5530 lines
		
	
	
		
			204 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			5530 lines
		
	
	
		
			204 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains the PowerPC implementation of the TargetInstrInfo class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPCInstrInfo.h"
 | 
						|
#include "MCTargetDesc/PPCPredicates.h"
 | 
						|
#include "PPC.h"
 | 
						|
#include "PPCHazardRecognizers.h"
 | 
						|
#include "PPCInstrBuilder.h"
 | 
						|
#include "PPCMachineFunctionInfo.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervals.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/RegisterClassInfo.h"
 | 
						|
#include "llvm/CodeGen/RegisterPressure.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CodeGen/SlotIndexes.h"
 | 
						|
#include "llvm/CodeGen/StackMaps.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/MC/MCInst.h"
 | 
						|
#include "llvm/MC/TargetRegistry.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppc-instr-info"
 | 
						|
 | 
						|
#define GET_INSTRMAP_INFO
 | 
						|
#define GET_INSTRINFO_CTOR_DTOR
 | 
						|
#include "PPCGenInstrInfo.inc"
 | 
						|
 | 
						|
STATISTIC(NumStoreSPILLVSRRCAsVec,
 | 
						|
          "Number of spillvsrrc spilled to stack as vec");
 | 
						|
STATISTIC(NumStoreSPILLVSRRCAsGpr,
 | 
						|
          "Number of spillvsrrc spilled to stack as gpr");
 | 
						|
STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
 | 
						|
STATISTIC(CmpIselsConverted,
 | 
						|
          "Number of ISELs that depend on comparison of constants converted");
 | 
						|
STATISTIC(MissedConvertibleImmediateInstrs,
 | 
						|
          "Number of compare-immediate instructions fed by constants");
 | 
						|
STATISTIC(NumRcRotatesConvertedToRcAnd,
 | 
						|
          "Number of record-form rotates converted to record-form andi");
 | 
						|
 | 
						|
static cl::
 | 
						|
opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
 | 
						|
            cl::desc("Disable analysis for CTR loops"));
 | 
						|
 | 
						|
static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
 | 
						|
cl::desc("Disable compare instruction optimization"), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
 | 
						|
cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
 | 
						|
cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
 | 
						|
  cl::desc("Use the old (incorrect) instruction latency calculation"));
 | 
						|
 | 
						|
static cl::opt<float>
 | 
						|
    FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
 | 
						|
                cl::desc("register pressure factor for the transformations."));
 | 
						|
 | 
						|
static cl::opt<bool> EnableFMARegPressureReduction(
 | 
						|
    "ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
 | 
						|
    cl::desc("enable register pressure reduce in machine combiner pass."));
 | 
						|
 | 
						|
// Pin the vtable to this file.
 | 
						|
void PPCInstrInfo::anchor() {}
 | 
						|
 | 
						|
PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
 | 
						|
    : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
 | 
						|
                      /* CatchRetOpcode */ -1,
 | 
						|
                      STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
 | 
						|
      Subtarget(STI), RI(STI.getTargetMachine()) {}
 | 
						|
 | 
						|
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
 | 
						|
/// this target when scheduling the DAG.
 | 
						|
ScheduleHazardRecognizer *
 | 
						|
PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
 | 
						|
                                           const ScheduleDAG *DAG) const {
 | 
						|
  unsigned Directive =
 | 
						|
      static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
 | 
						|
  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
 | 
						|
      Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
 | 
						|
    const InstrItineraryData *II =
 | 
						|
        static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
 | 
						|
    return new ScoreboardHazardRecognizer(II, DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
 | 
						|
}
 | 
						|
 | 
						|
/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
 | 
						|
/// to use for this target when scheduling the DAG.
 | 
						|
ScheduleHazardRecognizer *
 | 
						|
PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
 | 
						|
                                                 const ScheduleDAG *DAG) const {
 | 
						|
  unsigned Directive =
 | 
						|
      DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
 | 
						|
 | 
						|
  // FIXME: Leaving this as-is until we have POWER9 scheduling info
 | 
						|
  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
 | 
						|
    return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
 | 
						|
 | 
						|
  // Most subtargets use a PPC970 recognizer.
 | 
						|
  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
 | 
						|
      Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
 | 
						|
    assert(DAG->TII && "No InstrInfo?");
 | 
						|
 | 
						|
    return new PPCHazardRecognizer970(*DAG);
 | 
						|
  }
 | 
						|
 | 
						|
  return new ScoreboardHazardRecognizer(II, DAG);
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
 | 
						|
                                       const MachineInstr &MI,
 | 
						|
                                       unsigned *PredCost) const {
 | 
						|
  if (!ItinData || UseOldLatencyCalc)
 | 
						|
    return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
 | 
						|
 | 
						|
  // The default implementation of getInstrLatency calls getStageLatency, but
 | 
						|
  // getStageLatency does not do the right thing for us. While we have
 | 
						|
  // itinerary, most cores are fully pipelined, and so the itineraries only
 | 
						|
  // express the first part of the pipeline, not every stage. Instead, we need
 | 
						|
  // to use the listed output operand cycle number (using operand 0 here, which
 | 
						|
  // is an output).
 | 
						|
 | 
						|
  unsigned Latency = 1;
 | 
						|
  unsigned DefClass = MI.getDesc().getSchedClass();
 | 
						|
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
 | 
						|
    const MachineOperand &MO = MI.getOperand(i);
 | 
						|
    if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
 | 
						|
      continue;
 | 
						|
 | 
						|
    int Cycle = ItinData->getOperandCycle(DefClass, i);
 | 
						|
    if (Cycle < 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Latency = std::max(Latency, (unsigned) Cycle);
 | 
						|
  }
 | 
						|
 | 
						|
  return Latency;
 | 
						|
}
 | 
						|
 | 
						|
int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
 | 
						|
                                    const MachineInstr &DefMI, unsigned DefIdx,
 | 
						|
                                    const MachineInstr &UseMI,
 | 
						|
                                    unsigned UseIdx) const {
 | 
						|
  int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
 | 
						|
                                                   UseMI, UseIdx);
 | 
						|
 | 
						|
  if (!DefMI.getParent())
 | 
						|
    return Latency;
 | 
						|
 | 
						|
  const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
 | 
						|
  Register Reg = DefMO.getReg();
 | 
						|
 | 
						|
  bool IsRegCR;
 | 
						|
  if (Register::isVirtualRegister(Reg)) {
 | 
						|
    const MachineRegisterInfo *MRI =
 | 
						|
        &DefMI.getParent()->getParent()->getRegInfo();
 | 
						|
    IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
 | 
						|
              MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
 | 
						|
  } else {
 | 
						|
    IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
 | 
						|
              PPC::CRBITRCRegClass.contains(Reg);
 | 
						|
  }
 | 
						|
 | 
						|
  if (UseMI.isBranch() && IsRegCR) {
 | 
						|
    if (Latency < 0)
 | 
						|
      Latency = getInstrLatency(ItinData, DefMI);
 | 
						|
 | 
						|
    // On some cores, there is an additional delay between writing to a condition
 | 
						|
    // register, and using it from a branch.
 | 
						|
    unsigned Directive = Subtarget.getCPUDirective();
 | 
						|
    switch (Directive) {
 | 
						|
    default: break;
 | 
						|
    case PPC::DIR_7400:
 | 
						|
    case PPC::DIR_750:
 | 
						|
    case PPC::DIR_970:
 | 
						|
    case PPC::DIR_E5500:
 | 
						|
    case PPC::DIR_PWR4:
 | 
						|
    case PPC::DIR_PWR5:
 | 
						|
    case PPC::DIR_PWR5X:
 | 
						|
    case PPC::DIR_PWR6:
 | 
						|
    case PPC::DIR_PWR6X:
 | 
						|
    case PPC::DIR_PWR7:
 | 
						|
    case PPC::DIR_PWR8:
 | 
						|
    // FIXME: Is this needed for POWER9?
 | 
						|
      Latency += 2;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Latency;
 | 
						|
}
 | 
						|
 | 
						|
/// This is an architecture-specific helper function of reassociateOps.
 | 
						|
/// Set special operand attributes for new instructions after reassociation.
 | 
						|
void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
 | 
						|
                                         MachineInstr &OldMI2,
 | 
						|
                                         MachineInstr &NewMI1,
 | 
						|
                                         MachineInstr &NewMI2) const {
 | 
						|
  // Propagate FP flags from the original instructions.
 | 
						|
  // But clear poison-generating flags because those may not be valid now.
 | 
						|
  uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
 | 
						|
  NewMI1.setFlags(IntersectedFlags);
 | 
						|
  NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
 | 
						|
  NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
 | 
						|
  NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
 | 
						|
 | 
						|
  NewMI2.setFlags(IntersectedFlags);
 | 
						|
  NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
 | 
						|
  NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
 | 
						|
  NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
 | 
						|
                                         uint16_t Flags) const {
 | 
						|
  MI.setFlags(Flags);
 | 
						|
  MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
 | 
						|
  MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
 | 
						|
  MI.clearFlag(MachineInstr::MIFlag::IsExact);
 | 
						|
}
 | 
						|
 | 
						|
// This function does not list all associative and commutative operations, but
 | 
						|
// only those worth feeding through the machine combiner in an attempt to
 | 
						|
// reduce the critical path. Mostly, this means floating-point operations,
 | 
						|
// because they have high latencies(>=5) (compared to other operations, such as
 | 
						|
// and/or, which are also associative and commutative, but have low latencies).
 | 
						|
bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
 | 
						|
  switch (Inst.getOpcode()) {
 | 
						|
  // Floating point:
 | 
						|
  // FP Add:
 | 
						|
  case PPC::FADD:
 | 
						|
  case PPC::FADDS:
 | 
						|
  // FP Multiply:
 | 
						|
  case PPC::FMUL:
 | 
						|
  case PPC::FMULS:
 | 
						|
  // Altivec Add:
 | 
						|
  case PPC::VADDFP:
 | 
						|
  // VSX Add:
 | 
						|
  case PPC::XSADDDP:
 | 
						|
  case PPC::XVADDDP:
 | 
						|
  case PPC::XVADDSP:
 | 
						|
  case PPC::XSADDSP:
 | 
						|
  // VSX Multiply:
 | 
						|
  case PPC::XSMULDP:
 | 
						|
  case PPC::XVMULDP:
 | 
						|
  case PPC::XVMULSP:
 | 
						|
  case PPC::XSMULSP:
 | 
						|
    return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
 | 
						|
           Inst.getFlag(MachineInstr::MIFlag::FmNsz);
 | 
						|
  // Fixed point:
 | 
						|
  // Multiply:
 | 
						|
  case PPC::MULHD:
 | 
						|
  case PPC::MULLD:
 | 
						|
  case PPC::MULHW:
 | 
						|
  case PPC::MULLW:
 | 
						|
    return true;
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#define InfoArrayIdxFMAInst 0
 | 
						|
#define InfoArrayIdxFAddInst 1
 | 
						|
#define InfoArrayIdxFMULInst 2
 | 
						|
#define InfoArrayIdxAddOpIdx 3
 | 
						|
#define InfoArrayIdxMULOpIdx 4
 | 
						|
#define InfoArrayIdxFSubInst 5
 | 
						|
// Array keeps info for FMA instructions:
 | 
						|
// Index 0(InfoArrayIdxFMAInst): FMA instruction;
 | 
						|
// Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
 | 
						|
// Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
 | 
						|
// Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
 | 
						|
// Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
 | 
						|
//                                second MUL operand index is plus 1;
 | 
						|
// Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
 | 
						|
static const uint16_t FMAOpIdxInfo[][6] = {
 | 
						|
    // FIXME: Add more FMA instructions like XSNMADDADP and so on.
 | 
						|
    {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
 | 
						|
    {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
 | 
						|
    {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
 | 
						|
    {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
 | 
						|
    {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
 | 
						|
    {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
 | 
						|
 | 
						|
// Check if an opcode is a FMA instruction. If it is, return the index in array
 | 
						|
// FMAOpIdxInfo. Otherwise, return -1.
 | 
						|
int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
 | 
						|
  for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
 | 
						|
    if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
 | 
						|
      return I;
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
// On PowerPC target, we have two kinds of patterns related to FMA:
 | 
						|
// 1: Improve ILP.
 | 
						|
// Try to reassociate FMA chains like below:
 | 
						|
//
 | 
						|
// Pattern 1:
 | 
						|
//   A =  FADD X,  Y          (Leaf)
 | 
						|
//   B =  FMA  A,  M21,  M22  (Prev)
 | 
						|
//   C =  FMA  B,  M31,  M32  (Root)
 | 
						|
// -->
 | 
						|
//   A =  FMA  X,  M21,  M22
 | 
						|
//   B =  FMA  Y,  M31,  M32
 | 
						|
//   C =  FADD A,  B
 | 
						|
//
 | 
						|
// Pattern 2:
 | 
						|
//   A =  FMA  X,  M11,  M12  (Leaf)
 | 
						|
//   B =  FMA  A,  M21,  M22  (Prev)
 | 
						|
//   C =  FMA  B,  M31,  M32  (Root)
 | 
						|
// -->
 | 
						|
//   A =  FMUL M11,  M12
 | 
						|
//   B =  FMA  X,  M21,  M22
 | 
						|
//   D =  FMA  A,  M31,  M32
 | 
						|
//   C =  FADD B,  D
 | 
						|
//
 | 
						|
// breaking the dependency between A and B, allowing FMA to be executed in
 | 
						|
// parallel (or back-to-back in a pipeline) instead of depending on each other.
 | 
						|
//
 | 
						|
// 2: Reduce register pressure.
 | 
						|
// Try to reassociate FMA with FSUB and a constant like below:
 | 
						|
// C is a floating point const.
 | 
						|
//
 | 
						|
// Pattern 1:
 | 
						|
//   A = FSUB  X,  Y      (Leaf)
 | 
						|
//   D = FMA   B,  C,  A  (Root)
 | 
						|
// -->
 | 
						|
//   A = FMA   B,  Y,  -C
 | 
						|
//   D = FMA   A,  X,  C
 | 
						|
//
 | 
						|
// Pattern 2:
 | 
						|
//   A = FSUB  X,  Y      (Leaf)
 | 
						|
//   D = FMA   B,  A,  C  (Root)
 | 
						|
// -->
 | 
						|
//   A = FMA   B,  Y,  -C
 | 
						|
//   D = FMA   A,  X,  C
 | 
						|
//
 | 
						|
//  Before the transformation, A must be assigned with different hardware
 | 
						|
//  register with D. After the transformation, A and D must be assigned with
 | 
						|
//  same hardware register due to TIE attribute of FMA instructions.
 | 
						|
//
 | 
						|
bool PPCInstrInfo::getFMAPatterns(
 | 
						|
    MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
 | 
						|
    bool DoRegPressureReduce) const {
 | 
						|
  MachineBasicBlock *MBB = Root.getParent();
 | 
						|
  const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
 | 
						|
  auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
 | 
						|
    for (const auto &MO : Instr.explicit_operands())
 | 
						|
      if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
 | 
						|
                                    unsigned OpType) {
 | 
						|
    if (Instr.getOpcode() !=
 | 
						|
        FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Instruction can be reassociated.
 | 
						|
    // fast math flags may prohibit reassociation.
 | 
						|
    if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
 | 
						|
          Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Instruction operands are virtual registers for reassociation.
 | 
						|
    if (!IsAllOpsVirtualReg(Instr))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // For register pressure reassociation, the FSub must have only one use as
 | 
						|
    // we want to delete the sub to save its def.
 | 
						|
    if (OpType == InfoArrayIdxFSubInst &&
 | 
						|
        !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
 | 
						|
      return false;
 | 
						|
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
 | 
						|
                               int16_t &MulOpIdx, bool IsLeaf) {
 | 
						|
    int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
 | 
						|
    if (Idx < 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Instruction can be reassociated.
 | 
						|
    // fast math flags may prohibit reassociation.
 | 
						|
    if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
 | 
						|
          Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Instruction operands are virtual registers for reassociation.
 | 
						|
    if (!IsAllOpsVirtualReg(Instr))
 | 
						|
      return false;
 | 
						|
 | 
						|
    MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
 | 
						|
    if (IsLeaf)
 | 
						|
      return true;
 | 
						|
 | 
						|
    AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
 | 
						|
 | 
						|
    const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
 | 
						|
    MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
 | 
						|
    // If 'add' operand's def is not in current block, don't do ILP related opt.
 | 
						|
    if (!MIAdd || MIAdd->getParent() != MBB)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If this is not Leaf FMA Instr, its 'add' operand should only have one use
 | 
						|
    // as this fma will be changed later.
 | 
						|
    return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
 | 
						|
  };
 | 
						|
 | 
						|
  int16_t AddOpIdx = -1;
 | 
						|
  int16_t MulOpIdx = -1;
 | 
						|
 | 
						|
  bool IsUsedOnceL = false;
 | 
						|
  bool IsUsedOnceR = false;
 | 
						|
  MachineInstr *MULInstrL = nullptr;
 | 
						|
  MachineInstr *MULInstrR = nullptr;
 | 
						|
 | 
						|
  auto IsRPReductionCandidate = [&]() {
 | 
						|
    // Currently, we only support float and double.
 | 
						|
    // FIXME: add support for other types.
 | 
						|
    unsigned Opcode = Root.getOpcode();
 | 
						|
    if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Root must be a valid FMA like instruction.
 | 
						|
    // Treat it as leaf as we don't care its add operand.
 | 
						|
    if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
 | 
						|
      assert((MulOpIdx >= 0) && "mul operand index not right!");
 | 
						|
      Register MULRegL = TRI->lookThruSingleUseCopyChain(
 | 
						|
          Root.getOperand(MulOpIdx).getReg(), MRI);
 | 
						|
      Register MULRegR = TRI->lookThruSingleUseCopyChain(
 | 
						|
          Root.getOperand(MulOpIdx + 1).getReg(), MRI);
 | 
						|
      if (!MULRegL && !MULRegR)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (MULRegL && !MULRegR) {
 | 
						|
        MULRegR =
 | 
						|
            TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
 | 
						|
        IsUsedOnceL = true;
 | 
						|
      } else if (!MULRegL && MULRegR) {
 | 
						|
        MULRegL =
 | 
						|
            TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
 | 
						|
        IsUsedOnceR = true;
 | 
						|
      } else {
 | 
						|
        IsUsedOnceL = true;
 | 
						|
        IsUsedOnceR = true;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Register::isVirtualRegister(MULRegL) ||
 | 
						|
          !Register::isVirtualRegister(MULRegR))
 | 
						|
        return false;
 | 
						|
 | 
						|
      MULInstrL = MRI->getVRegDef(MULRegL);
 | 
						|
      MULInstrR = MRI->getVRegDef(MULRegR);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // Register pressure fma reassociation patterns.
 | 
						|
  if (DoRegPressureReduce && IsRPReductionCandidate()) {
 | 
						|
    assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
 | 
						|
    // Register pressure pattern 1
 | 
						|
    if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
 | 
						|
        IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
 | 
						|
      Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Register pressure pattern 2
 | 
						|
    if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
 | 
						|
         IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
 | 
						|
      LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
 | 
						|
      Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // ILP fma reassociation patterns.
 | 
						|
  // Root must be a valid FMA like instruction.
 | 
						|
  AddOpIdx = -1;
 | 
						|
  if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert((AddOpIdx >= 0) && "add operand index not right!");
 | 
						|
 | 
						|
  Register RegB = Root.getOperand(AddOpIdx).getReg();
 | 
						|
  MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
 | 
						|
 | 
						|
  // Prev must be a valid FMA like instruction.
 | 
						|
  AddOpIdx = -1;
 | 
						|
  if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert((AddOpIdx >= 0) && "add operand index not right!");
 | 
						|
 | 
						|
  Register RegA = Prev->getOperand(AddOpIdx).getReg();
 | 
						|
  MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
 | 
						|
  AddOpIdx = -1;
 | 
						|
  if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
 | 
						|
    Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
 | 
						|
    LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
 | 
						|
    Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
 | 
						|
    LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::finalizeInsInstrs(
 | 
						|
    MachineInstr &Root, MachineCombinerPattern &P,
 | 
						|
    SmallVectorImpl<MachineInstr *> &InsInstrs) const {
 | 
						|
  assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
 | 
						|
 | 
						|
  MachineFunction *MF = Root.getMF();
 | 
						|
  MachineRegisterInfo *MRI = &MF->getRegInfo();
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
  MachineConstantPool *MCP = MF->getConstantPool();
 | 
						|
 | 
						|
  int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
 | 
						|
  if (Idx < 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
 | 
						|
 | 
						|
  // For now we only need to fix up placeholder for register pressure reduce
 | 
						|
  // patterns.
