1859 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1859 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the SplitAnalysis class as well as mutator functions for
 | 
						|
// live range splitting.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SplitKit.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveRangeEdit.h"
 | 
						|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetOpcodes.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/CodeGen/VirtRegMap.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/Support/Allocator.h"
 | 
						|
#include "llvm/Support/BlockFrequency.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <tuple>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
 | 
						|
STATISTIC(NumFinished, "Number of splits finished");
 | 
						|
STATISTIC(NumSimple,   "Number of splits that were simple");
 | 
						|
STATISTIC(NumCopies,   "Number of copies inserted for splitting");
 | 
						|
STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                     Last Insert Point Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
 | 
						|
                                         unsigned BBNum)
 | 
						|
    : LIS(lis), LastInsertPoint(BBNum) {}
 | 
						|
 | 
						|
SlotIndex
 | 
						|
InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
 | 
						|
                                            const MachineBasicBlock &MBB) {
 | 
						|
  unsigned Num = MBB.getNumber();
 | 
						|
  std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
 | 
						|
  SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
 | 
						|
 | 
						|
  SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
 | 
						|
  bool EHPadSuccessor = false;
 | 
						|
  for (const MachineBasicBlock *SMBB : MBB.successors()) {
 | 
						|
    if (SMBB->isEHPad()) {
 | 
						|
      ExceptionalSuccessors.push_back(SMBB);
 | 
						|
      EHPadSuccessor = true;
 | 
						|
    } else if (SMBB->isInlineAsmBrIndirectTarget())
 | 
						|
      ExceptionalSuccessors.push_back(SMBB);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute insert points on the first call. The pair is independent of the
 | 
						|
  // current live interval.
 | 
						|
  if (!LIP.first.isValid()) {
 | 
						|
    MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
 | 
						|
    if (FirstTerm == MBB.end())
 | 
						|
      LIP.first = MBBEnd;
 | 
						|
    else
 | 
						|
      LIP.first = LIS.getInstructionIndex(*FirstTerm);
 | 
						|
 | 
						|
    // If there is a landing pad or inlineasm_br successor, also find the
 | 
						|
    // instruction. If there is no such instruction, we don't need to do
 | 
						|
    // anything special.  We assume there cannot be multiple instructions that
 | 
						|
    // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
 | 
						|
    // assume that if there are any, they will be after any other call
 | 
						|
    // instructions in the block.
 | 
						|
    if (ExceptionalSuccessors.empty())
 | 
						|
      return LIP.first;
 | 
						|
    for (const MachineInstr &MI : llvm::reverse(MBB)) {
 | 
						|
      if ((EHPadSuccessor && MI.isCall()) ||
 | 
						|
          MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
 | 
						|
        LIP.second = LIS.getInstructionIndex(MI);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If CurLI is live into a landing pad successor, move the last insert point
 | 
						|
  // back to the call that may throw.
 | 
						|
  if (!LIP.second)
 | 
						|
    return LIP.first;
 | 
						|
 | 
						|
  if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
 | 
						|
        return LIS.isLiveInToMBB(CurLI, EHPad);
 | 
						|
      }))
 | 
						|
    return LIP.first;
 | 
						|
 | 
						|
  // Find the value leaving MBB.
 | 
						|
  const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
 | 
						|
  if (!VNI)
 | 
						|
    return LIP.first;
 | 
						|
 | 
						|
  // The def of statepoint instruction is a gc relocation and it should be alive
 | 
						|
  // in landing pad. So we cannot split interval after statepoint instruction.
 | 
						|
  if (SlotIndex::isSameInstr(VNI->def, LIP.second))
 | 
						|
    if (auto *I = LIS.getInstructionFromIndex(LIP.second))
 | 
						|
      if (I->getOpcode() == TargetOpcode::STATEPOINT)
 | 
						|
        return LIP.second;
 | 
						|
 | 
						|
  // If the value leaving MBB was defined after the call in MBB, it can't
 | 
						|
  // really be live-in to the landing pad.  This can happen if the landing pad
 | 
						|
  // has a PHI, and this register is undef on the exceptional edge.
 | 
						|
  // <rdar://problem/10664933>
 | 
						|
  if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
 | 
						|
    return LIP.first;
 | 
						|
 | 
						|
  // Value is properly live-in to the landing pad.
 | 
						|
  // Only allow inserts before the call.
 | 
						|
  return LIP.second;
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock::iterator
 | 
						|
InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
 | 
						|
                                            MachineBasicBlock &MBB) {
 | 
						|
  SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
 | 
						|
  if (LIP == LIS.getMBBEndIdx(&MBB))
 | 
						|
    return MBB.end();
 | 
						|
  return LIS.getInstructionFromIndex(LIP);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                 Split Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
 | 
						|
                             const MachineLoopInfo &mli)
 | 
						|
    : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
 | 
						|
      TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
 | 
						|
 | 
						|
void SplitAnalysis::clear() {
 | 
						|
  UseSlots.clear();
 | 
						|
  UseBlocks.clear();
 | 
						|
  ThroughBlocks.clear();
 | 
						|
  CurLI = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
 | 
						|
void SplitAnalysis::analyzeUses() {
 | 
						|
  assert(UseSlots.empty() && "Call clear first");
 | 
						|
 | 
						|
  // First get all the defs from the interval values. This provides the correct
 | 
						|
  // slots for early clobbers.
 | 
						|
  for (const VNInfo *VNI : CurLI->valnos)
 | 
						|
    if (!VNI->isPHIDef() && !VNI->isUnused())
 | 
						|
      UseSlots.push_back(VNI->def);
 | 
						|
 | 
						|
  // Get use slots form the use-def chain.
 | 
						|
  const MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
 | 
						|
    if (!MO.isUndef())
 | 
						|
      UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
 | 
						|
 | 
						|
  array_pod_sort(UseSlots.begin(), UseSlots.end());
 | 
						|
 | 
						|
  // Remove duplicates, keeping the smaller slot for each instruction.
 | 
						|
  // That is what we want for early clobbers.
 | 
						|
  UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
 | 
						|
                             SlotIndex::isSameInstr),
 | 
						|
                 UseSlots.end());
 | 
						|
 | 
						|
  // Compute per-live block info.
 | 
						|
  calcLiveBlockInfo();
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
 | 
						|
                    << UseBlocks.size() << " blocks, through "
 | 
						|
                    << NumThroughBlocks << " blocks.\n");
 | 
						|
}
 | 
						|
 | 
						|
/// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
 | 
						|
/// where CurLI is live.
 | 
						|
void SplitAnalysis::calcLiveBlockInfo() {
 | 
						|
  ThroughBlocks.resize(MF.getNumBlockIDs());
 | 
						|
  NumThroughBlocks = NumGapBlocks = 0;
 | 
						|
  if (CurLI->empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  LiveInterval::const_iterator LVI = CurLI->begin();
 | 
						|
  LiveInterval::const_iterator LVE = CurLI->end();
 | 
						|
 | 
						|
  SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
 | 
						|
  UseI = UseSlots.begin();
 | 
						|
  UseE = UseSlots.end();
 | 
						|
 | 
						|
  // Loop over basic blocks where CurLI is live.
 | 
						|
  MachineFunction::iterator MFI =
 | 
						|
      LIS.getMBBFromIndex(LVI->start)->getIterator();
 | 
						|
  while (true) {
 | 
						|
    BlockInfo BI;
 | 
						|
    BI.MBB = &*MFI;
 | 
						|
    SlotIndex Start, Stop;
 | 
						|
    std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
 | 
						|
 | 
						|
    // If the block contains no uses, the range must be live through. At one
 | 
						|
    // point, RegisterCoalescer could create dangling ranges that ended
 | 
						|
    // mid-block.
 | 
						|
    if (UseI == UseE || *UseI >= Stop) {
 | 
						|
      ++NumThroughBlocks;
 | 
						|
      ThroughBlocks.set(BI.MBB->getNumber());
 | 
						|
      // The range shouldn't end mid-block if there are no uses. This shouldn't
 | 
						|
      // happen.
 | 
						|
      assert(LVI->end >= Stop && "range ends mid block with no uses");
 | 
						|
    } else {
 | 
						|
      // This block has uses. Find the first and last uses in the block.
 | 
						|
      BI.FirstInstr = *UseI;
 | 
						|
      assert(BI.FirstInstr >= Start);
 | 
						|
      do ++UseI;
 | 
						|
      while (UseI != UseE && *UseI < Stop);
 | 
						|
      BI.LastInstr = UseI[-1];
 | 
						|
      assert(BI.LastInstr < Stop);
 | 
						|
 | 
						|
      // LVI is the first live segment overlapping MBB.
 | 
						|
      BI.LiveIn = LVI->start <= Start;
 | 
						|
 | 
						|
      // When not live in, the first use should be a def.
 | 
						|
      if (!BI.LiveIn) {
 | 
						|
        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
 | 
						|
        assert(LVI->start == BI.FirstInstr && "First instr should be a def");
 | 
						|
        BI.FirstDef = BI.FirstInstr;
 | 
						|
      }
 | 
						|
 | 
						|
      // Look for gaps in the live range.
