VT, DL, PAmts);
 | 
						||
    AVal = DAG.getBuildVector(VT, DL, AAmts);
 | 
						||
    KVal = DAG.getBuildVector(ShVT, DL, KAmts);
 | 
						||
    QVal = DAG.getBuildVector(VT, DL, QAmts);
 | 
						||
  } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
 | 
						||
    assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
 | 
						||
           QAmts.size() == 1 &&
 | 
						||
           "Expected matchUnaryPredicate to return one element for scalable "
 | 
						||
           "vectors");
 | 
						||
    PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
 | 
						||
    AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
 | 
						||
    KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
 | 
						||
    QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
 | 
						||
  } else {
 | 
						||
    assert(isa<ConstantSDNode>(D) && "Expected a constant");
 | 
						||
    PVal = PAmts[0];
 | 
						||
    AVal = AAmts[0];
 | 
						||
    KVal = KAmts[0];
 | 
						||
    QVal = QAmts[0];
 | 
						||
  }
 | 
						||
 | 
						||
  // (mul N, P)
 | 
						||
  SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
 | 
						||
  Created.push_back(Op0.getNode());
 | 
						||
 | 
						||
  if (NeedToApplyOffset) {
 | 
						||
    // We need ADD to do this.
 | 
						||
    if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
 | 
						||
      return SDValue();
 | 
						||
 | 
						||
    // (add (mul N, P), A)
 | 
						||
    Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
 | 
						||
    Created.push_back(Op0.getNode());
 | 
						||
  }
 | 
						||
 | 
						||
  // Rotate right only if any divisor was even. We avoid rotates for all-odd
 | 
						||
  // divisors as a performance improvement, since rotating by 0 is a no-op.
 | 
						||
  if (HadEvenDivisor) {
 | 
						||
    // We need ROTR to do this.
 | 
						||
    if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
 | 
						||
      return SDValue();
 | 
						||
    // SREM: (rotr (add (mul N, P), A), K)
 | 
						||
    Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
 | 
						||
    Created.push_back(Op0.getNode());
 | 
						||
  }
 | 
						||
 | 
						||
  // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
 | 
						||
  SDValue Fold =
 | 
						||
      DAG.getSetCC(DL, SETCCVT, Op0, QVal,
 | 
						||
                   ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
 | 
						||
 | 
						||
  // If we didn't have lanes with INT_MIN divisor, then we're done.
 | 
						||
  if (!HadIntMinDivisor)
 | 
						||
    return Fold;
 | 
						||
 | 
						||
  // That fold is only valid for positive divisors. Which effectively means,
 | 
						||
  // it is invalid for INT_MIN divisors. So if we have such a lane,
 | 
						||
  // we must fix-up results for said lanes.
 | 
						||
  assert(VT.isVector() && "Can/should only get here for vectors.");
 | 
						||
 | 
						||
  // NOTE: we avoid letting illegal types through even if we're before legalize
 | 
						||
  // ops – legalization has a hard time producing good code for the code that
 | 
						||
  // follows.
 | 
						||
  if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
 | 
						||
      !isOperationLegalOrCustom(ISD::AND, VT) ||
 | 
						||
      !isOperationLegalOrCustom(Cond, VT) ||
 | 
						||
      !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  Created.push_back(Fold.getNode());
 | 
						||
 | 
						||
  SDValue IntMin = DAG.getConstant(
 | 
						||
      APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
 | 
						||
  SDValue IntMax = DAG.getConstant(
 | 
						||
      APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
 | 
						||
  SDValue Zero =
 | 
						||
      DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
 | 
						||
 | 
						||
  // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
 | 
						||
  SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
 | 
						||
  Created.push_back(DivisorIsIntMin.getNode());
 | 
						||
 | 
						||
  // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
 | 
						||
  SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
 | 
						||
  Created.push_back(Masked.getNode());
 | 
						||
  SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
 | 
						||
  Created.push_back(MaskedIsZero.getNode());
 | 
						||
 | 
						||
  // To produce final result we need to blend 2 vectors: 'SetCC' and
 | 
						||
  // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
 | 
						||
  // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
 | 
						||
  // constant-folded, select can get lowered to a shuffle with constant mask.
 | 
						||
  SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
 | 
						||
                                MaskedIsZero, Fold);
 | 
						||
 | 
						||
  return Blended;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::
 | 
						||
verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
 | 
						||
  if (!isa<ConstantSDNode>(Op.getOperand(0))) {
 | 
						||
    DAG.getContext()->emitError("argument to '__builtin_return_address' must "
 | 
						||
                                "be a constant integer");
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
 | 
						||
                                         const DenormalMode &Mode) const {
 | 
						||
  SDLoc DL(Op);
 | 
						||
  EVT VT = Op.getValueType();
 | 
						||
  EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						||
  SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
 | 
						||
  // Testing it with denormal inputs to avoid wrong estimate.
 | 
						||
  if (Mode.Input == DenormalMode::IEEE) {
 | 
						||
    // This is specifically a check for the handling of denormal inputs,
 | 
						||
    // not the result.
 | 
						||
 | 
						||
    // Test = fabs(X) < SmallestNormal
 | 
						||
    const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
 | 
						||
    APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
 | 
						||
    SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
 | 
						||
    SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
 | 
						||
    return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
 | 
						||
  }
 | 
						||
  // Test = X == 0.0
 | 
						||
  return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
 | 
						||
                                             bool LegalOps, bool OptForSize,
 | 
						||
                                             NegatibleCost &Cost,
 | 
						||
                                             unsigned Depth) const {
 | 
						||
  // fneg is removable even if it has multiple uses.
 | 
						||
  if (Op.getOpcode() == ISD::FNEG) {
 | 
						||
    Cost = NegatibleCost::Cheaper;
 | 
						||
    return Op.getOperand(0);
 | 
						||
  }
 | 
						||
 | 
						||
  // Don't recurse exponentially.
 | 
						||
  if (Depth > SelectionDAG::MaxRecursionDepth)
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // Pre-increment recursion depth for use in recursive calls.
 | 
						||
  ++Depth;
 | 
						||
  const SDNodeFlags Flags = Op->getFlags();
 | 
						||
  const TargetOptions &Options = DAG.getTarget().Options;
 | 
						||
  EVT VT = Op.getValueType();
 | 
						||
  unsigned Opcode = Op.getOpcode();
 | 
						||
 | 
						||
  // Don't allow anything with multiple uses unless we know it is free.
 | 
						||
  if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
 | 
						||
    bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
 | 
						||
                        isFPExtFree(VT, Op.getOperand(0).getValueType());
 | 
						||
    if (!IsFreeExtend)
 | 
						||
      return SDValue();
 | 
						||
  }
 | 
						||
 | 
						||
  auto RemoveDeadNode = [&](SDValue N) {
 | 
						||
    if (N && N.getNode()->use_empty())
 | 
						||
      DAG.RemoveDeadNode(N.getNode());
 | 
						||
  };
 | 
						||
 | 
						||
  SDLoc DL(Op);
 | 
						||
 | 
						||
  // Because getNegatedExpression can delete nodes we need a handle to keep
 | 
						||
  // temporary nodes alive in case the recursion manages to create an identical
 | 
						||
  // node.
 | 
						||
  std::list<HandleSDNode> Handles;
 | 
						||
 | 
						||
  switch (Opcode) {
 | 
						||
  case ISD::ConstantFP: {
 | 
						||
    // Don't invert constant FP values after legalization unless the target says
 | 
						||
    // the negated constant is legal.
 | 
						||
    bool IsOpLegal =
 | 
						||
        isOperationLegal(ISD::ConstantFP, VT) ||
 | 
						||
        isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
 | 
						||
                     OptForSize);
 | 
						||
 | 
						||
    if (LegalOps && !IsOpLegal)
 | 
						||
      break;
 | 
						||
 | 
						||
    APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
 | 
						||
    V.changeSign();
 | 
						||
    SDValue CFP = DAG.getConstantFP(V, DL, VT);
 | 
						||
 | 
						||
    // If we already have the use of the negated floating constant, it is free
 | 
						||
    // to negate it even it has multiple uses.
 | 
						||
    if (!Op.hasOneUse() && CFP.use_empty())
 | 
						||
      break;
 | 
						||
    Cost = NegatibleCost::Neutral;
 | 
						||
    return CFP;
 | 
						||
  }
 | 
						||
  case ISD::BUILD_VECTOR: {
 | 
						||
    // Only permit BUILD_VECTOR of constants.
 | 
						||
    if (llvm::any_of(Op->op_values(), [&](SDValue N) {
 | 
						||
          return !N.isUndef() && !isa<ConstantFPSDNode>(N);
 | 
						||
        }))
 | 
						||
      break;
 | 
						||
 | 
						||
    bool IsOpLegal =
 | 
						||
        (isOperationLegal(ISD::ConstantFP, VT) &&
 | 
						||
         isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
 | 
						||
        llvm::all_of(Op->op_values(), [&](SDValue N) {
 | 
						||
          return N.isUndef() ||
 | 
						||
                 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
 | 
						||
                              OptForSize);
 | 
						||
        });
 | 
						||
 | 
						||
    if (LegalOps && !IsOpLegal)
 | 
						||
      break;
 | 
						||
 | 
						||
    SmallVector<SDValue, 4> Ops;
 | 
						||
    for (SDValue C : Op->op_values()) {
 | 
						||
      if (C.isUndef()) {
 | 
						||
        Ops.push_back(C);
 | 
						||
        continue;
 | 
						||
      }
 | 
						||
      APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
 | 
						||
      V.changeSign();
 | 
						||
      Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
 | 
						||
    }
 | 
						||
    Cost = NegatibleCost::Neutral;
 | 
						||
    return DAG.getBuildVector(VT, DL, Ops);
 | 
						||
  }
 | 
						||
  case ISD::FADD: {
 | 
						||
    if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
 | 
						||
      break;
 | 
						||
 | 
						||
    // After operation legalization, it might not be legal to create new FSUBs.
 | 
						||
    if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
 | 
						||
      break;
 | 
						||
    SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
 | 
						||
 | 
						||
    // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
 | 
						||
    NegatibleCost CostX = NegatibleCost::Expensive;
 | 
						||
    SDValue NegX =
 | 
						||
        getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
 | 
						||
    // Prevent this node from being deleted by the next call.
 | 
						||
    if (NegX)
 | 
						||
      Handles.emplace_back(NegX);
 | 
						||
 | 
						||
    // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
 | 
						||
    NegatibleCost CostY = NegatibleCost::Expensive;
 | 
						||
    SDValue NegY =
 | 
						||
        getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
 | 
						||
 | 
						||
    // We're done with the handles.
 | 
						||
    Handles.clear();
 | 
						||
 | 
						||
    // Negate the X if its cost is less or equal than Y.
 | 
						||
    if (NegX && (CostX <= CostY)) {
 | 
						||
      Cost = CostX;
 | 
						||
      SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
 | 
						||
      if (NegY != N)
 | 
						||
        RemoveDeadNode(NegY);
 | 
						||
      return N;
 | 
						||
    }
 | 
						||
 | 
						||
    // Negate the Y if it is not expensive.
 | 
						||
    if (NegY) {
 | 
						||
      Cost = CostY;
 | 
						||
      SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
 | 
						||
      if (NegX != N)
 | 
						||
        RemoveDeadNode(NegX);
 | 
						||
      return N;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::FSUB: {
 | 
						||
    // We can't turn -(A-B) into B-A when we honor signed zeros.
 | 
						||
    if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
 | 
						||
      break;
 | 
						||
 | 
						||
    SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
 | 
						||
    // fold (fneg (fsub 0, Y)) -> Y
 | 
						||
    if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
 | 
						||
      if (C->isZero()) {
 | 
						||
        Cost = NegatibleCost::Cheaper;
 | 
						||
        return Y;
 | 
						||
      }
 | 
						||
 | 
						||
    // fold (fneg (fsub X, Y)) -> (fsub Y, X)
 | 
						||
    Cost = NegatibleCost::Neutral;
 | 
						||
    return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
 | 
						||
  }
 | 
						||
  case ISD::FMUL:
 | 
						||
  case ISD::FDIV: {
 | 
						||
    SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
 | 
						||
 | 
						||
    // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
 | 
						||
    NegatibleCost CostX = NegatibleCost::Expensive;
 | 
						||
    SDValue NegX =
 | 
						||
        getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
 | 
						||
    // Prevent this node from being deleted by the next call.
 | 
						||
    if (NegX)
 | 
						||
      Handles.emplace_back(NegX);
 | 
						||
 | 
						||
    // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
 | 
						||
    NegatibleCost CostY = NegatibleCost::Expensive;
 | 
						||
    SDValue NegY =
 | 
						||
        getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
 | 
						||
 | 
						||
    // We're done with the handles.
 | 
						||
    Handles.clear();
 | 
						||
 | 
						||
    // Negate the X if its cost is less or equal than Y.
 | 
						||
    if (NegX && (CostX <= CostY)) {
 | 
						||
      Cost = CostX;
 | 
						||
      SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
 | 
						||
      if (NegY != N)
 | 
						||
        RemoveDeadNode(NegY);
 | 
						||
      return N;
 | 
						||
    }
 | 
						||
 | 
						||
    // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
 | 
						||
    if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
 | 
						||
      if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
 | 
						||
        break;
 | 
						||
 | 
						||
    // Negate the Y if it is not expensive.
 | 
						||
    if (NegY) {
 | 
						||
      Cost = CostY;
 | 
						||
      SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
 | 
						||
      if (NegX != N)
 | 
						||
        RemoveDeadNode(NegX);
 | 
						||
      return N;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
  case ISD::FMA:
 | 
						||
  case ISD::FMAD: {
 | 
						||
    if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
 | 
						||
      break;
 | 
						||
 | 
						||
    SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
 | 
						||
    NegatibleCost CostZ = NegatibleCost::Expensive;
 | 
						||
    SDValue NegZ =
 | 
						||
        getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
 | 
						||
    // Give up if fail to negate the Z.
 | 
						||
    if (!NegZ)
 | 
						||
      break;
 | 
						||
 | 
						||
    // Prevent this node from being deleted by the next two calls.
 | 
						||
    Handles.emplace_back(NegZ);
 | 
						||
 | 
						||
    // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
 | 
						||
    NegatibleCost CostX = NegatibleCost::Expensive;
 | 
						||
    SDValue NegX =
 | 
						||
        getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
 | 
						||
    // Prevent this node from being deleted by the next call.
 | 
						||
    if (NegX)
 | 
						||
      Handles.emplace_back(NegX);
 | 
						||
 | 
						||
    // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
 | 
						||
    NegatibleCost CostY = NegatibleCost::Expensive;
 | 
						||
    SDValue NegY =
 | 
						||
        getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
 | 
						||
 | 
						||
    // We're done with the handles.
 | 
						||
    Handles.clear();
 | 
						||
 | 
						||
    // Negate the X if its cost is less or equal than Y.
 | 
						||
    if (NegX && (CostX <= CostY)) {
 | 
						||
      Cost = std::min(CostX, CostZ);
 | 
						||
      SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
 | 
						||
      if (NegY != N)
 | 
						||
        RemoveDeadNode(NegY);
 | 
						||
      return N;
 | 
						||
    }
 | 
						||
 | 
						||
    // Negate the Y if it is not expensive.