 | 
						|
  Register ConstReg = 0;
 | 
						|
  switch (P) {
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_BCA:
 | 
						|
    ConstReg =
 | 
						|
        TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
 | 
						|
    break;
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_BAC:
 | 
						|
    ConstReg =
 | 
						|
        TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // Not register pressure reduce patterns.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
 | 
						|
  // Get const value from const pool.
 | 
						|
  const Constant *C = getConstantFromConstantPool(ConstDefInstr);
 | 
						|
  assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
 | 
						|
 | 
						|
  // Get negative fp const.
 | 
						|
  APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
 | 
						|
  F1.changeSign();
 | 
						|
  Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
 | 
						|
  Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
 | 
						|
 | 
						|
  // Put negative fp const into constant pool.
 | 
						|
  unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
 | 
						|
 | 
						|
  MachineOperand *Placeholder = nullptr;
 | 
						|
  // Record the placeholder PPC::ZERO8 we add in reassociateFMA.
 | 
						|
  for (auto *Inst : InsInstrs) {
 | 
						|
    for (MachineOperand &Operand : Inst->explicit_operands()) {
 | 
						|
      assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
 | 
						|
      if (Operand.getReg() == PPC::ZERO8) {
 | 
						|
        Placeholder = &Operand;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(Placeholder && "Placeholder does not exist!");
 | 
						|
 | 
						|
  // Generate instructions to load the const fp from constant pool.
 | 
						|
  // We only support PPC64 and medium code model.
 | 
						|
  Register LoadNewConst =
 | 
						|
      generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
 | 
						|
 | 
						|
  // Fill the placeholder with the new load from constant pool.
 | 
						|
  Placeholder->setReg(LoadNewConst);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::shouldReduceRegisterPressure(
 | 
						|
    MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const {
 | 
						|
 | 
						|
  if (!EnableFMARegPressureReduction)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Currently, we only enable register pressure reducing in machine combiner
 | 
						|
  // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
 | 
						|
  // support.
 | 
						|
  //
 | 
						|
  // So we need following instructions to access a TOC entry:
 | 
						|
  //
 | 
						|
  // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
 | 
						|
  // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
 | 
						|
  //   killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
 | 
						|
  //
 | 
						|
  // FIXME: add more supported targets, like Small and Large code model, PPC32,
 | 
						|
  // AIX.
 | 
						|
  if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
 | 
						|
        Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
  MachineFunction *MF = MBB->getParent();
 | 
						|
  MachineRegisterInfo *MRI = &MF->getRegInfo();
 | 
						|
 | 
						|
  auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> {
 | 
						|
    RegionPressure Pressure;
 | 
						|
    RegPressureTracker RPTracker(Pressure);
 | 
						|
 | 
						|
    // Initialize the register pressure tracker.
 | 
						|
    RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
 | 
						|
                   /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
 | 
						|
 | 
						|
    for (MachineBasicBlock::iterator MII = MBB->instr_end(),
 | 
						|
                                     MIE = MBB->instr_begin();
 | 
						|
         MII != MIE; --MII) {
 | 
						|
      MachineInstr &MI = *std::prev(MII);
 | 
						|
      if (MI.isDebugValue() || MI.isDebugLabel())
 | 
						|
        continue;
 | 
						|
      RegisterOperands RegOpers;
 | 
						|
      RegOpers.collect(MI, *TRI, *MRI, false, false);
 | 
						|
      RPTracker.recedeSkipDebugValues();
 | 
						|
      assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
 | 
						|
      RPTracker.recede(RegOpers);
 | 
						|
    }
 | 
						|
 | 
						|
    // Close the RPTracker to finalize live ins.
 | 
						|
    RPTracker.closeRegion();
 | 
						|
 | 
						|
    return RPTracker.getPressure().MaxSetPressure;
 | 
						|
  };
 | 
						|
 | 
						|
  // For now we only care about float and double type fma.
 | 
						|
  unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
 | 
						|
      *MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
 | 
						|
 | 
						|
  // Only reduce register pressure when pressure is high.
 | 
						|
  return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
 | 
						|
         (float)VSSRCLimit * FMARPFactor;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
 | 
						|
  // I has only one memory operand which is load from constant pool.
 | 
						|
  if (!I->hasOneMemOperand())
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineMemOperand *Op = I->memoperands()[0];
 | 
						|
  return Op->isLoad() && Op->getPseudoValue() &&
 | 
						|
         Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
 | 
						|
}
 | 
						|
 | 
						|
Register PPCInstrInfo::generateLoadForNewConst(
 | 
						|
    unsigned Idx, MachineInstr *MI, Type *Ty,
 | 
						|
    SmallVectorImpl<MachineInstr *> &InsInstrs) const {
 | 
						|
  // Now we only support PPC64, Medium code model and P9 with vector.
 | 
						|
  // We have immutable pattern to access const pool. See function
 | 
						|
  // shouldReduceRegisterPressure.
 | 
						|
  assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
 | 
						|
          Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
 | 
						|
         "Target not supported!\n");
 | 
						|
 | 
						|
  MachineFunction *MF = MI->getMF();
 | 
						|
  MachineRegisterInfo *MRI = &MF->getRegInfo();
 | 
						|
 | 
						|
  // Generate ADDIStocHA8
 | 
						|
  Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
 | 
						|
  MachineInstrBuilder TOCOffset =
 | 
						|
      BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
 | 
						|
          .addReg(PPC::X2)
 | 
						|
          .addConstantPoolIndex(Idx);
 | 
						|
 | 
						|
  assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
 | 
						|
         "Only float and double are supported!");
 | 
						|
 | 
						|
  unsigned LoadOpcode;
 | 
						|
  // Should be float type or double type.
 | 
						|
  if (Ty->isFloatTy())
 | 
						|
    LoadOpcode = PPC::DFLOADf32;
 | 
						|
  else
 | 
						|
    LoadOpcode = PPC::DFLOADf64;
 | 
						|
 | 
						|
  const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
 | 
						|
  Register VReg2 = MRI->createVirtualRegister(RC);
 | 
						|
  MachineMemOperand *MMO = MF->getMachineMemOperand(
 | 
						|
      MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
 | 
						|
      Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
 | 
						|
 | 
						|
  // Generate Load from constant pool.
 | 
						|
  MachineInstrBuilder Load =
 | 
						|
      BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
 | 
						|
          .addConstantPoolIndex(Idx)
 | 
						|
          .addReg(VReg1, getKillRegState(true))
 | 
						|
          .addMemOperand(MMO);
 | 
						|
 | 
						|
  Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
 | 
						|
 | 
						|
  // Insert the toc load instructions into InsInstrs.
 | 
						|
  InsInstrs.insert(InsInstrs.begin(), Load);
 | 
						|
  InsInstrs.insert(InsInstrs.begin(), TOCOffset);
 | 
						|
  return VReg2;
 | 
						|
}
 | 
						|
 | 
						|
// This function returns the const value in constant pool if the \p I is a load
 | 
						|
// from constant pool.
 | 
						|
const Constant *
 | 
						|
PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
 | 
						|
  MachineFunction *MF = I->getMF();
 | 
						|
  MachineRegisterInfo *MRI = &MF->getRegInfo();
 | 
						|
  MachineConstantPool *MCP = MF->getConstantPool();
 | 
						|
  assert(I->mayLoad() && "Should be a load instruction.\n");
 | 
						|
  for (auto MO : I->uses()) {
 | 
						|
    if (!MO.isReg())
 | 
						|
      continue;
 | 
						|
    Register Reg = MO.getReg();
 | 
						|
    if (Reg == 0 || !Register::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
    // Find the toc address.
 | 
						|
    MachineInstr *DefMI = MRI->getVRegDef(Reg);
 | 
						|
    for (auto MO2 : DefMI->uses())
 | 
						|
      if (MO2.isCPI())
 | 
						|
        return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::getMachineCombinerPatterns(
 | 
						|
    MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
 | 
						|
    bool DoRegPressureReduce) const {
 | 
						|
  // Using the machine combiner in this way is potentially expensive, so
 | 
						|
  // restrict to when aggressive optimizations are desired.
 | 
						|
  if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
 | 
						|
                                                     DoRegPressureReduce);
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::genAlternativeCodeSequence(
 | 
						|
    MachineInstr &Root, MachineCombinerPattern Pattern,
 | 
						|
    SmallVectorImpl<MachineInstr *> &InsInstrs,
 | 
						|
    SmallVectorImpl<MachineInstr *> &DelInstrs,
 | 
						|
    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
 | 
						|
  switch (Pattern) {
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
 | 
						|
  case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_BCA:
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_BAC:
 | 
						|
    reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    // Reassociate default patterns.
 | 
						|
    TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
 | 
						|
                                                DelInstrs, InstrIdxForVirtReg);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::reassociateFMA(
 | 
						|
    MachineInstr &Root, MachineCombinerPattern Pattern,
 | 
						|
    SmallVectorImpl<MachineInstr *> &InsInstrs,
 | 
						|
    SmallVectorImpl<MachineInstr *> &DelInstrs,
 | 
						|
    DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
 | 
						|
  MachineFunction *MF = Root.getMF();
 | 
						|
  MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
  MachineOperand &OpC = Root.getOperand(0);
 | 
						|
  Register RegC = OpC.getReg();
 | 
						|
  const TargetRegisterClass *RC = MRI.getRegClass(RegC);
 | 
						|
  MRI.constrainRegClass(RegC, RC);
 | 
						|
 | 
						|
  unsigned FmaOp = Root.getOpcode();
 | 
						|
  int16_t Idx = getFMAOpIdxInfo(FmaOp);
 | 
						|
  assert(Idx >= 0 && "Root must be a FMA instruction");
 | 
						|
 | 
						|
  bool IsILPReassociate =
 | 
						|
      (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
 | 
						|
      (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
 | 
						|
 | 
						|
  uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
 | 
						|
  uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
 | 
						|
 | 
						|
  MachineInstr *Prev = nullptr;
 | 
						|
  MachineInstr *Leaf = nullptr;
 | 
						|
  switch (Pattern) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("not recognized pattern!");
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
 | 
						|
  case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
 | 
						|
    Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
 | 
						|
    Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
 | 
						|
    break;
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_BAC: {
 | 
						|
    Register MULReg =
 | 
						|
        TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
 | 
						|
    Leaf = MRI.getVRegDef(MULReg);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_BCA: {
 | 
						|
    Register MULReg = TRI->lookThruCopyLike(
 | 
						|
        Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
 | 
						|
    Leaf = MRI.getVRegDef(MULReg);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  uint16_t IntersectedFlags = 0;
 | 
						|
  if (IsILPReassociate)
 | 
						|
    IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
 | 
						|
  else
 | 
						|
    IntersectedFlags = Root.getFlags() & Leaf->getFlags();
 | 
						|
 | 
						|
  auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
 | 
						|
                            bool &KillFlag) {
 | 
						|
    Reg = Operand.getReg();
 | 
						|
    MRI.constrainRegClass(Reg, RC);
 | 
						|
    KillFlag = Operand.isKill();
 | 
						|
  };
 | 
						|
 | 
						|
  auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
 | 
						|
                             Register &MulOp2, Register &AddOp,
 | 
						|
                             bool &MulOp1KillFlag, bool &MulOp2KillFlag,
 | 
						|
                             bool &AddOpKillFlag) {
 | 
						|
    GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
 | 
						|
    GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
 | 
						|
    GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
 | 
						|
  };
 | 
						|
 | 
						|
  Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
 | 
						|
      RegA21, RegB;
 | 
						|
  bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
 | 
						|
       KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
 | 
						|
       KillA11 = false, KillA21 = false, KillB = false;
 | 
						|
 | 
						|
  GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
 | 
						|
 | 
						|
  if (IsILPReassociate)
 | 
						|
    GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
 | 
						|
 | 
						|
  if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
 | 
						|
    GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
 | 
						|
    GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
 | 
						|
  } else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
 | 
						|
    GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
 | 
						|
    GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
 | 
						|
  } else {
 | 
						|
    // Get FSUB instruction info.
 | 
						|
    GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
 | 
						|
    GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create new virtual registers for the new results instead of
 | 
						|
  // recycling legacy ones because the MachineCombiner's computation of the
 | 
						|
  // critical path requires a new register definition rather than an existing
 | 
						|
  // one.
 | 
						|
  // For register pressure reassociation, we only need create one virtual
 | 
						|
  // register for the new fma.
 | 
						|
  Register NewVRA = MRI.createVirtualRegister(RC);
 | 
						|
  InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
 | 
						|
 | 
						|
  Register NewVRB = 0;
 | 
						|
  if (IsILPReassociate) {
 | 
						|
    NewVRB = MRI.createVirtualRegister(RC);
 | 
						|
    InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
 | 
						|
  }
 | 
						|
 | 
						|
  Register NewVRD = 0;
 | 
						|
  if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
 | 
						|
    NewVRD = MRI.createVirtualRegister(RC);
 | 
						|
    InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
 | 
						|
  }
 | 
						|
 | 
						|
  auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
 | 
						|
                                Register RegMul1, bool KillRegMul1,
 | 
						|
                                Register RegMul2, bool KillRegMul2) {
 | 
						|
    MI->getOperand(AddOpIdx).setReg(RegAdd);
 | 
						|
    MI->getOperand(AddOpIdx).setIsKill(KillAdd);
 | 
						|
    MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
 | 
						|
    MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
 | 
						|
    MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
 | 
						|
    MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
 | 
						|
  };
 | 
						|
 | 
						|
  MachineInstrBuilder NewARegPressure, NewCRegPressure;
 | 
						|
  switch (Pattern) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("not recognized pattern!");
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_AMM_BMM: {
 | 
						|
    // Create new instructions for insertion.
 | 
						|
    MachineInstrBuilder MINewB =
 | 
						|
        BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
 | 
						|
            .addReg(RegX, getKillRegState(KillX))
 | 
						|
            .addReg(RegM21, getKillRegState(KillM21))
 | 
						|
            .addReg(RegM22, getKillRegState(KillM22));
 | 
						|
    MachineInstrBuilder MINewA =
 | 
						|
        BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
 | 
						|
            .addReg(RegY, getKillRegState(KillY))
 | 
						|
            .addReg(RegM31, getKillRegState(KillM31))
 | 
						|
            .addReg(RegM32, getKillRegState(KillM32));
 | 
						|
    // If AddOpIdx is not 1, adjust the order.
 | 
						|
    if (AddOpIdx != 1) {
 | 
						|
      AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
 | 
						|
      AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
 | 
						|
    }
 | 
						|
 | 
						|
    MachineInstrBuilder MINewC =
 | 
						|
        BuildMI(*MF, Root.getDebugLoc(),
 | 
						|
                get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
 | 
						|
            .addReg(NewVRB, getKillRegState(true))
 | 
						|
            .addReg(NewVRA, getKillRegState(true));
 | 
						|
 | 
						|
    // Update flags for newly created instructions.
 | 
						|
    setSpecialOperandAttr(*MINewA, IntersectedFlags);
 | 
						|
    setSpecialOperandAttr(*MINewB, IntersectedFlags);
 | 
						|
    setSpecialOperandAttr(*MINewC, IntersectedFlags);
 | 
						|
 | 
						|
    // Record new instructions for insertion.
 | 
						|
    InsInstrs.push_back(MINewA);
 | 
						|
    InsInstrs.push_back(MINewB);
 | 
						|
    InsInstrs.push_back(MINewC);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
 | 
						|
    assert(NewVRD && "new FMA register not created!");
 | 
						|
    // Create new instructions for insertion.
 | 
						|
    MachineInstrBuilder MINewA =
 | 
						|
        BuildMI(*MF, Leaf->getDebugLoc(),
 | 
						|
                get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
 | 
						|
            .addReg(RegM11, getKillRegState(KillM11))
 | 
						|
            .addReg(RegM12, getKillRegState(KillM12));
 | 
						|
    MachineInstrBuilder MINewB =
 | 
						|
        BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
 | 
						|
            .addReg(RegX, getKillRegState(KillX))
 | 
						|
            .addReg(RegM21, getKillRegState(KillM21))
 | 
						|
            .addReg(RegM22, getKillRegState(KillM22));
 | 
						|
    MachineInstrBuilder MINewD =
 | 
						|
        BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
 | 
						|
            .addReg(NewVRA, getKillRegState(true))
 | 
						|
            .addReg(RegM31, getKillRegState(KillM31))
 | 
						|
            .addReg(RegM32, getKillRegState(KillM32));
 | 
						|
    // If AddOpIdx is not 1, adjust the order.
 | 
						|
    if (AddOpIdx != 1) {
 | 
						|
      AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
 | 
						|
      AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
 | 
						|
                         KillM32);
 | 
						|
    }
 | 
						|
 | 
						|
    MachineInstrBuilder MINewC =
 | 
						|
        BuildMI(*MF, Root.getDebugLoc(),
 | 
						|
                get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
 | 
						|
            .addReg(NewVRB, getKillRegState(true))
 | 
						|
            .addReg(NewVRD, getKillRegState(true));
 | 
						|
 | 
						|
    // Update flags for newly created instructions.
 | 
						|
    setSpecialOperandAttr(*MINewA, IntersectedFlags);
 | 
						|
    setSpecialOperandAttr(*MINewB, IntersectedFlags);
 | 
						|
    setSpecialOperandAttr(*MINewD, IntersectedFlags);
 | 
						|
    setSpecialOperandAttr(*MINewC, IntersectedFlags);
 | 
						|
 | 
						|
    // Record new instructions for insertion.
 | 
						|
    InsInstrs.push_back(MINewA);
 | 
						|
    InsInstrs.push_back(MINewB);
 | 
						|
    InsInstrs.push_back(MINewD);
 | 
						|
    InsInstrs.push_back(MINewC);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_BAC:
 | 
						|
  case MachineCombinerPattern::REASSOC_XY_BCA: {
 | 
						|
    Register VarReg;
 | 
						|
    bool KillVarReg = false;
 | 
						|
    if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) {
 | 
						|
      VarReg = RegM31;
 | 
						|
      KillVarReg = KillM31;
 | 
						|
    } else {
 | 
						|
      VarReg = RegM32;
 | 
						|
      KillVarReg = KillM32;
 | 
						|
    }
 | 
						|
    // We don't want to get negative const from memory pool too early, as the
 | 
						|
    // created entry will not be deleted even if it has no users. Since all
 | 
						|
    // operand of Leaf and Root are virtual register, we use zero register
 | 
						|
    // here as a placeholder. When the InsInstrs is selected in
 | 
						|
    // MachineCombiner, we call finalizeInsInstrs to replace the zero register
 | 
						|
    // with a virtual register which is a load from constant pool.
 | 
						|
    NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
 | 
						|
                          .addReg(RegB, getKillRegState(RegB))
 | 
						|
                          .addReg(RegY, getKillRegState(KillY))
 | 
						|
                          .addReg(PPC::ZERO8);
 | 
						|
    NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
 | 
						|
                          .addReg(NewVRA, getKillRegState(true))
 | 
						|
                          .addReg(RegX, getKillRegState(KillX))
 | 
						|
                          .addReg(VarReg, getKillRegState(KillVarReg));
 | 
						|
    // For now, we only support xsmaddadp/xsmaddasp, their add operand are
 | 
						|
    // both at index 1, no need to adjust.
 | 
						|
    // FIXME: when add more fma instructions support, like fma/fmas, adjust
 | 
						|
    // the operand index here.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IsILPReassociate) {
 | 
						|
    setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
 | 
						|
    setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
 | 
						|
 | 
						|
    InsInstrs.push_back(NewARegPressure);
 | 
						|
    InsInstrs.push_back(NewCRegPressure);
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!InsInstrs.empty() &&
 | 
						|
         "Insertion instructions set should not be empty!");
 | 
						|
 | 
						|
  // Record old instructions for deletion.