 | 
						|
      BI.LiveOut = true;
 | 
						|
      while (LVI->end < Stop) {
 | 
						|
        SlotIndex LastStop = LVI->end;
 | 
						|
        if (++LVI == LVE || LVI->start >= Stop) {
 | 
						|
          BI.LiveOut = false;
 | 
						|
          BI.LastInstr = LastStop;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (LastStop < LVI->start) {
 | 
						|
          // There is a gap in the live range. Create duplicate entries for the
 | 
						|
          // live-in snippet and the live-out snippet.
 | 
						|
          ++NumGapBlocks;
 | 
						|
 | 
						|
          // Push the Live-in part.
 | 
						|
          BI.LiveOut = false;
 | 
						|
          UseBlocks.push_back(BI);
 | 
						|
          UseBlocks.back().LastInstr = LastStop;
 | 
						|
 | 
						|
          // Set up BI for the live-out part.
 | 
						|
          BI.LiveIn = false;
 | 
						|
          BI.LiveOut = true;
 | 
						|
          BI.FirstInstr = BI.FirstDef = LVI->start;
 | 
						|
        }
 | 
						|
 | 
						|
        // A Segment that starts in the middle of the block must be a def.
 | 
						|
        assert(LVI->start == LVI->valno->def && "Dangling Segment start");
 | 
						|
        if (!BI.FirstDef)
 | 
						|
          BI.FirstDef = LVI->start;
 | 
						|
      }
 | 
						|
 | 
						|
      UseBlocks.push_back(BI);
 | 
						|
 | 
						|
      // LVI is now at LVE or LVI->end >= Stop.
 | 
						|
      if (LVI == LVE)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Live segment ends exactly at Stop. Move to the next segment.
 | 
						|
    if (LVI->end == Stop && ++LVI == LVE)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Pick the next basic block.
 | 
						|
    if (LVI->start < Stop)
 | 
						|
      ++MFI;
 | 
						|
    else
 | 
						|
      MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
 | 
						|
  }
 | 
						|
 | 
						|
  assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
 | 
						|
}
 | 
						|
 | 
						|
unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
 | 
						|
  if (cli->empty())
 | 
						|
    return 0;
 | 
						|
  LiveInterval *li = const_cast<LiveInterval*>(cli);
 | 
						|
  LiveInterval::iterator LVI = li->begin();
 | 
						|
  LiveInterval::iterator LVE = li->end();
 | 
						|
  unsigned Count = 0;
 | 
						|
 | 
						|
  // Loop over basic blocks where li is live.
 | 
						|
  MachineFunction::const_iterator MFI =
 | 
						|
      LIS.getMBBFromIndex(LVI->start)->getIterator();
 | 
						|
  SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
 | 
						|
  while (true) {
 | 
						|
    ++Count;
 | 
						|
    LVI = li->advanceTo(LVI, Stop);
 | 
						|
    if (LVI == LVE)
 | 
						|
      return Count;
 | 
						|
    do {
 | 
						|
      ++MFI;
 | 
						|
      Stop = LIS.getMBBEndIdx(&*MFI);
 | 
						|
    } while (Stop <= LVI->start);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
 | 
						|
  unsigned OrigReg = VRM.getOriginal(CurLI->reg());
 | 
						|
  const LiveInterval &Orig = LIS.getInterval(OrigReg);
 | 
						|
  assert(!Orig.empty() && "Splitting empty interval?");
 | 
						|
  LiveInterval::const_iterator I = Orig.find(Idx);
 | 
						|
 | 
						|
  // Range containing Idx should begin at Idx.
 | 
						|
  if (I != Orig.end() && I->start <= Idx)
 | 
						|
    return I->start == Idx;
 | 
						|
 | 
						|
  // Range does not contain Idx, previous must end at Idx.
 | 
						|
  return I != Orig.begin() && (--I)->end == Idx;
 | 
						|
}
 | 
						|
 | 
						|
void SplitAnalysis::analyze(const LiveInterval *li) {
 | 
						|
  clear();
 | 
						|
  CurLI = li;
 | 
						|
  analyzeUses();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                               Split Editor
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
 | 
						|
SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA,
 | 
						|
                         LiveIntervals &LIS, VirtRegMap &VRM,
 | 
						|
                         MachineDominatorTree &MDT,
 | 
						|
                         MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
 | 
						|
    : SA(SA), AA(AA), LIS(LIS), VRM(VRM),
 | 
						|
      MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT),
 | 
						|
      TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
 | 
						|
      TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
 | 
						|
      MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
 | 
						|
 | 
						|
void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
 | 
						|
  Edit = &LRE;
 | 
						|
  SpillMode = SM;
 | 
						|
  OpenIdx = 0;
 | 
						|
  RegAssign.clear();
 | 
						|
  Values.clear();
 | 
						|
 | 
						|
  // Reset the LiveIntervalCalc instances needed for this spill mode.
 | 
						|
  LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
 | 
						|
                  &LIS.getVNInfoAllocator());
 | 
						|
  if (SpillMode)
 | 
						|
    LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
 | 
						|
                    &LIS.getVNInfoAllocator());
 | 
						|
 | 
						|
  // We don't need an AliasAnalysis since we will only be performing
 | 
						|
  // cheap-as-a-copy remats anyway.
 | 
						|
  Edit->anyRematerializable(nullptr);
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD void SplitEditor::dump() const {
 | 
						|
  if (RegAssign.empty()) {
 | 
						|
    dbgs() << " empty\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
 | 
						|
    dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
 | 
						|
  dbgs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM,
 | 
						|
                                                             LiveInterval &LI) {
 | 
						|
  for (LiveInterval::SubRange &S : LI.subranges())
 | 
						|
    if (S.LaneMask == LM)
 | 
						|
      return S;
 | 
						|
  llvm_unreachable("SubRange for this mask not found");
 | 
						|
}
 | 
						|
 | 
						|
LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
 | 
						|
                                                        LiveInterval &LI) {
 | 
						|
  for (LiveInterval::SubRange &S : LI.subranges())
 | 
						|
    if ((S.LaneMask & LM) == LM)
 | 
						|
      return S;
 | 
						|
  llvm_unreachable("SubRange for this mask not found");
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
 | 
						|
  if (!LI.hasSubRanges()) {
 | 
						|
    LI.createDeadDef(VNI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SlotIndex Def = VNI->def;
 | 
						|
  if (Original) {
 | 
						|
    // If we are transferring a def from the original interval, make sure
 | 
						|
    // to only update the subranges for which the original subranges had
 | 
						|
    // a def at this location.
 | 
						|
    for (LiveInterval::SubRange &S : LI.subranges()) {
 | 
						|
      auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
 | 
						|
      VNInfo *PV = PS.getVNInfoAt(Def);
 | 
						|
      if (PV != nullptr && PV->def == Def)
 | 
						|
        S.createDeadDef(Def, LIS.getVNInfoAllocator());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // This is a new def: either from rematerialization, or from an inserted
 | 
						|
    // copy. Since rematerialization can regenerate a definition of a sub-
 | 
						|
    // register, we need to check which subranges need to be updated.
 | 
						|
    const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
 | 
						|
    assert(DefMI != nullptr);
 | 
						|
    LaneBitmask LM;
 | 
						|
    for (const MachineOperand &DefOp : DefMI->defs()) {
 | 
						|
      Register R = DefOp.getReg();
 | 
						|
      if (R != LI.reg())
 | 
						|
        continue;
 | 
						|
      if (unsigned SR = DefOp.getSubReg())
 | 
						|
        LM |= TRI.getSubRegIndexLaneMask(SR);
 | 
						|
      else {
 | 
						|
        LM = MRI.getMaxLaneMaskForVReg(R);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (LiveInterval::SubRange &S : LI.subranges())
 | 
						|
      if ((S.LaneMask & LM).any())
 | 
						|
        S.createDeadDef(Def, LIS.getVNInfoAllocator());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
VNInfo *SplitEditor::defValue(unsigned RegIdx,
 | 
						|
                              const VNInfo *ParentVNI,
 | 
						|
                              SlotIndex Idx,
 | 
						|
                              bool Original) {
 | 
						|
  assert(ParentVNI && "Mapping  NULL value");
 | 
						|
  assert(Idx.isValid() && "Invalid SlotIndex");
 | 
						|
  assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
 | 
						|
  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
 | 
						|
 | 
						|
  // Create a new value.
 | 
						|
  VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
 | 
						|
 | 
						|
  bool Force = LI->hasSubRanges();
 | 
						|
  ValueForcePair FP(Force ? nullptr : VNI, Force);
 | 
						|
  // Use insert for lookup, so we can add missing values with a second lookup.
 | 
						|
  std::pair<ValueMap::iterator, bool> InsP =
 | 
						|
    Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
 | 
						|
 | 
						|
  // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
 | 
						|
  // forced. Keep it as a simple def without any liveness.
 | 
						|
  if (!Force && InsP.second)
 | 
						|
    return VNI;
 | 
						|
 | 
						|
  // If the previous value was a simple mapping, add liveness for it now.
 | 
						|
  if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
 | 
						|
    addDeadDef(*LI, OldVNI, Original);
 | 
						|
 | 
						|
    // No longer a simple mapping.  Switch to a complex mapping. If the
 | 
						|
    // interval has subranges, make it a forced mapping.
 | 
						|
    InsP.first->second = ValueForcePair(nullptr, Force);
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a complex mapping, add liveness for VNI
 | 
						|
  addDeadDef(*LI, VNI, Original);
 | 
						|
  return VNI;
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
 | 
						|
  ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
 | 
						|
  VNInfo *VNI = VFP.getPointer();
 | 
						|
 | 
						|
  // ParentVNI was either unmapped or already complex mapped. Either way, just
 | 
						|
  // set the force bit.