 | 
						||
    if (NegY) {
 | 
						||
      Cost = std::min(CostY, CostZ);
 | 
						||
      SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
 | 
						||
      if (NegX != N)
 | 
						||
        RemoveDeadNode(NegX);
 | 
						||
      return N;
 | 
						||
    }
 | 
						||
    break;
 | 
						||
  }
 | 
						||
 | 
						||
  case ISD::FP_EXTEND:
 | 
						||
  case ISD::FSIN:
 | 
						||
    if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
 | 
						||
                                            OptForSize, Cost, Depth))
 | 
						||
      return DAG.getNode(Opcode, DL, VT, NegV);
 | 
						||
    break;
 | 
						||
  case ISD::FP_ROUND:
 | 
						||
    if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
 | 
						||
                                            OptForSize, Cost, Depth))
 | 
						||
      return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
 | 
						||
    break;
 | 
						||
  }
 | 
						||
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
// Legalization Utilities
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
 | 
						||
bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
 | 
						||
                                    SDValue LHS, SDValue RHS,
 | 
						||
                                    SmallVectorImpl<SDValue> &Result,
 | 
						||
                                    EVT HiLoVT, SelectionDAG &DAG,
 | 
						||
                                    MulExpansionKind Kind, SDValue LL,
 | 
						||
                                    SDValue LH, SDValue RL, SDValue RH) const {
 | 
						||
  assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
 | 
						||
         Opcode == ISD::SMUL_LOHI);
 | 
						||
 | 
						||
  bool HasMULHS = (Kind == MulExpansionKind::Always) ||
 | 
						||
                  isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
 | 
						||
  bool HasMULHU = (Kind == MulExpansionKind::Always) ||
 | 
						||
                  isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
 | 
						||
  bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
 | 
						||
                      isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
 | 
						||
  bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
 | 
						||
                      isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
 | 
						||
 | 
						||
  if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
 | 
						||
    return false;
 | 
						||
 | 
						||
  unsigned OuterBitSize = VT.getScalarSizeInBits();
 | 
						||
  unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
 | 
						||
 | 
						||
  // LL, LH, RL, and RH must be either all NULL or all set to a value.
 | 
						||
  assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
 | 
						||
         (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
 | 
						||
 | 
						||
  SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
 | 
						||
  auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
 | 
						||
                          bool Signed) -> bool {
 | 
						||
    if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
 | 
						||
      Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
 | 
						||
      Hi = SDValue(Lo.getNode(), 1);
 | 
						||
      return true;
 | 
						||
    }
 | 
						||
    if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
 | 
						||
      Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
 | 
						||
      Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
 | 
						||
      return true;
 | 
						||
    }
 | 
						||
    return false;
 | 
						||
  };
 | 
						||
 | 
						||
  SDValue Lo, Hi;
 | 
						||
 | 
						||
  if (!LL.getNode() && !RL.getNode() &&
 | 
						||
      isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
 | 
						||
    LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
 | 
						||
    RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
 | 
						||
  }
 | 
						||
 | 
						||
  if (!LL.getNode())
 | 
						||
    return false;
 | 
						||
 | 
						||
  APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
 | 
						||
  if (DAG.MaskedValueIsZero(LHS, HighMask) &&
 | 
						||
      DAG.MaskedValueIsZero(RHS, HighMask)) {
 | 
						||
    // The inputs are both zero-extended.
 | 
						||
    if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
 | 
						||
      Result.push_back(Lo);
 | 
						||
      Result.push_back(Hi);
 | 
						||
      if (Opcode != ISD::MUL) {
 | 
						||
        SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
 | 
						||
        Result.push_back(Zero);
 | 
						||
        Result.push_back(Zero);
 | 
						||
      }
 | 
						||
      return true;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  if (!VT.isVector() && Opcode == ISD::MUL &&
 | 
						||
      DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
 | 
						||
      DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
 | 
						||
    // The input values are both sign-extended.
 | 
						||
    // TODO non-MUL case?
 | 
						||
    if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
 | 
						||
      Result.push_back(Lo);
 | 
						||
      Result.push_back(Hi);
 | 
						||
      return true;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned ShiftAmount = OuterBitSize - InnerBitSize;
 | 
						||
  EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
 | 
						||
 | 
						||
  if (!LH.getNode() && !RH.getNode() &&
 | 
						||
      isOperationLegalOrCustom(ISD::SRL, VT) &&
 | 
						||
      isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
 | 
						||
    LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
 | 
						||
    LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
 | 
						||
    RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
 | 
						||
    RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
 | 
						||
  }
 | 
						||
 | 
						||
  if (!LH.getNode())
 | 
						||
    return false;
 | 
						||
 | 
						||
  if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
 | 
						||
    return false;
 | 
						||
 | 
						||
  Result.push_back(Lo);
 | 
						||
 | 
						||
  if (Opcode == ISD::MUL) {
 | 
						||
    RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
 | 
						||
    LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
 | 
						||
    Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
 | 
						||
    Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
 | 
						||
    Result.push_back(Hi);
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
 | 
						||
  // Compute the full width result.
 | 
						||
  auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
 | 
						||
    Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
 | 
						||
    Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
 | 
						||
    Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
 | 
						||
    return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
 | 
						||
  };
 | 
						||
 | 
						||
  SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
 | 
						||
  if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
 | 
						||
    return false;
 | 
						||
 | 
						||
  // This is effectively the add part of a multiply-add of half-sized operands,
 | 
						||
  // so it cannot overflow.
 | 
						||
  Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
 | 
						||
 | 
						||
  if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
 | 
						||
    return false;
 | 
						||
 | 
						||
  SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
 | 
						||
  EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						||
 | 
						||
  bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
 | 
						||
                  isOperationLegalOrCustom(ISD::ADDE, VT));
 | 
						||
  if (UseGlue)
 | 
						||
    Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
 | 
						||
                       Merge(Lo, Hi));
 | 
						||
  else
 | 
						||
    Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
 | 
						||
                       Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
 | 
						||
 | 
						||
  SDValue Carry = Next.getValue(1);
 | 
						||
  Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
 | 
						||
  Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
 | 
						||
 | 
						||
  if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
 | 
						||
    return false;
 | 
						||
 | 
						||
  if (UseGlue)
 | 
						||
    Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
 | 
						||
                     Carry);
 | 
						||
  else
 | 
						||
    Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
 | 
						||
                     Zero, Carry);
 | 
						||
 | 
						||
  Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
 | 
						||
 | 
						||
  if (Opcode == ISD::SMUL_LOHI) {
 | 
						||
    SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
 | 
						||
                                  DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
 | 
						||
    Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
 | 
						||
 | 
						||
    NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
 | 
						||
                          DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
 | 
						||
    Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
 | 
						||
  }
 | 
						||
 | 
						||
  Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
 | 
						||
  Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
 | 
						||
  Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
 | 
						||
                               SelectionDAG &DAG, MulExpansionKind Kind,
 | 
						||
                               SDValue LL, SDValue LH, SDValue RL,
 | 
						||
                               SDValue RH) const {
 | 
						||
  SmallVector<SDValue, 2> Result;
 | 
						||
  bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
 | 
						||
                           N->getOperand(0), N->getOperand(1), Result, HiLoVT,
 | 
						||
                           DAG, Kind, LL, LH, RL, RH);
 | 
						||
  if (Ok) {
 | 
						||
    assert(Result.size() == 2);
 | 
						||
    Lo = Result[0];
 | 
						||
    Hi = Result[1];
 | 
						||
  }
 | 
						||
  return Ok;
 | 
						||
}
 | 
						||
 | 
						||
// Check that (every element of) Z is undef or not an exact multiple of BW.
 | 
						||
static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
 | 
						||
  return ISD::matchUnaryPredicate(
 | 
						||
      Z,
 | 
						||
      [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
 | 
						||
      true);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandFunnelShift(SDNode *Node,
 | 
						||
                                          SelectionDAG &DAG) const {
 | 
						||
  EVT VT = Node->getValueType(0);
 | 
						||
 | 
						||
  if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
 | 
						||
                        !isOperationLegalOrCustom(ISD::SRL, VT) ||
 | 
						||
                        !isOperationLegalOrCustom(ISD::SUB, VT) ||
 | 
						||
                        !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  SDValue X = Node->getOperand(0);
 | 
						||
  SDValue Y = Node->getOperand(1);
 | 
						||
  SDValue Z = Node->getOperand(2);
 | 
						||
 | 
						||
  unsigned BW = VT.getScalarSizeInBits();
 | 
						||
  bool IsFSHL = Node->getOpcode() == ISD::FSHL;
 | 
						||
  SDLoc DL(SDValue(Node, 0));
 | 
						||
 | 
						||
  EVT ShVT = Z.getValueType();
 | 
						||
 | 
						||
  // If a funnel shift in the other direction is more supported, use it.
 | 
						||
  unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
 | 
						||
  if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
 | 
						||
      isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
 | 
						||
    if (isNonZeroModBitWidthOrUndef(Z, BW)) {
 | 
						||
      // fshl X, Y, Z -> fshr X, Y, -Z
 | 
						||
      // fshr X, Y, Z -> fshl X, Y, -Z
 | 
						||
      SDValue Zero = DAG.getConstant(0, DL, ShVT);
 | 
						||
      Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
 | 
						||
    } else {
 | 
						||
      // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
 | 
						||
      // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
 | 
						||
      SDValue One = DAG.getConstant(1, DL, ShVT);
 | 
						||
      if (IsFSHL) {
 | 
						||
        Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
 | 
						||
        X = DAG.getNode(ISD::SRL, DL, VT, X, One);
 | 
						||
      } else {
 | 
						||
        X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
 | 
						||
        Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
 | 
						||
      }
 | 
						||
      Z = DAG.getNOT(DL, Z, ShVT);
 | 
						||
    }
 | 
						||
    return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
 | 
						||
  }
 | 
						||
 | 
						||
  SDValue ShX, ShY;
 | 
						||
  SDValue ShAmt, InvShAmt;
 | 
						||
  if (isNonZeroModBitWidthOrUndef(Z, BW)) {
 | 
						||
    // fshl: X << C | Y >> (BW - C)
 | 
						||
    // fshr: X << (BW - C) | Y >> C
 | 
						||
    // where C = Z % BW is not zero
 | 
						||
    SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
 | 
						||
    ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
 | 
						||
    InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
 | 
						||
    ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
 | 
						||
    ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
 | 
						||
  } else {
 | 
						||
    // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
 | 
						||
    // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
 | 
						||
    SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
 | 
						||
    if (isPowerOf2_32(BW)) {
 | 
						||
      // Z % BW -> Z & (BW - 1)
 | 
						||
      ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
 | 
						||
      // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
 | 
						||
      InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
 | 
						||
    } else {
 | 
						||
      SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
 | 
						||
      ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
 | 
						||
      InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
 | 
						||
    }
 | 
						||
 | 
						||
    SDValue One = DAG.getConstant(1, DL, ShVT);
 | 
						||
    if (IsFSHL) {
 | 
						||
      ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
 | 
						||
      SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
 | 
						||
      ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
 | 
						||
    } else {
 | 
						||
      SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
 | 
						||
      ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
 | 
						||
      ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
 | 
						||
}
 | 
						||
 | 
						||
// TODO: Merge with expandFunnelShift.
 | 
						||
SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
 | 
						||
                                  SelectionDAG &DAG) const {
 | 
						||
  EVT VT = Node->getValueType(0);
 | 
						||
  unsigned EltSizeInBits = VT.getScalarSizeInBits();
 | 
						||
  bool IsLeft = Node->getOpcode() == ISD::ROTL;
 | 
						||
  SDValue Op0 = Node->getOperand(0);
 | 
						||
  SDValue Op1 = Node->getOperand(1);
 | 
						||
  SDLoc DL(SDValue(Node, 0));
 | 
						||
 | 
						||
  EVT ShVT = Op1.getValueType();
 | 
						||
  SDValue Zero = DAG.getConstant(0, DL, ShVT);
 | 
						||
 | 
						||
  // If a rotate in the other direction is more supported, use it.
 | 
						||
  unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
 | 
						||
  if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
 | 
						||
      isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
 | 
						||
    SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
 | 
						||
    return DAG.getNode(RevRot, DL, VT, Op0, Sub);
 | 
						||
  }
 | 
						||
 | 
						||
  if (!AllowVectorOps && VT.isVector() &&
 | 
						||
      (!isOperationLegalOrCustom(ISD::SHL, VT) ||
 | 
						||
       !isOperationLegalOrCustom(ISD::SRL, VT) ||
 | 
						||
       !isOperationLegalOrCustom(ISD::SUB, VT) ||
 | 
						||
       !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
 | 
						||
       !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
 | 
						||
  unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
 | 
						||
  SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
 | 
						||
  SDValue ShVal;
 | 
						||
  SDValue HsVal;
 | 
						||
  if (isPowerOf2_32(EltSizeInBits)) {
 | 
						||
    // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
 | 
						||
    // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
 | 
						||
    SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
 | 
						||
    SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
 | 
						||
    ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
 | 
						||
    SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
 | 
						||
    HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
 | 
						||
  } else {
 | 
						||
    // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
 | 
						||
    // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
 | 
						||
    SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
 | 
						||
    SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
 | 
						||
    ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
 | 
						||
    SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
 | 
						||
    SDValue One = DAG.getConstant(1, DL, ShVT);
 | 
						||
    HsVal =
 | 
						||
        DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
 | 
						||
  }
 | 
						||
  return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
 | 
						||
}
 | 
						||
 | 
						||
void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
 | 
						||
                                      SelectionDAG &DAG) const {
 | 
						||
  assert(Node->getNumOperands() == 3 && "Not a double-shift!");
 | 
						||
  EVT VT = Node->getValueType(0);
 | 
						||
  unsigned VTBits = VT.getScalarSizeInBits();
 | 
						||
  assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
 | 
						||
 | 
						||
  bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
 | 
						||
  bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
 | 
						||
  SDValue ShOpLo = Node->getOperand(0);
 | 
						||
  SDValue ShOpHi = Node->getOperand(1);
 | 
						||
  SDValue ShAmt = Node->getOperand(2);
 | 
						||
  EVT ShAmtVT = ShAmt.getValueType();
 | 
						||
  EVT ShAmtCCVT =
 | 
						||
      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
 | 
						||
  SDLoc dl(Node);
 | 
						||
 | 
						||
  // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
 | 
						||
  // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
 | 
						||
  // away during isel.
 | 
						||
  SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
 | 
						||
                                  DAG.getConstant(VTBits - 1, dl, ShAmtVT));
 | 
						||
  SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
 | 
						||
                                     DAG.getConstant(VTBits - 1, dl, ShAmtVT))
 | 
						||
                       : DAG.getConstant(0, dl, VT);
 | 
						||
 | 
						||
  SDValue Tmp2, Tmp3;
 | 
						||
  if (IsSHL) {
 | 
						||
    Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
 | 
						||
    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
 | 
						||
  } else {
 | 
						||
    Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
 | 
						||
    Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
 | 
						||
  }
 | 
						||
 | 
						||
  // If the shift amount is larger or equal than the width of a part we don't
 | 
						||
  // use the result from the FSHL/FSHR. Insert a test and select the appropriate
 | 
						||
  // values for large shift amounts.
 | 
						||
  SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
 | 
						||
                                DAG.getConstant(VTBits, dl, ShAmtVT));
 | 
						||
  SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
 | 
						||
                              DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
 | 
						||
 | 
						||
  if (IsSHL) {
 | 
						||
    Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
 | 
						||
    Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
 | 
						||
  } else {
 | 
						||
    Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
 | 
						||
    Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
 | 
						||
                                      SelectionDAG &DAG) const {
 | 
						||
  unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
 | 
						||
  SDValue Src = Node->getOperand(OpNo);
 | 
						||
  EVT SrcVT = Src.getValueType();
 | 
						||
  EVT DstVT = Node->getValueType(0);
 | 
						||
  SDLoc dl(SDValue(Node, 0));
 | 
						||
 | 
						||
  // FIXME: Only f32 to i64 conversions are supported.
 | 
						||
  if (SrcVT != MVT::f32 || DstVT != MVT::i64)
 | 
						||
    return false;
 | 
						||
 | 
						||
  if (Node->isStrictFPOpcode())
 | 
						||
    // When a NaN is converted to an integer a trap is allowed. We can't
 | 
						||
    // use this expansion here because it would eliminate that trap. Other
 | 
						||
    // traps are also allowed and cannot be eliminated. See
 | 
						||
    // IEEE 754-2008 sec 5.8.