 | 
						|
  DelInstrs.push_back(Leaf);
 | 
						|
  if (IsILPReassociate)
 | 
						|
    DelInstrs.push_back(Prev);
 | 
						|
  DelInstrs.push_back(&Root);
 | 
						|
}
 | 
						|
 | 
						|
// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
 | 
						|
bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
 | 
						|
                                         Register &SrcReg, Register &DstReg,
 | 
						|
                                         unsigned &SubIdx) const {
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  default: return false;
 | 
						|
  case PPC::EXTSW:
 | 
						|
  case PPC::EXTSW_32:
 | 
						|
  case PPC::EXTSW_32_64:
 | 
						|
    SrcReg = MI.getOperand(1).getReg();
 | 
						|
    DstReg = MI.getOperand(0).getReg();
 | 
						|
    SubIdx = PPC::sub_32;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
 | 
						|
                                           int &FrameIndex) const {
 | 
						|
  unsigned Opcode = MI.getOpcode();
 | 
						|
  const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
 | 
						|
  const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
 | 
						|
 | 
						|
  if (End != std::find(OpcodesForSpill, End, Opcode)) {
 | 
						|
    // Check for the operands added by addFrameReference (the immediate is the
 | 
						|
    // offset which defaults to 0).
 | 
						|
    if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
 | 
						|
        MI.getOperand(2).isFI()) {
 | 
						|
      FrameIndex = MI.getOperand(2).getIndex();
 | 
						|
      return MI.getOperand(0).getReg();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// For opcodes with the ReMaterializable flag set, this function is called to
 | 
						|
// verify the instruction is really rematable.
 | 
						|
bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
 | 
						|
                                                     AliasAnalysis *AA) const {
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  default:
 | 
						|
    // This function should only be called for opcodes with the ReMaterializable
 | 
						|
    // flag set.
 | 
						|
    llvm_unreachable("Unknown rematerializable operation!");
 | 
						|
    break;
 | 
						|
  case PPC::LI:
 | 
						|
  case PPC::LI8:
 | 
						|
  case PPC::PLI:
 | 
						|
  case PPC::PLI8:
 | 
						|
  case PPC::LIS:
 | 
						|
  case PPC::LIS8:
 | 
						|
  case PPC::ADDIStocHA:
 | 
						|
  case PPC::ADDIStocHA8:
 | 
						|
  case PPC::ADDItocL:
 | 
						|
  case PPC::LOAD_STACK_GUARD:
 | 
						|
  case PPC::XXLXORz:
 | 
						|
  case PPC::XXLXORspz:
 | 
						|
  case PPC::XXLXORdpz:
 | 
						|
  case PPC::XXLEQVOnes:
 | 
						|
  case PPC::XXSPLTI32DX:
 | 
						|
  case PPC::XXSPLTIW:
 | 
						|
  case PPC::XXSPLTIDP:
 | 
						|
  case PPC::V_SET0B:
 | 
						|
  case PPC::V_SET0H:
 | 
						|
  case PPC::V_SET0:
 | 
						|
  case PPC::V_SETALLONESB:
 | 
						|
  case PPC::V_SETALLONESH:
 | 
						|
  case PPC::V_SETALLONES:
 | 
						|
  case PPC::CRSET:
 | 
						|
  case PPC::CRUNSET:
 | 
						|
  case PPC::XXSETACCZ:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
 | 
						|
                                          int &FrameIndex) const {
 | 
						|
  unsigned Opcode = MI.getOpcode();
 | 
						|
  const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
 | 
						|
  const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
 | 
						|
 | 
						|
  if (End != std::find(OpcodesForSpill, End, Opcode)) {
 | 
						|
    if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
 | 
						|
        MI.getOperand(2).isFI()) {
 | 
						|
      FrameIndex = MI.getOperand(2).getIndex();
 | 
						|
      return MI.getOperand(0).getReg();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
 | 
						|
                                                   unsigned OpIdx1,
 | 
						|
                                                   unsigned OpIdx2) const {
 | 
						|
  MachineFunction &MF = *MI.getParent()->getParent();
 | 
						|
 | 
						|
  // Normal instructions can be commuted the obvious way.
 | 
						|
  if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
 | 
						|
    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
 | 
						|
  // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
 | 
						|
  // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
 | 
						|
  // changing the relative order of the mask operands might change what happens
 | 
						|
  // to the high-bits of the mask (and, thus, the result).
 | 
						|
 | 
						|
  // Cannot commute if it has a non-zero rotate count.
 | 
						|
  if (MI.getOperand(3).getImm() != 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // If we have a zero rotate count, we have:
 | 
						|
  //   M = mask(MB,ME)
 | 
						|
  //   Op0 = (Op1 & ~M) | (Op2 & M)
 | 
						|
  // Change this to:
 | 
						|
  //   M = mask((ME+1)&31, (MB-1)&31)
 | 
						|
  //   Op0 = (Op2 & ~M) | (Op1 & M)
 | 
						|
 | 
						|
  // Swap op1/op2
 | 
						|
  assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
 | 
						|
         "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
 | 
						|
  Register Reg0 = MI.getOperand(0).getReg();
 | 
						|
  Register Reg1 = MI.getOperand(1).getReg();
 | 
						|
  Register Reg2 = MI.getOperand(2).getReg();
 | 
						|
  unsigned SubReg1 = MI.getOperand(1).getSubReg();
 | 
						|
  unsigned SubReg2 = MI.getOperand(2).getSubReg();
 | 
						|
  bool Reg1IsKill = MI.getOperand(1).isKill();
 | 
						|
  bool Reg2IsKill = MI.getOperand(2).isKill();
 | 
						|
  bool ChangeReg0 = false;
 | 
						|
  // If machine instrs are no longer in two-address forms, update
 | 
						|
  // destination register as well.
 | 
						|
  if (Reg0 == Reg1) {
 | 
						|
    // Must be two address instruction!
 | 
						|
    assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
 | 
						|
           "Expecting a two-address instruction!");
 | 
						|
    assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
 | 
						|
    Reg2IsKill = false;
 | 
						|
    ChangeReg0 = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Masks.
 | 
						|
  unsigned MB = MI.getOperand(4).getImm();
 | 
						|
  unsigned ME = MI.getOperand(5).getImm();
 | 
						|
 | 
						|
  // We can't commute a trivial mask (there is no way to represent an all-zero
 | 
						|
  // mask).
 | 
						|
  if (MB == 0 && ME == 31)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (NewMI) {
 | 
						|
    // Create a new instruction.
 | 
						|
    Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
 | 
						|
    bool Reg0IsDead = MI.getOperand(0).isDead();
 | 
						|
    return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
 | 
						|
        .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
 | 
						|
        .addReg(Reg2, getKillRegState(Reg2IsKill))
 | 
						|
        .addReg(Reg1, getKillRegState(Reg1IsKill))
 | 
						|
        .addImm((ME + 1) & 31)
 | 
						|
        .addImm((MB - 1) & 31);
 | 
						|
  }
 | 
						|
 | 
						|
  if (ChangeReg0) {
 | 
						|
    MI.getOperand(0).setReg(Reg2);
 | 
						|
    MI.getOperand(0).setSubReg(SubReg2);
 | 
						|
  }
 | 
						|
  MI.getOperand(2).setReg(Reg1);
 | 
						|
  MI.getOperand(1).setReg(Reg2);
 | 
						|
  MI.getOperand(2).setSubReg(SubReg1);
 | 
						|
  MI.getOperand(1).setSubReg(SubReg2);
 | 
						|
  MI.getOperand(2).setIsKill(Reg1IsKill);
 | 
						|
  MI.getOperand(1).setIsKill(Reg2IsKill);
 | 
						|
 | 
						|
  // Swap the mask around.
 | 
						|
  MI.getOperand(4).setImm((ME + 1) & 31);
 | 
						|
  MI.getOperand(5).setImm((MB - 1) & 31);
 | 
						|
  return &MI;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
 | 
						|
                                         unsigned &SrcOpIdx1,
 | 
						|
                                         unsigned &SrcOpIdx2) const {
 | 
						|
  // For VSX A-Type FMA instructions, it is the first two operands that can be
 | 
						|
  // commuted, however, because the non-encoded tied input operand is listed
 | 
						|
  // first, the operands to swap are actually the second and third.
 | 
						|
 | 
						|
  int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
 | 
						|
  if (AltOpc == -1)
 | 
						|
    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
 | 
						|
 | 
						|
  // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
 | 
						|
  // and SrcOpIdx2.
 | 
						|
  return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
 | 
						|
                              MachineBasicBlock::iterator MI) const {
 | 
						|
  // This function is used for scheduling, and the nop wanted here is the type
 | 
						|
  // that terminates dispatch groups on the POWER cores.
 | 
						|
  unsigned Directive = Subtarget.getCPUDirective();
 | 
						|
  unsigned Opcode;
 | 
						|
  switch (Directive) {
 | 
						|
  default:            Opcode = PPC::NOP; break;
 | 
						|
  case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
 | 
						|
  case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
 | 
						|
  case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
 | 
						|
  // FIXME: Update when POWER9 scheduling model is ready.
 | 
						|
  case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
 | 
						|
  }
 | 
						|
 | 
						|
  DebugLoc DL;
 | 
						|
  BuildMI(MBB, MI, DL, get(Opcode));
 | 
						|
}
 | 
						|
 | 
						|
/// Return the noop instruction to use for a noop.
 | 
						|
MCInst PPCInstrInfo::getNop() const {
 | 
						|
  MCInst Nop;
 | 
						|
  Nop.setOpcode(PPC::NOP);
 | 
						|
  return Nop;
 | 
						|
}
 | 
						|
 | 
						|
// Branch analysis.
 | 
						|
// Note: If the condition register is set to CTR or CTR8 then this is a
 | 
						|
// BDNZ (imm == 1) or BDZ (imm == 0) branch.
 | 
						|
bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
 | 
						|
                                 MachineBasicBlock *&TBB,
 | 
						|
                                 MachineBasicBlock *&FBB,
 | 
						|
                                 SmallVectorImpl<MachineOperand> &Cond,
 | 
						|
                                 bool AllowModify) const {
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
 | 
						|
  // If the block has no terminators, it just falls into the block after it.
 | 
						|
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
 | 
						|
  if (I == MBB.end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isUnpredicatedTerminator(*I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (AllowModify) {
 | 
						|
    // If the BB ends with an unconditional branch to the fallthrough BB,
 | 
						|
    // we eliminate the branch instruction.
 | 
						|
    if (I->getOpcode() == PPC::B &&
 | 
						|
        MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
 | 
						|
      I->eraseFromParent();
 | 
						|
 | 
						|
      // We update iterator after deleting the last branch.
 | 
						|
      I = MBB.getLastNonDebugInstr();
 | 
						|
      if (I == MBB.end() || !isUnpredicatedTerminator(*I))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the last instruction in the block.
 | 
						|
  MachineInstr &LastInst = *I;
 | 
						|
 | 
						|
  // If there is only one terminator instruction, process it.
 | 
						|
  if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
 | 
						|
    if (LastInst.getOpcode() == PPC::B) {
 | 
						|
      if (!LastInst.getOperand(0).isMBB())
 | 
						|
        return true;
 | 
						|
      TBB = LastInst.getOperand(0).getMBB();
 | 
						|
      return false;
 | 
						|
    } else if (LastInst.getOpcode() == PPC::BCC) {
 | 
						|
      if (!LastInst.getOperand(2).isMBB())
 | 
						|
        return true;
 | 
						|
      // Block ends with fall-through condbranch.
 | 
						|
      TBB = LastInst.getOperand(2).getMBB();
 | 
						|
      Cond.push_back(LastInst.getOperand(0));
 | 
						|
      Cond.push_back(LastInst.getOperand(1));
 | 
						|
      return false;
 | 
						|
    } else if (LastInst.getOpcode() == PPC::BC) {
 | 
						|
      if (!LastInst.getOperand(1).isMBB())
 | 
						|
        return true;
 | 
						|
      // Block ends with fall-through condbranch.
 | 
						|
      TBB = LastInst.getOperand(1).getMBB();
 | 
						|
      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | 
						|
      Cond.push_back(LastInst.getOperand(0));
 | 
						|
      return false;
 | 
						|
    } else if (LastInst.getOpcode() == PPC::BCn) {
 | 
						|
      if (!LastInst.getOperand(1).isMBB())
 | 
						|
        return true;
 | 
						|
      // Block ends with fall-through condbranch.
 | 
						|
      TBB = LastInst.getOperand(1).getMBB();
 | 
						|
      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
 | 
						|
      Cond.push_back(LastInst.getOperand(0));
 | 
						|
      return false;
 | 
						|
    } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
 | 
						|
               LastInst.getOpcode() == PPC::BDNZ) {
 | 
						|
      if (!LastInst.getOperand(0).isMBB())
 | 
						|
        return true;
 | 
						|
      if (DisableCTRLoopAnal)
 | 
						|
        return true;
 | 
						|
      TBB = LastInst.getOperand(0).getMBB();
 | 
						|
      Cond.push_back(MachineOperand::CreateImm(1));
 | 
						|
      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | 
						|
                                               true));
 | 
						|
      return false;
 | 
						|
    } else if (LastInst.getOpcode() == PPC::BDZ8 ||
 | 
						|
               LastInst.getOpcode() == PPC::BDZ) {
 | 
						|
      if (!LastInst.getOperand(0).isMBB())
 | 
						|
        return true;
 | 
						|
      if (DisableCTRLoopAnal)
 | 
						|
        return true;
 | 
						|
      TBB = LastInst.getOperand(0).getMBB();
 | 
						|
      Cond.push_back(MachineOperand::CreateImm(0));
 | 
						|
      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | 
						|
                                               true));
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, don't know what this is.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the instruction before it if it's a terminator.
 | 
						|
  MachineInstr &SecondLastInst = *I;
 | 
						|
 | 
						|
  // If there are three terminators, we don't know what sort of block this is.
 | 
						|
  if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If the block ends with PPC::B and PPC:BCC, handle it.
 | 
						|
  if (SecondLastInst.getOpcode() == PPC::BCC &&
 | 
						|
      LastInst.getOpcode() == PPC::B) {
 | 
						|
    if (!SecondLastInst.getOperand(2).isMBB() ||
 | 
						|
        !LastInst.getOperand(0).isMBB())
 | 
						|
      return true;
 | 
						|
    TBB = SecondLastInst.getOperand(2).getMBB();
 | 
						|
    Cond.push_back(SecondLastInst.getOperand(0));
 | 
						|
    Cond.push_back(SecondLastInst.getOperand(1));
 | 
						|
    FBB = LastInst.getOperand(0).getMBB();
 | 
						|
    return false;
 | 
						|
  } else if (SecondLastInst.getOpcode() == PPC::BC &&
 | 
						|
             LastInst.getOpcode() == PPC::B) {
 | 
						|
    if (!SecondLastInst.getOperand(1).isMBB() ||
 | 
						|
        !LastInst.getOperand(0).isMBB())
 | 
						|
      return true;
 | 
						|
    TBB = SecondLastInst.getOperand(1).getMBB();
 | 
						|
    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
 | 
						|
    Cond.push_back(SecondLastInst.getOperand(0));
 | 
						|
    FBB = LastInst.getOperand(0).getMBB();
 | 
						|
    return false;
 | 
						|
  } else if (SecondLastInst.getOpcode() == PPC::BCn &&
 | 
						|
             LastInst.getOpcode() == PPC::B) {
 | 
						|
    if (!SecondLastInst.getOperand(1).isMBB() ||
 | 
						|
        !LastInst.getOperand(0).isMBB())
 | 
						|
      return true;
 | 
						|
    TBB = SecondLastInst.getOperand(1).getMBB();
 | 
						|
    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
 | 
						|
    Cond.push_back(SecondLastInst.getOperand(0));
 | 
						|
    FBB = LastInst.getOperand(0).getMBB();
 | 
						|
    return false;
 | 
						|
  } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
 | 
						|
              SecondLastInst.getOpcode() == PPC::BDNZ) &&
 | 
						|
             LastInst.getOpcode() == PPC::B) {
 | 
						|
    if (!SecondLastInst.getOperand(0).isMBB() ||
 | 
						|
        !LastInst.getOperand(0).isMBB())
 | 
						|
      return true;
 | 
						|
    if (DisableCTRLoopAnal)
 | 
						|
      return true;
 | 
						|
    TBB = SecondLastInst.getOperand(0).getMBB();
 | 
						|
    Cond.push_back(MachineOperand::CreateImm(1));
 | 
						|
    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | 
						|
                                             true));
 | 
						|
    FBB = LastInst.getOperand(0).getMBB();
 | 
						|
    return false;
 | 
						|
  } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
 | 
						|
              SecondLastInst.getOpcode() == PPC::BDZ) &&
 | 
						|
             LastInst.getOpcode() == PPC::B) {
 | 
						|
    if (!SecondLastInst.getOperand(0).isMBB() ||
 | 
						|
        !LastInst.getOperand(0).isMBB())
 | 
						|
      return true;
 | 
						|
    if (DisableCTRLoopAnal)
 | 
						|
      return true;
 | 
						|
    TBB = SecondLastInst.getOperand(0).getMBB();
 | 
						|
    Cond.push_back(MachineOperand::CreateImm(0));
 | 
						|
    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
 | 
						|
                                             true));
 | 
						|
    FBB = LastInst.getOperand(0).getMBB();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the block ends with two PPC:Bs, handle it.  The second one is not
 | 
						|
  // executed, so remove it.
 | 
						|
  if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
 | 
						|
    if (!SecondLastInst.getOperand(0).isMBB())
 | 
						|
      return true;
 | 
						|
    TBB = SecondLastInst.getOperand(0).getMBB();
 | 
						|
    I = LastInst;
 | 
						|
    if (AllowModify)
 | 
						|
      I->eraseFromParent();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, can't handle this.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
 | 
						|
                                    int *BytesRemoved) const {
 | 
						|
  assert(!BytesRemoved && "code size not handled");
 | 
						|
 | 
						|
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
 | 
						|
  if (I == MBB.end())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
 | 
						|
      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
 | 
						|
      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
 | 
						|
      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Remove the branch.
 | 
						|
  I->eraseFromParent();
 | 
						|
 | 
						|
  I = MBB.end();
 | 
						|
 | 
						|
  if (I == MBB.begin()) return 1;
 | 
						|
  --I;
 | 
						|
  if (I->getOpcode() != PPC::BCC &&
 | 
						|
      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
 | 
						|
      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
 | 
						|
      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
 | 
						|
    return 1;
 | 
						|
 | 
						|
  // Remove the branch.
 | 
						|
  I->eraseFromParent();
 | 
						|
  return 2;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
 | 
						|
                                    MachineBasicBlock *TBB,
 | 
						|
                                    MachineBasicBlock *FBB,
 | 
						|
                                    ArrayRef<MachineOperand> Cond,
 | 
						|
                                    const DebugLoc &DL,
 | 
						|
                                    int *BytesAdded) const {
 | 
						|
  // Shouldn't be a fall through.
 | 
						|
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
 | 
						|
  assert((Cond.size() == 2 || Cond.size() == 0) &&
 | 
						|
         "PPC branch conditions have two components!");
 | 
						|
  assert(!BytesAdded && "code size not handled");
 | 
						|
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
 | 
						|
  // One-way branch.
 | 
						|
  if (!FBB) {
 | 
						|
    if (Cond.empty())   // Unconditional branch
 | 
						|
      BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
 | 
						|
    else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | 
						|
      BuildMI(&MBB, DL, get(Cond[0].getImm() ?
 | 
						|
                              (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | 
						|
                              (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
 | 
						|
    else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
 | 
						|
      BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
 | 
						|
    else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
 | 
						|
      BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
 | 
						|
    else                // Conditional branch
 | 
						|
      BuildMI(&MBB, DL, get(PPC::BCC))
 | 
						|
          .addImm(Cond[0].getImm())
 | 
						|
          .add(Cond[1])
 | 
						|
          .addMBB(TBB);
 | 
						|
    return 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Two-way Conditional Branch.
 | 
						|
  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | 
						|
    BuildMI(&MBB, DL, get(Cond[0].getImm() ?