 | 
						|
  if (!VNI) {
 | 
						|
    VFP.setInt(true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // This was previously a single mapping. Make sure the old def is represented
 | 
						|
  // by a trivial live range.
 | 
						|
  addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
 | 
						|
 | 
						|
  // Mark as complex mapped, forced.
 | 
						|
  VFP = ValueForcePair(nullptr, true);
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
 | 
						|
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
 | 
						|
    unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
 | 
						|
  const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
 | 
						|
  bool FirstCopy = !Def.isValid();
 | 
						|
  MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
 | 
						|
      .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
 | 
						|
              | getInternalReadRegState(!FirstCopy), SubIdx)
 | 
						|
      .addReg(FromReg, 0, SubIdx);
 | 
						|
 | 
						|
  SlotIndexes &Indexes = *LIS.getSlotIndexes();
 | 
						|
  if (FirstCopy) {
 | 
						|
    Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
 | 
						|
  } else {
 | 
						|
    CopyMI->bundleWithPred();
 | 
						|
  }
 | 
						|
  return Def;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
 | 
						|
    LaneBitmask LaneMask, MachineBasicBlock &MBB,
 | 
						|
    MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
 | 
						|
  const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
 | 
						|
  SlotIndexes &Indexes = *LIS.getSlotIndexes();
 | 
						|
  if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
 | 
						|
    // The full vreg is copied.
 | 
						|
    MachineInstr *CopyMI =
 | 
						|
        BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
 | 
						|
    return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
 | 
						|
  }
 | 
						|
 | 
						|
  // Only a subset of lanes needs to be copied. The following is a simple
 | 
						|
  // heuristic to construct a sequence of COPYs. We could add a target
 | 
						|
  // specific callback if this turns out to be suboptimal.
 | 
						|
  LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
 | 
						|
 | 
						|
  // First pass: Try to find a perfectly matching subregister index. If none
 | 
						|
  // exists find the one covering the most lanemask bits.
 | 
						|
  const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
 | 
						|
  assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
 | 
						|
 | 
						|
  SmallVector<unsigned, 8> SubIndexes;
 | 
						|
 | 
						|
  // Abort if we cannot possibly implement the COPY with the given indexes.
 | 
						|
  if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
 | 
						|
    report_fatal_error("Impossible to implement partial COPY");
 | 
						|
 | 
						|
  SlotIndex Def;
 | 
						|
  for (unsigned BestIdx : SubIndexes) {
 | 
						|
    Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
 | 
						|
                                DestLI, Late, Def);
 | 
						|
  }
 | 
						|
 | 
						|
  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
 | 
						|
  DestLI.refineSubRanges(
 | 
						|
      Allocator, LaneMask,
 | 
						|
      [Def, &Allocator](LiveInterval::SubRange &SR) {
 | 
						|
        SR.createDeadDef(Def, Allocator);
 | 
						|
      },
 | 
						|
      Indexes, TRI);
 | 
						|
 | 
						|
  return Def;
 | 
						|
}
 | 
						|
 | 
						|
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
 | 
						|
                                   VNInfo *ParentVNI,
 | 
						|
                                   SlotIndex UseIdx,
 | 
						|
                                   MachineBasicBlock &MBB,
 | 
						|
                                   MachineBasicBlock::iterator I) {
 | 
						|
  SlotIndex Def;
 | 
						|
  LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
 | 
						|
 | 
						|
  // We may be trying to avoid interference that ends at a deleted instruction,
 | 
						|
  // so always begin RegIdx 0 early and all others late.
 | 
						|
  bool Late = RegIdx != 0;
 | 
						|
 | 
						|
  // Attempt cheap-as-a-copy rematerialization.
 | 
						|
  unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
 | 
						|
  LiveInterval &OrigLI = LIS.getInterval(Original);
 | 
						|
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
 | 
						|
 | 
						|
  Register Reg = LI->reg();
 | 
						|
  bool DidRemat = false;
 | 
						|
  if (OrigVNI) {
 | 
						|
    LiveRangeEdit::Remat RM(ParentVNI);
 | 
						|
    RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
 | 
						|
    if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
 | 
						|
      Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
 | 
						|
      ++NumRemats;
 | 
						|
      DidRemat = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!DidRemat) {
 | 
						|
    LaneBitmask LaneMask;
 | 
						|
    if (OrigLI.hasSubRanges()) {
 | 
						|
      LaneMask = LaneBitmask::getNone();
 | 
						|
      for (LiveInterval::SubRange &S : OrigLI.subranges()) {
 | 
						|
        if (S.liveAt(UseIdx))
 | 
						|
          LaneMask |= S.LaneMask;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      LaneMask = LaneBitmask::getAll();
 | 
						|
    }
 | 
						|
 | 
						|
    if (LaneMask.none()) {
 | 
						|
      const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
 | 
						|
      MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
 | 
						|
      SlotIndexes &Indexes = *LIS.getSlotIndexes();
 | 
						|
      Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
 | 
						|
    } else {
 | 
						|
      ++NumCopies;
 | 
						|
      Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Define the value in Reg.
 | 
						|
  return defValue(RegIdx, ParentVNI, Def, false);
 | 
						|
}
 | 
						|
 | 
						|
/// Create a new virtual register and live interval.
 | 
						|
unsigned SplitEditor::openIntv() {
 | 
						|
  // Create the complement as index 0.
 | 
						|
  if (Edit->empty())
 | 
						|
    Edit->createEmptyInterval();
 | 
						|
 | 
						|
  // Create the open interval.
 | 
						|
  OpenIdx = Edit->size();
 | 
						|
  Edit->createEmptyInterval();
 | 
						|
  return OpenIdx;
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::selectIntv(unsigned Idx) {
 | 
						|
  assert(Idx != 0 && "Cannot select the complement interval");
 | 
						|
  assert(Idx < Edit->size() && "Can only select previously opened interval");
 | 
						|
  LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
 | 
						|
  OpenIdx = Idx;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
 | 
						|
  assert(OpenIdx && "openIntv not called before enterIntvBefore");
 | 
						|
  LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
 | 
						|
  Idx = Idx.getBaseIndex();
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    LLVM_DEBUG(dbgs() << ": not live\n");
 | 
						|
    return Idx;
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | 
						|
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | 
						|
  assert(MI && "enterIntvBefore called with invalid index");
 | 
						|
 | 
						|
  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
 | 
						|
  assert(OpenIdx && "openIntv not called before enterIntvAfter");
 | 
						|
  LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
 | 
						|
  Idx = Idx.getBoundaryIndex();
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    LLVM_DEBUG(dbgs() << ": not live\n");
 | 
						|
    return Idx;
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | 
						|
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | 
						|
  assert(MI && "enterIntvAfter called with invalid index");
 | 
						|
 | 
						|
  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
 | 
						|
                              std::next(MachineBasicBlock::iterator(MI)));
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
 | 
						|
  assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
 | 
						|
  SlotIndex End = LIS.getMBBEndIdx(&MBB);
 | 
						|
  SlotIndex Last = End.getPrevSlot();
 | 
						|
  LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
 | 
						|
                    << Last);
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    LLVM_DEBUG(dbgs() << ": not live\n");
 | 
						|
    return End;
 | 
						|
  }
 | 
						|
  SlotIndex LSP = SA.getLastSplitPoint(&MBB);
 | 
						|
  if (LSP < Last) {
 | 
						|
    // It could be that the use after LSP is a def, and thus the ParentVNI
 | 
						|
    // just selected starts at that def.  For this case to exist, the def
 | 
						|
    // must be part of a tied def/use pair (as otherwise we'd have split
 | 
						|
    // distinct live ranges into individual live intervals), and thus we
 | 
						|
    // can insert the def into the VNI of the use and the tied def/use
 | 
						|
    // pair can live in the resulting interval.
 | 
						|
    Last = LSP;
 | 
						|
    ParentVNI = Edit->getParent().getVNInfoAt(Last);
 | 
						|
    if (!ParentVNI) {
 | 
						|
      // undef use --> undef tied def
 | 
						|
      LLVM_DEBUG(dbgs() << ": tied use not live\n");
 | 
						|
      return End;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
 | 
						|
  VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
 | 
						|
                              SA.getLastSplitPointIter(&MBB));
 | 
						|
  RegAssign.insert(VNI->def, End, OpenIdx);
 | 
						|
  LLVM_DEBUG(dump());
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
/// useIntv - indicate that all instructions in MBB should use OpenLI.
 | 
						|
void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
 | 
						|
  useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
 | 
						|
  assert(OpenIdx && "openIntv not called before useIntv");
 | 
						|
  LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
 | 
						|
  RegAssign.insert(Start, End, OpenIdx);
 | 
						|
  LLVM_DEBUG(dump());
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
 | 
						|
  assert(OpenIdx && "openIntv not called before leaveIntvAfter");
 | 
						|
  LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
 | 
						|
 | 
						|
  // The interval must be live beyond the instruction at Idx.