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Expand f32 -> i64 conversion
 | 
						||
  // This algorithm comes from compiler-rt's implementation of fixsfdi:
 | 
						||
  // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
 | 
						||
  unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
 | 
						||
  EVT IntVT = SrcVT.changeTypeToInteger();
 | 
						||
  EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
 | 
						||
 | 
						||
  SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
 | 
						||
  SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
 | 
						||
  SDValue Bias = DAG.getConstant(127, dl, IntVT);
 | 
						||
  SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
 | 
						||
  SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
 | 
						||
  SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
 | 
						||
 | 
						||
  SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
 | 
						||
 | 
						||
  SDValue ExponentBits = DAG.getNode(
 | 
						||
      ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
 | 
						||
      DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
 | 
						||
  SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
 | 
						||
 | 
						||
  SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
 | 
						||
                             DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
 | 
						||
                             DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
 | 
						||
  Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
 | 
						||
 | 
						||
  SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
 | 
						||
                          DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
 | 
						||
                          DAG.getConstant(0x00800000, dl, IntVT));
 | 
						||
 | 
						||
  R = DAG.getZExtOrTrunc(R, dl, DstVT);
 | 
						||
 | 
						||
  R = DAG.getSelectCC(
 | 
						||
      dl, Exponent, ExponentLoBit,
 | 
						||
      DAG.getNode(ISD::SHL, dl, DstVT, R,
 | 
						||
                  DAG.getZExtOrTrunc(
 | 
						||
                      DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
 | 
						||
                      dl, IntShVT)),
 | 
						||
      DAG.getNode(ISD::SRL, dl, DstVT, R,
 | 
						||
                  DAG.getZExtOrTrunc(
 | 
						||
                      DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
 | 
						||
                      dl, IntShVT)),
 | 
						||
      ISD::SETGT);
 | 
						||
 | 
						||
  SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
 | 
						||
                            DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
 | 
						||
 | 
						||
  Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
 | 
						||
                           DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
 | 
						||
                                      SDValue &Chain,
 | 
						||
                                      SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(SDValue(Node, 0));
 | 
						||
  unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
 | 
						||
  SDValue Src = Node->getOperand(OpNo);
 | 
						||
 | 
						||
  EVT SrcVT = Src.getValueType();
 | 
						||
  EVT DstVT = Node->getValueType(0);
 | 
						||
  EVT SetCCVT =
 | 
						||
      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
 | 
						||
  EVT DstSetCCVT =
 | 
						||
      getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
 | 
						||
 | 
						||
  // Only expand vector types if we have the appropriate vector bit operations.
 | 
						||
  unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
 | 
						||
                                                   ISD::FP_TO_SINT;
 | 
						||
  if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
 | 
						||
                           !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
 | 
						||
    return false;
 | 
						||
 | 
						||
  // If the maximum float value is smaller then the signed integer range,
 | 
						||
  // the destination signmask can't be represented by the float, so we can
 | 
						||
  // just use FP_TO_SINT directly.
 | 
						||
  const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
 | 
						||
  APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
 | 
						||
  APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
 | 
						||
  if (APFloat::opOverflow &
 | 
						||
      APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
 | 
						||
    if (Node->isStrictFPOpcode()) {
 | 
						||
      Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
 | 
						||
                           { Node->getOperand(0), Src });
 | 
						||
      Chain = Result.getValue(1);
 | 
						||
    } else
 | 
						||
      Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
 | 
						||
  // Don't expand it if there isn't cheap fsub instruction.
 | 
						||
  if (!isOperationLegalOrCustom(
 | 
						||
          Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
 | 
						||
    return false;
 | 
						||
 | 
						||
  SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
 | 
						||
  SDValue Sel;
 | 
						||
 | 
						||
  if (Node->isStrictFPOpcode()) {
 | 
						||
    Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
 | 
						||
                       Node->getOperand(0), /*IsSignaling*/ true);
 | 
						||
    Chain = Sel.getValue(1);
 | 
						||
  } else {
 | 
						||
    Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
 | 
						||
  }
 | 
						||
 | 
						||
  bool Strict = Node->isStrictFPOpcode() ||
 | 
						||
                shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
 | 
						||
 | 
						||
  if (Strict) {
 | 
						||
    // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
 | 
						||
    // signmask then offset (the result of which should be fully representable).
 | 
						||
    // Sel = Src < 0x8000000000000000
 | 
						||
    // FltOfs = select Sel, 0, 0x8000000000000000
 | 
						||
    // IntOfs = select Sel, 0, 0x8000000000000000
 | 
						||
    // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
 | 
						||
 | 
						||
    // TODO: Should any fast-math-flags be set for the FSUB?
 | 
						||
    SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
 | 
						||
                                   DAG.getConstantFP(0.0, dl, SrcVT), Cst);
 | 
						||
    Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
 | 
						||
    SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
 | 
						||
                                   DAG.getConstant(0, dl, DstVT),
 | 
						||
                                   DAG.getConstant(SignMask, dl, DstVT));
 | 
						||
    SDValue SInt;
 | 
						||
    if (Node->isStrictFPOpcode()) {
 | 
						||
      SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
 | 
						||
                                { Chain, Src, FltOfs });
 | 
						||
      SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
 | 
						||
                         { Val.getValue(1), Val });
 | 
						||
      Chain = SInt.getValue(1);
 | 
						||
    } else {
 | 
						||
      SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
 | 
						||
      SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
 | 
						||
    }
 | 
						||
    Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
 | 
						||
  } else {
 | 
						||
    // Expand based on maximum range of FP_TO_SINT:
 | 
						||
    // True = fp_to_sint(Src)
 | 
						||
    // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
 | 
						||
    // Result = select (Src < 0x8000000000000000), True, False
 | 
						||
 | 
						||
    SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
 | 
						||
    // TODO: Should any fast-math-flags be set for the FSUB?
 | 
						||
    SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
 | 
						||
                                DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
 | 
						||
    False = DAG.getNode(ISD::XOR, dl, DstVT, False,
 | 
						||
                        DAG.getConstant(SignMask, dl, DstVT));
 | 
						||
    Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
 | 
						||
    Result = DAG.getSelect(dl, DstVT, Sel, True, False);
 | 
						||
  }
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
 | 
						||
                                      SDValue &Chain,
 | 
						||
                                      SelectionDAG &DAG) const {
 | 
						||
  // This transform is not correct for converting 0 when rounding mode is set
 | 
						||
  // to round toward negative infinity which will produce -0.0. So disable under
 | 
						||
  // strictfp.
 | 
						||
  if (Node->isStrictFPOpcode())
 | 
						||
    return false;
 | 
						||
 | 
						||
  SDValue Src = Node->getOperand(0);
 | 
						||
  EVT SrcVT = Src.getValueType();
 | 
						||
  EVT DstVT = Node->getValueType(0);
 | 
						||
 | 
						||
  if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
 | 
						||
    return false;
 | 
						||
 | 
						||
  // Only expand vector types if we have the appropriate vector bit operations.
 | 
						||
  if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
 | 
						||
                           !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
 | 
						||
                           !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
 | 
						||
                           !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
 | 
						||
                           !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
 | 
						||
    return false;
 | 
						||
 | 
						||
  SDLoc dl(SDValue(Node, 0));
 | 
						||
  EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
 | 
						||
 | 
						||
  // Implementation of unsigned i64 to f64 following the algorithm in
 | 
						||
  // __floatundidf in compiler_rt.  This implementation performs rounding
 | 
						||
  // correctly in all rounding modes with the exception of converting 0
 | 
						||
  // when rounding toward negative infinity. In that case the fsub will produce
 | 
						||
  // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
 | 
						||
  SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
 | 
						||
  SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
 | 
						||
      BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
 | 
						||
  SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
 | 
						||
  SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
 | 
						||
  SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
 | 
						||
 | 
						||
  SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
 | 
						||
  SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
 | 
						||
  SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
 | 
						||
  SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
 | 
						||
  SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
 | 
						||
  SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
 | 
						||
  SDValue HiSub =
 | 
						||
      DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
 | 
						||
  Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
 | 
						||
                                              SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(Node);
 | 
						||
  unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
 | 
						||
    ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
 | 
						||
  EVT VT = Node->getValueType(0);
 | 
						||
 | 
						||
  if (VT.isScalableVector())
 | 
						||
    report_fatal_error(
 | 
						||
        "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
 | 
						||
 | 
						||
  if (isOperationLegalOrCustom(NewOp, VT)) {
 | 
						||
    SDValue Quiet0 = Node->getOperand(0);
 | 
						||
    SDValue Quiet1 = Node->getOperand(1);
 | 
						||
 | 
						||
    if (!Node->getFlags().hasNoNaNs()) {
 | 
						||
      // Insert canonicalizes if it's possible we need to quiet to get correct
 | 
						||
      // sNaN behavior.
 | 
						||
      if (!DAG.isKnownNeverSNaN(Quiet0)) {
 | 
						||
        Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
 | 
						||
                             Node->getFlags());
 | 
						||
      }
 | 
						||
      if (!DAG.isKnownNeverSNaN(Quiet1)) {
 | 
						||
        Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
 | 
						||
                             Node->getFlags());
 | 
						||
      }
 | 
						||
    }
 | 
						||
 | 
						||
    return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
 | 
						||
  }
 | 
						||
 | 
						||
  // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
 | 
						||
  // instead if there are no NaNs.
 | 
						||
  if (Node->getFlags().hasNoNaNs()) {
 | 
						||
    unsigned IEEE2018Op =
 | 
						||
        Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
 | 
						||
    if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
 | 
						||
      return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
 | 
						||
                         Node->getOperand(1), Node->getFlags());
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  // If none of the above worked, but there are no NaNs, then expand to
 | 
						||
  // a compare/select sequence.  This is required for correctness since
 | 
						||
  // InstCombine might have canonicalized a fcmp+select sequence to a
 | 
						||
  // FMINNUM/FMAXNUM node.  If we were to fall through to the default
 | 
						||
  // expansion to libcall, we might introduce a link-time dependency
 | 
						||
  // on libm into a file that originally did not have one.
 | 
						||
  if (Node->getFlags().hasNoNaNs()) {
 | 
						||
    ISD::CondCode Pred =
 | 
						||
        Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
 | 
						||
    SDValue Op1 = Node->getOperand(0);
 | 
						||
    SDValue Op2 = Node->getOperand(1);
 | 
						||
    SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
 | 
						||
    // Copy FMF flags, but always set the no-signed-zeros flag
 | 
						||
    // as this is implied by the FMINNUM/FMAXNUM semantics.
 | 
						||
    SDNodeFlags Flags = Node->getFlags();
 | 
						||
    Flags.setNoSignedZeros(true);
 | 
						||
    SelCC->setFlags(Flags);
 | 
						||
    return SelCC;
 | 
						||
  }
 | 
						||
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
// Only expand vector types if we have the appropriate vector bit operations.
 | 
						||
static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
 | 
						||
  assert(VT.isVector() && "Expected vector type");
 | 
						||
  unsigned Len = VT.getScalarSizeInBits();
 | 
						||
  return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
 | 
						||
         TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
 | 
						||
         TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
 | 
						||
         (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
 | 
						||
         TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(Node);
 | 
						||
  EVT VT = Node->getValueType(0);
 | 
						||
  EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  SDValue Op = Node->getOperand(0);
 | 
						||
  unsigned Len = VT.getScalarSizeInBits();
 | 
						||
  assert(VT.isInteger() && "CTPOP not implemented for this type.");
 | 
						||
 | 
						||
  // TODO: Add support for irregular type lengths.
 | 
						||
  if (!(Len <= 128 && Len % 8 == 0))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // Only expand vector types if we have the appropriate vector bit operations.
 | 
						||
  if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // This is the "best" algorithm from
 | 
						||
  // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
 | 
						||
  SDValue Mask55 =
 | 
						||
      DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
 | 
						||
  SDValue Mask33 =
 | 
						||
      DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
 | 
						||
  SDValue Mask0F =
 | 
						||
      DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
 | 
						||
  SDValue Mask01 =
 | 
						||
      DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
 | 
						||
 | 
						||
  // v = v - ((v >> 1) & 0x55555555...)
 | 
						||
  Op = DAG.getNode(ISD::SUB, dl, VT, Op,
 | 
						||
                   DAG.getNode(ISD::AND, dl, VT,
 | 
						||
                               DAG.getNode(ISD::SRL, dl, VT, Op,
 | 
						||
                                           DAG.getConstant(1, dl, ShVT)),
 | 
						||
                               Mask55));
 | 
						||
  // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
 | 
						||
  Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
 | 
						||
                   DAG.getNode(ISD::AND, dl, VT,
 | 
						||
                               DAG.getNode(ISD::SRL, dl, VT, Op,
 | 
						||
                                           DAG.getConstant(2, dl, ShVT)),
 | 
						||
                               Mask33));
 | 
						||
  // v = (v + (v >> 4)) & 0x0F0F0F0F...
 | 
						||
  Op = DAG.getNode(ISD::AND, dl, VT,
 | 
						||
                   DAG.getNode(ISD::ADD, dl, VT, Op,
 | 
						||
                               DAG.getNode(ISD::SRL, dl, VT, Op,
 | 
						||
                                           DAG.getConstant(4, dl, ShVT))),
 | 
						||
                   Mask0F);
 | 
						||
  // v = (v * 0x01010101...) >> (Len - 8)
 | 
						||
  if (Len > 8)
 | 
						||
    Op =
 | 
						||
        DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
 | 
						||
                    DAG.getConstant(Len - 8, dl, ShVT));
 | 
						||
 | 
						||
  return Op;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(Node);
 | 
						||
  EVT VT = Node->getValueType(0);
 | 
						||
  EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  SDValue Op = Node->getOperand(0);
 | 
						||
  unsigned NumBitsPerElt = VT.getScalarSizeInBits();
 | 
						||
 | 
						||
  // If the non-ZERO_UNDEF version is supported we can use that instead.
 | 
						||
  if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
 | 
						||
      isOperationLegalOrCustom(ISD::CTLZ, VT))
 | 
						||
    return DAG.getNode(ISD::CTLZ, dl, VT, Op);
 | 
						||
 | 
						||
  // If the ZERO_UNDEF version is supported use that and handle the zero case.
 | 
						||
  if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
 | 
						||
    EVT SetCCVT =
 | 
						||
        getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						||
    SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
 | 
						||
    SDValue Zero = DAG.getConstant(0, dl, VT);
 | 
						||
    SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
 | 
						||
    return DAG.getSelect(dl, VT, SrcIsZero,
 | 
						||
                         DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
 | 
						||
  }
 | 
						||
 | 
						||
  // Only expand vector types if we have the appropriate vector bit operations.
 | 
						||
  // This includes the operations needed to expand CTPOP if it isn't supported.
 | 
						||
  if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
 | 
						||
                        (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
 | 
						||
                         !canExpandVectorCTPOP(*this, VT)) ||
 | 
						||
                        !isOperationLegalOrCustom(ISD::SRL, VT) ||
 | 
						||
                        !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // for now, we do this:
 | 
						||
  // x = x | (x >> 1);
 | 
						||
  // x = x | (x >> 2);
 | 
						||
  // ...
 | 
						||
  // x = x | (x >>16);
 | 
						||
  // x = x | (x >>32); // for 64-bit input
 | 
						||
  // return popcount(~x);
 | 
						||
  //
 | 
						||
  // Ref: "Hacker's Delight" by Henry Warren
 | 
						||
  for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
 | 
						||
    SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
 | 
						||
    Op = DAG.getNode(ISD::OR, dl, VT, Op,
 | 
						||
                     DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
 | 
						||
  }
 | 
						||
  Op = DAG.getNOT(dl, Op, VT);
 | 
						||
  return DAG.getNode(ISD::CTPOP, dl, VT, Op);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(Node);
 | 
						||
  EVT VT = Node->getValueType(0);
 | 
						||
  SDValue Op = Node->getOperand(0);
 | 
						||
  unsigned NumBitsPerElt = VT.getScalarSizeInBits();
 | 
						||
 | 
						||
  // If the non-ZERO_UNDEF version is supported we can use that instead.
