270 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			270 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. --===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements a MachineFunctionPass that inserts the appropriate
 | 
						|
// XRay instrumentation instructions. We look for XRay-specific attributes
 | 
						|
// on the function to determine whether we should insert the replacement
 | 
						|
// operations.
 | 
						|
//
 | 
						|
//===---------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Triple.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetInstrInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct InstrumentationOptions {
 | 
						|
  // Whether to emit PATCHABLE_TAIL_CALL.
 | 
						|
  bool HandleTailcall;
 | 
						|
 | 
						|
  // Whether to emit PATCHABLE_RET/PATCHABLE_FUNCTION_EXIT for all forms of
 | 
						|
  // return, e.g. conditional return.
 | 
						|
  bool HandleAllReturns;
 | 
						|
};
 | 
						|
 | 
						|
struct XRayInstrumentation : public MachineFunctionPass {
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  XRayInstrumentation() : MachineFunctionPass(ID) {
 | 
						|
    initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addPreserved<MachineLoopInfo>();
 | 
						|
    AU.addPreserved<MachineDominatorTree>();
 | 
						|
    MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
private:
 | 
						|
  // Replace the original RET instruction with the exit sled code ("patchable
 | 
						|
  //   ret" pseudo-instruction), so that at runtime XRay can replace the sled
 | 
						|
  //   with a code jumping to XRay trampoline, which calls the tracing handler
 | 
						|
  //   and, in the end, issues the RET instruction.
 | 
						|
  // This is the approach to go on CPUs which have a single RET instruction,
 | 
						|
  //   like x86/x86_64.
 | 
						|
  void replaceRetWithPatchableRet(MachineFunction &MF,
 | 
						|
                                  const TargetInstrInfo *TII,
 | 
						|
                                  InstrumentationOptions);
 | 
						|
 | 
						|
  // Prepend the original return instruction with the exit sled code ("patchable
 | 
						|
  //   function exit" pseudo-instruction), preserving the original return
 | 
						|
  //   instruction just after the exit sled code.
 | 
						|
  // This is the approach to go on CPUs which have multiple options for the
 | 
						|
  //   return instruction, like ARM. For such CPUs we can't just jump into the
 | 
						|
  //   XRay trampoline and issue a single return instruction there. We rather
 | 
						|
  //   have to call the trampoline and return from it to the original return
 | 
						|
  //   instruction of the function being instrumented.
 | 
						|
  void prependRetWithPatchableExit(MachineFunction &MF,
 | 
						|
                                   const TargetInstrInfo *TII,
 | 
						|
                                   InstrumentationOptions);
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
void XRayInstrumentation::replaceRetWithPatchableRet(
 | 
						|
    MachineFunction &MF, const TargetInstrInfo *TII,
 | 
						|
    InstrumentationOptions op) {
 | 
						|
  // We look for *all* terminators and returns, then replace those with
 | 
						|
  // PATCHABLE_RET instructions.
 | 
						|
  SmallVector<MachineInstr *, 4> Terminators;
 | 
						|
  for (auto &MBB : MF) {
 | 
						|
    for (auto &T : MBB.terminators()) {
 | 
						|
      unsigned Opc = 0;
 | 
						|
      if (T.isReturn() &&
 | 
						|
          (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
 | 
						|
        // Replace return instructions with:
 | 
						|
        //   PATCHABLE_RET <Opcode>, <Operand>...
 | 
						|
        Opc = TargetOpcode::PATCHABLE_RET;
 | 
						|
      }
 | 
						|
      if (TII->isTailCall(T) && op.HandleTailcall) {
 | 
						|
        // Treat the tail call as a return instruction, which has a
 | 
						|
        // different-looking sled than the normal return case.
 | 
						|
        Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
 | 
						|
      }
 | 
						|
      if (Opc != 0) {
 | 
						|
        auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc))
 | 
						|
                       .addImm(T.getOpcode());
 | 
						|
        for (auto &MO : T.operands())
 | 
						|
          MIB.add(MO);
 | 
						|
        Terminators.push_back(&T);
 | 
						|
        if (T.shouldUpdateCallSiteInfo())
 | 
						|
          MF.eraseCallSiteInfo(&T);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto &I : Terminators)
 | 
						|
    I->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
void XRayInstrumentation::prependRetWithPatchableExit(
 | 
						|
    MachineFunction &MF, const TargetInstrInfo *TII,
 | 
						|
    InstrumentationOptions op) {
 | 
						|
  for (auto &MBB : MF)
 | 
						|
    for (auto &T : MBB.terminators()) {
 | 
						|
      unsigned Opc = 0;
 | 
						|
      if (T.isReturn() &&
 | 
						|
          (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
 | 
						|
        Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT;
 | 
						|
      }
 | 
						|
      if (TII->isTailCall(T) && op.HandleTailcall) {
 | 
						|
        Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
 | 
						|
      }
 | 
						|
      if (Opc != 0) {
 | 
						|
        // Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or
 | 
						|
        //   PATCHABLE_TAIL_CALL .