 | 
						|
                            (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
 | 
						|
                            (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
 | 
						|
  else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
 | 
						|
    BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
 | 
						|
  else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
 | 
						|
    BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
 | 
						|
  else
 | 
						|
    BuildMI(&MBB, DL, get(PPC::BCC))
 | 
						|
        .addImm(Cond[0].getImm())
 | 
						|
        .add(Cond[1])
 | 
						|
        .addMBB(TBB);
 | 
						|
  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
 | 
						|
  return 2;
 | 
						|
}
 | 
						|
 | 
						|
// Select analysis.
 | 
						|
bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
 | 
						|
                                   ArrayRef<MachineOperand> Cond,
 | 
						|
                                   Register DstReg, Register TrueReg,
 | 
						|
                                   Register FalseReg, int &CondCycles,
 | 
						|
                                   int &TrueCycles, int &FalseCycles) const {
 | 
						|
  if (Cond.size() != 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this is really a bdnz-like condition, then it cannot be turned into a
 | 
						|
  // select.
 | 
						|
  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the conditional branch uses a physical register, then it cannot be
 | 
						|
  // turned into a select.
 | 
						|
  if (Register::isPhysicalRegister(Cond[1].getReg()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check register classes.
 | 
						|
  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | 
						|
  const TargetRegisterClass *RC =
 | 
						|
    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
 | 
						|
  if (!RC)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // isel is for regular integer GPRs only.
 | 
						|
  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
 | 
						|
      !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
 | 
						|
      !PPC::G8RCRegClass.hasSubClassEq(RC) &&
 | 
						|
      !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: These numbers are for the A2, how well they work for other cores is
 | 
						|
  // an open question. On the A2, the isel instruction has a 2-cycle latency
 | 
						|
  // but single-cycle throughput. These numbers are used in combination with
 | 
						|
  // the MispredictPenalty setting from the active SchedMachineModel.
 | 
						|
  CondCycles = 1;
 | 
						|
  TrueCycles = 1;
 | 
						|
  FalseCycles = 1;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
 | 
						|
                                MachineBasicBlock::iterator MI,
 | 
						|
                                const DebugLoc &dl, Register DestReg,
 | 
						|
                                ArrayRef<MachineOperand> Cond, Register TrueReg,
 | 
						|
                                Register FalseReg) const {
 | 
						|
  assert(Cond.size() == 2 &&
 | 
						|
         "PPC branch conditions have two components!");
 | 
						|
 | 
						|
  // Get the register classes.
 | 
						|
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | 
						|
  const TargetRegisterClass *RC =
 | 
						|
    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
 | 
						|
  assert(RC && "TrueReg and FalseReg must have overlapping register classes");
 | 
						|
 | 
						|
  bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | 
						|
                 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
 | 
						|
  assert((Is64Bit ||
 | 
						|
          PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | 
						|
          PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
 | 
						|
         "isel is for regular integer GPRs only");
 | 
						|
 | 
						|
  unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
 | 
						|
  auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
 | 
						|
 | 
						|
  unsigned SubIdx = 0;
 | 
						|
  bool SwapOps = false;
 | 
						|
  switch (SelectPred) {
 | 
						|
  case PPC::PRED_EQ:
 | 
						|
  case PPC::PRED_EQ_MINUS:
 | 
						|
  case PPC::PRED_EQ_PLUS:
 | 
						|
      SubIdx = PPC::sub_eq; SwapOps = false; break;
 | 
						|
  case PPC::PRED_NE:
 | 
						|
  case PPC::PRED_NE_MINUS:
 | 
						|
  case PPC::PRED_NE_PLUS:
 | 
						|
      SubIdx = PPC::sub_eq; SwapOps = true; break;
 | 
						|
  case PPC::PRED_LT:
 | 
						|
  case PPC::PRED_LT_MINUS:
 | 
						|
  case PPC::PRED_LT_PLUS:
 | 
						|
      SubIdx = PPC::sub_lt; SwapOps = false; break;
 | 
						|
  case PPC::PRED_GE:
 | 
						|
  case PPC::PRED_GE_MINUS:
 | 
						|
  case PPC::PRED_GE_PLUS:
 | 
						|
      SubIdx = PPC::sub_lt; SwapOps = true; break;
 | 
						|
  case PPC::PRED_GT:
 | 
						|
  case PPC::PRED_GT_MINUS:
 | 
						|
  case PPC::PRED_GT_PLUS:
 | 
						|
      SubIdx = PPC::sub_gt; SwapOps = false; break;
 | 
						|
  case PPC::PRED_LE:
 | 
						|
  case PPC::PRED_LE_MINUS:
 | 
						|
  case PPC::PRED_LE_PLUS:
 | 
						|
      SubIdx = PPC::sub_gt; SwapOps = true; break;
 | 
						|
  case PPC::PRED_UN:
 | 
						|
  case PPC::PRED_UN_MINUS:
 | 
						|
  case PPC::PRED_UN_PLUS:
 | 
						|
      SubIdx = PPC::sub_un; SwapOps = false; break;
 | 
						|
  case PPC::PRED_NU:
 | 
						|
  case PPC::PRED_NU_MINUS:
 | 
						|
  case PPC::PRED_NU_PLUS:
 | 
						|
      SubIdx = PPC::sub_un; SwapOps = true; break;
 | 
						|
  case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
 | 
						|
  case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
 | 
						|
  }
 | 
						|
 | 
						|
  Register FirstReg =  SwapOps ? FalseReg : TrueReg,
 | 
						|
           SecondReg = SwapOps ? TrueReg  : FalseReg;
 | 
						|
 | 
						|
  // The first input register of isel cannot be r0. If it is a member
 | 
						|
  // of a register class that can be r0, then copy it first (the
 | 
						|
  // register allocator should eliminate the copy).
 | 
						|
  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
 | 
						|
      MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
 | 
						|
    const TargetRegisterClass *FirstRC =
 | 
						|
      MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
 | 
						|
        &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
 | 
						|
    Register OldFirstReg = FirstReg;
 | 
						|
    FirstReg = MRI.createVirtualRegister(FirstRC);
 | 
						|
    BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
 | 
						|
      .addReg(OldFirstReg);
 | 
						|
  }
 | 
						|
 | 
						|
  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
 | 
						|
    .addReg(FirstReg).addReg(SecondReg)
 | 
						|
    .addReg(Cond[1].getReg(), 0, SubIdx);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getCRBitValue(unsigned CRBit) {
 | 
						|
  unsigned Ret = 4;
 | 
						|
  if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
 | 
						|
      CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
 | 
						|
      CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
 | 
						|
      CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
 | 
						|
    Ret = 3;
 | 
						|
  if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
 | 
						|
      CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
 | 
						|
      CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
 | 
						|
      CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
 | 
						|
    Ret = 2;
 | 
						|
  if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
 | 
						|
      CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
 | 
						|
      CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
 | 
						|
      CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
 | 
						|
    Ret = 1;
 | 
						|
  if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
 | 
						|
      CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
 | 
						|
      CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
 | 
						|
      CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
 | 
						|
    Ret = 0;
 | 
						|
 | 
						|
  assert(Ret != 4 && "Invalid CR bit register");
 | 
						|
  return Ret;
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | 
						|
                               MachineBasicBlock::iterator I,
 | 
						|
                               const DebugLoc &DL, MCRegister DestReg,
 | 
						|
                               MCRegister SrcReg, bool KillSrc) const {
 | 
						|
  // We can end up with self copies and similar things as a result of VSX copy
 | 
						|
  // legalization. Promote them here.
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
  if (PPC::F8RCRegClass.contains(DestReg) &&
 | 
						|
      PPC::VSRCRegClass.contains(SrcReg)) {
 | 
						|
    MCRegister SuperReg =
 | 
						|
        TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
 | 
						|
 | 
						|
    if (VSXSelfCopyCrash && SrcReg == SuperReg)
 | 
						|
      llvm_unreachable("nop VSX copy");
 | 
						|
 | 
						|
    DestReg = SuperReg;
 | 
						|
  } else if (PPC::F8RCRegClass.contains(SrcReg) &&
 | 
						|
             PPC::VSRCRegClass.contains(DestReg)) {
 | 
						|
    MCRegister SuperReg =
 | 
						|
        TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
 | 
						|
 | 
						|
    if (VSXSelfCopyCrash && DestReg == SuperReg)
 | 
						|
      llvm_unreachable("nop VSX copy");
 | 
						|
 | 
						|
    SrcReg = SuperReg;
 | 
						|
  }
 | 
						|
 | 
						|
  // Different class register copy
 | 
						|
  if (PPC::CRBITRCRegClass.contains(SrcReg) &&
 | 
						|
      PPC::GPRCRegClass.contains(DestReg)) {
 | 
						|
    MCRegister CRReg = getCRFromCRBit(SrcReg);
 | 
						|
    BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
 | 
						|
    getKillRegState(KillSrc);
 | 
						|
    // Rotate the CR bit in the CR fields to be the least significant bit and
 | 
						|
    // then mask with 0x1 (MB = ME = 31).
 | 
						|
    BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
 | 
						|
       .addReg(DestReg, RegState::Kill)
 | 
						|
       .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
 | 
						|
       .addImm(31)
 | 
						|
       .addImm(31);
 | 
						|
    return;
 | 
						|
  } else if (PPC::CRRCRegClass.contains(SrcReg) &&
 | 
						|
             (PPC::G8RCRegClass.contains(DestReg) ||
 | 
						|
              PPC::GPRCRegClass.contains(DestReg))) {
 | 
						|
    bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
 | 
						|
    unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
 | 
						|
    unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
 | 
						|
    unsigned CRNum = TRI->getEncodingValue(SrcReg);
 | 
						|
    BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
 | 
						|
    getKillRegState(KillSrc);
 | 
						|
    if (CRNum == 7)
 | 
						|
      return;
 | 
						|
    // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
 | 
						|
    BuildMI(MBB, I, DL, get(ShCode), DestReg)
 | 
						|
        .addReg(DestReg, RegState::Kill)
 | 
						|
        .addImm(CRNum * 4 + 4)
 | 
						|
        .addImm(28)
 | 
						|
        .addImm(31);
 | 
						|
    return;
 | 
						|
  } else if (PPC::G8RCRegClass.contains(SrcReg) &&
 | 
						|
             PPC::VSFRCRegClass.contains(DestReg)) {
 | 
						|
    assert(Subtarget.hasDirectMove() &&
 | 
						|
           "Subtarget doesn't support directmove, don't know how to copy.");
 | 
						|
    BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
 | 
						|
    NumGPRtoVSRSpill++;
 | 
						|
    getKillRegState(KillSrc);
 | 
						|
    return;
 | 
						|
  } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
 | 
						|
             PPC::G8RCRegClass.contains(DestReg)) {
 | 
						|
    assert(Subtarget.hasDirectMove() &&
 | 
						|
           "Subtarget doesn't support directmove, don't know how to copy.");
 | 
						|
    BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
 | 
						|
    getKillRegState(KillSrc);
 | 
						|
    return;
 | 
						|
  } else if (PPC::SPERCRegClass.contains(SrcReg) &&
 | 
						|
             PPC::GPRCRegClass.contains(DestReg)) {
 | 
						|
    BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
 | 
						|
    getKillRegState(KillSrc);
 | 
						|
    return;
 | 
						|
  } else if (PPC::GPRCRegClass.contains(SrcReg) &&
 | 
						|
             PPC::SPERCRegClass.contains(DestReg)) {
 | 
						|
    BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
 | 
						|
    getKillRegState(KillSrc);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Opc;
 | 
						|
  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opc = PPC::OR;
 | 
						|
  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opc = PPC::OR8;
 | 
						|
  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opc = PPC::FMR;
 | 
						|
  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opc = PPC::MCRF;
 | 
						|
  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opc = PPC::VOR;
 | 
						|
  else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
 | 
						|
    // There are two different ways this can be done:
 | 
						|
    //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
 | 
						|
    //      issue in VSU pipeline 0.
 | 
						|
    //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
 | 
						|
    //      can go to either pipeline.
 | 
						|
    // We'll always use xxlor here, because in practically all cases where
 | 
						|
    // copies are generated, they are close enough to some use that the
 | 
						|
    // lower-latency form is preferable.
 | 
						|
    Opc = PPC::XXLOR;
 | 
						|
  else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
 | 
						|
           PPC::VSSRCRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
 | 
						|
  else if (Subtarget.pairedVectorMemops() &&
 | 
						|
           PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
 | 
						|
    if (SrcReg > PPC::VSRp15)
 | 
						|
      SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
 | 
						|
    else
 | 
						|
      SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
 | 
						|
    if (DestReg > PPC::VSRp15)
 | 
						|
      DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
 | 
						|
    else
 | 
						|
      DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
 | 
						|
    BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
 | 
						|
      addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
 | 
						|
    BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
 | 
						|
      addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opc = PPC::CROR;
 | 
						|
  else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
 | 
						|
    Opc = PPC::EVOR;
 | 
						|
  else if ((PPC::ACCRCRegClass.contains(DestReg) ||
 | 
						|
            PPC::UACCRCRegClass.contains(DestReg)) &&
 | 
						|
           (PPC::ACCRCRegClass.contains(SrcReg) ||
 | 
						|
            PPC::UACCRCRegClass.contains(SrcReg))) {
 | 
						|
    // If primed, de-prime the source register, copy the individual registers
 | 
						|
    // and prime the destination if needed. The vector subregisters are
 | 
						|
    // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
 | 
						|
    // source is primed, we need to re-prime it after the copy as well.
 | 
						|
    PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
 | 
						|
    bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
 | 
						|
    bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
 | 
						|
    MCRegister VSLSrcReg =
 | 
						|
        PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
 | 
						|
    MCRegister VSLDestReg =
 | 
						|
        PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
 | 
						|
    if (SrcPrimed)
 | 
						|
      BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
 | 
						|
    for (unsigned Idx = 0; Idx < 4; Idx++)
 | 
						|
      BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
 | 
						|
          .addReg(VSLSrcReg + Idx)
 | 
						|
          .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
 | 
						|
    if (DestPrimed)
 | 
						|
      BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
 | 
						|
    if (SrcPrimed && !KillSrc)
 | 
						|
      BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
 | 
						|
    return;
 | 
						|
  } else if (PPC::G8pRCRegClass.contains(DestReg) &&
 | 
						|
             PPC::G8pRCRegClass.contains(SrcReg)) {
 | 
						|
    // TODO: Handle G8RC to G8pRC (and vice versa) copy.
 | 
						|
    unsigned DestRegIdx = DestReg - PPC::G8p0;
 | 
						|
    MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
 | 
						|
    MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
 | 
						|
    unsigned SrcRegIdx = SrcReg - PPC::G8p0;
 | 
						|
    MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
 | 
						|
    MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
 | 
						|
    BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
 | 
						|
        .addReg(SrcRegSub0)
 | 
						|
        .addReg(SrcRegSub0, getKillRegState(KillSrc));
 | 
						|
    BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
 | 
						|
        .addReg(SrcRegSub1)
 | 
						|
        .addReg(SrcRegSub1, getKillRegState(KillSrc));
 | 
						|
    return;
 | 
						|
  } else
 | 
						|
    llvm_unreachable("Impossible reg-to-reg copy");
 | 
						|
 | 
						|
  const MCInstrDesc &MCID = get(Opc);
 | 
						|
  if (MCID.getNumOperands() == 3)
 | 
						|
    BuildMI(MBB, I, DL, MCID, DestReg)
 | 
						|
      .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
 | 
						|
  else
 | 
						|
    BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
 | 
						|
  int OpcodeIndex = 0;
 | 
						|
 | 
						|
  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
 | 
						|
      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_Int4Spill;
 | 
						|
  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
 | 
						|
             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_Int8Spill;
 | 
						|
  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_Float8Spill;
 | 
						|
  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_Float4Spill;
 | 
						|
  } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_SPESpill;
 | 
						|
  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_CRSpill;
 | 
						|
  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_CRBitSpill;
 | 
						|
  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_VRVectorSpill;
 | 
						|
  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_VSXVectorSpill;
 | 
						|
  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_VectorFloat8Spill;
 | 
						|
  } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_VectorFloat4Spill;
 | 
						|
  } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_SpillToVSR;
 | 
						|
  } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    assert(Subtarget.pairedVectorMemops() &&
 | 
						|
           "Register unexpected when paired memops are disabled.");
 | 
						|
    OpcodeIndex = SOK_AccumulatorSpill;
 | 
						|
  } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    assert(Subtarget.pairedVectorMemops() &&
 | 
						|
           "Register unexpected when paired memops are disabled.");
 | 
						|
    OpcodeIndex = SOK_UAccumulatorSpill;
 | 
						|
  } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    assert(Subtarget.pairedVectorMemops() &&
 | 
						|
           "Register unexpected when paired memops are disabled.");
 | 
						|
    OpcodeIndex = SOK_PairedVecSpill;
 | 
						|
  } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
 | 
						|
    OpcodeIndex = SOK_PairedG8Spill;
 | 
						|
  } else {
 | 
						|
    llvm_unreachable("Unknown regclass!");
 | 
						|
  }
 | 
						|
  return OpcodeIndex;
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
 | 
						|
  const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
 | 
						|
  return OpcodesForSpill[getSpillIndex(RC)];
 | 
						|
}
 | 
						|
 | 
						|
unsigned
 | 
						|
PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
 | 
						|
  const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
 | 
						|
  return OpcodesForSpill[getSpillIndex(RC)];
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::StoreRegToStackSlot(
 | 
						|
    MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
 | 
						|
    const TargetRegisterClass *RC,
 | 
						|
    SmallVectorImpl<MachineInstr *> &NewMIs) const {
 | 
						|
  unsigned Opcode = getStoreOpcodeForSpill(RC);
 | 
						|
  DebugLoc DL;
 | 
						|
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  FuncInfo->setHasSpills();
 | 
						|
 | 
						|
  NewMIs.push_back(addFrameReference(
 | 
						|
      BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
 | 
						|
      FrameIdx));
 | 
						|
 | 
						|
  if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
 | 
						|
      PPC::CRBITRCRegClass.hasSubClassEq(RC))
 | 
						|
    FuncInfo->setSpillsCR();
 | 
						|
 | 
						|
  if (isXFormMemOp(Opcode))
 | 
						|
    FuncInfo->setHasNonRISpills();
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::storeRegToStackSlotNoUpd(
 | 
						|
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
 | 
						|
    bool isKill, int FrameIdx, const TargetRegisterClass *RC,
 | 
						|
    const TargetRegisterInfo *TRI) const {
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  SmallVector<MachineInstr *, 4> NewMIs;
 | 
						|
 | 
						|
  StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
 | 
						|
    MBB.insert(MI, NewMIs[i]);
 | 
						|
 | 
						|
  const MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  MachineMemOperand *MMO = MF.getMachineMemOperand(
 | 
						|
      MachinePointerInfo::getFixedStack(MF, FrameIdx),
 | 
						|
      MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
 | 
						|
      MFI.getObjectAlign(FrameIdx));
 | 
						|
  NewMIs.back()->addMemOperand(MF, MMO);
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
 | 
						|
                                       MachineBasicBlock::iterator MI,
 | 
						|
                                       Register SrcReg, bool isKill,
 | 
						|
                                       int FrameIdx,
 | 
						|
                                       const TargetRegisterClass *RC,
 | 
						|
                                       const TargetRegisterInfo *TRI) const {
 | 
						|
  // We need to avoid a situation in which the value from a VRRC register is
 | 
						|
  // spilled using an Altivec instruction and reloaded into a VSRC register
 | 
						|
  // using a VSX instruction. The issue with this is that the VSX
 | 
						|
  // load/store instructions swap the doublewords in the vector and the Altivec
 | 
						|
  // ones don't. The register classes on the spill/reload may be different if
 | 
						|
  // the register is defined using an Altivec instruction and is then used by a
 | 
						|
  // VSX instruction.