 | 
						||
  if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
 | 
						||
      isOperationLegalOrCustom(ISD::CTTZ, VT))
 | 
						||
    return DAG.getNode(ISD::CTTZ, dl, VT, Op);
 | 
						||
 | 
						||
  // If the ZERO_UNDEF version is supported use that and handle the zero case.
 | 
						||
  if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
 | 
						||
    EVT SetCCVT =
 | 
						||
        getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						||
    SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
 | 
						||
    SDValue Zero = DAG.getConstant(0, dl, VT);
 | 
						||
    SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
 | 
						||
    return DAG.getSelect(dl, VT, SrcIsZero,
 | 
						||
                         DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
 | 
						||
  }
 | 
						||
 | 
						||
  // Only expand vector types if we have the appropriate vector bit operations.
 | 
						||
  // This includes the operations needed to expand CTPOP if it isn't supported.
 | 
						||
  if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
 | 
						||
                        (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
 | 
						||
                         !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
 | 
						||
                         !canExpandVectorCTPOP(*this, VT)) ||
 | 
						||
                        !isOperationLegalOrCustom(ISD::SUB, VT) ||
 | 
						||
                        !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
 | 
						||
                        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  // for now, we use: { return popcount(~x & (x - 1)); }
 | 
						||
  // unless the target has ctlz but not ctpop, in which case we use:
 | 
						||
  // { return 32 - nlz(~x & (x-1)); }
 | 
						||
  // Ref: "Hacker's Delight" by Henry Warren
 | 
						||
  SDValue Tmp = DAG.getNode(
 | 
						||
      ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
 | 
						||
      DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
 | 
						||
 | 
						||
  // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
 | 
						||
  if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
 | 
						||
    return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
 | 
						||
                       DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
 | 
						||
  }
 | 
						||
 | 
						||
  return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
 | 
						||
                                  bool IsNegative) const {
 | 
						||
  SDLoc dl(N);
 | 
						||
  EVT VT = N->getValueType(0);
 | 
						||
  EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  SDValue Op = N->getOperand(0);
 | 
						||
 | 
						||
  // abs(x) -> smax(x,sub(0,x))
 | 
						||
  if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
 | 
						||
      isOperationLegal(ISD::SMAX, VT)) {
 | 
						||
    SDValue Zero = DAG.getConstant(0, dl, VT);
 | 
						||
    return DAG.getNode(ISD::SMAX, dl, VT, Op,
 | 
						||
                       DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
 | 
						||
  }
 | 
						||
 | 
						||
  // abs(x) -> umin(x,sub(0,x))
 | 
						||
  if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
 | 
						||
      isOperationLegal(ISD::UMIN, VT)) {
 | 
						||
    SDValue Zero = DAG.getConstant(0, dl, VT);
 | 
						||
    return DAG.getNode(ISD::UMIN, dl, VT, Op,
 | 
						||
                       DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
 | 
						||
  }
 | 
						||
 | 
						||
  // 0 - abs(x) -> smin(x, sub(0,x))
 | 
						||
  if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
 | 
						||
      isOperationLegal(ISD::SMIN, VT)) {
 | 
						||
    SDValue Zero = DAG.getConstant(0, dl, VT);
 | 
						||
    return DAG.getNode(ISD::SMIN, dl, VT, Op,
 | 
						||
                       DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
 | 
						||
  }
 | 
						||
 | 
						||
  // Only expand vector types if we have the appropriate vector operations.
 | 
						||
  if (VT.isVector() &&
 | 
						||
      (!isOperationLegalOrCustom(ISD::SRA, VT) ||
 | 
						||
       (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
 | 
						||
       (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
 | 
						||
       !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  SDValue Shift =
 | 
						||
      DAG.getNode(ISD::SRA, dl, VT, Op,
 | 
						||
                  DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
 | 
						||
  if (!IsNegative) {
 | 
						||
    SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
 | 
						||
    return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
 | 
						||
  }
 | 
						||
 | 
						||
  // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
 | 
						||
  SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
 | 
						||
  return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(N);
 | 
						||
  EVT VT = N->getValueType(0);
 | 
						||
  SDValue Op = N->getOperand(0);
 | 
						||
 | 
						||
  if (!VT.isSimple())
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
 | 
						||
  switch (VT.getSimpleVT().getScalarType().SimpleTy) {
 | 
						||
  default:
 | 
						||
    return SDValue();
 | 
						||
  case MVT::i16:
 | 
						||
    // Use a rotate by 8. This can be further expanded if necessary.
 | 
						||
    return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
 | 
						||
  case MVT::i32:
 | 
						||
    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
 | 
						||
    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
 | 
						||
    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
 | 
						||
    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
 | 
						||
    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
 | 
						||
                       DAG.getConstant(0xFF0000, dl, VT));
 | 
						||
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
 | 
						||
    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
 | 
						||
    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
 | 
						||
    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
 | 
						||
  case MVT::i64:
 | 
						||
    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
 | 
						||
    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
 | 
						||
    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
 | 
						||
    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
 | 
						||
    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
 | 
						||
    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
 | 
						||
    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
 | 
						||
    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
 | 
						||
    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
 | 
						||
                       DAG.getConstant(255ULL<<48, dl, VT));
 | 
						||
    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
 | 
						||
                       DAG.getConstant(255ULL<<40, dl, VT));
 | 
						||
    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
 | 
						||
                       DAG.getConstant(255ULL<<32, dl, VT));
 | 
						||
    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
 | 
						||
                       DAG.getConstant(255ULL<<24, dl, VT));
 | 
						||
    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
 | 
						||
                       DAG.getConstant(255ULL<<16, dl, VT));
 | 
						||
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
 | 
						||
                       DAG.getConstant(255ULL<<8 , dl, VT));
 | 
						||
    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
 | 
						||
    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
 | 
						||
    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
 | 
						||
    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
 | 
						||
    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
 | 
						||
    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
 | 
						||
    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
 | 
						||
  }
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(N);
 | 
						||
  EVT VT = N->getValueType(0);
 | 
						||
  SDValue Op = N->getOperand(0);
 | 
						||
  EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  unsigned Sz = VT.getScalarSizeInBits();
 | 
						||
 | 
						||
  SDValue Tmp, Tmp2, Tmp3;
 | 
						||
 | 
						||
  // If we can, perform BSWAP first and then the mask+swap the i4, then i2
 | 
						||
  // and finally the i1 pairs.
 | 
						||
  // TODO: We can easily support i4/i2 legal types if any target ever does.
 | 
						||
  if (Sz >= 8 && isPowerOf2_32(Sz)) {
 | 
						||
    // Create the masks - repeating the pattern every byte.
 | 
						||
    APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
 | 
						||
    APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
 | 
						||
    APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
 | 
						||
 | 
						||
    // BSWAP if the type is wider than a single byte.
 | 
						||
    Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
 | 
						||
 | 
						||
    // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
 | 
						||
    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
 | 
						||
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
 | 
						||
    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
 | 
						||
    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
 | 
						||
    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | 
						||
 | 
						||
    // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
 | 
						||
    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
 | 
						||
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
 | 
						||
    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
 | 
						||
    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
 | 
						||
    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | 
						||
 | 
						||
    // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
 | 
						||
    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
 | 
						||
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
 | 
						||
    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
 | 
						||
    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
 | 
						||
    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | 
						||
    return Tmp;
 | 
						||
  }
 | 
						||
 | 
						||
  Tmp = DAG.getConstant(0, dl, VT);
 | 
						||
  for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
 | 
						||
    if (I < J)
 | 
						||
      Tmp2 =
 | 
						||
          DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
 | 
						||
    else
 | 
						||
      Tmp2 =
 | 
						||
          DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
 | 
						||
 | 
						||
    APInt Shift(Sz, 1);
 | 
						||
    Shift <<= J;
 | 
						||
    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
 | 
						||
    Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
 | 
						||
  }
 | 
						||
 | 
						||
  return Tmp;
 | 
						||
}
 | 
						||
 | 
						||
std::pair<SDValue, SDValue>
 | 
						||
TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
 | 
						||
                                    SelectionDAG &DAG) const {
 | 
						||
  SDLoc SL(LD);
 | 
						||
  SDValue Chain = LD->getChain();
 | 
						||
  SDValue BasePTR = LD->getBasePtr();
 | 
						||
  EVT SrcVT = LD->getMemoryVT();
 | 
						||
  EVT DstVT = LD->getValueType(0);
 | 
						||
  ISD::LoadExtType ExtType = LD->getExtensionType();
 | 
						||
 | 
						||
  if (SrcVT.isScalableVector())
 | 
						||
    report_fatal_error("Cannot scalarize scalable vector loads");
 | 
						||
 | 
						||
  unsigned NumElem = SrcVT.getVectorNumElements();
 | 
						||
 | 
						||
  EVT SrcEltVT = SrcVT.getScalarType();
 | 
						||
  EVT DstEltVT = DstVT.getScalarType();
 | 
						||
 | 
						||
  // A vector must always be stored in memory as-is, i.e. without any padding
 | 
						||
  // between the elements, since various code depend on it, e.g. in the
 | 
						||
  // handling of a bitcast of a vector type to int, which may be done with a
 | 
						||
  // vector store followed by an integer load. A vector that does not have
 | 
						||
  // elements that are byte-sized must therefore be stored as an integer
 | 
						||
  // built out of the extracted vector elements.
 | 
						||
  if (!SrcEltVT.isByteSized()) {
 | 
						||
    unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
 | 
						||
    EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
 | 
						||
 | 
						||
    unsigned NumSrcBits = SrcVT.getSizeInBits();
 | 
						||
    EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
 | 
						||
 | 
						||
    unsigned SrcEltBits = SrcEltVT.getSizeInBits();
 | 
						||
    SDValue SrcEltBitMask = DAG.getConstant(
 | 
						||
        APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
 | 
						||
 | 
						||
    // Load the whole vector and avoid masking off the top bits as it makes
 | 
						||
    // the codegen worse.
 | 
						||
    SDValue Load =
 | 
						||
        DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
 | 
						||
                       LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
 | 
						||
                       LD->getMemOperand()->getFlags(), LD->getAAInfo());
 | 
						||
 | 
						||
    SmallVector<SDValue, 8> Vals;
 | 
						||
    for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
 | 
						||
      unsigned ShiftIntoIdx =
 | 
						||
          (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
 | 
						||
      SDValue ShiftAmount =
 | 
						||
          DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
 | 
						||
                                     LoadVT, SL, /*LegalTypes=*/false);
 | 
						||
      SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
 | 
						||
      SDValue Elt =
 | 
						||
          DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
 | 
						||
      SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
 | 
						||
 | 
						||
      if (ExtType != ISD::NON_EXTLOAD) {
 | 
						||
        unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
 | 
						||
        Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
 | 
						||
      }
 | 
						||
 | 
						||
      Vals.push_back(Scalar);
 | 
						||
    }
 | 
						||
 | 
						||
    SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
 | 
						||
    return std::make_pair(Value, Load.getValue(1));
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned Stride = SrcEltVT.getSizeInBits() / 8;
 | 
						||
  assert(SrcEltVT.isByteSized());
 | 
						||
 | 
						||
  SmallVector<SDValue, 8> Vals;
 | 
						||
  SmallVector<SDValue, 8> LoadChains;
 | 
						||
 | 
						||
  for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
 | 
						||
    SDValue ScalarLoad =
 | 
						||
        DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
 | 
						||
                       LD->getPointerInfo().getWithOffset(Idx * Stride),
 | 
						||
                       SrcEltVT, LD->getOriginalAlign(),
 | 
						||
                       LD->getMemOperand()->getFlags(), LD->getAAInfo());
 | 
						||
 | 
						||
    BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
 | 
						||
 | 
						||
    Vals.push_back(ScalarLoad.getValue(0));
 | 
						||
    LoadChains.push_back(ScalarLoad.getValue(1));
 | 
						||
  }
 | 
						||
 | 
						||
  SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
 | 
						||
  SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
 | 
						||
 | 
						||
  return std::make_pair(Value, NewChain);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
 | 
						||
                                             SelectionDAG &DAG) const {
 | 
						||
  SDLoc SL(ST);
 | 
						||
 | 
						||
  SDValue Chain = ST->getChain();
 | 
						||
  SDValue BasePtr = ST->getBasePtr();
 | 
						||
  SDValue Value = ST->getValue();
 | 
						||
  EVT StVT = ST->getMemoryVT();
 | 
						||
 | 
						||
  if (StVT.isScalableVector())
 | 
						||
    report_fatal_error("Cannot scalarize scalable vector stores");
 | 
						||
 | 
						||
  // The type of the data we want to save
 | 
						||
  EVT RegVT = Value.getValueType();
 | 
						||
  EVT RegSclVT = RegVT.getScalarType();
 | 
						||
 | 
						||
  // The type of data as saved in memory.
 | 
						||
  EVT MemSclVT = StVT.getScalarType();
 | 
						||
 | 
						||
  unsigned NumElem = StVT.getVectorNumElements();
 | 
						||
 | 
						||
  // A vector must always be stored in memory as-is, i.e. without any padding
 | 
						||
  // between the elements, since various code depend on it, e.g. in the
 | 
						||
  // handling of a bitcast of a vector type to int, which may be done with a
 | 
						||
  // vector store followed by an integer load. A vector that does not have
 | 
						||
  // elements that are byte-sized must therefore be stored as an integer
 | 
						||
  // built out of the extracted vector elements.
 | 
						||
  if (!MemSclVT.isByteSized()) {
 | 
						||
    unsigned NumBits = StVT.getSizeInBits();
 | 
						||
    EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
 | 
						||
 | 
						||
    SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
 | 
						||
 | 
						||
    for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
 | 
						||
      SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
 | 
						||
                                DAG.getVectorIdxConstant(Idx, SL));
 | 
						||
      SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
 | 
						||
      SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
 | 
						||
      unsigned ShiftIntoIdx =
 | 
						||
          (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
 | 
						||
      SDValue ShiftAmount =
 | 
						||
          DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
 | 
						||
      SDValue ShiftedElt =
 | 
						||
          DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
 | 
						||
      CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
 | 
						||
    }
 | 
						||
 | 
						||
    return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
 | 
						||
                        ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
 | 
						||
                        ST->getAAInfo());
 | 
						||
  }
 | 
						||
 | 
						||
  // Store Stride in bytes
 | 
						||
  unsigned Stride = MemSclVT.getSizeInBits() / 8;
 | 
						||
  assert(Stride && "Zero stride!");
 | 
						||
  // Extract each of the elements from the original vector and save them into
 | 
						||
  // memory individually.
 | 
						||
  SmallVector<SDValue, 8> Stores;
 | 
						||
  for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
 | 
						||
    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
 | 
						||
                              DAG.getVectorIdxConstant(Idx, SL));
 | 
						||
 | 
						||
    SDValue Ptr =
 | 
						||
        DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
 | 
						||
 | 
						||
    // This scalar TruncStore may be illegal, but we legalize it later.
 | 
						||
    SDValue Store = DAG.getTruncStore(
 | 
						||
        Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
 | 
						||
        MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
 | 
						||
        ST->getAAInfo());
 | 
						||
 | 
						||
    Stores.push_back(Store);
 | 
						||
  }
 | 
						||
 | 
						||
  return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
 | 
						||
}
 | 
						||
 | 
						||
std::pair<SDValue, SDValue>
 | 
						||
TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
 | 
						||
  assert(LD->getAddressingMode() == ISD::UNINDEXED &&
 | 
						||
         "unaligned indexed loads not implemented!");
 | 
						||
  SDValue Chain = LD->getChain();
 | 
						||
  SDValue Ptr = LD->getBasePtr();
 | 
						||
  EVT VT = LD->getValueType(0);
 | 
						||
  EVT LoadedVT = LD->getMemoryVT();
 | 
						||
  SDLoc dl(LD);
 | 
						||
  auto &MF = DAG.getMachineFunction();
 | 
						||
 | 
						||
  if (VT.isFloatingPoint() || VT.isVector()) {
 | 
						||
    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
 | 
						||
    if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
 | 
						||
      if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
 | 
						||
          LoadedVT.isVector()) {
 | 
						||
        // Scalarize the load and let the individual components be handled.