 | 
						|
  SlotIndex Boundary = Idx.getBoundaryIndex();
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    LLVM_DEBUG(dbgs() << ": not live\n");
 | 
						|
    return Boundary.getNextSlot();
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | 
						|
  MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
 | 
						|
  assert(MI && "No instruction at index");
 | 
						|
 | 
						|
  // In spill mode, make live ranges as short as possible by inserting the copy
 | 
						|
  // before MI.  This is only possible if that instruction doesn't redefine the
 | 
						|
  // value.  The inserted COPY is not a kill, and we don't need to recompute
 | 
						|
  // the source live range.  The spiller also won't try to hoist this copy.
 | 
						|
  if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
 | 
						|
      MI->readsVirtualRegister(Edit->getReg())) {
 | 
						|
    forceRecompute(0, *ParentVNI);
 | 
						|
    defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
 | 
						|
    return Idx;
 | 
						|
  }
 | 
						|
 | 
						|
  VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
 | 
						|
                              std::next(MachineBasicBlock::iterator(MI)));
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
 | 
						|
  assert(OpenIdx && "openIntv not called before leaveIntvBefore");
 | 
						|
  LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
 | 
						|
 | 
						|
  // The interval must be live into the instruction at Idx.
 | 
						|
  Idx = Idx.getBaseIndex();
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    LLVM_DEBUG(dbgs() << ": not live\n");
 | 
						|
    return Idx.getNextSlot();
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
 | 
						|
 | 
						|
  MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
 | 
						|
  assert(MI && "No instruction at index");
 | 
						|
  VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
 | 
						|
  assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
 | 
						|
  SlotIndex Start = LIS.getMBBStartIdx(&MBB);
 | 
						|
  LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
 | 
						|
                    << Start);
 | 
						|
 | 
						|
  VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
 | 
						|
  if (!ParentVNI) {
 | 
						|
    LLVM_DEBUG(dbgs() << ": not live\n");
 | 
						|
    return Start;
 | 
						|
  }
 | 
						|
 | 
						|
  VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
 | 
						|
                              MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
 | 
						|
  RegAssign.insert(Start, VNI->def, OpenIdx);
 | 
						|
  LLVM_DEBUG(dump());
 | 
						|
  return VNI->def;
 | 
						|
}
 | 
						|
 | 
						|
static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
 | 
						|
  return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
 | 
						|
    return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
 | 
						|
  assert(OpenIdx && "openIntv not called before overlapIntv");
 | 
						|
  const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
 | 
						|
  assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
 | 
						|
         "Parent changes value in extended range");
 | 
						|
  assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
 | 
						|
         "Range cannot span basic blocks");
 | 
						|
 | 
						|
  // The complement interval will be extended as needed by LICalc.extend().
 | 
						|
  if (ParentVNI)
 | 
						|
    forceRecompute(0, *ParentVNI);
 | 
						|
 | 
						|
  // If the last use is tied to a def, we can't mark it as live for the
 | 
						|
  // interval which includes only the use.  That would cause the tied pair
 | 
						|
  // to end up in two different intervals.
 | 
						|
  if (auto *MI = LIS.getInstructionFromIndex(End))
 | 
						|
    if (hasTiedUseOf(*MI, Edit->getReg())) {
 | 
						|
      LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
 | 
						|
  RegAssign.insert(Start, End, OpenIdx);
 | 
						|
  LLVM_DEBUG(dump());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                  Spill modes
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
 | 
						|
  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
 | 
						|
  LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
 | 
						|
  RegAssignMap::iterator AssignI;
 | 
						|
  AssignI.setMap(RegAssign);
 | 
						|
 | 
						|
  for (const VNInfo *C : Copies) {
 | 
						|
    SlotIndex Def = C->def;
 | 
						|
    MachineInstr *MI = LIS.getInstructionFromIndex(Def);
 | 
						|
    assert(MI && "No instruction for back-copy");
 | 
						|
 | 
						|
    MachineBasicBlock *MBB = MI->getParent();
 | 
						|
    MachineBasicBlock::iterator MBBI(MI);
 | 
						|
    bool AtBegin;
 | 
						|
    do AtBegin = MBBI == MBB->begin();
 | 
						|
    while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
 | 
						|
    LIS.removeVRegDefAt(*LI, Def);
 | 
						|
    LIS.RemoveMachineInstrFromMaps(*MI);
 | 
						|
    MI->eraseFromParent();
 | 
						|
 | 
						|
    // Adjust RegAssign if a register assignment is killed at Def. We want to
 | 
						|
    // avoid calculating the live range of the source register if possible.
 | 
						|
    AssignI.find(Def.getPrevSlot());
 | 
						|
    if (!AssignI.valid() || AssignI.start() >= Def)
 | 
						|
      continue;
 | 
						|
    // If MI doesn't kill the assigned register, just leave it.
 | 
						|
    if (AssignI.stop() != Def)
 | 
						|
      continue;
 | 
						|
    unsigned RegIdx = AssignI.value();
 | 
						|
    // We could hoist back-copy right after another back-copy. As a result
 | 
						|
    // MMBI points to copy instruction which is actually dead now.
 | 
						|
    // We cannot set its stop to MBBI which will be the same as start and
 | 
						|
    // interval does not support that.
 | 
						|
    SlotIndex Kill =
 | 
						|
        AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
 | 
						|
    if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
 | 
						|
        Kill <= AssignI.start()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
 | 
						|
                        << '\n');
 | 
						|
      forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
 | 
						|
    } else {
 | 
						|
      LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
 | 
						|
      AssignI.setStop(Kill);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
MachineBasicBlock*
 | 
						|
SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
 | 
						|
                                  MachineBasicBlock *DefMBB) {
 | 
						|
  if (MBB == DefMBB)
 | 
						|
    return MBB;
 | 
						|
  assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
 | 
						|
 | 
						|
  const MachineLoopInfo &Loops = SA.Loops;
 | 
						|
  const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
 | 
						|
  MachineDomTreeNode *DefDomNode = MDT[DefMBB];
 | 
						|
 | 
						|
  // Best candidate so far.
 | 
						|
  MachineBasicBlock *BestMBB = MBB;
 | 
						|
  unsigned BestDepth = std::numeric_limits<unsigned>::max();
 | 
						|
 | 
						|
  while (true) {
 | 
						|
    const MachineLoop *Loop = Loops.getLoopFor(MBB);
 | 
						|
 | 
						|
    // MBB isn't in a loop, it doesn't get any better.  All dominators have a
 | 
						|
    // higher frequency by definition.
 | 
						|
    if (!Loop) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
 | 
						|
                        << " dominates " << printMBBReference(*MBB)
 | 
						|
                        << " at depth 0\n");
 | 
						|
      return MBB;
 | 
						|
    }
 | 
						|
 | 
						|
    // We'll never be able to exit the DefLoop.
 | 
						|
    if (Loop == DefLoop) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
 | 
						|
                        << " dominates " << printMBBReference(*MBB)
 | 
						|
                        << " in the same loop\n");
 | 
						|
      return MBB;
 | 
						|
    }
 | 
						|
 | 
						|
    // Least busy dominator seen so far.
 | 
						|
    unsigned Depth = Loop->getLoopDepth();
 | 
						|
    if (Depth < BestDepth) {
 | 
						|
      BestMBB = MBB;
 | 
						|
      BestDepth = Depth;
 | 
						|
      LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
 | 
						|
                        << " dominates " << printMBBReference(*MBB)
 | 
						|
                        << " at depth " << Depth << '\n');
 | 
						|
    }
 | 
						|
 | 
						|
    // Leave loop by going to the immediate dominator of the loop header.
 | 
						|
    // This is a bigger stride than simply walking up the dominator tree.
 | 
						|
    MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
 | 
						|
 | 
						|
    // Too far up the dominator tree?
 | 
						|
    if (!IDom || !MDT.dominates(DefDomNode, IDom))
 | 
						|
      return BestMBB;
 | 
						|
 | 
						|
    MBB = IDom->getBlock();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::computeRedundantBackCopies(
 | 
						|
    DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
 | 
						|
  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
 | 
						|
  LiveInterval *Parent = &Edit->getParent();
 | 
						|
  SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
 | 
						|
  SmallPtrSet<VNInfo *, 8> DominatedVNIs;
 | 
						|
 | 
						|
  // Aggregate VNIs having the same value as ParentVNI.
 | 
						|
  for (VNInfo *VNI : LI->valnos) {
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
 | 
						|
    EqualVNs[ParentVNI->id].insert(VNI);
 | 
						|
  }
 | 
						|
 | 
						|
  // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
 | 
						|
  // redundant VNIs to BackCopies.
 | 
						|
  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
 | 
						|
    VNInfo *ParentVNI = Parent->getValNumInfo(i);
 | 
						|
    if (!NotToHoistSet.count(ParentVNI->id))
 | 
						|
      continue;
 | 
						|
    SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
 | 
						|
    SmallPtrSetIterator<VNInfo *> It2 = It1;
 | 
						|
    for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
 | 
						|
      It2 = It1;
 | 
						|
      for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
 | 
						|
        if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
 | 
						|
          continue;
 | 
						|
 | 
						|
        MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
 | 
						|
        MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
 | 
						|
        if (MBB1 == MBB2) {
 | 
						|
          DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
 | 
						|
        } else if (MDT.dominates(MBB1, MBB2)) {
 | 
						|
          DominatedVNIs.insert(*It2);
 | 
						|
        } else if (MDT.dominates(MBB2, MBB1)) {
 | 
						|
          DominatedVNIs.insert(*It1);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (!DominatedVNIs.empty()) {
 | 
						|
      forceRecompute(0, *ParentVNI);
 | 
						|
      append_range(BackCopies, DominatedVNIs);
 | 
						|
      DominatedVNIs.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// For SM_Size mode, find a common dominator for all the back-copies for
 | 
						|
/// the same ParentVNI and hoist the backcopies to the dominator BB.