 | 
						|
  RC = updatedRC(RC);
 | 
						|
  storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
 | 
						|
                                        unsigned DestReg, int FrameIdx,
 | 
						|
                                        const TargetRegisterClass *RC,
 | 
						|
                                        SmallVectorImpl<MachineInstr *> &NewMIs)
 | 
						|
                                        const {
 | 
						|
  unsigned Opcode = getLoadOpcodeForSpill(RC);
 | 
						|
  NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
 | 
						|
                                     FrameIdx));
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
 | 
						|
  if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
 | 
						|
      PPC::CRBITRCRegClass.hasSubClassEq(RC))
 | 
						|
    FuncInfo->setSpillsCR();
 | 
						|
 | 
						|
  if (isXFormMemOp(Opcode))
 | 
						|
    FuncInfo->setHasNonRISpills();
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::loadRegFromStackSlotNoUpd(
 | 
						|
    MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
 | 
						|
    int FrameIdx, const TargetRegisterClass *RC,
 | 
						|
    const TargetRegisterInfo *TRI) const {
 | 
						|
  MachineFunction &MF = *MBB.getParent();
 | 
						|
  SmallVector<MachineInstr*, 4> NewMIs;
 | 
						|
  DebugLoc DL;
 | 
						|
  if (MI != MBB.end()) DL = MI->getDebugLoc();
 | 
						|
 | 
						|
  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | 
						|
  FuncInfo->setHasSpills();
 | 
						|
 | 
						|
  LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
 | 
						|
    MBB.insert(MI, NewMIs[i]);
 | 
						|
 | 
						|
  const MachineFrameInfo &MFI = MF.getFrameInfo();
 | 
						|
  MachineMemOperand *MMO = MF.getMachineMemOperand(
 | 
						|
      MachinePointerInfo::getFixedStack(MF, FrameIdx),
 | 
						|
      MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
 | 
						|
      MFI.getObjectAlign(FrameIdx));
 | 
						|
  NewMIs.back()->addMemOperand(MF, MMO);
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
 | 
						|
                                        MachineBasicBlock::iterator MI,
 | 
						|
                                        Register DestReg, int FrameIdx,
 | 
						|
                                        const TargetRegisterClass *RC,
 | 
						|
                                        const TargetRegisterInfo *TRI) const {
 | 
						|
  // We need to avoid a situation in which the value from a VRRC register is
 | 
						|
  // spilled using an Altivec instruction and reloaded into a VSRC register
 | 
						|
  // using a VSX instruction. The issue with this is that the VSX
 | 
						|
  // load/store instructions swap the doublewords in the vector and the Altivec
 | 
						|
  // ones don't. The register classes on the spill/reload may be different if
 | 
						|
  // the register is defined using an Altivec instruction and is then used by a
 | 
						|
  // VSX instruction.
 | 
						|
  RC = updatedRC(RC);
 | 
						|
 | 
						|
  loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::
 | 
						|
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | 
						|
  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
 | 
						|
  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
 | 
						|
    Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
 | 
						|
  else
 | 
						|
    // Leave the CR# the same, but invert the condition.
 | 
						|
    Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// For some instructions, it is legal to fold ZERO into the RA register field.
 | 
						|
// This function performs that fold by replacing the operand with PPC::ZERO,
 | 
						|
// it does not consider whether the load immediate zero is no longer in use.
 | 
						|
bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
 | 
						|
                                     Register Reg) const {
 | 
						|
  // A zero immediate should always be loaded with a single li.
 | 
						|
  unsigned DefOpc = DefMI.getOpcode();
 | 
						|
  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
 | 
						|
    return false;
 | 
						|
  if (!DefMI.getOperand(1).isImm())
 | 
						|
    return false;
 | 
						|
  if (DefMI.getOperand(1).getImm() != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Note that we cannot here invert the arguments of an isel in order to fold
 | 
						|
  // a ZERO into what is presented as the second argument. All we have here
 | 
						|
  // is the condition bit, and that might come from a CR-logical bit operation.
 | 
						|
 | 
						|
  const MCInstrDesc &UseMCID = UseMI.getDesc();
 | 
						|
 | 
						|
  // Only fold into real machine instructions.
 | 
						|
  if (UseMCID.isPseudo())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We need to find which of the User's operands is to be folded, that will be
 | 
						|
  // the operand that matches the given register ID.
 | 
						|
  unsigned UseIdx;
 | 
						|
  for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
 | 
						|
    if (UseMI.getOperand(UseIdx).isReg() &&
 | 
						|
        UseMI.getOperand(UseIdx).getReg() == Reg)
 | 
						|
      break;
 | 
						|
 | 
						|
  assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
 | 
						|
  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
 | 
						|
 | 
						|
  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
 | 
						|
 | 
						|
  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
 | 
						|
  // register (which might also be specified as a pointer class kind).
 | 
						|
  if (UseInfo->isLookupPtrRegClass()) {
 | 
						|
    if (UseInfo->RegClass /* Kind */ != 1)
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
 | 
						|
        UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Make sure this is not tied to an output register (or otherwise
 | 
						|
  // constrained). This is true for ST?UX registers, for example, which
 | 
						|
  // are tied to their output registers.
 | 
						|
  if (UseInfo->Constraints != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MCRegister ZeroReg;
 | 
						|
  if (UseInfo->isLookupPtrRegClass()) {
 | 
						|
    bool isPPC64 = Subtarget.isPPC64();
 | 
						|
    ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
 | 
						|
  } else {
 | 
						|
    ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
 | 
						|
              PPC::ZERO8 : PPC::ZERO;
 | 
						|
  }
 | 
						|
 | 
						|
  UseMI.getOperand(UseIdx).setReg(ZeroReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Folds zero into instructions which have a load immediate zero as an operand
 | 
						|
// but also recognize zero as immediate zero. If the definition of the load
 | 
						|
// has no more users it is deleted.
 | 
						|
bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
 | 
						|
                                 Register Reg, MachineRegisterInfo *MRI) const {
 | 
						|
  bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
 | 
						|
  if (MRI->use_nodbg_empty(Reg))
 | 
						|
    DefMI.eraseFromParent();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
 | 
						|
  for (MachineInstr &MI : MBB)
 | 
						|
    if (MI.definesRegister(PPC::CTR) || MI.definesRegister(PPC::CTR8))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// We should make sure that, if we're going to predicate both sides of a
 | 
						|
// condition (a diamond), that both sides don't define the counter register. We
 | 
						|
// can predicate counter-decrement-based branches, but while that predicates
 | 
						|
// the branching, it does not predicate the counter decrement. If we tried to
 | 
						|
// merge the triangle into one predicated block, we'd decrement the counter
 | 
						|
// twice.
 | 
						|
bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
 | 
						|
                     unsigned NumT, unsigned ExtraT,
 | 
						|
                     MachineBasicBlock &FMBB,
 | 
						|
                     unsigned NumF, unsigned ExtraF,
 | 
						|
                     BranchProbability Probability) const {
 | 
						|
  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
 | 
						|
  // The predicated branches are identified by their type, not really by the
 | 
						|
  // explicit presence of a predicate. Furthermore, some of them can be
 | 
						|
  // predicated more than once. Because if conversion won't try to predicate
 | 
						|
  // any instruction which already claims to be predicated (by returning true
 | 
						|
  // here), always return false. In doing so, we let isPredicable() be the
 | 
						|
  // final word on whether not the instruction can be (further) predicated.
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
 | 
						|
                                        const MachineBasicBlock *MBB,
 | 
						|
                                        const MachineFunction &MF) const {
 | 
						|
  // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
 | 
						|
  // across them, since some FP operations may change content of FPSCR.
 | 
						|
  // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
 | 
						|
  if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
 | 
						|
    return true;
 | 
						|
  return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
 | 
						|
                                        ArrayRef<MachineOperand> Pred) const {
 | 
						|
  unsigned OpC = MI.getOpcode();
 | 
						|
  if (OpC == PPC::BLR || OpC == PPC::BLR8) {
 | 
						|
    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
 | 
						|
      bool isPPC64 = Subtarget.isPPC64();
 | 
						|
      MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
 | 
						|
                                      : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
 | 
						|
      // Need add Def and Use for CTR implicit operand.
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
          .addReg(Pred[1].getReg(), RegState::Implicit)
 | 
						|
          .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
 | 
						|
    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | 
						|
      MI.setDesc(get(PPC::BCLR));
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
 | 
						|
    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | 
						|
      MI.setDesc(get(PPC::BCLRn));
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
 | 
						|
    } else {
 | 
						|
      MI.setDesc(get(PPC::BCCLR));
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
          .addImm(Pred[0].getImm())
 | 
						|
          .add(Pred[1]);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  } else if (OpC == PPC::B) {
 | 
						|
    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
 | 
						|
      bool isPPC64 = Subtarget.isPPC64();
 | 
						|
      MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
 | 
						|
                                      : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
 | 
						|
      // Need add Def and Use for CTR implicit operand.
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
          .addReg(Pred[1].getReg(), RegState::Implicit)
 | 
						|
          .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
 | 
						|
    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | 
						|
      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
 | 
						|
      MI.RemoveOperand(0);
 | 
						|
 | 
						|
      MI.setDesc(get(PPC::BC));
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
          .add(Pred[1])
 | 
						|
          .addMBB(MBB);
 | 
						|
    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | 
						|
      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
 | 
						|
      MI.RemoveOperand(0);
 | 
						|
 | 
						|
      MI.setDesc(get(PPC::BCn));
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
          .add(Pred[1])
 | 
						|
          .addMBB(MBB);
 | 
						|
    } else {
 | 
						|
      MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
 | 
						|
      MI.RemoveOperand(0);
 | 
						|
 | 
						|
      MI.setDesc(get(PPC::BCC));
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
          .addImm(Pred[0].getImm())
 | 
						|
          .add(Pred[1])
 | 
						|
          .addMBB(MBB);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
 | 
						|
             OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM ||
 | 
						|
             OpC == PPC::BCTRL8_RM) {
 | 
						|
    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
 | 
						|
      llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
 | 
						|
 | 
						|
    bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 ||
 | 
						|
                 OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM;
 | 
						|
    bool isPPC64 = Subtarget.isPPC64();
 | 
						|
 | 
						|
    if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
 | 
						|
      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
 | 
						|
                             : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
 | 
						|
    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
 | 
						|
      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
 | 
						|
                             : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
 | 
						|
    } else {
 | 
						|
      MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
 | 
						|
                             : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
          .addImm(Pred[0].getImm())
 | 
						|
          .add(Pred[1]);
 | 
						|
    }
 | 
						|
 | 
						|
    // Need add Def and Use for LR implicit operand.
 | 
						|
    if (setLR)
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
          .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
 | 
						|
          .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
 | 
						|
    if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM)
 | 
						|
      MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
          .addReg(PPC::RM, RegState::ImplicitDefine);
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
 | 
						|
                                     ArrayRef<MachineOperand> Pred2) const {
 | 
						|
  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
 | 
						|
  assert(Pred2.size() == 2 && "Invalid PPC second predicate");
 | 
						|
 | 
						|
  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
 | 
						|
    return false;
 | 
						|
  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // P1 can only subsume P2 if they test the same condition register.
 | 
						|
  if (Pred1[1].getReg() != Pred2[1].getReg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
 | 
						|
  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
 | 
						|
 | 
						|
  if (P1 == P2)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Does P1 subsume P2, e.g. GE subsumes GT.
 | 
						|
  if (P1 == PPC::PRED_LE &&
 | 
						|
      (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
 | 
						|
    return true;
 | 
						|
  if (P1 == PPC::PRED_GE &&
 | 
						|
      (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
 | 
						|
                                     std::vector<MachineOperand> &Pred,
 | 
						|
                                     bool SkipDead) const {
 | 
						|
  // Note: At the present time, the contents of Pred from this function is
 | 
						|
  // unused by IfConversion. This implementation follows ARM by pushing the
 | 
						|
  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
 | 
						|
  // predicate, instructions defining CTR or CTR8 are also included as
 | 
						|
  // predicate-defining instructions.
 | 
						|
 | 
						|
  const TargetRegisterClass *RCs[] =
 | 
						|
    { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
 | 
						|
      &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
 | 
						|
 | 
						|
  bool Found = false;
 | 
						|
  for (const MachineOperand &MO : MI.operands()) {
 | 
						|
    for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
 | 
						|
      const TargetRegisterClass *RC = RCs[c];
 | 
						|
      if (MO.isReg()) {
 | 
						|
        if (MO.isDef() && RC->contains(MO.getReg())) {
 | 
						|
          Pred.push_back(MO);
 | 
						|
          Found = true;
 | 
						|
        }
 | 
						|
      } else if (MO.isRegMask()) {
 | 
						|
        for (TargetRegisterClass::iterator I = RC->begin(),
 | 
						|
             IE = RC->end(); I != IE; ++I)
 | 
						|
          if (MO.clobbersPhysReg(*I)) {
 | 
						|
            Pred.push_back(MO);
 | 
						|
            Found = true;
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Found;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
 | 
						|
                                  Register &SrcReg2, int64_t &Mask,
 | 
						|
                                  int64_t &Value) const {
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
 | 
						|
  switch (Opc) {
 | 
						|
  default: return false;
 | 
						|
  case PPC::CMPWI:
 | 
						|
  case PPC::CMPLWI:
 | 
						|
  case PPC::CMPDI:
 | 
						|
  case PPC::CMPLDI:
 | 
						|
    SrcReg = MI.getOperand(1).getReg();
 | 
						|
    SrcReg2 = 0;
 | 
						|
    Value = MI.getOperand(2).getImm();
 | 
						|
    Mask = 0xFFFF;
 | 
						|
    return true;
 | 
						|
  case PPC::CMPW:
 | 
						|
  case PPC::CMPLW:
 | 
						|
  case PPC::CMPD:
 | 
						|
  case PPC::CMPLD:
 | 
						|
  case PPC::FCMPUS:
 | 
						|
  case PPC::FCMPUD:
 | 
						|
    SrcReg = MI.getOperand(1).getReg();
 | 
						|
    SrcReg2 = MI.getOperand(2).getReg();
 | 
						|
    Value = 0;
 | 
						|
    Mask = 0;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
 | 
						|
                                        Register SrcReg2, int64_t Mask,
 | 
						|
                                        int64_t Value,
 | 
						|
                                        const MachineRegisterInfo *MRI) const {
 | 
						|
  if (DisableCmpOpt)
 | 
						|
    return false;
 | 
						|
 | 
						|
  int OpC = CmpInstr.getOpcode();
 | 
						|
  Register CRReg = CmpInstr.getOperand(0).getReg();
 | 
						|
 | 
						|
  // FP record forms set CR1 based on the exception status bits, not a
 | 
						|
  // comparison with zero.
 | 
						|
  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
  // The record forms set the condition register based on a signed comparison
 | 
						|
  // with zero (so says the ISA manual). This is not as straightforward as it
 | 
						|
  // seems, however, because this is always a 64-bit comparison on PPC64, even
 | 
						|
  // for instructions that are 32-bit in nature (like slw for example).
 | 
						|
  // So, on PPC32, for unsigned comparisons, we can use the record forms only
 | 
						|
  // for equality checks (as those don't depend on the sign). On PPC64,
 | 
						|
  // we are restricted to equality for unsigned 64-bit comparisons and for
 | 
						|
  // signed 32-bit comparisons the applicability is more restricted.
 | 
						|
  bool isPPC64 = Subtarget.isPPC64();
 | 
						|
  bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
 | 
						|
  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
 | 
						|
  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
 | 
						|
 | 
						|
  // Look through copies unless that gets us to a physical register.
 | 
						|
  Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
 | 
						|
  if (ActualSrc.isVirtual())
 | 
						|
    SrcReg = ActualSrc;
 | 
						|
 | 
						|
  // Get the unique definition of SrcReg.
 | 
						|
  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
 | 
						|
  if (!MI) return false;
 | 
						|
 | 
						|
  bool equalityOnly = false;
 | 
						|
  bool noSub = false;
 | 
						|
  if (isPPC64) {
 | 
						|
    if (is32BitSignedCompare) {
 | 
						|
      // We can perform this optimization only if MI is sign-extending.
 | 
						|
      if (isSignExtended(*MI))
 | 
						|
        noSub = true;
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    } else if (is32BitUnsignedCompare) {
 | 
						|
      // We can perform this optimization, equality only, if MI is
 | 
						|
      // zero-extending.
 | 
						|
      if (isZeroExtended(*MI)) {
 | 
						|
        noSub = true;
 | 
						|
        equalityOnly = true;
 | 
						|
      } else
 | 
						|
        return false;
 | 
						|
    } else
 | 
						|
      equalityOnly = is64BitUnsignedCompare;
 | 
						|
  } else
 | 
						|
    equalityOnly = is32BitUnsignedCompare;
 | 
						|
 | 
						|
  if (equalityOnly) {
 | 
						|
    // We need to check the uses of the condition register in order to reject
 | 
						|
    // non-equality comparisons.
 | 
						|
    for (MachineRegisterInfo::use_instr_iterator
 | 
						|
         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
 | 
						|
         I != IE; ++I) {
 | 
						|
      MachineInstr *UseMI = &*I;
 | 
						|
      if (UseMI->getOpcode() == PPC::BCC) {
 | 
						|
        PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
 | 
						|
        unsigned PredCond = PPC::getPredicateCondition(Pred);
 | 
						|
        // We ignore hint bits when checking for non-equality comparisons.
 | 
						|
        if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
 | 
						|
          return false;
 | 
						|
      } else if (UseMI->getOpcode() == PPC::ISEL ||
 | 
						|
                 UseMI->getOpcode() == PPC::ISEL8) {
 | 
						|
        unsigned SubIdx = UseMI->getOperand(3).getSubReg();
 | 
						|
        if (SubIdx != PPC::sub_eq)
 | 
						|
          return false;
 | 
						|
      } else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock::iterator I = CmpInstr;
 | 
						|
 | 
						|
  // Scan forward to find the first use of the compare.
 | 
						|
  for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
 | 
						|
       ++I) {
 | 
						|
    bool FoundUse = false;
 | 
						|
    for (MachineRegisterInfo::use_instr_iterator
 | 
						|
         J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
 | 
						|
         J != JE; ++J)
 | 
						|
      if (&*J == &*I) {
 | 
						|
        FoundUse = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    if (FoundUse)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
 | 
						|
  SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
 | 
						|
 | 
						|
  // There are two possible candidates which can be changed to set CR[01].
 | 
						|
  // One is MI, the other is a SUB instruction.
 | 
						|
  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
 | 
						|
  MachineInstr *Sub = nullptr;
 | 
						|
  if (SrcReg2 != 0)
 | 
						|
    // MI is not a candidate for CMPrr.
 | 
						|
    MI = nullptr;
 | 
						|
  // FIXME: Conservatively refuse to convert an instruction which isn't in the
 | 
						|
  // same BB as the comparison. This is to allow the check below to avoid calls
 | 
						|
  // (and other explicit clobbers); instead we should really check for these
 | 
						|
  // more explicitly (in at least a few predecessors).
 | 
						|
  else if (MI->getParent() != CmpInstr.getParent())
 | 
						|
    return false;
 | 
						|
  else if (Value != 0) {
 | 
						|
    // The record-form instructions set CR bit based on signed comparison
 | 
						|
    // against 0. We try to convert a compare against 1 or -1 into a compare
 | 
						|
    // against 0 to exploit record-form instructions. For example, we change
 | 
						|
    // the condition "greater than -1" into "greater than or equal to 0"
 | 
						|
    // and "less than 1" into "less than or equal to 0".
 | 
						|
 | 
						|
    // Since we optimize comparison based on a specific branch condition,
 | 
						|
    // we don't optimize if condition code is used by more than once.
 | 
						|
    if (equalityOnly || !MRI->hasOneUse(CRReg))
 | 
						|
      return false;
 | 
						|
 | 
						|
    MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
 | 
						|
    if (UseMI->getOpcode() != PPC::BCC)
 | 
						|
      return false;
 | 
						|
 | 
						|
    PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
 | 
						|
    unsigned PredCond = PPC::getPredicateCondition(Pred);
 | 
						|
    unsigned PredHint = PPC::getPredicateHint(Pred);
 | 
						|
    int16_t Immed = (int16_t)Value;
 | 
						|
 | 
						|
    // When modifying the condition in the predicate, we propagate hint bits
 | 
						|
    // from the original predicate to the new one.
 | 
						|
    if (Immed == -1 && PredCond == PPC::PRED_GT)
 | 
						|
      // We convert "greater than -1" into "greater than or equal to 0",
 | 
						|
      // since we are assuming signed comparison by !equalityOnly
 | 
						|
      Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
 | 
						|
    else if (Immed == -1 && PredCond == PPC::PRED_LE)
 | 
						|
      // We convert "less than or equal to -1" into "less than 0".
 | 
						|
      Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
 | 
						|
    else if (Immed == 1 && PredCond == PPC::PRED_LT)
 | 
						|
      // We convert "less than 1" into "less than or equal to 0".
 | 
						|
      Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
 | 
						|
    else if (Immed == 1 && PredCond == PPC::PRED_GE)
 | 
						|
      // We convert "greater than or equal to 1" into "greater than 0".
 | 
						|
      Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
 | 
						|
    else
 | 
						|
      return false;
 | 
						|
 | 
						|
    PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
 | 
						|
  }
 | 
						|
 | 
						|
  // Search for Sub.
 | 
						|
  --I;
 | 
						|
 | 
						|
  // Get ready to iterate backward from CmpInstr.
 | 
						|
  MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
 | 
						|
 | 
						|
  for (; I != E && !noSub; --I) {
 | 
						|
    const MachineInstr &Instr = *I;
 | 
						|
    unsigned IOpC = Instr.getOpcode();
 | 
						|
 | 
						|
    if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
 | 
						|
                             Instr.readsRegister(PPC::CR0, TRI)))
 | 
						|
      // This instruction modifies or uses the record condition register after
 | 
						|
      // the one we want to change. While we could do this transformation, it
 | 
						|
      // would likely not be profitable. This transformation removes one
 | 
						|
      // instruction, and so even forcing RA to generate one move probably
 | 
						|
      // makes it unprofitable.