 | 
						||
        return scalarizeVectorLoad(LD, DAG);
 | 
						||
      }
 | 
						||
 | 
						||
      // Expand to a (misaligned) integer load of the same size,
 | 
						||
      // then bitconvert to floating point or vector.
 | 
						||
      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
 | 
						||
                                    LD->getMemOperand());
 | 
						||
      SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
 | 
						||
      if (LoadedVT != VT)
 | 
						||
        Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
 | 
						||
                             ISD::ANY_EXTEND, dl, VT, Result);
 | 
						||
 | 
						||
      return std::make_pair(Result, newLoad.getValue(1));
 | 
						||
    }
 | 
						||
 | 
						||
    // Copy the value to a (aligned) stack slot using (unaligned) integer
 | 
						||
    // loads and stores, then do a (aligned) load from the stack slot.
 | 
						||
    MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
 | 
						||
    unsigned LoadedBytes = LoadedVT.getStoreSize();
 | 
						||
    unsigned RegBytes = RegVT.getSizeInBits() / 8;
 | 
						||
    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
 | 
						||
 | 
						||
    // Make sure the stack slot is also aligned for the register type.
 | 
						||
    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
 | 
						||
    auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
 | 
						||
    SmallVector<SDValue, 8> Stores;
 | 
						||
    SDValue StackPtr = StackBase;
 | 
						||
    unsigned Offset = 0;
 | 
						||
 | 
						||
    EVT PtrVT = Ptr.getValueType();
 | 
						||
    EVT StackPtrVT = StackPtr.getValueType();
 | 
						||
 | 
						||
    SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
 | 
						||
    SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
 | 
						||
 | 
						||
    // Do all but one copies using the full register width.
 | 
						||
    for (unsigned i = 1; i < NumRegs; i++) {
 | 
						||
      // Load one integer register's worth from the original location.
 | 
						||
      SDValue Load = DAG.getLoad(
 | 
						||
          RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
 | 
						||
          LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
 | 
						||
          LD->getAAInfo());
 | 
						||
      // Follow the load with a store to the stack slot.  Remember the store.
 | 
						||
      Stores.push_back(DAG.getStore(
 | 
						||
          Load.getValue(1), dl, Load, StackPtr,
 | 
						||
          MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
 | 
						||
      // Increment the pointers.
 | 
						||
      Offset += RegBytes;
 | 
						||
 | 
						||
      Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
 | 
						||
      StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
 | 
						||
    }
 | 
						||
 | 
						||
    // The last copy may be partial.  Do an extending load.
 | 
						||
    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
 | 
						||
                                  8 * (LoadedBytes - Offset));
 | 
						||
    SDValue Load =
 | 
						||
        DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
 | 
						||
                       LD->getPointerInfo().getWithOffset(Offset), MemVT,
 | 
						||
                       LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
 | 
						||
                       LD->getAAInfo());
 | 
						||
    // Follow the load with a store to the stack slot.  Remember the store.
 | 
						||
    // On big-endian machines this requires a truncating store to ensure
 | 
						||
    // that the bits end up in the right place.
 | 
						||
    Stores.push_back(DAG.getTruncStore(
 | 
						||
        Load.getValue(1), dl, Load, StackPtr,
 | 
						||
        MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
 | 
						||
 | 
						||
    // The order of the stores doesn't matter - say it with a TokenFactor.
 | 
						||
    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | 
						||
 | 
						||
    // Finally, perform the original load only redirected to the stack slot.
 | 
						||
    Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
 | 
						||
                          MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
 | 
						||
                          LoadedVT);
 | 
						||
 | 
						||
    // Callers expect a MERGE_VALUES node.
 | 
						||
    return std::make_pair(Load, TF);
 | 
						||
  }
 | 
						||
 | 
						||
  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
 | 
						||
         "Unaligned load of unsupported type.");
 | 
						||
 | 
						||
  // Compute the new VT that is half the size of the old one.  This is an
 | 
						||
  // integer MVT.
 | 
						||
  unsigned NumBits = LoadedVT.getSizeInBits();
 | 
						||
  EVT NewLoadedVT;
 | 
						||
  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
 | 
						||
  NumBits >>= 1;
 | 
						||
 | 
						||
  Align Alignment = LD->getOriginalAlign();
 | 
						||
  unsigned IncrementSize = NumBits / 8;
 | 
						||
  ISD::LoadExtType HiExtType = LD->getExtensionType();
 | 
						||
 | 
						||
  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
 | 
						||
  if (HiExtType == ISD::NON_EXTLOAD)
 | 
						||
    HiExtType = ISD::ZEXTLOAD;
 | 
						||
 | 
						||
  // Load the value in two parts
 | 
						||
  SDValue Lo, Hi;
 | 
						||
  if (DAG.getDataLayout().isLittleEndian()) {
 | 
						||
    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
 | 
						||
                        NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
 | 
						||
                        LD->getAAInfo());
 | 
						||
 | 
						||
    Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
 | 
						||
    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
 | 
						||
                        LD->getPointerInfo().getWithOffset(IncrementSize),
 | 
						||
                        NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
 | 
						||
                        LD->getAAInfo());
 | 
						||
  } else {
 | 
						||
    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
 | 
						||
                        NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
 | 
						||
                        LD->getAAInfo());
 | 
						||
 | 
						||
    Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
 | 
						||
    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
 | 
						||
                        LD->getPointerInfo().getWithOffset(IncrementSize),
 | 
						||
                        NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
 | 
						||
                        LD->getAAInfo());
 | 
						||
  }
 | 
						||
 | 
						||
  // aggregate the two parts
 | 
						||
  SDValue ShiftAmount =
 | 
						||
      DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
 | 
						||
                                                    DAG.getDataLayout()));
 | 
						||
  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
 | 
						||
  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
 | 
						||
 | 
						||
  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
 | 
						||
                             Hi.getValue(1));
 | 
						||
 | 
						||
  return std::make_pair(Result, TF);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
 | 
						||
                                             SelectionDAG &DAG) const {
 | 
						||
  assert(ST->getAddressingMode() == ISD::UNINDEXED &&
 | 
						||
         "unaligned indexed stores not implemented!");
 | 
						||
  SDValue Chain = ST->getChain();
 | 
						||
  SDValue Ptr = ST->getBasePtr();
 | 
						||
  SDValue Val = ST->getValue();
 | 
						||
  EVT VT = Val.getValueType();
 | 
						||
  Align Alignment = ST->getOriginalAlign();
 | 
						||
  auto &MF = DAG.getMachineFunction();
 | 
						||
  EVT StoreMemVT = ST->getMemoryVT();
 | 
						||
 | 
						||
  SDLoc dl(ST);
 | 
						||
  if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
 | 
						||
    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
 | 
						||
    if (isTypeLegal(intVT)) {
 | 
						||
      if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
 | 
						||
          StoreMemVT.isVector()) {
 | 
						||
        // Scalarize the store and let the individual components be handled.
 | 
						||
        SDValue Result = scalarizeVectorStore(ST, DAG);
 | 
						||
        return Result;
 | 
						||
      }
 | 
						||
      // Expand to a bitconvert of the value to the integer type of the
 | 
						||
      // same size, then a (misaligned) int store.
 | 
						||
      // FIXME: Does not handle truncating floating point stores!
 | 
						||
      SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
 | 
						||
      Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
 | 
						||
                            Alignment, ST->getMemOperand()->getFlags());
 | 
						||
      return Result;
 | 
						||
    }
 | 
						||
    // Do a (aligned) store to a stack slot, then copy from the stack slot
 | 
						||
    // to the final destination using (unaligned) integer loads and stores.
 | 
						||
    MVT RegVT = getRegisterType(
 | 
						||
        *DAG.getContext(),
 | 
						||
        EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
 | 
						||
    EVT PtrVT = Ptr.getValueType();
 | 
						||
    unsigned StoredBytes = StoreMemVT.getStoreSize();
 | 
						||
    unsigned RegBytes = RegVT.getSizeInBits() / 8;
 | 
						||
    unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
 | 
						||
 | 
						||
    // Make sure the stack slot is also aligned for the register type.
 | 
						||
    SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
 | 
						||
    auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
 | 
						||
 | 
						||
    // Perform the original store, only redirected to the stack slot.
 | 
						||
    SDValue Store = DAG.getTruncStore(
 | 
						||
        Chain, dl, Val, StackPtr,
 | 
						||
        MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
 | 
						||
 | 
						||
    EVT StackPtrVT = StackPtr.getValueType();
 | 
						||
 | 
						||
    SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
 | 
						||
    SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
 | 
						||
    SmallVector<SDValue, 8> Stores;
 | 
						||
    unsigned Offset = 0;
 | 
						||
 | 
						||
    // Do all but one copies using the full register width.
 | 
						||
    for (unsigned i = 1; i < NumRegs; i++) {
 | 
						||
      // Load one integer register's worth from the stack slot.
 | 
						||
      SDValue Load = DAG.getLoad(
 | 
						||
          RegVT, dl, Store, StackPtr,
 | 
						||
          MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
 | 
						||
      // Store it to the final location.  Remember the store.
 | 
						||
      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
 | 
						||
                                    ST->getPointerInfo().getWithOffset(Offset),
 | 
						||
                                    ST->getOriginalAlign(),
 | 
						||
                                    ST->getMemOperand()->getFlags()));
 | 
						||
      // Increment the pointers.
 | 
						||
      Offset += RegBytes;
 | 
						||
      StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
 | 
						||
      Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
 | 
						||
    }
 | 
						||
 | 
						||
    // The last store may be partial.  Do a truncating store.  On big-endian
 | 
						||
    // machines this requires an extending load from the stack slot to ensure
 | 
						||
    // that the bits are in the right place.
 | 
						||
    EVT LoadMemVT =
 | 
						||
        EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
 | 
						||
 | 
						||
    // Load from the stack slot.
 | 
						||
    SDValue Load = DAG.getExtLoad(
 | 
						||
        ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
 | 
						||
        MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
 | 
						||
 | 
						||
    Stores.push_back(
 | 
						||
        DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
 | 
						||
                          ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
 | 
						||
                          ST->getOriginalAlign(),
 | 
						||
                          ST->getMemOperand()->getFlags(), ST->getAAInfo()));
 | 
						||
    // The order of the stores doesn't matter - say it with a TokenFactor.
 | 
						||
    SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
 | 
						||
    return Result;
 | 
						||
  }
 | 
						||
 | 
						||
  assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
 | 
						||
         "Unaligned store of unknown type.");
 | 
						||
  // Get the half-size VT
 | 
						||
  EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
 | 
						||
  unsigned NumBits = NewStoredVT.getFixedSizeInBits();
 | 
						||
  unsigned IncrementSize = NumBits / 8;
 | 
						||
 | 
						||
  // Divide the stored value in two parts.
 | 
						||
  SDValue ShiftAmount = DAG.getConstant(
 | 
						||
      NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
 | 
						||
  SDValue Lo = Val;
 | 
						||
  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
 | 
						||
 | 
						||
  // Store the two parts
 | 
						||
  SDValue Store1, Store2;
 | 
						||
  Store1 = DAG.getTruncStore(Chain, dl,
 | 
						||
                             DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
 | 
						||
                             Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
 | 
						||
                             ST->getMemOperand()->getFlags());
 | 
						||
 | 
						||
  Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
 | 
						||
  Store2 = DAG.getTruncStore(
 | 
						||
      Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
 | 
						||
      ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
 | 
						||
      ST->getMemOperand()->getFlags(), ST->getAAInfo());
 | 
						||
 | 
						||
  SDValue Result =
 | 
						||
      DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
 | 
						||
  return Result;
 | 
						||
}
 | 
						||
 | 
						||
SDValue
 | 
						||
TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
 | 
						||
                                       const SDLoc &DL, EVT DataVT,
 | 
						||
                                       SelectionDAG &DAG,
 | 
						||
                                       bool IsCompressedMemory) const {
 | 
						||
  SDValue Increment;
 | 
						||
  EVT AddrVT = Addr.getValueType();
 | 
						||
  EVT MaskVT = Mask.getValueType();
 | 
						||
  assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
 | 
						||
         "Incompatible types of Data and Mask");
 | 
						||
  if (IsCompressedMemory) {
 | 
						||
    if (DataVT.isScalableVector())
 | 
						||
      report_fatal_error(
 | 
						||
          "Cannot currently handle compressed memory with scalable vectors");
 | 
						||
    // Incrementing the pointer according to number of '1's in the mask.
 | 
						||
    EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
 | 
						||
    SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
 | 
						||
    if (MaskIntVT.getSizeInBits() < 32) {
 | 
						||
      MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
 | 
						||
      MaskIntVT = MVT::i32;
 | 
						||
    }
 | 
						||
 | 
						||
    // Count '1's with POPCNT.
 | 
						||
    Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
 | 
						||
    Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
 | 
						||
    // Scale is an element size in bytes.
 | 
						||
    SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
 | 
						||
                                    AddrVT);
 | 
						||
    Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
 | 
						||
  } else if (DataVT.isScalableVector()) {
 | 
						||
    Increment = DAG.getVScale(DL, AddrVT,
 | 
						||
                              APInt(AddrVT.getFixedSizeInBits(),
 | 
						||
                                    DataVT.getStoreSize().getKnownMinSize()));
 | 
						||
  } else
 | 
						||
    Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
 | 
						||
 | 
						||
  return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
 | 
						||
}
 | 
						||
 | 
						||
static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
 | 
						||
                                       EVT VecVT, const SDLoc &dl,
 | 
						||
                                       ElementCount SubEC) {
 | 
						||
  assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
 | 
						||
         "Cannot index a scalable vector within a fixed-width vector");
 | 
						||
 | 
						||
  unsigned NElts = VecVT.getVectorMinNumElements();
 | 
						||
  unsigned NumSubElts = SubEC.getKnownMinValue();
 | 
						||
  EVT IdxVT = Idx.getValueType();
 | 
						||
 | 
						||
  if (VecVT.isScalableVector() && !SubEC.isScalable()) {
 | 
						||
    // If this is a constant index and we know the value plus the number of the
 | 
						||
    // elements in the subvector minus one is less than the minimum number of
 | 
						||
    // elements then it's safe to return Idx.
 | 
						||
    if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
 | 
						||
      if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
 | 
						||
        return Idx;
 | 
						||
    SDValue VS =
 | 
						||
        DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
 | 
						||
    unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
 | 
						||
    SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
 | 
						||
                              DAG.getConstant(NumSubElts, dl, IdxVT));
 | 
						||
    return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
 | 
						||
  }
 | 
						||
  if (isPowerOf2_32(NElts) && NumSubElts == 1) {
 | 
						||
    APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
 | 
						||
    return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
 | 
						||
                       DAG.getConstant(Imm, dl, IdxVT));
 | 
						||
  }
 | 
						||
  unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
 | 
						||
  return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
 | 
						||
                     DAG.getConstant(MaxIndex, dl, IdxVT));
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
 | 
						||
                                                SDValue VecPtr, EVT VecVT,
 | 
						||
                                                SDValue Index) const {
 | 
						||
  return getVectorSubVecPointer(
 | 
						||
      DAG, VecPtr, VecVT,
 | 
						||
      EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
 | 
						||
      Index);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
 | 
						||
                                               SDValue VecPtr, EVT VecVT,
 | 
						||
                                               EVT SubVecVT,
 | 
						||
                                               SDValue Index) const {
 | 
						||
  SDLoc dl(Index);
 | 
						||
  // Make sure the index type is big enough to compute in.
 | 
						||
  Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
 | 
						||
 | 
						||
  EVT EltVT = VecVT.getVectorElementType();
 | 
						||
 | 
						||
  // Calculate the element offset and add it to the pointer.