 | 
						|
/// For SM_Speed mode, if the common dominator is hot and it is not beneficial
 | 
						|
/// to do the hoisting, simply remove the dominated backcopies for the same
 | 
						|
/// ParentVNI.
 | 
						|
void SplitEditor::hoistCopies() {
 | 
						|
  // Get the complement interval, always RegIdx 0.
 | 
						|
  LiveInterval *LI = &LIS.getInterval(Edit->get(0));
 | 
						|
  LiveInterval *Parent = &Edit->getParent();
 | 
						|
 | 
						|
  // Track the nearest common dominator for all back-copies for each ParentVNI,
 | 
						|
  // indexed by ParentVNI->id.
 | 
						|
  using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
 | 
						|
  SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
 | 
						|
  // The total cost of all the back-copies for each ParentVNI.
 | 
						|
  SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
 | 
						|
  // The ParentVNI->id set for which hoisting back-copies are not beneficial
 | 
						|
  // for Speed.
 | 
						|
  DenseSet<unsigned> NotToHoistSet;
 | 
						|
 | 
						|
  // Find the nearest common dominator for parent values with multiple
 | 
						|
  // back-copies.  If a single back-copy dominates, put it in DomPair.second.
 | 
						|
  for (VNInfo *VNI : LI->valnos) {
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
 | 
						|
    assert(ParentVNI && "Parent not live at complement def");
 | 
						|
 | 
						|
    // Don't hoist remats.  The complement is probably going to disappear
 | 
						|
    // completely anyway.
 | 
						|
    if (Edit->didRematerialize(ParentVNI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
 | 
						|
 | 
						|
    DomPair &Dom = NearestDom[ParentVNI->id];
 | 
						|
 | 
						|
    // Keep directly defined parent values.  This is either a PHI or an
 | 
						|
    // instruction in the complement range.  All other copies of ParentVNI
 | 
						|
    // should be eliminated.
 | 
						|
    if (VNI->def == ParentVNI->def) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
 | 
						|
      Dom = DomPair(ValMBB, VNI->def);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    // Skip the singly mapped values.  There is nothing to gain from hoisting a
 | 
						|
    // single back-copy.
 | 
						|
    if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Dom.first) {
 | 
						|
      // First time we see ParentVNI.  VNI dominates itself.
 | 
						|
      Dom = DomPair(ValMBB, VNI->def);
 | 
						|
    } else if (Dom.first == ValMBB) {
 | 
						|
      // Two defs in the same block.  Pick the earlier def.
 | 
						|
      if (!Dom.second.isValid() || VNI->def < Dom.second)
 | 
						|
        Dom.second = VNI->def;
 | 
						|
    } else {
 | 
						|
      // Different basic blocks. Check if one dominates.
 | 
						|
      MachineBasicBlock *Near =
 | 
						|
        MDT.findNearestCommonDominator(Dom.first, ValMBB);
 | 
						|
      if (Near == ValMBB)
 | 
						|
        // Def ValMBB dominates.
 | 
						|
        Dom = DomPair(ValMBB, VNI->def);
 | 
						|
      else if (Near != Dom.first)
 | 
						|
        // None dominate. Hoist to common dominator, need new def.
 | 
						|
        Dom = DomPair(Near, SlotIndex());
 | 
						|
      Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
 | 
						|
                      << VNI->def << " for parent " << ParentVNI->id << '@'
 | 
						|
                      << ParentVNI->def << " hoist to "
 | 
						|
                      << printMBBReference(*Dom.first) << ' ' << Dom.second
 | 
						|
                      << '\n');
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert the hoisted copies.
 | 
						|
  for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
 | 
						|
    DomPair &Dom = NearestDom[i];
 | 
						|
    if (!Dom.first || Dom.second.isValid())
 | 
						|
      continue;
 | 
						|
    // This value needs a hoisted copy inserted at the end of Dom.first.
 | 
						|
    VNInfo *ParentVNI = Parent->getValNumInfo(i);
 | 
						|
    MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
 | 
						|
    // Get a less loopy dominator than Dom.first.
 | 
						|
    Dom.first = findShallowDominator(Dom.first, DefMBB);
 | 
						|
    if (SpillMode == SM_Speed &&
 | 
						|
        MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
 | 
						|
      NotToHoistSet.insert(ParentVNI->id);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
 | 
						|
    if (LSP <= ParentVNI->def) {
 | 
						|
      NotToHoistSet.insert(ParentVNI->id);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
 | 
						|
                               SA.getLastSplitPointIter(Dom.first))->def;
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove redundant back-copies that are now known to be dominated by another
 | 
						|
  // def with the same value.
 | 
						|
  SmallVector<VNInfo*, 8> BackCopies;
 | 
						|
  for (VNInfo *VNI : LI->valnos) {
 | 
						|
    if (VNI->isUnused())
 | 
						|
      continue;
 | 
						|
    VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
 | 
						|
    const DomPair &Dom = NearestDom[ParentVNI->id];
 | 
						|
    if (!Dom.first || Dom.second == VNI->def ||
 | 
						|
        NotToHoistSet.count(ParentVNI->id))
 | 
						|
      continue;
 | 
						|
    BackCopies.push_back(VNI);
 | 
						|
    forceRecompute(0, *ParentVNI);
 | 
						|
  }
 | 
						|
 | 
						|
  // If it is not beneficial to hoist all the BackCopies, simply remove
 | 
						|
  // redundant BackCopies in speed mode.
 | 
						|
  if (SpillMode == SM_Speed && !NotToHoistSet.empty())
 | 
						|
    computeRedundantBackCopies(NotToHoistSet, BackCopies);
 | 
						|
 | 
						|
  removeBackCopies(BackCopies);
 | 
						|
}
 | 
						|
 | 
						|
/// transferValues - Transfer all possible values to the new live ranges.
 | 
						|
/// Values that were rematerialized are left alone, they need LICalc.extend().
 | 
						|
bool SplitEditor::transferValues() {
 | 
						|
  bool Skipped = false;
 | 
						|
  RegAssignMap::const_iterator AssignI = RegAssign.begin();
 | 
						|
  for (const LiveRange::Segment &S : Edit->getParent()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "  blit " << S << ':');
 | 
						|
    VNInfo *ParentVNI = S.valno;
 | 
						|
    // RegAssign has holes where RegIdx 0 should be used.
 | 
						|
    SlotIndex Start = S.start;
 | 
						|
    AssignI.advanceTo(Start);
 | 
						|
    do {
 | 
						|
      unsigned RegIdx;
 | 
						|
      SlotIndex End = S.end;
 | 
						|
      if (!AssignI.valid()) {
 | 
						|
        RegIdx = 0;
 | 
						|
      } else if (AssignI.start() <= Start) {
 | 
						|
        RegIdx = AssignI.value();
 | 
						|
        if (AssignI.stop() < End) {
 | 
						|
          End = AssignI.stop();
 | 
						|
          ++AssignI;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        RegIdx = 0;
 | 
						|
        End = std::min(End, AssignI.start());
 | 
						|
      }
 | 
						|
 | 
						|
      // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
 | 
						|
      LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
 | 
						|
                        << printReg(Edit->get(RegIdx)) << ')');
 | 
						|
      LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
 | 
						|
 | 
						|
      // Check for a simply defined value that can be blitted directly.
 | 
						|
      ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
 | 
						|
      if (VNInfo *VNI = VFP.getPointer()) {
 | 
						|
        LLVM_DEBUG(dbgs() << ':' << VNI->id);
 | 
						|
        LI.addSegment(LiveInterval::Segment(Start, End, VNI));
 | 
						|
        Start = End;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Skip values with forced recomputation.
 | 
						|
      if (VFP.getInt()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "(recalc)");
 | 
						|
        Skipped = true;
 | 
						|
        Start = End;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      LiveIntervalCalc &LIC = getLICalc(RegIdx);
 | 
						|
 | 
						|
      // This value has multiple defs in RegIdx, but it wasn't rematerialized,
 | 
						|
      // so the live range is accurate. Add live-in blocks in [Start;End) to the
 | 
						|
      // LiveInBlocks.
 | 
						|
      MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
 | 
						|
      SlotIndex BlockStart, BlockEnd;
 | 
						|
      std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
 | 
						|
 | 
						|
      // The first block may be live-in, or it may have its own def.
 | 
						|
      if (Start != BlockStart) {
 | 
						|
        VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
 | 
						|
        assert(VNI && "Missing def for complex mapped value");
 | 
						|
        LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
 | 
						|
        // MBB has its own def. Is it also live-out?
 | 
						|
        if (BlockEnd <= End)
 | 
						|
          LIC.setLiveOutValue(&*MBB, VNI);
 | 
						|
 | 
						|
        // Skip to the next block for live-in.
 | 
						|
        ++MBB;
 | 
						|
        BlockStart = BlockEnd;
 | 
						|
      }
 | 
						|
 | 
						|
      // Handle the live-in blocks covered by [Start;End).