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Check whether CmpInstr can be made redundant by the current instruction.
 | 
						|
    if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
 | 
						|
         OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
 | 
						|
        (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
 | 
						|
        ((Instr.getOperand(1).getReg() == SrcReg &&
 | 
						|
          Instr.getOperand(2).getReg() == SrcReg2) ||
 | 
						|
        (Instr.getOperand(1).getReg() == SrcReg2 &&
 | 
						|
         Instr.getOperand(2).getReg() == SrcReg))) {
 | 
						|
      Sub = &*I;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (I == B)
 | 
						|
      // The 'and' is below the comparison instruction.
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Return false if no candidates exist.
 | 
						|
  if (!MI && !Sub)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The single candidate is called MI.
 | 
						|
  if (!MI) MI = Sub;
 | 
						|
 | 
						|
  int NewOpC = -1;
 | 
						|
  int MIOpC = MI->getOpcode();
 | 
						|
  if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
 | 
						|
      MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
 | 
						|
    NewOpC = MIOpC;
 | 
						|
  else {
 | 
						|
    NewOpC = PPC::getRecordFormOpcode(MIOpC);
 | 
						|
    if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
 | 
						|
      NewOpC = MIOpC;
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: On the non-embedded POWER architectures, only some of the record
 | 
						|
  // forms are fast, and we should use only the fast ones.
 | 
						|
 | 
						|
  // The defining instruction has a record form (or is already a record
 | 
						|
  // form). It is possible, however, that we'll need to reverse the condition
 | 
						|
  // code of the users.
 | 
						|
  if (NewOpC == -1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This transformation should not be performed if `nsw` is missing and is not
 | 
						|
  // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
 | 
						|
  // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
 | 
						|
  // CRReg can reflect if compared values are equal, this optz is still valid.
 | 
						|
  if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
 | 
						|
      Sub && !Sub->getFlag(MachineInstr::NoSWrap))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
 | 
						|
  // needs to be updated to be based on SUB.  Push the condition code
 | 
						|
  // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
 | 
						|
  // condition code of these operands will be modified.
 | 
						|
  // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
 | 
						|
  // comparison against 0, which may modify predicate.
 | 
						|
  bool ShouldSwap = false;
 | 
						|
  if (Sub && Value == 0) {
 | 
						|
    ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
 | 
						|
      Sub->getOperand(2).getReg() == SrcReg;
 | 
						|
 | 
						|
    // The operands to subf are the opposite of sub, so only in the fixed-point
 | 
						|
    // case, invert the order.
 | 
						|
    ShouldSwap = !ShouldSwap;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ShouldSwap)
 | 
						|
    for (MachineRegisterInfo::use_instr_iterator
 | 
						|
         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
 | 
						|
         I != IE; ++I) {
 | 
						|
      MachineInstr *UseMI = &*I;
 | 
						|
      if (UseMI->getOpcode() == PPC::BCC) {
 | 
						|
        PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
 | 
						|
        unsigned PredCond = PPC::getPredicateCondition(Pred);
 | 
						|
        assert((!equalityOnly ||
 | 
						|
                PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
 | 
						|
               "Invalid predicate for equality-only optimization");
 | 
						|
        (void)PredCond; // To suppress warning in release build.
 | 
						|
        PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
 | 
						|
                                PPC::getSwappedPredicate(Pred)));
 | 
						|
      } else if (UseMI->getOpcode() == PPC::ISEL ||
 | 
						|
                 UseMI->getOpcode() == PPC::ISEL8) {
 | 
						|
        unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
 | 
						|
        assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
 | 
						|
               "Invalid CR bit for equality-only optimization");
 | 
						|
 | 
						|
        if (NewSubReg == PPC::sub_lt)
 | 
						|
          NewSubReg = PPC::sub_gt;
 | 
						|
        else if (NewSubReg == PPC::sub_gt)
 | 
						|
          NewSubReg = PPC::sub_lt;
 | 
						|
 | 
						|
        SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
 | 
						|
                                                 NewSubReg));
 | 
						|
      } else // We need to abort on a user we don't understand.
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  assert(!(Value != 0 && ShouldSwap) &&
 | 
						|
         "Non-zero immediate support and ShouldSwap"
 | 
						|
         "may conflict in updating predicate");
 | 
						|
 | 
						|
  // Create a new virtual register to hold the value of the CR set by the
 | 
						|
  // record-form instruction. If the instruction was not previously in
 | 
						|
  // record form, then set the kill flag on the CR.
 | 
						|
  CmpInstr.eraseFromParent();
 | 
						|
 | 
						|
  MachineBasicBlock::iterator MII = MI;
 | 
						|
  BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
 | 
						|
          get(TargetOpcode::COPY), CRReg)
 | 
						|
    .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
 | 
						|
 | 
						|
  // Even if CR0 register were dead before, it is alive now since the
 | 
						|
  // instruction we just built uses it.
 | 
						|
  MI->clearRegisterDeads(PPC::CR0);
 | 
						|
 | 
						|
  if (MIOpC != NewOpC) {
 | 
						|
    // We need to be careful here: we're replacing one instruction with
 | 
						|
    // another, and we need to make sure that we get all of the right
 | 
						|
    // implicit uses and defs. On the other hand, the caller may be holding
 | 
						|
    // an iterator to this instruction, and so we can't delete it (this is
 | 
						|
    // specifically the case if this is the instruction directly after the
 | 
						|
    // compare).
 | 
						|
 | 
						|
    // Rotates are expensive instructions. If we're emitting a record-form
 | 
						|
    // rotate that can just be an andi/andis, we should just emit that.
 | 
						|
    if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
 | 
						|
      Register GPRRes = MI->getOperand(0).getReg();
 | 
						|
      int64_t SH = MI->getOperand(2).getImm();
 | 
						|
      int64_t MB = MI->getOperand(3).getImm();
 | 
						|
      int64_t ME = MI->getOperand(4).getImm();
 | 
						|
      // We can only do this if both the start and end of the mask are in the
 | 
						|
      // same halfword.
 | 
						|
      bool MBInLoHWord = MB >= 16;
 | 
						|
      bool MEInLoHWord = ME >= 16;
 | 
						|
      uint64_t Mask = ~0LLU;
 | 
						|
 | 
						|
      if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
 | 
						|
        Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
 | 
						|
        // The mask value needs to shift right 16 if we're emitting andis.
 | 
						|
        Mask >>= MBInLoHWord ? 0 : 16;
 | 
						|
        NewOpC = MIOpC == PPC::RLWINM
 | 
						|
                     ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
 | 
						|
                     : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
 | 
						|
      } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
 | 
						|
                 (ME - MB + 1 == SH) && (MB >= 16)) {
 | 
						|
        // If we are rotating by the exact number of bits as are in the mask
 | 
						|
        // and the mask is in the least significant bits of the register,
 | 
						|
        // that's just an andis. (as long as the GPR result has no uses).
 | 
						|
        Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
 | 
						|
        Mask >>= 16;
 | 
						|
        NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
 | 
						|
      }
 | 
						|
      // If we've set the mask, we can transform.
 | 
						|
      if (Mask != ~0LLU) {
 | 
						|
        MI->RemoveOperand(4);
 | 
						|
        MI->RemoveOperand(3);
 | 
						|
        MI->getOperand(2).setImm(Mask);
 | 
						|
        NumRcRotatesConvertedToRcAnd++;
 | 
						|
      }
 | 
						|
    } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
 | 
						|
      int64_t MB = MI->getOperand(3).getImm();
 | 
						|
      if (MB >= 48) {
 | 
						|
        uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
 | 
						|
        NewOpC = PPC::ANDI8_rec;
 | 
						|
        MI->RemoveOperand(3);
 | 
						|
        MI->getOperand(2).setImm(Mask);
 | 
						|
        NumRcRotatesConvertedToRcAnd++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    const MCInstrDesc &NewDesc = get(NewOpC);
 | 
						|
    MI->setDesc(NewDesc);
 | 
						|
 | 
						|
    if (NewDesc.ImplicitDefs)
 | 
						|
      for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
 | 
						|
           *ImpDefs; ++ImpDefs)
 | 
						|
        if (!MI->definesRegister(*ImpDefs))
 | 
						|
          MI->addOperand(*MI->getParent()->getParent(),
 | 
						|
                         MachineOperand::CreateReg(*ImpDefs, true, true));
 | 
						|
    if (NewDesc.ImplicitUses)
 | 
						|
      for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
 | 
						|
           *ImpUses; ++ImpUses)
 | 
						|
        if (!MI->readsRegister(*ImpUses))
 | 
						|
          MI->addOperand(*MI->getParent()->getParent(),
 | 
						|
                         MachineOperand::CreateReg(*ImpUses, false, true));
 | 
						|
  }
 | 
						|
  assert(MI->definesRegister(PPC::CR0) &&
 | 
						|
         "Record-form instruction does not define cr0?");
 | 
						|
 | 
						|
  // Modify the condition code of operands in OperandsToUpdate.
 | 
						|
  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
 | 
						|
  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
 | 
						|
  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
 | 
						|
    PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
 | 
						|
    SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
 | 
						|
    const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
 | 
						|
    int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
 | 
						|
    const TargetRegisterInfo *TRI) const {
 | 
						|
  const MachineOperand *BaseOp;
 | 
						|
  OffsetIsScalable = false;
 | 
						|
  if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
 | 
						|
    return false;
 | 
						|
  BaseOps.push_back(BaseOp);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isLdStSafeToCluster(const MachineInstr &LdSt,
 | 
						|
                                const TargetRegisterInfo *TRI) {
 | 
						|
  // If this is a volatile load/store, don't mess with it.
 | 
						|
  if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (LdSt.getOperand(2).isFI())
 | 
						|
    return true;
 | 
						|
 | 
						|
  assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
 | 
						|
  // Can't cluster if the instruction modifies the base register
 | 
						|
  // or it is update form. e.g. ld r2,3(r2)
 | 
						|
  if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Only cluster instruction pair that have the same opcode, and they are
 | 
						|
// clusterable according to PowerPC specification.
 | 
						|
static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
 | 
						|
                                     const PPCSubtarget &Subtarget) {
 | 
						|
  switch (FirstOpc) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case PPC::STD:
 | 
						|
  case PPC::STFD:
 | 
						|
  case PPC::STXSD:
 | 
						|
  case PPC::DFSTOREf64:
 | 
						|
    return FirstOpc == SecondOpc;
 | 
						|
  // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
 | 
						|
  // 32bit and 64bit instruction selection. They are clusterable pair though
 | 
						|
  // they are different opcode.
 | 
						|
  case PPC::STW:
 | 
						|
  case PPC::STW8:
 | 
						|
    return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::shouldClusterMemOps(
 | 
						|
    ArrayRef<const MachineOperand *> BaseOps1,
 | 
						|
    ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
 | 
						|
    unsigned NumBytes) const {
 | 
						|
 | 
						|
  assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
 | 
						|
  const MachineOperand &BaseOp1 = *BaseOps1.front();
 | 
						|
  const MachineOperand &BaseOp2 = *BaseOps2.front();
 | 
						|
  assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
 | 
						|
         "Only base registers and frame indices are supported.");
 | 
						|
 | 
						|
  // The NumLoads means the number of loads that has been clustered.
 | 
						|
  // Don't cluster memory op if there are already two ops clustered at least.
 | 
						|
  if (NumLoads > 2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Cluster the load/store only when they have the same base
 | 
						|
  // register or FI.
 | 
						|
  if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
 | 
						|
      (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
 | 
						|
      (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the load/store are clusterable according to the PowerPC
 | 
						|
  // specification.
 | 
						|
  const MachineInstr &FirstLdSt = *BaseOp1.getParent();
 | 
						|
  const MachineInstr &SecondLdSt = *BaseOp2.getParent();
 | 
						|
  unsigned FirstOpc = FirstLdSt.getOpcode();
 | 
						|
  unsigned SecondOpc = SecondLdSt.getOpcode();
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
  // Cluster the load/store only when they have the same opcode, and they are
 | 
						|
  // clusterable opcode according to PowerPC specification.
 | 
						|
  if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Can't cluster load/store that have ordered or volatile memory reference.
 | 
						|
  if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
 | 
						|
      !isLdStSafeToCluster(SecondLdSt, TRI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  int64_t Offset1 = 0, Offset2 = 0;
 | 
						|
  unsigned Width1 = 0, Width2 = 0;
 | 
						|
  const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
 | 
						|
  if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
 | 
						|
      !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
 | 
						|
      Width1 != Width2)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
 | 
						|
         "getMemOperandWithOffsetWidth return incorrect base op");
 | 
						|
  // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
 | 
						|
  assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
 | 
						|
  return Offset1 + Width1 == Offset2;
 | 
						|
}
 | 
						|
 | 
						|
/// GetInstSize - Return the number of bytes of code the specified
 | 
						|
/// instruction may be.  This returns the maximum number of bytes.
 | 
						|
///
 | 
						|
unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
 | 
						|
  unsigned Opcode = MI.getOpcode();
 | 
						|
 | 
						|
  if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
 | 
						|
    const MachineFunction *MF = MI.getParent()->getParent();
 | 
						|
    const char *AsmStr = MI.getOperand(0).getSymbolName();
 | 
						|
    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
 | 
						|
  } else if (Opcode == TargetOpcode::STACKMAP) {
 | 
						|
    StackMapOpers Opers(&MI);
 | 
						|
    return Opers.getNumPatchBytes();
 | 
						|
  } else if (Opcode == TargetOpcode::PATCHPOINT) {
 | 
						|
    PatchPointOpers Opers(&MI);
 | 
						|
    return Opers.getNumPatchBytes();
 | 
						|
  } else {
 | 
						|
    return get(Opcode).getSize();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::pair<unsigned, unsigned>
 | 
						|
PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
 | 
						|
  const unsigned Mask = PPCII::MO_ACCESS_MASK;
 | 
						|
  return std::make_pair(TF & Mask, TF & ~Mask);
 | 
						|
}
 | 
						|
 | 
						|
ArrayRef<std::pair<unsigned, const char *>>
 | 
						|
PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
 | 
						|
  using namespace PPCII;
 | 
						|
  static const std::pair<unsigned, const char *> TargetFlags[] = {
 | 
						|
      {MO_LO, "ppc-lo"},
 | 
						|
      {MO_HA, "ppc-ha"},
 | 
						|
      {MO_TPREL_LO, "ppc-tprel-lo"},
 | 
						|
      {MO_TPREL_HA, "ppc-tprel-ha"},
 | 
						|
      {MO_DTPREL_LO, "ppc-dtprel-lo"},
 | 
						|
      {MO_TLSLD_LO, "ppc-tlsld-lo"},
 | 
						|
      {MO_TOC_LO, "ppc-toc-lo"},
 | 
						|
      {MO_TLS, "ppc-tls"}};
 | 
						|
  return makeArrayRef(TargetFlags);
 | 
						|
}
 | 
						|
 | 
						|
ArrayRef<std::pair<unsigned, const char *>>
 | 
						|
PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
 | 
						|
  using namespace PPCII;
 | 
						|
  static const std::pair<unsigned, const char *> TargetFlags[] = {
 | 
						|
      {MO_PLT, "ppc-plt"},
 | 
						|
      {MO_PIC_FLAG, "ppc-pic"},
 | 
						|
      {MO_PCREL_FLAG, "ppc-pcrel"},
 | 
						|
      {MO_GOT_FLAG, "ppc-got"},
 | 
						|
      {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
 | 
						|
      {MO_TLSGD_FLAG, "ppc-tlsgd"},
 | 
						|
      {MO_TLSLD_FLAG, "ppc-tlsld"},
 | 
						|
      {MO_TPREL_FLAG, "ppc-tprel"},
 | 
						|
      {MO_TLSGDM_FLAG, "ppc-tlsgdm"},
 | 
						|
      {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
 | 
						|
      {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
 | 
						|
      {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
 | 
						|
  return makeArrayRef(TargetFlags);
 | 
						|
}
 | 
						|
 | 
						|
// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
 | 
						|
// The VSX versions have the advantage of a full 64-register target whereas
 | 
						|
// the FP ones have the advantage of lower latency and higher throughput. So
 | 
						|
// what we are after is using the faster instructions in low register pressure
 | 
						|
// situations and using the larger register file in high register pressure
 | 
						|
// situations.
 | 
						|
bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
 | 
						|
    unsigned UpperOpcode, LowerOpcode;
 | 
						|
    switch (MI.getOpcode()) {
 | 
						|
    case PPC::DFLOADf32:
 | 
						|
      UpperOpcode = PPC::LXSSP;
 | 
						|
      LowerOpcode = PPC::LFS;
 | 
						|
      break;
 | 
						|
    case PPC::DFLOADf64:
 | 
						|
      UpperOpcode = PPC::LXSD;
 | 
						|
      LowerOpcode = PPC::LFD;
 | 
						|
      break;
 | 
						|
    case PPC::DFSTOREf32:
 | 
						|
      UpperOpcode = PPC::STXSSP;
 | 
						|
      LowerOpcode = PPC::STFS;
 | 
						|
      break;
 | 
						|
    case PPC::DFSTOREf64:
 | 
						|
      UpperOpcode = PPC::STXSD;
 | 
						|
      LowerOpcode = PPC::STFD;
 | 
						|
      break;
 | 
						|
    case PPC::XFLOADf32:
 | 
						|
      UpperOpcode = PPC::LXSSPX;
 | 
						|
      LowerOpcode = PPC::LFSX;
 | 
						|
      break;
 | 
						|
    case PPC::XFLOADf64:
 | 
						|
      UpperOpcode = PPC::LXSDX;
 | 
						|
      LowerOpcode = PPC::LFDX;
 | 
						|
      break;
 | 
						|
    case PPC::XFSTOREf32:
 | 
						|
      UpperOpcode = PPC::STXSSPX;
 | 
						|
      LowerOpcode = PPC::STFSX;
 | 
						|
      break;
 | 
						|
    case PPC::XFSTOREf64:
 | 
						|
      UpperOpcode = PPC::STXSDX;
 | 
						|
      LowerOpcode = PPC::STFDX;
 | 
						|
      break;
 | 
						|
    case PPC::LIWAX:
 | 
						|
      UpperOpcode = PPC::LXSIWAX;
 | 
						|
      LowerOpcode = PPC::LFIWAX;
 | 
						|
      break;
 | 
						|
    case PPC::LIWZX:
 | 
						|
      UpperOpcode = PPC::LXSIWZX;
 | 
						|
      LowerOpcode = PPC::LFIWZX;
 | 
						|
      break;
 | 
						|
    case PPC::STIWX:
 | 
						|
      UpperOpcode = PPC::STXSIWX;
 | 
						|
      LowerOpcode = PPC::STFIWX;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      llvm_unreachable("Unknown Operation!");
 | 
						|
    }
 | 
						|
 | 
						|
    Register TargetReg = MI.getOperand(0).getReg();
 | 
						|
    unsigned Opcode;
 | 
						|
    if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
 | 
						|
        (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
 | 
						|
      Opcode = LowerOpcode;
 | 
						|
    else
 | 
						|
      Opcode = UpperOpcode;
 | 
						|
    MI.setDesc(get(Opcode));
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isAnImmediateOperand(const MachineOperand &MO) {
 | 
						|
  return MO.isCPI() || MO.isGlobal() || MO.isImm();
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
 | 
						|
  auto &MBB = *MI.getParent();
 | 
						|
  auto DL = MI.getDebugLoc();
 | 
						|
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  case PPC::BUILD_UACC: {
 | 
						|
    MCRegister ACC = MI.getOperand(0).getReg();
 | 
						|
    MCRegister UACC = MI.getOperand(1).getReg();
 | 
						|
    if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
 | 
						|
      MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
 | 
						|
      MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
 | 
						|
      // FIXME: This can easily be improved to look up to the top of the MBB
 | 
						|
      // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
 | 
						|
      // we can just re-target any such XXLOR's to DstVSR + offset.