 | 
						||
  unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
 | 
						||
  assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
 | 
						||
         "Converting bits to bytes lost precision");
 | 
						||
  assert(SubVecVT.getVectorElementType() == EltVT &&
 | 
						||
         "Sub-vector must be a vector with matching element type");
 | 
						||
  Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
 | 
						||
                                  SubVecVT.getVectorElementCount());
 | 
						||
 | 
						||
  EVT IdxVT = Index.getValueType();
 | 
						||
  if (SubVecVT.isScalableVector())
 | 
						||
    Index =
 | 
						||
        DAG.getNode(ISD::MUL, dl, IdxVT, Index,
 | 
						||
                    DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
 | 
						||
 | 
						||
  Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
 | 
						||
                      DAG.getConstant(EltSize, dl, IdxVT));
 | 
						||
  return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
 | 
						||
}
 | 
						||
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
// Implementation of Emulated TLS Model
 | 
						||
//===----------------------------------------------------------------------===//
 | 
						||
 | 
						||
SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
 | 
						||
                                                SelectionDAG &DAG) const {
 | 
						||
  // Access to address of TLS varialbe xyz is lowered to a function call:
 | 
						||
  //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
 | 
						||
  EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | 
						||
  PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
 | 
						||
  SDLoc dl(GA);
 | 
						||
 | 
						||
  ArgListTy Args;
 | 
						||
  ArgListEntry Entry;
 | 
						||
  std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
 | 
						||
  Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
 | 
						||
  StringRef EmuTlsVarName(NameString);
 | 
						||
  GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
 | 
						||
  assert(EmuTlsVar && "Cannot find EmuTlsVar ");
 | 
						||
  Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
 | 
						||
  Entry.Ty = VoidPtrType;
 | 
						||
  Args.push_back(Entry);
 | 
						||
 | 
						||
  SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
 | 
						||
 | 
						||
  TargetLowering::CallLoweringInfo CLI(DAG);
 | 
						||
  CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
 | 
						||
  CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
 | 
						||
  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
 | 
						||
 | 
						||
  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
 | 
						||
  // At last for X86 targets, maybe good for other targets too?
 | 
						||
  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
 | 
						||
  MFI.setAdjustsStack(true); // Is this only for X86 target?
 | 
						||
  MFI.setHasCalls(true);
 | 
						||
 | 
						||
  assert((GA->getOffset() == 0) &&
 | 
						||
         "Emulated TLS must have zero offset in GlobalAddressSDNode");
 | 
						||
  return CallResult.first;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
 | 
						||
                                                SelectionDAG &DAG) const {
 | 
						||
  assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
 | 
						||
  if (!isCtlzFast())
 | 
						||
    return SDValue();
 | 
						||
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | 
						||
  SDLoc dl(Op);
 | 
						||
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | 
						||
    if (C->isZero() && CC == ISD::SETEQ) {
 | 
						||
      EVT VT = Op.getOperand(0).getValueType();
 | 
						||
      SDValue Zext = Op.getOperand(0);
 | 
						||
      if (VT.bitsLT(MVT::i32)) {
 | 
						||
        VT = MVT::i32;
 | 
						||
        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
 | 
						||
      }
 | 
						||
      unsigned Log2b = Log2_32(VT.getSizeInBits());
 | 
						||
      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
 | 
						||
      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
 | 
						||
                                DAG.getConstant(Log2b, dl, MVT::i32));
 | 
						||
      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
 | 
						||
    }
 | 
						||
  }
 | 
						||
  return SDValue();
 | 
						||
}
 | 
						||
 | 
						||
// Convert redundant addressing modes (e.g. scaling is redundant
 | 
						||
// when accessing bytes).
 | 
						||
ISD::MemIndexType
 | 
						||
TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
 | 
						||
                                      SDValue Offsets) const {
 | 
						||
  bool IsScaledIndex =
 | 
						||
      (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
 | 
						||
  bool IsSignedIndex =
 | 
						||
      (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
 | 
						||
 | 
						||
  // Scaling is unimportant for bytes, canonicalize to unscaled.
 | 
						||
  if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
 | 
						||
    return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
 | 
						||
 | 
						||
  return IndexType;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
 | 
						||
  SDValue Op0 = Node->getOperand(0);
 | 
						||
  SDValue Op1 = Node->getOperand(1);
 | 
						||
  EVT VT = Op0.getValueType();
 | 
						||
  unsigned Opcode = Node->getOpcode();
 | 
						||
  SDLoc DL(Node);
 | 
						||
 | 
						||
  // umin(x,y) -> sub(x,usubsat(x,y))
 | 
						||
  if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
 | 
						||
      isOperationLegal(ISD::USUBSAT, VT)) {
 | 
						||
    return DAG.getNode(ISD::SUB, DL, VT, Op0,
 | 
						||
                       DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
 | 
						||
  }
 | 
						||
 | 
						||
  // umax(x,y) -> add(x,usubsat(y,x))
 | 
						||
  if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
 | 
						||
      isOperationLegal(ISD::USUBSAT, VT)) {
 | 
						||
    return DAG.getNode(ISD::ADD, DL, VT, Op0,
 | 
						||
                       DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
 | 
						||
  }
 | 
						||
 | 
						||
  // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
 | 
						||
  ISD::CondCode CC;
 | 
						||
  switch (Opcode) {
 | 
						||
  default: llvm_unreachable("How did we get here?");
 | 
						||
  case ISD::SMAX: CC = ISD::SETGT; break;
 | 
						||
  case ISD::SMIN: CC = ISD::SETLT; break;
 | 
						||
  case ISD::UMAX: CC = ISD::SETUGT; break;
 | 
						||
  case ISD::UMIN: CC = ISD::SETULT; break;
 | 
						||
  }
 | 
						||
 | 
						||
  // FIXME: Should really try to split the vector in case it's legal on a
 | 
						||
  // subvector.
 | 
						||
  if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
 | 
						||
    return DAG.UnrollVectorOp(Node);
 | 
						||
 | 
						||
  EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						||
  SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
 | 
						||
  return DAG.getSelect(DL, VT, Cond, Op0, Op1);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
 | 
						||
  unsigned Opcode = Node->getOpcode();
 | 
						||
  SDValue LHS = Node->getOperand(0);
 | 
						||
  SDValue RHS = Node->getOperand(1);
 | 
						||
  EVT VT = LHS.getValueType();
 | 
						||
  SDLoc dl(Node);
 | 
						||
 | 
						||
  assert(VT == RHS.getValueType() && "Expected operands to be the same type");
 | 
						||
  assert(VT.isInteger() && "Expected operands to be integers");
 | 
						||
 | 
						||
  // usub.sat(a, b) -> umax(a, b) - b
 | 
						||
  if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
 | 
						||
    SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
 | 
						||
    return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
 | 
						||
  }
 | 
						||
 | 
						||
  // uadd.sat(a, b) -> umin(a, ~b) + b
 | 
						||
  if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
 | 
						||
    SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
 | 
						||
    SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
 | 
						||
    return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
 | 
						||
  }
 | 
						||
 | 
						||
  unsigned OverflowOp;
 | 
						||
  switch (Opcode) {
 | 
						||
  case ISD::SADDSAT:
 | 
						||
    OverflowOp = ISD::SADDO;
 | 
						||
    break;
 | 
						||
  case ISD::UADDSAT:
 | 
						||
    OverflowOp = ISD::UADDO;
 | 
						||
    break;
 | 
						||
  case ISD::SSUBSAT:
 | 
						||
    OverflowOp = ISD::SSUBO;
 | 
						||
    break;
 | 
						||
  case ISD::USUBSAT:
 | 
						||
    OverflowOp = ISD::USUBO;
 | 
						||
    break;
 | 
						||
  default:
 | 
						||
    llvm_unreachable("Expected method to receive signed or unsigned saturation "
 | 
						||
                     "addition or subtraction node.");
 | 
						||
  }
 | 
						||
 | 
						||
  // FIXME: Should really try to split the vector in case it's legal on a
 | 
						||
  // subvector.
 | 
						||
  if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
 | 
						||
    return DAG.UnrollVectorOp(Node);
 | 
						||
 | 
						||
  unsigned BitWidth = LHS.getScalarValueSizeInBits();
 | 
						||
  EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						||
  SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
 | 
						||
  SDValue SumDiff = Result.getValue(0);
 | 
						||
  SDValue Overflow = Result.getValue(1);
 | 
						||
  SDValue Zero = DAG.getConstant(0, dl, VT);
 | 
						||
  SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
 | 
						||
 | 
						||
  if (Opcode == ISD::UADDSAT) {
 | 
						||
    if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
 | 
						||
      // (LHS + RHS) | OverflowMask
 | 
						||
      SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
 | 
						||
      return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
 | 
						||
    }
 | 
						||
    // Overflow ? 0xffff.... : (LHS + RHS)
 | 
						||
    return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
 | 
						||
  }
 | 
						||
 | 
						||
  if (Opcode == ISD::USUBSAT) {
 | 
						||
    if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
 | 
						||
      // (LHS - RHS) & ~OverflowMask
 | 
						||
      SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
 | 
						||
      SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
 | 
						||
      return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
 | 
						||
    }
 | 
						||
    // Overflow ? 0 : (LHS - RHS)
 | 
						||
    return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
 | 
						||
  }
 | 
						||
 | 
						||
  // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
 | 
						||
  APInt MinVal = APInt::getSignedMinValue(BitWidth);
 | 
						||
  SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
 | 
						||
  SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
 | 
						||
                              DAG.getConstant(BitWidth - 1, dl, VT));
 | 
						||
  Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
 | 
						||
  return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
 | 
						||
  unsigned Opcode = Node->getOpcode();
 | 
						||
  bool IsSigned = Opcode == ISD::SSHLSAT;
 | 
						||
  SDValue LHS = Node->getOperand(0);
 | 
						||
  SDValue RHS = Node->getOperand(1);
 | 
						||
  EVT VT = LHS.getValueType();
 | 
						||
  SDLoc dl(Node);
 | 
						||
 | 
						||
  assert((Node->getOpcode() == ISD::SSHLSAT ||
 | 
						||
          Node->getOpcode() == ISD::USHLSAT) &&
 | 
						||
          "Expected a SHLSAT opcode");
 | 
						||
  assert(VT == RHS.getValueType() && "Expected operands to be the same type");
 | 
						||
  assert(VT.isInteger() && "Expected operands to be integers");
 | 
						||
 | 
						||
  // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
 | 
						||
 | 
						||
  unsigned BW = VT.getScalarSizeInBits();
 | 
						||
  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
 | 
						||
  SDValue Orig =
 | 
						||
      DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
 | 
						||
 | 
						||
  SDValue SatVal;
 | 
						||
  if (IsSigned) {
 | 
						||
    SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
 | 
						||
    SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
 | 
						||
    SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
 | 
						||
                             SatMin, SatMax, ISD::SETLT);
 | 
						||
  } else {
 | 
						||
    SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
 | 
						||
  }
 | 
						||
  Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
 | 
						||
 | 
						||
  return Result;
 | 
						||
}
 | 
						||
 | 
						||
SDValue
 | 
						||
TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
 | 
						||
  assert((Node->getOpcode() == ISD::SMULFIX ||
 | 
						||
          Node->getOpcode() == ISD::UMULFIX ||
 | 
						||
          Node->getOpcode() == ISD::SMULFIXSAT ||
 | 
						||
          Node->getOpcode() == ISD::UMULFIXSAT) &&
 | 
						||
         "Expected a fixed point multiplication opcode");
 | 
						||
 | 
						||
  SDLoc dl(Node);
 | 
						||
  SDValue LHS = Node->getOperand(0);
 | 
						||
  SDValue RHS = Node->getOperand(1);
 | 
						||
  EVT VT = LHS.getValueType();
 | 
						||
  unsigned Scale = Node->getConstantOperandVal(2);
 | 
						||
  bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
 | 
						||
                     Node->getOpcode() == ISD::UMULFIXSAT);
 | 
						||
  bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
 | 
						||
                 Node->getOpcode() == ISD::SMULFIXSAT);
 | 
						||
  EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						||
  unsigned VTSize = VT.getScalarSizeInBits();
 | 
						||
 | 
						||
  if (!Scale) {
 | 
						||
    // [us]mul.fix(a, b, 0) -> mul(a, b)
 | 
						||
    if (!Saturating) {
 | 
						||
      if (isOperationLegalOrCustom(ISD::MUL, VT))
 | 
						||
        return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
 | 
						||
    } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
 | 
						||
      SDValue Result =
 | 
						||
          DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
 | 
						||
      SDValue Product = Result.getValue(0);
 | 
						||
      SDValue Overflow = Result.getValue(1);
 | 
						||
      SDValue Zero = DAG.getConstant(0, dl, VT);
 | 
						||
 | 
						||
      APInt MinVal = APInt::getSignedMinValue(VTSize);
 | 
						||
      APInt MaxVal = APInt::getSignedMaxValue(VTSize);
 | 
						||
      SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
 | 
						||
      SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
 | 
						||
      // Xor the inputs, if resulting sign bit is 0 the product will be
 | 
						||
      // positive, else negative.
 | 
						||
      SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
 | 
						||
      SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
 | 
						||
      Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
 | 
						||
      return DAG.getSelect(dl, VT, Overflow, Result, Product);
 | 
						||
    } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
 | 
						||
      SDValue Result =
 | 
						||
          DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
 | 
						||
      SDValue Product = Result.getValue(0);
 | 
						||
      SDValue Overflow = Result.getValue(1);
 | 
						||
 | 
						||
      APInt MaxVal = APInt::getMaxValue(VTSize);
 | 
						||
      SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
 | 
						||
      return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
 | 
						||
         "Expected scale to be less than the number of bits if signed or at "
 | 
						||
         "most the number of bits if unsigned.");
 | 
						||
  assert(LHS.getValueType() == RHS.getValueType() &&
 | 
						||
         "Expected both operands to be the same type");
 | 
						||
 | 
						||
  // Get the upper and lower bits of the result.
 | 
						||
  SDValue Lo, Hi;
 | 
						||
  unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
 | 
						||
  unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
 | 
						||
  if (isOperationLegalOrCustom(LoHiOp, VT)) {
 | 
						||
    SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
 | 
						||
    Lo = Result.getValue(0);
 | 
						||
    Hi = Result.getValue(1);
 | 
						||
  } else if (isOperationLegalOrCustom(HiOp, VT)) {
 | 
						||
    Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
 | 
						||
    Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
 | 
						||
  } else if (VT.isVector()) {
 | 
						||
    return SDValue();
 | 
						||
  } else {
 | 
						||
    report_fatal_error("Unable to expand fixed point multiplication.");
 | 
						||
  }
 | 
						||
 | 
						||
  if (Scale == VTSize)
 | 
						||
    // Result is just the top half since we'd be shifting by the width of the
 | 
						||
    // operand. Overflow impossible so this works for both UMULFIX and
 | 
						||
    // UMULFIXSAT.
 | 
						||
    return Hi;
 | 
						||
 | 
						||
  // The result will need to be shifted right by the scale since both operands
 | 
						||
  // are scaled. The result is given to us in 2 halves, so we only want part of
 | 
						||
  // both in the result.
 | 
						||
  EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
 | 
						||
                               DAG.getConstant(Scale, dl, ShiftTy));
 | 
						||
  if (!Saturating)
 | 
						||
    return Result;
 | 
						||
 | 
						||
  if (!Signed) {
 | 
						||
    // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
 | 
						||
    // widened multiplication) aren't all zeroes.
 | 
						||
 | 
						||
    // Saturate to max if ((Hi >> Scale) != 0),
 | 
						||
    // which is the same as if (Hi > ((1 << Scale) - 1))
 | 
						||
    APInt MaxVal = APInt::getMaxValue(VTSize);
 | 
						||
    SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
 | 
						||
                                      dl, VT);
 | 
						||
    Result = DAG.getSelectCC(dl, Hi, LowMask,
 | 
						||
                             DAG.getConstant(MaxVal, dl, VT), Result,
 | 
						||
                             ISD::SETUGT);
 | 
						||
 | 
						||
    return Result;
 | 
						||
  }
 | 
						||
 | 
						||
  // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
 | 
						||
  // widened multiplication) aren't all ones or all zeroes.