 | 
						|
      assert(Start <= BlockStart && "Expected live-in block");
 | 
						|
      while (BlockStart < End) {
 | 
						|
        LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
 | 
						|
        BlockEnd = LIS.getMBBEndIdx(&*MBB);
 | 
						|
        if (BlockStart == ParentVNI->def) {
 | 
						|
          // This block has the def of a parent PHI, so it isn't live-in.
 | 
						|
          assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
 | 
						|
          VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
 | 
						|
          assert(VNI && "Missing def for complex mapped parent PHI");
 | 
						|
          if (End >= BlockEnd)
 | 
						|
            LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
 | 
						|
        } else {
 | 
						|
          // This block needs a live-in value.  The last block covered may not
 | 
						|
          // be live-out.
 | 
						|
          if (End < BlockEnd)
 | 
						|
            LIC.addLiveInBlock(LI, MDT[&*MBB], End);
 | 
						|
          else {
 | 
						|
            // Live-through, and we don't know the value.
 | 
						|
            LIC.addLiveInBlock(LI, MDT[&*MBB]);
 | 
						|
            LIC.setLiveOutValue(&*MBB, nullptr);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        BlockStart = BlockEnd;
 | 
						|
        ++MBB;
 | 
						|
      }
 | 
						|
      Start = End;
 | 
						|
    } while (Start != S.end);
 | 
						|
    LLVM_DEBUG(dbgs() << '\n');
 | 
						|
  }
 | 
						|
 | 
						|
  LICalc[0].calculateValues();
 | 
						|
  if (SpillMode)
 | 
						|
    LICalc[1].calculateValues();
 | 
						|
 | 
						|
  return Skipped;
 | 
						|
}
 | 
						|
 | 
						|
static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
 | 
						|
  const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
 | 
						|
  if (Seg == nullptr)
 | 
						|
    return true;
 | 
						|
  if (Seg->end != Def.getDeadSlot())
 | 
						|
    return false;
 | 
						|
  // This is a dead PHI. Remove it.
 | 
						|
  LR.removeSegment(*Seg, true);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
 | 
						|
                                 LiveRange &LR, LaneBitmask LM,
 | 
						|
                                 ArrayRef<SlotIndex> Undefs) {
 | 
						|
  for (MachineBasicBlock *P : B.predecessors()) {
 | 
						|
    SlotIndex End = LIS.getMBBEndIdx(P);
 | 
						|
    SlotIndex LastUse = End.getPrevSlot();
 | 
						|
    // The predecessor may not have a live-out value. That is OK, like an
 | 
						|
    // undef PHI operand.
 | 
						|
    LiveInterval &PLI = Edit->getParent();
 | 
						|
    // Need the cast because the inputs to ?: would otherwise be deemed
 | 
						|
    // "incompatible": SubRange vs LiveInterval.
 | 
						|
    LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
 | 
						|
                               : static_cast<LiveRange &>(PLI);
 | 
						|
    if (PSR.liveAt(LastUse))
 | 
						|
      LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::extendPHIKillRanges() {
 | 
						|
  // Extend live ranges to be live-out for successor PHI values.
 | 
						|
 | 
						|
  // Visit each PHI def slot in the parent live interval. If the def is dead,
 | 
						|
  // remove it. Otherwise, extend the live interval to reach the end indexes
 | 
						|
  // of all predecessor blocks.
 | 
						|
 | 
						|
  LiveInterval &ParentLI = Edit->getParent();
 | 
						|
  for (const VNInfo *V : ParentLI.valnos) {
 | 
						|
    if (V->isUnused() || !V->isPHIDef())
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned RegIdx = RegAssign.lookup(V->def);
 | 
						|
    LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
 | 
						|
    LiveIntervalCalc &LIC = getLICalc(RegIdx);
 | 
						|
    MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
 | 
						|
    if (!removeDeadSegment(V->def, LI))
 | 
						|
      extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<SlotIndex, 4> Undefs;
 | 
						|
  LiveIntervalCalc SubLIC;
 | 
						|
 | 
						|
  for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
 | 
						|
    for (const VNInfo *V : PS.valnos) {
 | 
						|
      if (V->isUnused() || !V->isPHIDef())
 | 
						|
        continue;
 | 
						|
      unsigned RegIdx = RegAssign.lookup(V->def);
 | 
						|
      LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
 | 
						|
      LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
 | 
						|
      if (removeDeadSegment(V->def, S))
 | 
						|
        continue;
 | 
						|
 | 
						|
      MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
 | 
						|
      SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
 | 
						|
                   &LIS.getVNInfoAllocator());
 | 
						|
      Undefs.clear();
 | 
						|
      LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
 | 
						|
      extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// rewriteAssigned - Rewrite all uses of Edit->getReg().
 | 
						|
void SplitEditor::rewriteAssigned(bool ExtendRanges) {
 | 
						|
  struct ExtPoint {
 | 
						|
    ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
 | 
						|
      : MO(O), RegIdx(R), Next(N) {}
 | 
						|
 | 
						|
    MachineOperand MO;
 | 
						|
    unsigned RegIdx;
 | 
						|
    SlotIndex Next;
 | 
						|
  };
 | 
						|
 | 
						|
  SmallVector<ExtPoint,4> ExtPoints;
 | 
						|
 | 
						|
  for (MachineOperand &MO :
 | 
						|
       llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
 | 
						|
    MachineInstr *MI = MO.getParent();
 | 
						|
    // LiveDebugVariables should have handled all DBG_VALUE instructions.
 | 
						|
    if (MI->isDebugValue()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Zapping " << *MI);
 | 
						|
      MO.setReg(0);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // <undef> operands don't really read the register, so it doesn't matter
 | 
						|
    // which register we choose.  When the use operand is tied to a def, we must
 | 
						|
    // use the same register as the def, so just do that always.
 | 
						|
    SlotIndex Idx = LIS.getInstructionIndex(*MI);
 | 
						|
    if (MO.isDef() || MO.isUndef())
 | 
						|
      Idx = Idx.getRegSlot(MO.isEarlyClobber());
 | 
						|
 | 
						|
    // Rewrite to the mapped register at Idx.
 | 
						|
    unsigned RegIdx = RegAssign.lookup(Idx);
 | 
						|
    LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
 | 
						|
    MO.setReg(LI.reg());
 | 
						|
    LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
 | 
						|
                      << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
 | 
						|
 | 
						|
    // Extend liveness to Idx if the instruction reads reg.
 | 
						|
    if (!ExtendRanges || MO.isUndef())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Skip instructions that don't read Reg.
 | 
						|
    if (MO.isDef()) {
 | 
						|
      if (!MO.getSubReg() && !MO.isEarlyClobber())
 | 
						|
        continue;
 | 
						|
      // We may want to extend a live range for a partial redef, or for a use
 | 
						|
      // tied to an early clobber.
 | 
						|
      Idx = Idx.getPrevSlot();
 | 
						|
      if (!Edit->getParent().liveAt(Idx))
 | 
						|
        continue;
 | 
						|
    } else
 | 
						|
      Idx = Idx.getRegSlot(true);
 | 
						|
 | 
						|
    SlotIndex Next = Idx.getNextSlot();
 | 
						|
    if (LI.hasSubRanges()) {
 | 
						|
      // We have to delay extending subranges until we have seen all operands
 | 
						|
      // defining the register. This is because a <def,read-undef> operand
 | 
						|
      // will create an "undef" point, and we cannot extend any subranges
 | 
						|
      // until all of them have been accounted for.
 | 
						|
      if (MO.isUse())
 | 
						|
        ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
 | 
						|
    } else {
 | 
						|
      LiveIntervalCalc &LIC = getLICalc(RegIdx);
 | 
						|
      LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (ExtPoint &EP : ExtPoints) {
 | 
						|
    LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
 | 
						|
    assert(LI.hasSubRanges());
 | 
						|
 | 
						|
    LiveIntervalCalc SubLIC;
 | 
						|
    Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
 | 
						|
    LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
 | 
						|
                              : MRI.getMaxLaneMaskForVReg(Reg);
 | 
						|
    for (LiveInterval::SubRange &S : LI.subranges()) {
 | 
						|
      if ((S.LaneMask & LM).none())
 | 
						|
        continue;
 | 
						|
      // The problem here can be that the new register may have been created
 | 
						|
      // for a partially defined original register. For example:
 | 
						|
      //   %0:subreg_hireg<def,read-undef> = ...
 | 
						|
      //   ...
 | 
						|
      //   %1 = COPY %0
 | 
						|
      if (S.empty())
 | 
						|
        continue;
 | 
						|
      SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
 | 
						|
                   &LIS.getVNInfoAllocator());
 | 
						|
      SmallVector<SlotIndex, 4> Undefs;
 | 
						|
      LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
 | 
						|
      SubLIC.extend(S, EP.Next, 0, Undefs);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (Register R : *Edit) {
 | 
						|
    LiveInterval &LI = LIS.getInterval(R);
 | 
						|
    if (!LI.hasSubRanges())
 | 
						|
      continue;
 | 
						|
    LI.clear();
 | 
						|
    LI.removeEmptySubRanges();
 | 
						|
    LIS.constructMainRangeFromSubranges(LI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::deleteRematVictims() {
 | 
						|
  SmallVector<MachineInstr*, 8> Dead;
 | 
						|
  for (const Register &R : *Edit) {
 | 
						|
    LiveInterval *LI = &LIS.getInterval(R);
 | 
						|
    for (const LiveRange::Segment &S : LI->segments) {
 | 
						|
      // Dead defs end at the dead slot.