 | 
						|
        BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc));
 | 
						|
      }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  auto &F = MF.getFunction();
 | 
						|
  auto InstrAttr = F.getFnAttribute("function-instrument");
 | 
						|
  bool AlwaysInstrument = InstrAttr.isStringAttribute() &&
 | 
						|
                          InstrAttr.getValueAsString() == "xray-always";
 | 
						|
  bool NeverInstrument = InstrAttr.isStringAttribute() &&
 | 
						|
                         InstrAttr.getValueAsString() == "xray-never";
 | 
						|
  if (NeverInstrument && !AlwaysInstrument)
 | 
						|
    return false;
 | 
						|
  auto ThresholdAttr = F.getFnAttribute("xray-instruction-threshold");
 | 
						|
  auto IgnoreLoopsAttr = F.getFnAttribute("xray-ignore-loops");
 | 
						|
  unsigned int XRayThreshold = 0;
 | 
						|
  if (!AlwaysInstrument) {
 | 
						|
    if (!ThresholdAttr.isStringAttribute())
 | 
						|
      return false; // XRay threshold attribute not found.
 | 
						|
    if (ThresholdAttr.getValueAsString().getAsInteger(10, XRayThreshold))
 | 
						|
      return false; // Invalid value for threshold.
 | 
						|
 | 
						|
    bool IgnoreLoops = IgnoreLoopsAttr.isValid();
 | 
						|
 | 
						|
    // Count the number of MachineInstr`s in MachineFunction
 | 
						|
    int64_t MICount = 0;
 | 
						|
    for (const auto &MBB : MF)
 | 
						|
      MICount += MBB.size();
 | 
						|
 | 
						|
    bool TooFewInstrs = MICount < XRayThreshold;
 | 
						|
 | 
						|
    if (!IgnoreLoops) {
 | 
						|
      // Get MachineDominatorTree or compute it on the fly if it's unavailable
 | 
						|
      auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>();
 | 
						|
      MachineDominatorTree ComputedMDT;
 | 
						|
      if (!MDT) {
 | 
						|
        ComputedMDT.getBase().recalculate(MF);
 | 
						|
        MDT = &ComputedMDT;
 | 
						|
      }
 | 
						|
 | 
						|
      // Get MachineLoopInfo or compute it on the fly if it's unavailable
 | 
						|
      auto *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
 | 
						|
      MachineLoopInfo ComputedMLI;
 | 
						|
      if (!MLI) {
 | 
						|
        ComputedMLI.getBase().analyze(MDT->getBase());
 | 
						|
        MLI = &ComputedMLI;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check if we have a loop.
 | 
						|
      // FIXME: Maybe make this smarter, and see whether the loops are dependent
 | 
						|
      // on inputs or side-effects?
 | 
						|
      if (MLI->empty() && TooFewInstrs)
 | 
						|
        return false; // Function is too small and has no loops.
 | 
						|
    } else if (TooFewInstrs) {
 | 
						|
      // Function is too small
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We look for the first non-empty MachineBasicBlock, so that we can insert
 | 
						|
  // the function instrumentation in the appropriate place.
 | 
						|
  auto MBI = llvm::find_if(
 | 
						|
      MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); });
 | 
						|
  if (MBI == MF.end())
 | 
						|
    return false; // The function is empty.
 | 
						|
 | 
						|
  auto *TII = MF.getSubtarget().getInstrInfo();
 | 
						|
  auto &FirstMBB = *MBI;
 | 
						|
  auto &FirstMI = *FirstMBB.begin();
 | 
						|
 | 
						|
  if (!MF.getSubtarget().isXRaySupported()) {
 | 
						|
    FirstMI.emitError("An attempt to perform XRay instrumentation for an"
 | 
						|
                      " unsupported target.");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!F.hasFnAttribute("xray-skip-entry")) {
 | 
						|
    // First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the
 | 
						|
    // MachineFunction.
 | 
						|
    BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(),
 | 
						|
            TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER));
 | 
						|
  }
 | 
						|
 | 
						|
  if (!F.hasFnAttribute("xray-skip-exit")) {
 | 
						|
    switch (MF.getTarget().getTargetTriple().getArch()) {
 | 
						|
    case Triple::ArchType::arm:
 | 
						|
    case Triple::ArchType::thumb:
 | 
						|
    case Triple::ArchType::aarch64:
 | 
						|
    case Triple::ArchType::hexagon:
 | 
						|
    case Triple::ArchType::mips:
 | 
						|
    case Triple::ArchType::mipsel:
 | 
						|
    case Triple::ArchType::mips64:
 | 
						|
    case Triple::ArchType::mips64el: {
 | 
						|
      // For the architectures which don't have a single return instruction
 | 
						|
      InstrumentationOptions op;
 | 
						|
      op.HandleTailcall = false;
 | 
						|
      op.HandleAllReturns = true;
 | 
						|
      prependRetWithPatchableExit(MF, TII, op);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Triple::ArchType::ppc64le: {
 | 
						|
      // PPC has conditional returns. Turn them into branch and plain returns.
 | 
						|
      InstrumentationOptions op;
 | 
						|
      op.HandleTailcall = false;
 | 
						|
      op.HandleAllReturns = true;
 | 
						|
      replaceRetWithPatchableRet(MF, TII, op);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default: {
 | 
						|
      // For the architectures that have a single return instruction (such as
 | 
						|
      //   RETQ on x86_64).
 | 
						|
      InstrumentationOptions op;
 | 
						|
      op.HandleTailcall = true;
 | 
						|
      op.HandleAllReturns = false;
 | 
						|
      replaceRetWithPatchableRet(MF, TII, op);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
char XRayInstrumentation::ID = 0;
 | 
						|
char &llvm::XRayInstrumentationID = XRayInstrumentation::ID;
 | 
						|
INITIALIZE_PASS_BEGIN(XRayInstrumentation, "xray-instrumentation",
 | 
						|
                      "Insert XRay ops", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_PASS_END(XRayInstrumentation, "xray-instrumentation",
 | 
						|
                    "Insert XRay ops", false, false)
 |