 | 
						||
 | 
						||
  SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
 | 
						||
  SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
 | 
						||
 | 
						||
  if (Scale == 0) {
 | 
						||
    SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
 | 
						||
                               DAG.getConstant(VTSize - 1, dl, ShiftTy));
 | 
						||
    SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
 | 
						||
    // Saturated to SatMin if wide product is negative, and SatMax if wide
 | 
						||
    // product is positive ...
 | 
						||
    SDValue Zero = DAG.getConstant(0, dl, VT);
 | 
						||
    SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
 | 
						||
                                               ISD::SETLT);
 | 
						||
    // ... but only if we overflowed.
 | 
						||
    return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
 | 
						||
  }
 | 
						||
 | 
						||
  //  We handled Scale==0 above so all the bits to examine is in Hi.
 | 
						||
 | 
						||
  // Saturate to max if ((Hi >> (Scale - 1)) > 0),
 | 
						||
  // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
 | 
						||
  SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
 | 
						||
                                    dl, VT);
 | 
						||
  Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
 | 
						||
  // Saturate to min if (Hi >> (Scale - 1)) < -1),
 | 
						||
  // which is the same as if (HI < (-1 << (Scale - 1))
 | 
						||
  SDValue HighMask =
 | 
						||
      DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
 | 
						||
                      dl, VT);
 | 
						||
  Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
 | 
						||
  return Result;
 | 
						||
}
 | 
						||
 | 
						||
SDValue
 | 
						||
TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
 | 
						||
                                    SDValue LHS, SDValue RHS,
 | 
						||
                                    unsigned Scale, SelectionDAG &DAG) const {
 | 
						||
  assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
 | 
						||
          Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
 | 
						||
         "Expected a fixed point division opcode");
 | 
						||
 | 
						||
  EVT VT = LHS.getValueType();
 | 
						||
  bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
 | 
						||
  bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
 | 
						||
  EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						||
 | 
						||
  // If there is enough room in the type to upscale the LHS or downscale the
 | 
						||
  // RHS before the division, we can perform it in this type without having to
 | 
						||
  // resize. For signed operations, the LHS headroom is the number of
 | 
						||
  // redundant sign bits, and for unsigned ones it is the number of zeroes.
 | 
						||
  // The headroom for the RHS is the number of trailing zeroes.
 | 
						||
  unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
 | 
						||
                            : DAG.computeKnownBits(LHS).countMinLeadingZeros();
 | 
						||
  unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
 | 
						||
 | 
						||
  // For signed saturating operations, we need to be able to detect true integer
 | 
						||
  // division overflow; that is, when you have MIN / -EPS. However, this
 | 
						||
  // is undefined behavior and if we emit divisions that could take such
 | 
						||
  // values it may cause undesired behavior (arithmetic exceptions on x86, for
 | 
						||
  // example).
 | 
						||
  // Avoid this by requiring an extra bit so that we never get this case.
 | 
						||
  // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
 | 
						||
  // signed saturating division, we need to emit a whopping 32-bit division.
 | 
						||
  if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
 | 
						||
    return SDValue();
 | 
						||
 | 
						||
  unsigned LHSShift = std::min(LHSLead, Scale);
 | 
						||
  unsigned RHSShift = Scale - LHSShift;
 | 
						||
 | 
						||
  // At this point, we know that if we shift the LHS up by LHSShift and the
 | 
						||
  // RHS down by RHSShift, we can emit a regular division with a final scaling
 | 
						||
  // factor of Scale.
 | 
						||
 | 
						||
  EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
  if (LHSShift)
 | 
						||
    LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
 | 
						||
                      DAG.getConstant(LHSShift, dl, ShiftTy));
 | 
						||
  if (RHSShift)
 | 
						||
    RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
 | 
						||
                      DAG.getConstant(RHSShift, dl, ShiftTy));
 | 
						||
 | 
						||
  SDValue Quot;
 | 
						||
  if (Signed) {
 | 
						||
    // For signed operations, if the resulting quotient is negative and the
 | 
						||
    // remainder is nonzero, subtract 1 from the quotient to round towards
 | 
						||
    // negative infinity.
 | 
						||
    SDValue Rem;
 | 
						||
    // FIXME: Ideally we would always produce an SDIVREM here, but if the
 | 
						||
    // type isn't legal, SDIVREM cannot be expanded. There is no reason why
 | 
						||
    // we couldn't just form a libcall, but the type legalizer doesn't do it.
 | 
						||
    if (isTypeLegal(VT) &&
 | 
						||
        isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
 | 
						||
      Quot = DAG.getNode(ISD::SDIVREM, dl,
 | 
						||
                         DAG.getVTList(VT, VT),
 | 
						||
                         LHS, RHS);
 | 
						||
      Rem = Quot.getValue(1);
 | 
						||
      Quot = Quot.getValue(0);
 | 
						||
    } else {
 | 
						||
      Quot = DAG.getNode(ISD::SDIV, dl, VT,
 | 
						||
                         LHS, RHS);
 | 
						||
      Rem = DAG.getNode(ISD::SREM, dl, VT,
 | 
						||
                        LHS, RHS);
 | 
						||
    }
 | 
						||
    SDValue Zero = DAG.getConstant(0, dl, VT);
 | 
						||
    SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
 | 
						||
    SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
 | 
						||
    SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
 | 
						||
    SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
 | 
						||
    SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
 | 
						||
                               DAG.getConstant(1, dl, VT));
 | 
						||
    Quot = DAG.getSelect(dl, VT,
 | 
						||
                         DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
 | 
						||
                         Sub1, Quot);
 | 
						||
  } else
 | 
						||
    Quot = DAG.getNode(ISD::UDIV, dl, VT,
 | 
						||
                       LHS, RHS);
 | 
						||
 | 
						||
  return Quot;
 | 
						||
}
 | 
						||
 | 
						||
void TargetLowering::expandUADDSUBO(
 | 
						||
    SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(Node);
 | 
						||
  SDValue LHS = Node->getOperand(0);
 | 
						||
  SDValue RHS = Node->getOperand(1);
 | 
						||
  bool IsAdd = Node->getOpcode() == ISD::UADDO;
 | 
						||
 | 
						||
  // If ADD/SUBCARRY is legal, use that instead.
 | 
						||
  unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
 | 
						||
  if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
 | 
						||
    SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
 | 
						||
    SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
 | 
						||
                                    { LHS, RHS, CarryIn });
 | 
						||
    Result = SDValue(NodeCarry.getNode(), 0);
 | 
						||
    Overflow = SDValue(NodeCarry.getNode(), 1);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
 | 
						||
                            LHS.getValueType(), LHS, RHS);
 | 
						||
 | 
						||
  EVT ResultType = Node->getValueType(1);
 | 
						||
  EVT SetCCType = getSetCCResultType(
 | 
						||
      DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
 | 
						||
  ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
 | 
						||
  SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
 | 
						||
  Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
 | 
						||
}
 | 
						||
 | 
						||
void TargetLowering::expandSADDSUBO(
 | 
						||
    SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(Node);
 | 
						||
  SDValue LHS = Node->getOperand(0);
 | 
						||
  SDValue RHS = Node->getOperand(1);
 | 
						||
  bool IsAdd = Node->getOpcode() == ISD::SADDO;
 | 
						||
 | 
						||
  Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
 | 
						||
                            LHS.getValueType(), LHS, RHS);
 | 
						||
 | 
						||
  EVT ResultType = Node->getValueType(1);
 | 
						||
  EVT OType = getSetCCResultType(
 | 
						||
      DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
 | 
						||
 | 
						||
  // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
 | 
						||
  unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
 | 
						||
  if (isOperationLegal(OpcSat, LHS.getValueType())) {
 | 
						||
    SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
 | 
						||
    SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
 | 
						||
    Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
 | 
						||
    return;
 | 
						||
  }
 | 
						||
 | 
						||
  SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
 | 
						||
 | 
						||
  // For an addition, the result should be less than one of the operands (LHS)
 | 
						||
  // if and only if the other operand (RHS) is negative, otherwise there will
 | 
						||
  // be overflow.
 | 
						||
  // For a subtraction, the result should be less than one of the operands
 | 
						||
  // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
 | 
						||
  // otherwise there will be overflow.
 | 
						||
  SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
 | 
						||
  SDValue ConditionRHS =
 | 
						||
      DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
 | 
						||
 | 
						||
  Overflow = DAG.getBoolExtOrTrunc(
 | 
						||
      DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
 | 
						||
      ResultType, ResultType);
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
 | 
						||
                                SDValue &Overflow, SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(Node);
 | 
						||
  EVT VT = Node->getValueType(0);
 | 
						||
  EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
 | 
						||
  SDValue LHS = Node->getOperand(0);
 | 
						||
  SDValue RHS = Node->getOperand(1);
 | 
						||
  bool isSigned = Node->getOpcode() == ISD::SMULO;
 | 
						||
 | 
						||
  // For power-of-two multiplications we can use a simpler shift expansion.
 | 
						||
  if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
 | 
						||
    const APInt &C = RHSC->getAPIntValue();
 | 
						||
    // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
 | 
						||
    if (C.isPowerOf2()) {
 | 
						||
      // smulo(x, signed_min) is same as umulo(x, signed_min).
 | 
						||
      bool UseArithShift = isSigned && !C.isMinSignedValue();
 | 
						||
      EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
 | 
						||
      SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
 | 
						||
      Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
 | 
						||
      Overflow = DAG.getSetCC(dl, SetCCVT,
 | 
						||
          DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
 | 
						||
                      dl, VT, Result, ShiftAmt),
 | 
						||
          LHS, ISD::SETNE);
 | 
						||
      return true;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
 | 
						||
  if (VT.isVector())
 | 
						||
    WideVT =
 | 
						||
        EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
 | 
						||
 | 
						||
  SDValue BottomHalf;
 | 
						||
  SDValue TopHalf;
 | 
						||
  static const unsigned Ops[2][3] =
 | 
						||
      { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
 | 
						||
        { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
 | 
						||
  if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
 | 
						||
    BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
 | 
						||
    TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
 | 
						||
  } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
 | 
						||
    BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
 | 
						||
                             RHS);
 | 
						||
    TopHalf = BottomHalf.getValue(1);
 | 
						||
  } else if (isTypeLegal(WideVT)) {
 | 
						||
    LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
 | 
						||
    RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
 | 
						||
    SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
 | 
						||
    BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
 | 
						||
    SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
 | 
						||
        getShiftAmountTy(WideVT, DAG.getDataLayout()));
 | 
						||
    TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
 | 
						||
                          DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
 | 
						||
  } else {
 | 
						||
    if (VT.isVector())
 | 
						||
      return false;
 | 
						||
 | 
						||
    // We can fall back to a libcall with an illegal type for the MUL if we
 | 
						||
    // have a libcall big enough.
 | 
						||
    // Also, we can fall back to a division in some cases, but that's a big
 | 
						||
    // performance hit in the general case.
 | 
						||
    RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
 | 
						||
    if (WideVT == MVT::i16)
 | 
						||
      LC = RTLIB::MUL_I16;
 | 
						||
    else if (WideVT == MVT::i32)
 | 
						||
      LC = RTLIB::MUL_I32;
 | 
						||
    else if (WideVT == MVT::i64)
 | 
						||
      LC = RTLIB::MUL_I64;
 | 
						||
    else if (WideVT == MVT::i128)
 | 
						||
      LC = RTLIB::MUL_I128;
 | 
						||
    assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
 | 
						||
 | 
						||
    SDValue HiLHS;
 | 
						||
    SDValue HiRHS;
 | 
						||
    if (isSigned) {
 | 
						||
      // The high part is obtained by SRA'ing all but one of the bits of low
 | 
						||
      // part.
 | 
						||
      unsigned LoSize = VT.getFixedSizeInBits();
 | 
						||
      HiLHS =
 | 
						||
          DAG.getNode(ISD::SRA, dl, VT, LHS,
 | 
						||
                      DAG.getConstant(LoSize - 1, dl,
 | 
						||
                                      getPointerTy(DAG.getDataLayout())));
 | 
						||
      HiRHS =
 | 
						||
          DAG.getNode(ISD::SRA, dl, VT, RHS,
 | 
						||
                      DAG.getConstant(LoSize - 1, dl,
 | 
						||
                                      getPointerTy(DAG.getDataLayout())));
 | 
						||
    } else {
 | 
						||
        HiLHS = DAG.getConstant(0, dl, VT);
 | 
						||
        HiRHS = DAG.getConstant(0, dl, VT);
 | 
						||
    }
 | 
						||
 | 
						||
    // Here we're passing the 2 arguments explicitly as 4 arguments that are
 | 
						||
    // pre-lowered to the correct types. This all depends upon WideVT not
 | 
						||
    // being a legal type for the architecture and thus has to be split to
 | 
						||
    // two arguments.
 | 
						||
    SDValue Ret;
 | 
						||
    TargetLowering::MakeLibCallOptions CallOptions;
 | 
						||
    CallOptions.setSExt(isSigned);
 | 
						||
    CallOptions.setIsPostTypeLegalization(true);
 | 
						||
    if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
 | 
						||
      // Halves of WideVT are packed into registers in different order
 | 
						||
      // depending on platform endianness. This is usually handled by
 | 
						||
      // the C calling convention, but we can't defer to it in
 | 
						||
      // the legalizer.
 | 
						||
      SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
 | 
						||
      Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
 | 
						||
    } else {
 | 
						||
      SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
 | 
						||
      Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
 | 
						||
    }
 | 
						||
    assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
 | 
						||
           "Ret value is a collection of constituent nodes holding result.");
 | 
						||
    if (DAG.getDataLayout().isLittleEndian()) {
 | 
						||
      // Same as above.
 | 
						||
      BottomHalf = Ret.getOperand(0);
 | 
						||
      TopHalf = Ret.getOperand(1);
 | 
						||
    } else {
 | 
						||
      BottomHalf = Ret.getOperand(1);
 | 
						||
      TopHalf = Ret.getOperand(0);
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  Result = BottomHalf;
 | 
						||
  if (isSigned) {
 | 
						||
    SDValue ShiftAmt = DAG.getConstant(
 | 
						||
        VT.getScalarSizeInBits() - 1, dl,
 | 
						||
        getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
 | 
						||
    SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
 | 
						||
    Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
 | 
						||
  } else {
 | 
						||
    Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
 | 
						||
                            DAG.getConstant(0, dl, VT), ISD::SETNE);
 | 
						||
  }
 | 
						||
 | 
						||
  // Truncate the result if SetCC returns a larger type than needed.
 | 
						||
  EVT RType = Node->getValueType(1);
 | 
						||
  if (RType.bitsLT(Overflow.getValueType()))
 | 
						||
    Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
 | 
						||
 | 
						||
  assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
 | 
						||
         "Unexpected result type for S/UMULO legalization");
 | 
						||
  return true;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(Node);
 | 
						||
  unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
 | 
						||
  SDValue Op = Node->getOperand(0);
 | 
						||
  EVT VT = Op.getValueType();
 | 
						||
 | 
						||
  if (VT.isScalableVector())
 | 
						||
    report_fatal_error(
 | 
						||
        "Expanding reductions for scalable vectors is undefined.");
 | 
						||
 | 
						||
  // Try to use a shuffle reduction for power of two vectors.
