108 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
	
//===----- DivisonByConstantInfo.cpp - division by constant -*- C++ -*-----===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// This file implements support for optimizing divisions by a constant
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Support/DivisionByConstantInfo.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// Calculate the magic numbers required to implement a signed integer division
 | 
						|
/// by a constant as a sequence of multiplies, adds and shifts.  Requires that
 | 
						|
/// the divisor not be 0, 1, or -1.  Taken from "Hacker's Delight", Henry S.
 | 
						|
/// Warren, Jr., Chapter 10.
 | 
						|
SignedDivisionByConstantInfo SignedDivisionByConstantInfo::get(const APInt &D) {
 | 
						|
  unsigned P;
 | 
						|
  APInt AD, ANC, Delta, Q1, R1, Q2, R2, T;
 | 
						|
  APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
 | 
						|
  struct SignedDivisionByConstantInfo Retval;
 | 
						|
 | 
						|
  AD = D.abs();
 | 
						|
  T = SignedMin + (D.lshr(D.getBitWidth() - 1));
 | 
						|
  ANC = T - 1 - T.urem(AD);  // absolute value of NC
 | 
						|
  P = D.getBitWidth() - 1;   // initialize P
 | 
						|
  Q1 = SignedMin.udiv(ANC);  // initialize Q1 = 2P/abs(NC)
 | 
						|
  R1 = SignedMin - Q1 * ANC; // initialize R1 = rem(2P,abs(NC))
 | 
						|
  Q2 = SignedMin.udiv(AD);   // initialize Q2 = 2P/abs(D)
 | 
						|
  R2 = SignedMin - Q2 * AD;  // initialize R2 = rem(2P,abs(D))
 | 
						|
  do {
 | 
						|
    P = P + 1;
 | 
						|
    Q1 = Q1 << 1;      // update Q1 = 2P/abs(NC)
 | 
						|
    R1 = R1 << 1;      // update R1 = rem(2P/abs(NC))
 | 
						|
    if (R1.uge(ANC)) { // must be unsigned comparison
 | 
						|
      Q1 = Q1 + 1;
 | 
						|
      R1 = R1 - ANC;
 | 
						|
    }
 | 
						|
    Q2 = Q2 << 1;     // update Q2 = 2P/abs(D)
 | 
						|
    R2 = R2 << 1;     // update R2 = rem(2P/abs(D))
 | 
						|
    if (R2.uge(AD)) { // must be unsigned comparison
 | 
						|
      Q2 = Q2 + 1;
 | 
						|
      R2 = R2 - AD;
 | 
						|
    }
 | 
						|
    Delta = AD - R2;
 | 
						|
  } while (Q1.ult(Delta) || (Q1 == Delta && R1 == 0));
 | 
						|
 | 
						|
  Retval.Magic = Q2 + 1;
 | 
						|
  if (D.isNegative())
 | 
						|
    Retval.Magic = -Retval.Magic;           // resulting magic number
 | 
						|
  Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
 | 
						|
  return Retval;
 | 
						|
}
 | 
						|
 | 
						|
/// Calculate the magic numbers required to implement an unsigned integer
 | 
						|
/// division by a constant as a sequence of multiplies, adds and shifts.
 | 
						|
/// Requires that the divisor not be 0.  Taken from "Hacker's Delight", Henry
 | 
						|
/// S. Warren, Jr., chapter 10.
 | 
						|
/// LeadingZeros can be used to simplify the calculation if the upper bits
 | 
						|
/// of the divided value are known zero.
 | 
						|
UnsignedDivisonByConstantInfo
 | 
						|
UnsignedDivisonByConstantInfo::get(const APInt &D, unsigned LeadingZeros) {
 | 
						|
  unsigned P;
 | 
						|
  APInt NC, Delta, Q1, R1, Q2, R2;
 | 
						|
  struct UnsignedDivisonByConstantInfo Retval;
 | 
						|
  Retval.IsAdd = false; // initialize "add" indicator
 | 
						|
  APInt AllOnes = APInt::getAllOnes(D.getBitWidth()).lshr(LeadingZeros);
 | 
						|
  APInt SignedMin = APInt::getSignedMinValue(D.getBitWidth());
 | 
						|
  APInt SignedMax = APInt::getSignedMaxValue(D.getBitWidth());
 | 
						|
 | 
						|
  NC = AllOnes - (AllOnes - D).urem(D);
 | 
						|
  P = D.getBitWidth() - 1;  // initialize P
 | 
						|
  Q1 = SignedMin.udiv(NC);  // initialize Q1 = 2P/NC
 | 
						|
  R1 = SignedMin - Q1 * NC; // initialize R1 = rem(2P,NC)
 | 
						|
  Q2 = SignedMax.udiv(D);   // initialize Q2 = (2P-1)/D
 | 
						|
  R2 = SignedMax - Q2 * D;  // initialize R2 = rem((2P-1),D)
 | 
						|
  do {
 | 
						|
    P = P + 1;
 | 
						|
    if (R1.uge(NC - R1)) {
 | 
						|
      Q1 = Q1 + Q1 + 1;  // update Q1
 | 
						|
      R1 = R1 + R1 - NC; // update R1
 | 
						|
    } else {
 | 
						|
      Q1 = Q1 + Q1; // update Q1
 | 
						|
      R1 = R1 + R1; // update R1
 | 
						|
    }
 | 
						|
    if ((R2 + 1).uge(D - R2)) {
 | 
						|
      if (Q2.uge(SignedMax))
 | 
						|
        Retval.IsAdd = true;
 | 
						|
      Q2 = Q2 + Q2 + 1;     // update Q2
 | 
						|
      R2 = R2 + R2 + 1 - D; // update R2
 | 
						|
    } else {
 | 
						|
      if (Q2.uge(SignedMin))
 | 
						|
        Retval.IsAdd = true;
 | 
						|
      Q2 = Q2 + Q2;     // update Q2
 | 
						|
      R2 = R2 + R2 + 1; // update R2
 | 
						|
    }
 | 
						|
    Delta = D - 1 - R2;
 | 
						|
  } while (P < D.getBitWidth() * 2 &&
 | 
						|
           (Q1.ult(Delta) || (Q1 == Delta && R1 == 0)));
 | 
						|
  Retval.Magic = Q2 + 1;                    // resulting magic number
 | 
						|
  Retval.ShiftAmount = P - D.getBitWidth(); // resulting shift
 | 
						|
  return Retval;
 | 
						|
}
 |