 | 
						|
      if (S.end != S.valno->def.getDeadSlot())
 | 
						|
        continue;
 | 
						|
      if (S.valno->isPHIDef())
 | 
						|
        continue;
 | 
						|
      MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
 | 
						|
      assert(MI && "Missing instruction for dead def");
 | 
						|
      MI->addRegisterDead(LI->reg(), &TRI);
 | 
						|
 | 
						|
      if (!MI->allDefsAreDead())
 | 
						|
        continue;
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
 | 
						|
      Dead.push_back(MI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Dead.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  Edit->eliminateDeadDefs(Dead, None, &AA);
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
 | 
						|
  // Fast-path for common case.
 | 
						|
  if (!ParentVNI.isPHIDef()) {
 | 
						|
    for (unsigned I = 0, E = Edit->size(); I != E; ++I)
 | 
						|
      forceRecompute(I, ParentVNI);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Trace value through phis.
 | 
						|
  SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
 | 
						|
  SmallVector<const VNInfo *, 4> WorkList;
 | 
						|
  Visited.insert(&ParentVNI);
 | 
						|
  WorkList.push_back(&ParentVNI);
 | 
						|
 | 
						|
  const LiveInterval &ParentLI = Edit->getParent();
 | 
						|
  const SlotIndexes &Indexes = *LIS.getSlotIndexes();
 | 
						|
  do {
 | 
						|
    const VNInfo &VNI = *WorkList.back();
 | 
						|
    WorkList.pop_back();
 | 
						|
    for (unsigned I = 0, E = Edit->size(); I != E; ++I)
 | 
						|
      forceRecompute(I, VNI);
 | 
						|
    if (!VNI.isPHIDef())
 | 
						|
      continue;
 | 
						|
 | 
						|
    MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
 | 
						|
    for (const MachineBasicBlock *Pred : MBB.predecessors()) {
 | 
						|
      SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
 | 
						|
      VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
 | 
						|
      assert(PredVNI && "Value available in PhiVNI predecessor");
 | 
						|
      if (Visited.insert(PredVNI).second)
 | 
						|
        WorkList.push_back(PredVNI);
 | 
						|
    }
 | 
						|
  } while(!WorkList.empty());
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
 | 
						|
  ++NumFinished;
 | 
						|
 | 
						|
  // At this point, the live intervals in Edit contain VNInfos corresponding to
 | 
						|
  // the inserted copies.
 | 
						|
 | 
						|
  // Add the original defs from the parent interval.
 | 
						|
  for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
 | 
						|
    if (ParentVNI->isUnused())
 | 
						|
      continue;
 | 
						|
    unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
 | 
						|
    defValue(RegIdx, ParentVNI, ParentVNI->def, true);
 | 
						|
 | 
						|
    // Force rematted values to be recomputed everywhere.
 | 
						|
    // The new live ranges may be truncated.
 | 
						|
    if (Edit->didRematerialize(ParentVNI))
 | 
						|
      forceRecomputeVNI(*ParentVNI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Hoist back-copies to the complement interval when in spill mode.
 | 
						|
  switch (SpillMode) {
 | 
						|
  case SM_Partition:
 | 
						|
    // Leave all back-copies as is.
 | 
						|
    break;
 | 
						|
  case SM_Size:
 | 
						|
  case SM_Speed:
 | 
						|
    // hoistCopies will behave differently between size and speed.
 | 
						|
    hoistCopies();
 | 
						|
  }
 | 
						|
 | 
						|
  // Transfer the simply mapped values, check if any are skipped.
 | 
						|
  bool Skipped = transferValues();
 | 
						|
 | 
						|
  // Rewrite virtual registers, possibly extending ranges.
 | 
						|
  rewriteAssigned(Skipped);
 | 
						|
 | 
						|
  if (Skipped)
 | 
						|
    extendPHIKillRanges();
 | 
						|
  else
 | 
						|
    ++NumSimple;
 | 
						|
 | 
						|
  // Delete defs that were rematted everywhere.
 | 
						|
  if (Skipped)
 | 
						|
    deleteRematVictims();
 | 
						|
 | 
						|
  // Get rid of unused values and set phi-kill flags.
 | 
						|
  for (Register Reg : *Edit) {
 | 
						|
    LiveInterval &LI = LIS.getInterval(Reg);
 | 
						|
    LI.removeEmptySubRanges();
 | 
						|
    LI.RenumberValues();
 | 
						|
  }
 | 
						|
 | 
						|
  // Provide a reverse mapping from original indices to Edit ranges.
 | 
						|
  if (LRMap) {
 | 
						|
    LRMap->clear();
 | 
						|
    for (unsigned i = 0, e = Edit->size(); i != e; ++i)
 | 
						|
      LRMap->push_back(i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now check if any registers were separated into multiple components.
 | 
						|
  ConnectedVNInfoEqClasses ConEQ(LIS);
 | 
						|
  for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
 | 
						|
    // Don't use iterators, they are invalidated by create() below.
 | 
						|
    Register VReg = Edit->get(i);
 | 
						|
    LiveInterval &LI = LIS.getInterval(VReg);
 | 
						|
    SmallVector<LiveInterval*, 8> SplitLIs;
 | 
						|
    LIS.splitSeparateComponents(LI, SplitLIs);
 | 
						|
    Register Original = VRM.getOriginal(VReg);
 | 
						|
    for (LiveInterval *SplitLI : SplitLIs)
 | 
						|
      VRM.setIsSplitFromReg(SplitLI->reg(), Original);
 | 
						|
 | 
						|
    // The new intervals all map back to i.
 | 
						|
    if (LRMap)
 | 
						|
      LRMap->resize(Edit->size(), i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate spill weight and allocation hints for new intervals.
 | 
						|
  Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
 | 
						|
 | 
						|
  assert(!LRMap || LRMap->size() == Edit->size());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                            Single Block Splitting
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
 | 
						|
                                           bool SingleInstrs) const {
 | 
						|
  // Always split for multiple instructions.
 | 
						|
  if (!BI.isOneInstr())
 | 
						|
    return true;
 | 
						|
  // Don't split for single instructions unless explicitly requested.
 | 
						|
  if (!SingleInstrs)
 | 
						|
    return false;
 | 
						|
  // Splitting a live-through range always makes progress.
 | 
						|
  if (BI.LiveIn && BI.LiveOut)
 | 
						|
    return true;
 | 
						|
  // No point in isolating a copy. It has no register class constraints.
 | 
						|
  if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
 | 
						|
    return false;
 | 
						|
  // Finally, don't isolate an end point that was created by earlier splits.
 | 
						|
  return isOriginalEndpoint(BI.FirstInstr);
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
 | 
						|
  openIntv();
 | 
						|
  SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
 | 
						|
  SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
 | 
						|
    LastSplitPoint));
 | 
						|
  if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
 | 
						|
    useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
 | 
						|
  } else {
 | 
						|
      // The last use is after the last valid split point.
 | 
						|
    SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
 | 
						|
    useIntv(SegStart, SegStop);
 | 
						|
    overlapIntv(SegStop, BI.LastInstr);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                    Global Live Range Splitting Support
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// These methods support a method of global live range splitting that uses a
 | 
						|
// global algorithm to decide intervals for CFG edges. They will insert split
 | 
						|
// points and color intervals in basic blocks while avoiding interference.
 | 
						|
//
 | 
						|
// Note that splitSingleBlock is also useful for blocks where both CFG edges
 | 
						|
// are on the stack.
 | 
						|
 | 
						|
void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
 | 
						|
                                        unsigned IntvIn, SlotIndex LeaveBefore,
 | 
						|
                                        unsigned IntvOut, SlotIndex EnterAfter){
 | 
						|
  SlotIndex Start, Stop;
 | 
						|
  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
 | 
						|
                    << ") intf " << LeaveBefore << '-' << EnterAfter
 | 
						|
                    << ", live-through " << IntvIn << " -> " << IntvOut);
 | 
						|
 | 
						|
  assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
 | 
						|
 | 
						|
  assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
 | 
						|
  assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
 | 
						|
  assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
 | 
						|
 | 
						|
  MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
 | 
						|
 | 
						|
  if (!IntvOut) {
 | 
						|
    LLVM_DEBUG(dbgs() << ", spill on entry.\n");
 | 
						|
    //
 | 
						|
    //        <<<<<<<<<    Possible LeaveBefore interference.
 | 
						|
    //    |-----------|    Live through.
 | 
						|
    //    -____________    Spill on entry.
 | 
						|
    //
 | 
						|
    selectIntv(IntvIn);
 | 
						|
    SlotIndex Idx = leaveIntvAtTop(*MBB);
 | 
						|
    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
 | 
						|
    (void)Idx;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IntvIn) {
 | 
						|
    LLVM_DEBUG(dbgs() << ", reload on exit.\n");
 | 
						|
    //
 | 
						|
    //    >>>>>>>          Possible EnterAfter interference.
 | 
						|
    //    |-----------|    Live through.
 | 
						|
    //    ___________--    Reload on exit.
 | 
						|
    //
 | 
						|
    selectIntv(IntvOut);
 | 
						|
    SlotIndex Idx = enterIntvAtEnd(*MBB);
 | 
						|
    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
 | 
						|
    (void)Idx;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
 | 
						|
    LLVM_DEBUG(dbgs() << ", straight through.\n");
 | 
						|
    //
 | 
						|
    //    |-----------|    Live through.