 | 
						||
  if (VT.isPow2VectorType()) {
 | 
						||
    while (VT.getVectorNumElements() > 1) {
 | 
						||
      EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
 | 
						||
      if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
 | 
						||
        break;
 | 
						||
 | 
						||
      SDValue Lo, Hi;
 | 
						||
      std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
 | 
						||
      Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
 | 
						||
      VT = HalfVT;
 | 
						||
    }
 | 
						||
  }
 | 
						||
 | 
						||
  EVT EltVT = VT.getVectorElementType();
 | 
						||
  unsigned NumElts = VT.getVectorNumElements();
 | 
						||
 | 
						||
  SmallVector<SDValue, 8> Ops;
 | 
						||
  DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
 | 
						||
 | 
						||
  SDValue Res = Ops[0];
 | 
						||
  for (unsigned i = 1; i < NumElts; i++)
 | 
						||
    Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
 | 
						||
 | 
						||
  // Result type may be wider than element type.
 | 
						||
  if (EltVT != Node->getValueType(0))
 | 
						||
    Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
 | 
						||
  return Res;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
 | 
						||
  SDLoc dl(Node);
 | 
						||
  SDValue AccOp = Node->getOperand(0);
 | 
						||
  SDValue VecOp = Node->getOperand(1);
 | 
						||
  SDNodeFlags Flags = Node->getFlags();
 | 
						||
 | 
						||
  EVT VT = VecOp.getValueType();
 | 
						||
  EVT EltVT = VT.getVectorElementType();
 | 
						||
 | 
						||
  if (VT.isScalableVector())
 | 
						||
    report_fatal_error(
 | 
						||
        "Expanding reductions for scalable vectors is undefined.");
 | 
						||
 | 
						||
  unsigned NumElts = VT.getVectorNumElements();
 | 
						||
 | 
						||
  SmallVector<SDValue, 8> Ops;
 | 
						||
  DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
 | 
						||
 | 
						||
  unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
 | 
						||
 | 
						||
  SDValue Res = AccOp;
 | 
						||
  for (unsigned i = 0; i < NumElts; i++)
 | 
						||
    Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
 | 
						||
 | 
						||
  return Res;
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
 | 
						||
                               SelectionDAG &DAG) const {
 | 
						||
  EVT VT = Node->getValueType(0);
 | 
						||
  SDLoc dl(Node);
 | 
						||
  bool isSigned = Node->getOpcode() == ISD::SREM;
 | 
						||
  unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
 | 
						||
  unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
 | 
						||
  SDValue Dividend = Node->getOperand(0);
 | 
						||
  SDValue Divisor = Node->getOperand(1);
 | 
						||
  if (isOperationLegalOrCustom(DivRemOpc, VT)) {
 | 
						||
    SDVTList VTs = DAG.getVTList(VT, VT);
 | 
						||
    Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
  if (isOperationLegalOrCustom(DivOpc, VT)) {
 | 
						||
    // X % Y -> X-X/Y*Y
 | 
						||
    SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
 | 
						||
    SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
 | 
						||
    Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
  return false;
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
 | 
						||
                                            SelectionDAG &DAG) const {
 | 
						||
  bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
 | 
						||
  SDLoc dl(SDValue(Node, 0));
 | 
						||
  SDValue Src = Node->getOperand(0);
 | 
						||
 | 
						||
  // DstVT is the result type, while SatVT is the size to which we saturate
 | 
						||
  EVT SrcVT = Src.getValueType();
 | 
						||
  EVT DstVT = Node->getValueType(0);
 | 
						||
 | 
						||
  EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
 | 
						||
  unsigned SatWidth = SatVT.getScalarSizeInBits();
 | 
						||
  unsigned DstWidth = DstVT.getScalarSizeInBits();
 | 
						||
  assert(SatWidth <= DstWidth &&
 | 
						||
         "Expected saturation width smaller than result width");
 | 
						||
 | 
						||
  // Determine minimum and maximum integer values and their corresponding
 | 
						||
  // floating-point values.
 | 
						||
  APInt MinInt, MaxInt;
 | 
						||
  if (IsSigned) {
 | 
						||
    MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
 | 
						||
    MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
 | 
						||
  } else {
 | 
						||
    MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
 | 
						||
    MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
 | 
						||
  }
 | 
						||
 | 
						||
  // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
 | 
						||
  // libcall emission cannot handle this. Large result types will fail.
 | 
						||
  if (SrcVT == MVT::f16) {
 | 
						||
    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
 | 
						||
    SrcVT = Src.getValueType();
 | 
						||
  }
 | 
						||
 | 
						||
  APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
 | 
						||
  APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
 | 
						||
 | 
						||
  APFloat::opStatus MinStatus =
 | 
						||
      MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
 | 
						||
  APFloat::opStatus MaxStatus =
 | 
						||
      MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
 | 
						||
  bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
 | 
						||
                             !(MaxStatus & APFloat::opStatus::opInexact);
 | 
						||
 | 
						||
  SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
 | 
						||
  SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
 | 
						||
 | 
						||
  // If the integer bounds are exactly representable as floats and min/max are
 | 
						||
  // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
 | 
						||
  // of comparisons and selects.
 | 
						||
  bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
 | 
						||
                     isOperationLegal(ISD::FMAXNUM, SrcVT);
 | 
						||
  if (AreExactFloatBounds && MinMaxLegal) {
 | 
						||
    SDValue Clamped = Src;
 | 
						||
 | 
						||
    // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
 | 
						||
    Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
 | 
						||
    // Clamp by MaxFloat from above. NaN cannot occur.
 | 
						||
    Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
 | 
						||
    // Convert clamped value to integer.
 | 
						||
    SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
 | 
						||
                                  dl, DstVT, Clamped);
 | 
						||
 | 
						||
    // In the unsigned case we're done, because we mapped NaN to MinFloat,
 | 
						||
    // which will cast to zero.
 | 
						||
    if (!IsSigned)
 | 
						||
      return FpToInt;
 | 
						||
 | 
						||
    // Otherwise, select 0 if Src is NaN.
 | 
						||
    SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
 | 
						||
    return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
 | 
						||
                           ISD::CondCode::SETUO);
 | 
						||
  }
 | 
						||
 | 
						||
  SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
 | 
						||
  SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
 | 
						||
 | 
						||
  // Result of direct conversion. The assumption here is that the operation is
 | 
						||
  // non-trapping and it's fine to apply it to an out-of-range value if we
 | 
						||
  // select it away later.
 | 
						||
  SDValue FpToInt =
 | 
						||
      DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
 | 
						||
 | 
						||
  SDValue Select = FpToInt;
 | 
						||
 | 
						||
  // If Src ULT MinFloat, select MinInt. In particular, this also selects
 | 
						||
  // MinInt if Src is NaN.
 | 
						||
  Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
 | 
						||
                           ISD::CondCode::SETULT);
 | 
						||
  // If Src OGT MaxFloat, select MaxInt.
 | 
						||
  Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
 | 
						||
                           ISD::CondCode::SETOGT);
 | 
						||
 | 
						||
  // In the unsigned case we are done, because we mapped NaN to MinInt, which
 | 
						||
  // is already zero.
 | 
						||
  if (!IsSigned)
 | 
						||
    return Select;
 | 
						||
 | 
						||
  // Otherwise, select 0 if Src is NaN.
 | 
						||
  SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
 | 
						||
  return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
 | 
						||
}
 | 
						||
 | 
						||
SDValue TargetLowering::expandVectorSplice(SDNode *Node,
 | 
						||
                                           SelectionDAG &DAG) const {
 | 
						||
  assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
 | 
						||
  assert(Node->getValueType(0).isScalableVector() &&
 | 
						||
         "Fixed length vector types expected to use SHUFFLE_VECTOR!");
 | 
						||
 | 
						||
  EVT VT = Node->getValueType(0);
 | 
						||
  SDValue V1 = Node->getOperand(0);
 | 
						||
  SDValue V2 = Node->getOperand(1);
 | 
						||
  int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
 | 
						||
  SDLoc DL(Node);
 | 
						||
 | 
						||
  // Expand through memory thusly:
 | 
						||
  //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
 | 
						||
  //  Store V1, Ptr
 | 
						||
  //  Store V2, Ptr + sizeof(V1)
 | 
						||
  //  If (Imm < 0)
 | 
						||
  //    TrailingElts = -Imm
 | 
						||
  //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
 | 
						||
  //  else
 | 
						||
  //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
 | 
						||
  //  Res = Load Ptr
 | 
						||
 | 
						||
  Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
 | 
						||
 | 
						||
  EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
 | 
						||
                               VT.getVectorElementCount() * 2);
 | 
						||
  SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
 | 
						||
  EVT PtrVT = StackPtr.getValueType();
 | 
						||
  auto &MF = DAG.getMachineFunction();
 | 
						||
  auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
 | 
						||
  auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
 | 
						||
 | 
						||
  // Store the lo part of CONCAT_VECTORS(V1, V2)
 | 
						||
  SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
 | 
						||
  // Store the hi part of CONCAT_VECTORS(V1, V2)
 | 
						||
  SDValue OffsetToV2 = DAG.getVScale(
 | 
						||
      DL, PtrVT,
 | 
						||
      APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
 | 
						||
  SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
 | 
						||
  SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
 | 
						||
 | 
						||
  if (Imm >= 0) {
 | 
						||
    // Load back the required element. getVectorElementPointer takes care of
 | 
						||
    // clamping the index if it's out-of-bounds.
 | 
						||
    StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
 | 
						||
    // Load the spliced result
 | 
						||
    return DAG.getLoad(VT, DL, StoreV2, StackPtr,
 | 
						||
                       MachinePointerInfo::getUnknownStack(MF));
 | 
						||
  }
 | 
						||
 | 
						||
  uint64_t TrailingElts = -Imm;
 | 
						||
 | 
						||
  // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
 | 
						||
  TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
 | 
						||
  SDValue TrailingBytes =
 | 
						||
      DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
 | 
						||
 | 
						||
  if (TrailingElts > VT.getVectorMinNumElements()) {
 | 
						||
    SDValue VLBytes = DAG.getVScale(
 | 
						||
        DL, PtrVT,
 | 
						||
        APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
 | 
						||
    TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
 | 
						||
  }
 | 
						||
 | 
						||
  // Calculate the start address of the spliced result.
 | 
						||
  StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
 | 
						||
 | 
						||
  // Load the spliced result
 | 
						||
  return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
 | 
						||
                     MachinePointerInfo::getUnknownStack(MF));
 | 
						||
}
 | 
						||
 | 
						||
bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
 | 
						||
                                           SDValue &LHS, SDValue &RHS,
 | 
						||
                                           SDValue &CC, bool &NeedInvert,
 | 
						||
                                           const SDLoc &dl, SDValue &Chain,
 | 
						||
                                           bool IsSignaling) const {
 | 
						||
  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
 | 
						||
  MVT OpVT = LHS.getSimpleValueType();
 | 
						||
  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
 | 
						||
  NeedInvert = false;
 | 
						||
  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
 | 
						||
  default:
 | 
						||
    llvm_unreachable("Unknown condition code action!");
 | 
						||
  case TargetLowering::Legal:
 | 
						||
    // Nothing to do.
 | 
						||
    break;
 | 
						||
  case TargetLowering::Expand: {
 | 
						||
    ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
 | 
						||
    if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
 | 
						||
      std::swap(LHS, RHS);
 | 
						||
      CC = DAG.getCondCode(InvCC);
 | 
						||
      return true;
 | 
						||
    }
 | 
						||
    // Swapping operands didn't work. Try inverting the condition.
 | 
						||
    bool NeedSwap = false;
 | 
						||
    InvCC = getSetCCInverse(CCCode, OpVT);
 | 
						||
    if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
 | 
						||
      // If inverting the condition is not enough, try swapping operands
 | 
						||
      // on top of it.
 | 
						||
      InvCC = ISD::getSetCCSwappedOperands(InvCC);
 | 
						||
      NeedSwap = true;
 | 
						||
    }
 | 
						||
    if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
 | 
						||
      CC = DAG.getCondCode(InvCC);
 | 
						||
      NeedInvert = true;
 | 
						||
      if (NeedSwap)
 | 
						||
        std::swap(LHS, RHS);
 | 
						||
      return true;
 | 
						||
    }
 | 
						||
 | 
						||
    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
 | 
						||
    unsigned Opc = 0;
 | 
						||
    switch (CCCode) {
 | 
						||
    default:
 | 
						||
      llvm_unreachable("Don't know how to expand this condition!");
 | 
						||
    case ISD::SETUO:
 | 
						||
      if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
 | 
						||
        CC1 = ISD::SETUNE;
 | 
						||
        CC2 = ISD::SETUNE;
 | 
						||
        Opc = ISD::OR;
 | 
						||
        break;
 | 
						||
      }
 | 
						||
      assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
 | 
						||
             "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
 | 
						||
      NeedInvert = true;
 | 
						||
      LLVM_FALLTHROUGH;
 | 
						||
    case ISD::SETO:
 | 
						||
      assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
 | 
						||
             "If SETO is expanded, SETOEQ must be legal!");
 | 
						||
      CC1 = ISD::SETOEQ;
 | 
						||
      CC2 = ISD::SETOEQ;
 | 
						||
      Opc = ISD::AND;
 | 
						||
      break;
 | 
						||
    case ISD::SETONE:
 | 
						||
    case ISD::SETUEQ:
 | 
						||
      // If the SETUO or SETO CC isn't legal, we might be able to use
 | 
						||
      // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
 | 
						||
      // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
 | 
						||
      // the operands.
 | 
						||
      CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
 | 
						||
      if (!TLI.isCondCodeLegal(CC2, OpVT) &&
 | 
						||
          (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
 | 
						||
           TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
 | 
						||
        CC1 = ISD::SETOGT;
 | 
						||
        CC2 = ISD::SETOLT;
 | 
						||
        Opc = ISD::OR;
 | 
						||
        NeedInvert = ((unsigned)CCCode & 0x8U);
 | 
						||
        break;
 | 
						||
      }
 | 
						||
      LLVM_FALLTHROUGH;
 | 
						||
    case ISD::SETOEQ:
 | 
						||
    case ISD::SETOGT:
 | 
						||
    case ISD::SETOGE:
 | 
						||
    case ISD::SETOLT:
 | 
						||
    case ISD::SETOLE:
 | 
						||
    case ISD::SETUNE:
 | 
						||
    case ISD::SETUGT:
 | 
						||
    case ISD::SETUGE:
 | 
						||
    case ISD::SETULT:
 | 
						||
    case ISD::SETULE:
 | 
						||
      // If we are floating point, assign and break, otherwise fall through.
 | 
						||
      if (!OpVT.isInteger()) {
 | 
						||
        // We can use the 4th bit to tell if we are the unordered
 | 
						||
        // or ordered version of the opcode.
 | 
						||
        CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
 | 
						||
        Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
 | 
						||
        CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
 | 
						||
        break;
 | 
						||
      }
 | 
						||
      // Fallthrough if we are unsigned integer.
 | 
						||
      LLVM_FALLTHROUGH;
 | 
						||
    case ISD::SETLE:
 | 
						||
    case ISD::SETGT:
 | 
						||
    case ISD::SETGE:
 | 
						||
    case ISD::SETLT:
 | 
						||
    case ISD::SETNE:
 | 
						||
    case ISD::SETEQ:
 | 
						||
      // If all combinations of inverting the condition and swapping operands
 | 
						||
      // didn't work then we have no means to expand the condition.
 | 
						||
      llvm_unreachable("Don't know how to expand this condition!");
 | 
						||
    }
 | 
						||
 | 
						||
    SDValue SetCC1, SetCC2;
 | 
						||
    if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
 | 
						||
      // If we aren't the ordered or unorder operation,
 | 
						||
      // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
 | 
						||
      SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
 | 
						||
      SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
 | 
						||
    } else {
 | 
						||
      // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
 | 
						||
      SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
 | 
						||
      SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
 | 
						||
    }
 | 
						||
    if (Chain)
 | 
						||
      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
 | 
						||
                          SetCC2.getValue(1));
 | 
						||
    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
 | 
						||
    RHS = SDValue();
 | 
						||
    CC = SDValue();
 | 
						||
    return true;
 | 
						||
  }
 | 
						||
  }
 | 
						||
  return false;
 | 
						||
}
 |