 | 
						|
      for (int VecNo = 0; VecNo < 4; VecNo++)
 | 
						|
        BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
 | 
						|
            .addReg(SrcVSR + VecNo)
 | 
						|
            .addReg(SrcVSR + VecNo);
 | 
						|
    }
 | 
						|
    // BUILD_UACC is expanded to 4 copies of the underlying vsx registers.
 | 
						|
    // So after building the 4 copies, we can replace the BUILD_UACC instruction
 | 
						|
    // with a NOP.
 | 
						|
    LLVM_FALLTHROUGH;
 | 
						|
  }
 | 
						|
  case PPC::KILL_PAIR: {
 | 
						|
    MI.setDesc(get(PPC::UNENCODED_NOP));
 | 
						|
    MI.RemoveOperand(1);
 | 
						|
    MI.RemoveOperand(0);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case TargetOpcode::LOAD_STACK_GUARD: {
 | 
						|
    assert(Subtarget.isTargetLinux() &&
 | 
						|
           "Only Linux target is expected to contain LOAD_STACK_GUARD");
 | 
						|
    const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
 | 
						|
    const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
 | 
						|
    MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
 | 
						|
    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
        .addImm(Offset)
 | 
						|
        .addReg(Reg);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case PPC::DFLOADf32:
 | 
						|
  case PPC::DFLOADf64:
 | 
						|
  case PPC::DFSTOREf32:
 | 
						|
  case PPC::DFSTOREf64: {
 | 
						|
    assert(Subtarget.hasP9Vector() &&
 | 
						|
           "Invalid D-Form Pseudo-ops on Pre-P9 target.");
 | 
						|
    assert(MI.getOperand(2).isReg() &&
 | 
						|
           isAnImmediateOperand(MI.getOperand(1)) &&
 | 
						|
           "D-form op must have register and immediate operands");
 | 
						|
    return expandVSXMemPseudo(MI);
 | 
						|
  }
 | 
						|
  case PPC::XFLOADf32:
 | 
						|
  case PPC::XFSTOREf32:
 | 
						|
  case PPC::LIWAX:
 | 
						|
  case PPC::LIWZX:
 | 
						|
  case PPC::STIWX: {
 | 
						|
    assert(Subtarget.hasP8Vector() &&
 | 
						|
           "Invalid X-Form Pseudo-ops on Pre-P8 target.");
 | 
						|
    assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
 | 
						|
           "X-form op must have register and register operands");
 | 
						|
    return expandVSXMemPseudo(MI);
 | 
						|
  }
 | 
						|
  case PPC::XFLOADf64:
 | 
						|
  case PPC::XFSTOREf64: {
 | 
						|
    assert(Subtarget.hasVSX() &&
 | 
						|
           "Invalid X-Form Pseudo-ops on target that has no VSX.");
 | 
						|
    assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
 | 
						|
           "X-form op must have register and register operands");
 | 
						|
    return expandVSXMemPseudo(MI);
 | 
						|
  }
 | 
						|
  case PPC::SPILLTOVSR_LD: {
 | 
						|
    Register TargetReg = MI.getOperand(0).getReg();
 | 
						|
    if (PPC::VSFRCRegClass.contains(TargetReg)) {
 | 
						|
      MI.setDesc(get(PPC::DFLOADf64));
 | 
						|
      return expandPostRAPseudo(MI);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      MI.setDesc(get(PPC::LD));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case PPC::SPILLTOVSR_ST: {
 | 
						|
    Register SrcReg = MI.getOperand(0).getReg();
 | 
						|
    if (PPC::VSFRCRegClass.contains(SrcReg)) {
 | 
						|
      NumStoreSPILLVSRRCAsVec++;
 | 
						|
      MI.setDesc(get(PPC::DFSTOREf64));
 | 
						|
      return expandPostRAPseudo(MI);
 | 
						|
    } else {
 | 
						|
      NumStoreSPILLVSRRCAsGpr++;
 | 
						|
      MI.setDesc(get(PPC::STD));
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case PPC::SPILLTOVSR_LDX: {
 | 
						|
    Register TargetReg = MI.getOperand(0).getReg();
 | 
						|
    if (PPC::VSFRCRegClass.contains(TargetReg))
 | 
						|
      MI.setDesc(get(PPC::LXSDX));
 | 
						|
    else
 | 
						|
      MI.setDesc(get(PPC::LDX));
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  case PPC::SPILLTOVSR_STX: {
 | 
						|
    Register SrcReg = MI.getOperand(0).getReg();
 | 
						|
    if (PPC::VSFRCRegClass.contains(SrcReg)) {
 | 
						|
      NumStoreSPILLVSRRCAsVec++;
 | 
						|
      MI.setDesc(get(PPC::STXSDX));
 | 
						|
    } else {
 | 
						|
      NumStoreSPILLVSRRCAsGpr++;
 | 
						|
      MI.setDesc(get(PPC::STDX));
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
    // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass.
 | 
						|
  case PPC::CFENCE8: {
 | 
						|
    auto Val = MI.getOperand(0).getReg();
 | 
						|
    BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
 | 
						|
    BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
 | 
						|
        .addImm(PPC::PRED_NE_MINUS)
 | 
						|
        .addReg(PPC::CR7)
 | 
						|
        .addImm(1);
 | 
						|
    MI.setDesc(get(PPC::ISYNC));
 | 
						|
    MI.RemoveOperand(0);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Essentially a compile-time implementation of a compare->isel sequence.
 | 
						|
// It takes two constants to compare, along with the true/false registers
 | 
						|
// and the comparison type (as a subreg to a CR field) and returns one
 | 
						|
// of the true/false registers, depending on the comparison results.
 | 
						|
static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
 | 
						|
                          unsigned TrueReg, unsigned FalseReg,
 | 
						|
                          unsigned CRSubReg) {
 | 
						|
  // Signed comparisons. The immediates are assumed to be sign-extended.
 | 
						|
  if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
 | 
						|
    switch (CRSubReg) {
 | 
						|
    default: llvm_unreachable("Unknown integer comparison type.");
 | 
						|
    case PPC::sub_lt:
 | 
						|
      return Imm1 < Imm2 ? TrueReg : FalseReg;
 | 
						|
    case PPC::sub_gt:
 | 
						|
      return Imm1 > Imm2 ? TrueReg : FalseReg;
 | 
						|
    case PPC::sub_eq:
 | 
						|
      return Imm1 == Imm2 ? TrueReg : FalseReg;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Unsigned comparisons.
 | 
						|
  else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
 | 
						|
    switch (CRSubReg) {
 | 
						|
    default: llvm_unreachable("Unknown integer comparison type.");
 | 
						|
    case PPC::sub_lt:
 | 
						|
      return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
 | 
						|
    case PPC::sub_gt:
 | 
						|
      return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
 | 
						|
    case PPC::sub_eq:
 | 
						|
      return Imm1 == Imm2 ? TrueReg : FalseReg;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return PPC::NoRegister;
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
 | 
						|
                                              unsigned OpNo,
 | 
						|
                                              int64_t Imm) const {
 | 
						|
  assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
 | 
						|
  // Replace the REG with the Immediate.
 | 
						|
  Register InUseReg = MI.getOperand(OpNo).getReg();
 | 
						|
  MI.getOperand(OpNo).ChangeToImmediate(Imm);
 | 
						|
 | 
						|
  // We need to make sure that the MI didn't have any implicit use
 | 
						|
  // of this REG any more. We don't call MI.implicit_operands().empty() to
 | 
						|
  // return early, since MI's MCID might be changed in calling context, as a
 | 
						|
  // result its number of explicit operands may be changed, thus the begin of
 | 
						|
  // implicit operand is changed.
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
  int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
 | 
						|
  if (UseOpIdx >= 0) {
 | 
						|
    MachineOperand &MO = MI.getOperand(UseOpIdx);
 | 
						|
    if (MO.isImplicit())
 | 
						|
      // The operands must always be in the following order:
 | 
						|
      // - explicit reg defs,
 | 
						|
      // - other explicit operands (reg uses, immediates, etc.),
 | 
						|
      // - implicit reg defs
 | 
						|
      // - implicit reg uses
 | 
						|
      // Therefore, removing the implicit operand won't change the explicit
 | 
						|
      // operands layout.
 | 
						|
      MI.RemoveOperand(UseOpIdx);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Replace an instruction with one that materializes a constant (and sets
 | 
						|
// CR0 if the original instruction was a record-form instruction).
 | 
						|
void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
 | 
						|
                                      const LoadImmediateInfo &LII) const {
 | 
						|
  // Remove existing operands.
 | 
						|
  int OperandToKeep = LII.SetCR ? 1 : 0;
 | 
						|
  for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
 | 
						|
    MI.RemoveOperand(i);
 | 
						|
 | 
						|
  // Replace the instruction.
 | 
						|
  if (LII.SetCR) {
 | 
						|
    MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
 | 
						|
    // Set the immediate.
 | 
						|
    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
        .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  else
 | 
						|
    MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
 | 
						|
 | 
						|
  // Set the immediate.
 | 
						|
  MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | 
						|
      .addImm(LII.Imm);
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
 | 
						|
                                           bool &SeenIntermediateUse) const {
 | 
						|
  assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
 | 
						|
         "Should be called after register allocation.");
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
  MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
 | 
						|
  It++;
 | 
						|
  SeenIntermediateUse = false;
 | 
						|
  for (; It != E; ++It) {
 | 
						|
    if (It->modifiesRegister(Reg, TRI))
 | 
						|
      return &*It;
 | 
						|
    if (It->readsRegister(Reg, TRI))
 | 
						|
      SeenIntermediateUse = true;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *PPCInstrInfo::getForwardingDefMI(
 | 
						|
  MachineInstr &MI,
 | 
						|
  unsigned &OpNoForForwarding,
 | 
						|
  bool &SeenIntermediateUse) const {
 | 
						|
  OpNoForForwarding = ~0U;
 | 
						|
  MachineInstr *DefMI = nullptr;
 | 
						|
  MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
  // If we're in SSA, get the defs through the MRI. Otherwise, only look
 | 
						|
  // within the basic block to see if the register is defined using an
 | 
						|
  // LI/LI8/ADDI/ADDI8.
 | 
						|
  if (MRI->isSSA()) {
 | 
						|
    for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
 | 
						|
      if (!MI.getOperand(i).isReg())
 | 
						|
        continue;
 | 
						|
      Register Reg = MI.getOperand(i).getReg();
 | 
						|
      if (!Register::isVirtualRegister(Reg))
 | 
						|
        continue;
 | 
						|
      Register TrueReg = TRI->lookThruCopyLike(Reg, MRI);
 | 
						|
      if (Register::isVirtualRegister(TrueReg)) {
 | 
						|
        DefMI = MRI->getVRegDef(TrueReg);
 | 
						|
        if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
 | 
						|
            DefMI->getOpcode() == PPC::ADDI ||
 | 
						|
            DefMI->getOpcode() == PPC::ADDI8) {
 | 
						|
          OpNoForForwarding = i;
 | 
						|
          // The ADDI and LI operand maybe exist in one instruction at same
 | 
						|
          // time. we prefer to fold LI operand as LI only has one Imm operand
 | 
						|
          // and is more possible to be converted. So if current DefMI is
 | 
						|
          // ADDI/ADDI8, we continue to find possible LI/LI8.
 | 
						|
          if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
 | 
						|
            break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Looking back through the definition for each operand could be expensive,
 | 
						|
    // so exit early if this isn't an instruction that either has an immediate
 | 
						|
    // form or is already an immediate form that we can handle.
 | 
						|
    ImmInstrInfo III;
 | 
						|
    unsigned Opc = MI.getOpcode();
 | 
						|
    bool ConvertibleImmForm =
 | 
						|
        Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
 | 
						|
        Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
 | 
						|
        Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
 | 
						|
        Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
 | 
						|
        Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
 | 
						|
        Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
 | 
						|
        Opc == PPC::RLWINM8_rec;
 | 
						|
    bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
 | 
						|
                       ? isVFRegister(MI.getOperand(0).getReg())
 | 
						|
                       : false;
 | 
						|
    if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    // Don't convert or %X, %Y, %Y since that's just a register move.
 | 
						|
    if ((Opc == PPC::OR || Opc == PPC::OR8) &&
 | 
						|
        MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
 | 
						|
      return nullptr;
 | 
						|
    for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
 | 
						|
      MachineOperand &MO = MI.getOperand(i);
 | 
						|
      SeenIntermediateUse = false;
 | 
						|
      if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
 | 
						|
        Register Reg = MI.getOperand(i).getReg();
 | 
						|
        // If we see another use of this reg between the def and the MI,
 | 
						|
        // we want to flat it so the def isn't deleted.
 | 
						|
        MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
 | 
						|
        if (DefMI) {
 | 
						|
          // Is this register defined by some form of add-immediate (including
 | 
						|
          // load-immediate) within this basic block?
 | 
						|
          switch (DefMI->getOpcode()) {
 | 
						|
          default:
 | 
						|
            break;
 | 
						|
          case PPC::LI:
 | 
						|
          case PPC::LI8:
 | 
						|
          case PPC::ADDItocL:
 | 
						|
          case PPC::ADDI:
 | 
						|
          case PPC::ADDI8:
 | 
						|
            OpNoForForwarding = i;
 | 
						|
            return DefMI;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return OpNoForForwarding == ~0U ? nullptr : DefMI;
 | 
						|
}
 | 
						|
 | 
						|
unsigned PPCInstrInfo::getSpillTarget() const {
 | 
						|
  // With P10, we may need to spill paired vector registers or accumulator
 | 
						|
  // registers. MMA implies paired vectors, so we can just check that.
 | 
						|
  bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
 | 
						|
  return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
 | 
						|
  return StoreSpillOpcodesArray[getSpillTarget()];
 | 
						|
}
 | 
						|
 | 
						|
const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
 | 
						|
  return LoadSpillOpcodesArray[getSpillTarget()];
 | 
						|
}
 | 
						|
 | 
						|
void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
 | 
						|
                                     unsigned RegNo) const {
 | 
						|
  // Conservatively clear kill flag for the register if the instructions are in
 | 
						|
  // different basic blocks and in SSA form, because the kill flag may no longer
 | 
						|
  // be right. There is no need to bother with dead flags since defs with no
 | 
						|
  // uses will be handled by DCE.
 | 
						|
  MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
 | 
						|
  if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
 | 
						|
    MRI.clearKillFlags(RegNo);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Instructions between [StartMI, EndMI] should be in same basic block.
 | 
						|
  assert((StartMI->getParent() == EndMI->getParent()) &&
 | 
						|
         "Instructions are not in same basic block");
 | 
						|
 | 
						|
  // If before RA, StartMI may be def through COPY, we need to adjust it to the
 | 
						|
  // real def. See function getForwardingDefMI.
 | 
						|
  if (MRI.isSSA()) {
 | 
						|
    bool Reads, Writes;
 | 
						|
    std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
 | 
						|
    if (!Reads && !Writes) {
 | 
						|
      assert(Register::isVirtualRegister(RegNo) &&
 | 
						|
             "Must be a virtual register");
 | 
						|
      // Get real def and ignore copies.
 | 
						|
      StartMI = MRI.getVRegDef(RegNo);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsKillSet = false;
 | 
						|
 | 
						|
  auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
 | 
						|
    MachineOperand &MO = MI.getOperand(Index);
 | 
						|
    if (MO.isReg() && MO.isUse() && MO.isKill() &&
 | 
						|
        getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
 | 
						|
      MO.setIsKill(false);
 | 
						|
  };
 | 
						|
 | 
						|
  // Set killed flag for EndMI.
 | 
						|
  // No need to do anything if EndMI defines RegNo.
 | 
						|
  int UseIndex =
 | 
						|
      EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
 | 
						|
  if (UseIndex != -1) {
 | 
						|
    EndMI->getOperand(UseIndex).setIsKill(true);
 | 
						|
    IsKillSet = true;
 | 
						|
    // Clear killed flag for other EndMI operands related to RegNo. In some
 | 
						|
    // upexpected cases, killed may be set multiple times for same register
 | 
						|
    // operand in same MI.
 | 
						|
    for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
 | 
						|
      if (i != UseIndex)
 | 
						|
        clearOperandKillInfo(*EndMI, i);
 | 
						|
  }
 | 
						|
 | 
						|
  // Walking the inst in reverse order (EndMI -> StartMI].
 | 
						|
  MachineBasicBlock::reverse_iterator It = *EndMI;
 | 
						|
  MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
 | 
						|
  // EndMI has been handled above, skip it here.
 | 
						|
  It++;
 | 
						|
  MachineOperand *MO = nullptr;
 | 
						|
  for (; It != E; ++It) {
 | 
						|
    // Skip insturctions which could not be a def/use of RegNo.
 | 
						|
    if (It->isDebugInstr() || It->isPosition())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Clear killed flag for all It operands related to RegNo. In some
 | 
						|
    // upexpected cases, killed may be set multiple times for same register
 | 
						|
    // operand in same MI.
 | 
						|
    for (int i = 0, e = It->getNumOperands(); i != e; ++i)
 | 
						|
        clearOperandKillInfo(*It, i);
 | 
						|
 | 
						|
    // If killed is not set, set killed for its last use or set dead for its def
 | 
						|
    // if no use found.
 | 
						|
    if (!IsKillSet) {
 | 
						|
      if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
 | 
						|
        // Use found, set it killed.
 | 
						|
        IsKillSet = true;
 | 
						|
        MO->setIsKill(true);
 | 
						|
        continue;
 | 
						|
      } else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
 | 
						|
                                                  &getRegisterInfo()))) {
 | 
						|
        // No use found, set dead for its def.
 | 
						|
        assert(&*It == StartMI && "No new def between StartMI and EndMI.");
 | 
						|
        MO->setIsDead(true);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if ((&*It) == StartMI)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  // Ensure RegMo liveness is killed after EndMI.
 | 
						|
  assert((IsKillSet || (MO && MO->isDead())) &&
 | 
						|
         "RegNo should be killed or dead");
 | 
						|
}
 | 
						|
 | 
						|
// This opt tries to convert the following imm form to an index form to save an
 | 
						|
// add for stack variables.
 | 
						|
// Return false if no such pattern found.
 | 
						|
//
 | 
						|
// ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
 | 
						|
// ADD instr:  ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
 | 
						|
// Imm instr:  Reg            = op OffsetImm, ToBeDeletedReg(killed)
 | 
						|
//
 | 
						|
// can be converted to:
 | 
						|
//
 | 
						|
// new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
 | 
						|
// Index instr:    Reg            = opx ScaleReg, ToBeChangedReg(killed)
 | 
						|
//
 | 
						|
// In order to eliminate ADD instr, make sure that:
 | 
						|
// 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
 | 
						|
//    new ADDI instr and ADDI can only take int16 Imm.
 | 
						|
// 2: ToBeChangedReg must be killed in ADD instr and there is no other use
 | 
						|
//    between ADDI and ADD instr since its original def in ADDI will be changed
 | 
						|
//    in new ADDI instr. And also there should be no new def for it between
 | 
						|
//    ADD and Imm instr as ToBeChangedReg will be used in Index instr.