 | 
						|
    //    -------------    Straight through, same intv, no interference.
 | 
						|
    //
 | 
						|
    selectIntv(IntvOut);
 | 
						|
    useIntv(Start, Stop);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We cannot legally insert splits after LSP.
 | 
						|
  SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
 | 
						|
  assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
 | 
						|
 | 
						|
  if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
 | 
						|
                  LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
 | 
						|
    LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
 | 
						|
    //
 | 
						|
    //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
 | 
						|
    //    |-----------|    Live through.
 | 
						|
    //    ------=======    Switch intervals between interference.
 | 
						|
    //
 | 
						|
    selectIntv(IntvOut);
 | 
						|
    SlotIndex Idx;
 | 
						|
    if (LeaveBefore && LeaveBefore < LSP) {
 | 
						|
      Idx = enterIntvBefore(LeaveBefore);
 | 
						|
      useIntv(Idx, Stop);
 | 
						|
    } else {
 | 
						|
      Idx = enterIntvAtEnd(*MBB);
 | 
						|
    }
 | 
						|
    selectIntv(IntvIn);
 | 
						|
    useIntv(Start, Idx);
 | 
						|
    assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
 | 
						|
    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
 | 
						|
  //
 | 
						|
  //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
 | 
						|
  //    |-----------|    Live through.
 | 
						|
  //    ==---------==    Switch intervals before/after interference.
 | 
						|
  //
 | 
						|
  assert(LeaveBefore <= EnterAfter && "Missed case");
 | 
						|
 | 
						|
  selectIntv(IntvOut);
 | 
						|
  SlotIndex Idx = enterIntvAfter(EnterAfter);
 | 
						|
  useIntv(Idx, Stop);
 | 
						|
  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
 | 
						|
 | 
						|
  selectIntv(IntvIn);
 | 
						|
  Idx = leaveIntvBefore(LeaveBefore);
 | 
						|
  useIntv(Start, Idx);
 | 
						|
  assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
 | 
						|
                                  unsigned IntvIn, SlotIndex LeaveBefore) {
 | 
						|
  SlotIndex Start, Stop;
 | 
						|
  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
 | 
						|
                    << Stop << "), uses " << BI.FirstInstr << '-'
 | 
						|
                    << BI.LastInstr << ", reg-in " << IntvIn
 | 
						|
                    << ", leave before " << LeaveBefore
 | 
						|
                    << (BI.LiveOut ? ", stack-out" : ", killed in block"));
 | 
						|
 | 
						|
  assert(IntvIn && "Must have register in");
 | 
						|
  assert(BI.LiveIn && "Must be live-in");
 | 
						|
  assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
 | 
						|
 | 
						|
  if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
 | 
						|
    LLVM_DEBUG(dbgs() << " before interference.\n");
 | 
						|
    //
 | 
						|
    //               <<<    Interference after kill.
 | 
						|
    //     |---o---x   |    Killed in block.
 | 
						|
    //     =========        Use IntvIn everywhere.
 | 
						|
    //
 | 
						|
    selectIntv(IntvIn);
 | 
						|
    useIntv(Start, BI.LastInstr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
 | 
						|
 | 
						|
  if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
 | 
						|
    //
 | 
						|
    //               <<<    Possible interference after last use.
 | 
						|
    //     |---o---o---|    Live-out on stack.
 | 
						|
    //     =========____    Leave IntvIn after last use.
 | 
						|
    //
 | 
						|
    //                 <    Interference after last use.
 | 
						|
    //     |---o---o--o|    Live-out on stack, late last use.
 | 
						|
    //     ============     Copy to stack after LSP, overlap IntvIn.
 | 
						|
    //            \_____    Stack interval is live-out.
 | 
						|
    //
 | 
						|
    if (BI.LastInstr < LSP) {
 | 
						|
      LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
 | 
						|
      selectIntv(IntvIn);
 | 
						|
      SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
 | 
						|
      useIntv(Start, Idx);
 | 
						|
      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
 | 
						|
    } else {
 | 
						|
      LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
 | 
						|
      selectIntv(IntvIn);
 | 
						|
      SlotIndex Idx = leaveIntvBefore(LSP);
 | 
						|
      overlapIntv(Idx, BI.LastInstr);
 | 
						|
      useIntv(Start, Idx);
 | 
						|
      assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The interference is overlapping somewhere we wanted to use IntvIn. That
 | 
						|
  // means we need to create a local interval that can be allocated a
 | 
						|
  // different register.
 | 
						|
  unsigned LocalIntv = openIntv();
 | 
						|
  (void)LocalIntv;
 | 
						|
  LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
 | 
						|
 | 
						|
  if (!BI.LiveOut || BI.LastInstr < LSP) {
 | 
						|
    //
 | 
						|
    //           <<<<<<<    Interference overlapping uses.
 | 
						|
    //     |---o---o---|    Live-out on stack.
 | 
						|
    //     =====----____    Leave IntvIn before interference, then spill.
 | 
						|
    //
 | 
						|
    SlotIndex To = leaveIntvAfter(BI.LastInstr);
 | 
						|
    SlotIndex From = enterIntvBefore(LeaveBefore);
 | 
						|
    useIntv(From, To);
 | 
						|
    selectIntv(IntvIn);
 | 
						|
    useIntv(Start, From);
 | 
						|
    assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  //           <<<<<<<    Interference overlapping uses.
 | 
						|
  //     |---o---o--o|    Live-out on stack, late last use.
 | 
						|
  //     =====-------     Copy to stack before LSP, overlap LocalIntv.
 | 
						|
  //            \_____    Stack interval is live-out.
 | 
						|
  //
 | 
						|
  SlotIndex To = leaveIntvBefore(LSP);
 | 
						|
  overlapIntv(To, BI.LastInstr);
 | 
						|
  SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
 | 
						|
  useIntv(From, To);
 | 
						|
  selectIntv(IntvIn);
 | 
						|
  useIntv(Start, From);
 | 
						|
  assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
 | 
						|
}
 | 
						|
 | 
						|
void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
 | 
						|
                                   unsigned IntvOut, SlotIndex EnterAfter) {
 | 
						|
  SlotIndex Start, Stop;
 | 
						|
  std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
 | 
						|
                    << Stop << "), uses " << BI.FirstInstr << '-'
 | 
						|
                    << BI.LastInstr << ", reg-out " << IntvOut
 | 
						|
                    << ", enter after " << EnterAfter
 | 
						|
                    << (BI.LiveIn ? ", stack-in" : ", defined in block"));
 | 
						|
 | 
						|
  SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
 | 
						|
 | 
						|
  assert(IntvOut && "Must have register out");
 | 
						|
  assert(BI.LiveOut && "Must be live-out");
 | 
						|
  assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
 | 
						|
 | 
						|
  if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
 | 
						|
    LLVM_DEBUG(dbgs() << " after interference.\n");
 | 
						|
    //
 | 
						|
    //    >>>>             Interference before def.
 | 
						|
    //    |   o---o---|    Defined in block.
 | 
						|
    //        =========    Use IntvOut everywhere.
 | 
						|
    //
 | 
						|
    selectIntv(IntvOut);
 | 
						|
    useIntv(BI.FirstInstr, Stop);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
 | 
						|
    LLVM_DEBUG(dbgs() << ", reload after interference.\n");
 | 
						|
    //
 | 
						|
    //    >>>>             Interference before def.
 | 
						|
    //    |---o---o---|    Live-through, stack-in.
 | 
						|
    //    ____=========    Enter IntvOut before first use.
 | 
						|
    //
 | 
						|
    selectIntv(IntvOut);
 | 
						|
    SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
 | 
						|
    useIntv(Idx, Stop);
 | 
						|
    assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // The interference is overlapping somewhere we wanted to use IntvOut. That
 | 
						|
  // means we need to create a local interval that can be allocated a
 | 
						|
  // different register.
 | 
						|
  LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
 | 
						|
  //
 | 
						|
  //    >>>>>>>          Interference overlapping uses.
 | 
						|
  //    |---o---o---|    Live-through, stack-in.
 | 
						|
  //    ____---======    Create local interval for interference range.
 | 
						|
  //
 | 
						|
  selectIntv(IntvOut);
 | 
						|
  SlotIndex Idx = enterIntvAfter(EnterAfter);
 | 
						|
  useIntv(Idx, Stop);
 | 
						|
  assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
 | 
						|
 | 
						|
  openIntv();
 | 
						|
  SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
 | 
						|
  useIntv(From, Idx);
 | 
						|
}
 | 
						|
 | 
						|
void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
 | 
						|
  OS << "{" << printMBBReference(*MBB) << ", "
 | 
						|
     << "uses " << FirstInstr << " to " << LastInstr << ", "
 | 
						|
     << "1st def " << FirstDef << ", "
 | 
						|
     << (LiveIn ? "live in" : "dead in") << ", "
 | 
						|
     << (LiveOut ? "live out" : "dead out") << "}";
 | 
						|
}
 | 
						|
 | 
						|
void SplitAnalysis::BlockInfo::dump() const {
 | 
						|
  print(dbgs());
 | 
						|
  dbgs() << "\n";
 | 
						|
}
 |