 | 
						|
// 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
 | 
						|
//    between ADD and Imm instr since ADD instr will be eliminated.
 | 
						|
// 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
 | 
						|
//    moved to Index instr.
 | 
						|
bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
 | 
						|
  MachineFunction *MF = MI.getParent()->getParent();
 | 
						|
  MachineRegisterInfo *MRI = &MF->getRegInfo();
 | 
						|
  bool PostRA = !MRI->isSSA();
 | 
						|
  // Do this opt after PEI which is after RA. The reason is stack slot expansion
 | 
						|
  // in PEI may expose such opportunities since in PEI, stack slot offsets to
 | 
						|
  // frame base(OffsetAddi) are determined.
 | 
						|
  if (!PostRA)
 | 
						|
    return false;
 | 
						|
  unsigned ToBeDeletedReg = 0;
 | 
						|
  int64_t OffsetImm = 0;
 | 
						|
  unsigned XFormOpcode = 0;
 | 
						|
  ImmInstrInfo III;
 | 
						|
 | 
						|
  // Check if Imm instr meets requirement.
 | 
						|
  if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
 | 
						|
                                    III))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool OtherIntermediateUse = false;
 | 
						|
  MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
 | 
						|
 | 
						|
  // Exit if there is other use between ADD and Imm instr or no def found.
 | 
						|
  if (OtherIntermediateUse || !ADDMI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if ADD instr meets requirement.
 | 
						|
  if (!isADDInstrEligibleForFolding(*ADDMI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned ScaleRegIdx = 0;
 | 
						|
  int64_t OffsetAddi = 0;
 | 
						|
  MachineInstr *ADDIMI = nullptr;
 | 
						|
 | 
						|
  // Check if there is a valid ToBeChangedReg in ADDMI.
 | 
						|
  // 1: It must be killed.
 | 
						|
  // 2: Its definition must be a valid ADDIMI.
 | 
						|
  // 3: It must satify int16 offset requirement.
 | 
						|
  if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
 | 
						|
    ScaleRegIdx = 2;
 | 
						|
  else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
 | 
						|
    ScaleRegIdx = 1;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
 | 
						|
  Register ToBeChangedReg = ADDIMI->getOperand(0).getReg();
 | 
						|
  Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
 | 
						|
  auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
 | 
						|
                       MachineBasicBlock::iterator End) {
 | 
						|
    for (auto It = ++Start; It != End; It++)
 | 
						|
      if (It->modifiesRegister(Reg, &getRegisterInfo()))
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
 | 
						|
  // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
 | 
						|
  // treated as special zero when ScaleReg is R0/X0 register.
 | 
						|
  if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
 | 
						|
      (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
 | 
						|
  // and Imm Instr.
 | 
						|
  if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now start to do the transformation.
 | 
						|
  LLVM_DEBUG(dbgs() << "Replace instruction: "
 | 
						|
                    << "\n");
 | 
						|
  LLVM_DEBUG(ADDIMI->dump());
 | 
						|
  LLVM_DEBUG(ADDMI->dump());
 | 
						|
  LLVM_DEBUG(MI.dump());
 | 
						|
  LLVM_DEBUG(dbgs() << "with: "
 | 
						|
                    << "\n");
 | 
						|
 | 
						|
  // Update ADDI instr.
 | 
						|
  ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
 | 
						|
 | 
						|
  // Update Imm instr.
 | 
						|
  MI.setDesc(get(XFormOpcode));
 | 
						|
  MI.getOperand(III.ImmOpNo)
 | 
						|
      .ChangeToRegister(ScaleReg, false, false,
 | 
						|
                        ADDMI->getOperand(ScaleRegIdx).isKill());
 | 
						|
 | 
						|
  MI.getOperand(III.OpNoForForwarding)
 | 
						|
      .ChangeToRegister(ToBeChangedReg, false, false, true);
 | 
						|
 | 
						|
  // Eliminate ADD instr.
 | 
						|
  ADDMI->eraseFromParent();
 | 
						|
 | 
						|
  LLVM_DEBUG(ADDIMI->dump());
 | 
						|
  LLVM_DEBUG(MI.dump());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
 | 
						|
                                                 int64_t &Imm) const {
 | 
						|
  unsigned Opc = ADDIMI.getOpcode();
 | 
						|
 | 
						|
  // Exit if the instruction is not ADDI.
 | 
						|
  if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The operand may not necessarily be an immediate - it could be a relocation.
 | 
						|
  if (!ADDIMI.getOperand(2).isImm())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Imm = ADDIMI.getOperand(2).getImm();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
 | 
						|
  unsigned Opc = ADDMI.getOpcode();
 | 
						|
 | 
						|
  // Exit if the instruction is not ADD.
 | 
						|
  return Opc == PPC::ADD4 || Opc == PPC::ADD8;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
 | 
						|
                                                unsigned &ToBeDeletedReg,
 | 
						|
                                                unsigned &XFormOpcode,
 | 
						|
                                                int64_t &OffsetImm,
 | 
						|
                                                ImmInstrInfo &III) const {
 | 
						|
  // Only handle load/store.
 | 
						|
  if (!MI.mayLoadOrStore())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
 | 
						|
  XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
 | 
						|
 | 
						|
  // Exit if instruction has no index form.
 | 
						|
  if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
 | 
						|
  if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
 | 
						|
                       III, true))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!III.IsSummingOperands)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
 | 
						|
  MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
 | 
						|
  // Only support imm operands, not relocation slots or others.
 | 
						|
  if (!ImmOperand.isImm())
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(RegOperand.isReg() && "Instruction format is not right");
 | 
						|
 | 
						|
  // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
 | 
						|
  if (!RegOperand.isKill())
 | 
						|
    return false;
 | 
						|
 | 
						|
  ToBeDeletedReg = RegOperand.getReg();
 | 
						|
  OffsetImm = ImmOperand.getImm();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
 | 
						|
                                         MachineInstr *&ADDIMI,
 | 
						|
                                         int64_t &OffsetAddi,
 | 
						|
                                         int64_t OffsetImm) const {
 | 
						|
  assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
 | 
						|
  MachineOperand &MO = ADDMI->getOperand(Index);
 | 
						|
 | 
						|
  if (!MO.isKill())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool OtherIntermediateUse = false;
 | 
						|
 | 
						|
  ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
 | 
						|
  // Currently handle only one "add + Imminstr" pair case, exit if other
 | 
						|
  // intermediate use for ToBeChangedReg found.
 | 
						|
  // TODO: handle the cases where there are other "add + Imminstr" pairs
 | 
						|
  // with same offset in Imminstr which is like:
 | 
						|
  //
 | 
						|
  // ADDI instr: ToBeChangedReg  = ADDI FrameBaseReg, OffsetAddi
 | 
						|
  // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
 | 
						|
  // Imm instr1: Reg1            = op1 OffsetImm, ToBeDeletedReg1(killed)
 | 
						|
  // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
 | 
						|
  // Imm instr2: Reg2            = op2 OffsetImm, ToBeDeletedReg2(killed)
 | 
						|
  //
 | 
						|
  // can be converted to:
 | 
						|
  //
 | 
						|
  // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
 | 
						|
  //                                       (OffsetAddi + OffsetImm)
 | 
						|
  // Index instr1:   Reg1           = opx1 ScaleReg1, ToBeChangedReg
 | 
						|
  // Index instr2:   Reg2           = opx2 ScaleReg2, ToBeChangedReg(killed)
 | 
						|
 | 
						|
  if (OtherIntermediateUse || !ADDIMI)
 | 
						|
    return false;
 | 
						|
  // Check if ADDI instr meets requirement.
 | 
						|
  if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isInt<16>(OffsetAddi + OffsetImm))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// If this instruction has an immediate form and one of its operands is a
 | 
						|
// result of a load-immediate or an add-immediate, convert it to
 | 
						|
// the immediate form if the constant is in range.
 | 
						|
bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
 | 
						|
                                          MachineInstr **KilledDef) const {
 | 
						|
  MachineFunction *MF = MI.getParent()->getParent();
 | 
						|
  MachineRegisterInfo *MRI = &MF->getRegInfo();
 | 
						|
  bool PostRA = !MRI->isSSA();
 | 
						|
  bool SeenIntermediateUse = true;
 | 
						|
  unsigned ForwardingOperand = ~0U;
 | 
						|
  MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
 | 
						|
                                           SeenIntermediateUse);
 | 
						|
  if (!DefMI)
 | 
						|
    return false;
 | 
						|
  assert(ForwardingOperand < MI.getNumOperands() &&
 | 
						|
         "The forwarding operand needs to be valid at this point");
 | 
						|
  bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
 | 
						|
  bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
 | 
						|
  if (KilledDef && KillFwdDefMI)
 | 
						|
    *KilledDef = DefMI;
 | 
						|
 | 
						|
  // If this is a imm instruction and its register operands is produced by ADDI,
 | 
						|
  // put the imm into imm inst directly.
 | 
						|
  if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
 | 
						|
          PPC::INSTRUCTION_LIST_END &&
 | 
						|
      transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ImmInstrInfo III;
 | 
						|
  bool IsVFReg = MI.getOperand(0).isReg()
 | 
						|
                     ? isVFRegister(MI.getOperand(0).getReg())
 | 
						|
                     : false;
 | 
						|
  bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
 | 
						|
  // If this is a reg+reg instruction that has a reg+imm form,
 | 
						|
  // and one of the operands is produced by an add-immediate,
 | 
						|
  // try to convert it.
 | 
						|
  if (HasImmForm &&
 | 
						|
      transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
 | 
						|
                                 KillFwdDefMI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this is a reg+reg instruction that has a reg+imm form,
 | 
						|
  // and one of the operands is produced by LI, convert it now.
 | 
						|
  if (HasImmForm &&
 | 
						|
      transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
 | 
						|
  // can be simpified to LI.
 | 
						|
  if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
 | 
						|
                                 MachineInstr **ToErase) const {
 | 
						|
  MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
 | 
						|
  Register FoldingReg = MI.getOperand(1).getReg();
 | 
						|
  if (!Register::isVirtualRegister(FoldingReg))
 | 
						|
    return false;
 | 
						|
  MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
 | 
						|
  if (SrcMI->getOpcode() != PPC::RLWINM &&
 | 
						|
      SrcMI->getOpcode() != PPC::RLWINM_rec &&
 | 
						|
      SrcMI->getOpcode() != PPC::RLWINM8 &&
 | 
						|
      SrcMI->getOpcode() != PPC::RLWINM8_rec)
 | 
						|
    return false;
 | 
						|
  assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
 | 
						|
          MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
 | 
						|
          SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
 | 
						|
         "Invalid PPC::RLWINM Instruction!");
 | 
						|
  uint64_t SHSrc = SrcMI->getOperand(2).getImm();
 | 
						|
  uint64_t SHMI = MI.getOperand(2).getImm();
 | 
						|
  uint64_t MBSrc = SrcMI->getOperand(3).getImm();
 | 
						|
  uint64_t MBMI = MI.getOperand(3).getImm();
 | 
						|
  uint64_t MESrc = SrcMI->getOperand(4).getImm();
 | 
						|
  uint64_t MEMI = MI.getOperand(4).getImm();
 | 
						|
 | 
						|
  assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
 | 
						|
         "Invalid PPC::RLWINM Instruction!");
 | 
						|
  // If MBMI is bigger than MEMI, we always can not get run of ones.
 | 
						|
  // RotatedSrcMask non-wrap:
 | 
						|
  //                 0........31|32........63
 | 
						|
  // RotatedSrcMask:   B---E        B---E
 | 
						|
  // MaskMI:         -----------|--E  B------
 | 
						|
  // Result:           -----          ---      (Bad candidate)
 | 
						|
  //
 | 
						|
  // RotatedSrcMask wrap:
 | 
						|
  //                 0........31|32........63
 | 
						|
  // RotatedSrcMask: --E   B----|--E    B----
 | 
						|
  // MaskMI:         -----------|--E  B------
 | 
						|
  // Result:         ---   -----|---    -----  (Bad candidate)
 | 
						|
  //
 | 
						|
  // One special case is RotatedSrcMask is a full set mask.
 | 
						|
  // RotatedSrcMask full:
 | 
						|
  //                 0........31|32........63
 | 
						|
  // RotatedSrcMask: ------EB---|-------EB---
 | 
						|
  // MaskMI:         -----------|--E  B------
 | 
						|
  // Result:         -----------|---  -------  (Good candidate)
 | 
						|
 | 
						|
  // Mark special case.
 | 
						|
  bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
 | 
						|
 | 
						|
  // For other MBMI > MEMI cases, just return.
 | 
						|
  if ((MBMI > MEMI) && !SrcMaskFull)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Handle MBMI <= MEMI cases.
 | 
						|
  APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
 | 
						|
  // In MI, we only need low 32 bits of SrcMI, just consider about low 32
 | 
						|
  // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
 | 
						|
  // while in PowerPC ISA, lowerest bit is at index 63.
 | 
						|
  APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
 | 
						|
 | 
						|
  APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
 | 
						|
  APInt FinalMask = RotatedSrcMask & MaskMI;
 | 
						|
  uint32_t NewMB, NewME;
 | 
						|
  bool Simplified = false;
 | 
						|
 | 
						|
  // If final mask is 0, MI result should be 0 too.
 | 
						|
  if (FinalMask.isZero()) {
 | 
						|
    bool Is64Bit =
 | 
						|
        (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
 | 
						|
    Simplified = true;
 | 
						|
    LLVM_DEBUG(dbgs() << "Replace Instr: ");
 | 
						|
    LLVM_DEBUG(MI.dump());
 | 
						|
 | 
						|
    if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
 | 
						|
      // Replace MI with "LI 0"
 | 
						|
      MI.RemoveOperand(4);
 | 
						|
      MI.RemoveOperand(3);
 | 
						|
      MI.RemoveOperand(2);
 | 
						|
      MI.getOperand(1).ChangeToImmediate(0);
 | 
						|
      MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
 | 
						|
    } else {
 | 
						|
      // Replace MI with "ANDI_rec reg, 0"
 | 
						|
      MI.RemoveOperand(4);
 | 
						|
      MI.RemoveOperand(3);
 | 
						|
      MI.getOperand(2).setImm(0);
 | 
						|
      MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
 | 
						|
      MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
 | 
						|
      if (SrcMI->getOperand(1).isKill()) {
 | 
						|
        MI.getOperand(1).setIsKill(true);
 | 
						|
        SrcMI->getOperand(1).setIsKill(false);
 | 
						|
      } else
 | 
						|
        // About to replace MI.getOperand(1), clear its kill flag.
 | 
						|
        MI.getOperand(1).setIsKill(false);
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "With: ");
 | 
						|
    LLVM_DEBUG(MI.dump());
 | 
						|
 | 
						|
  } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
 | 
						|
              NewMB <= NewME) ||
 | 
						|
             SrcMaskFull) {
 | 
						|
    // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
 | 
						|
    // than NewME. Otherwise we get a 64 bit value after folding, but MI
 | 
						|
    // return a 32 bit value.
 | 
						|
    Simplified = true;
 | 
						|
    LLVM_DEBUG(dbgs() << "Converting Instr: ");
 | 
						|
    LLVM_DEBUG(MI.dump());
 | 
						|
 | 
						|
    uint16_t NewSH = (SHSrc + SHMI) % 32;
 | 
						|
    MI.getOperand(2).setImm(NewSH);
 | 
						|
    // If SrcMI mask is full, no need to update MBMI and MEMI.
 | 
						|
    if (!SrcMaskFull) {
 | 
						|
      MI.getOperand(3).setImm(NewMB);
 | 
						|
      MI.getOperand(4).setImm(NewME);
 | 
						|
    }
 | 
						|
    MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
 | 
						|
    if (SrcMI->getOperand(1).isKill()) {
 | 
						|
      MI.getOperand(1).setIsKill(true);
 | 
						|
      SrcMI->getOperand(1).setIsKill(false);
 | 
						|
    } else
 | 
						|
      // About to replace MI.getOperand(1), clear its kill flag.
 | 
						|
      MI.getOperand(1).setIsKill(false);
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "To: ");
 | 
						|
    LLVM_DEBUG(MI.dump());
 | 
						|
  }
 | 
						|
  if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
 | 
						|
      !SrcMI->hasImplicitDef()) {
 | 
						|
    // If FoldingReg has no non-debug use and it has no implicit def (it
 | 
						|
    // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
 | 
						|
    // Otherwise keep it.
 | 
						|
    *ToErase = SrcMI;
 | 
						|
    LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
 | 
						|
    LLVM_DEBUG(SrcMI->dump());
 | 
						|
  }
 | 
						|
  return Simplified;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
 | 
						|
                                   ImmInstrInfo &III, bool PostRA) const {
 | 
						|
  // The vast majority of the instructions would need their operand 2 replaced
 | 
						|
  // with an immediate when switching to the reg+imm form. A marked exception
 | 
						|
  // are the update form loads/stores for which a constant operand 2 would need
 | 
						|
  // to turn into a displacement and move operand 1 to the operand 2 position.
 | 
						|
  III.ImmOpNo = 2;
 | 
						|
  III.OpNoForForwarding = 2;
 | 
						|
  III.ImmWidth = 16;
 | 
						|
  III.ImmMustBeMultipleOf = 1;
 | 
						|
  III.TruncateImmTo = 0;
 | 
						|
  III.IsSummingOperands = false;
 | 
						|
  switch (Opc) {
 | 
						|
  default: return false;
 | 
						|
  case PPC::ADD4:
 | 
						|
  case PPC::ADD8:
 | 
						|
    III.SignedImm = true;
 | 
						|
    III.ZeroIsSpecialOrig = 0;
 | 
						|
    III.ZeroIsSpecialNew = 1;
 | 
						|
    III.IsCommutative = true;
 | 
						|
    III.IsSummingOperands = true;
 | 
						|
    III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
 | 
						|
    break;
 | 
						|
  case PPC::ADDC:
 | 
						|
  case PPC::ADDC8:
 | 
						|
    III.SignedImm = true;
 | 
						|
    III.ZeroIsSpecialOrig = 0;
 | 
						|
    III.ZeroIsSpecialNew = 0;
 | 
						|
    III.IsCommutative = true;
 | 
						|
    III.IsSummingOperands = true;
 | 
						|
    III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
 | 
						|
    break;
 | 
						|
  case PPC::ADDC_rec:
 | 
						|
    III.SignedImm = true;
 | 
						|
    III.ZeroIsSpecialOrig = 0;
 | 
						|
    III.ZeroIsSpecialNew = 0;
 | 
						|
    III.IsCommutative = true;
 | 
						|
    III.IsSummingOperands = true;
 | 
						|
    III.ImmOpcode = PPC::ADDIC_rec;
 | 
						|
    break;
 | 
						|
  case PPC::SUBFC:
 | 
						|
  case PPC::SUBFC8:
 | 
						|
    III.SignedImm = true;
 | 
						|
    III.ZeroIsSpecialOrig = 0;
 | 
						|
    III.ZeroIsSpecialNew = 0;
 | 
						|
    III.IsCommutative = false;
 | 
						|
    III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
 | 
						|
    break;
 | 
						|
  case PPC::CMPW:
 | 
						|
  case PPC::CMPD:
 | 
						|
    III.SignedImm = true;
 | 
						|
    III.ZeroIsSpecialOrig = 0;
 | 
						|
    III.ZeroIsSpecialNew = 0;
 | 
						|
    III.IsCommutative = false;
 | 
						|
    III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
 | 
						|
    break;
 | 
						|
  case PPC::CMPLW:
 | 
						|
  case PPC::CMPLD:
 | 
						|
    III.SignedImm = false;
 | 
						|
    III.ZeroIsSpecialOrig = 0;
 | 
						|
    III.ZeroIsSpecialNew = 0;
 | 
						|
    III.IsCommutative = false;
 | 
						|
    III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
 | 
						|
    break;
 | 
						|
  case PPC::AND_rec:
 | 
						|
  case PPC::AND8_rec:
 | 
						|
  case PPC::OR:
 | 
						|
  case PPC::OR8:
 | 
						|
  case PPC::XOR:
 | 
						|
  case PPC::XOR8:
 | 
						|
    III.SignedImm = false;
 | 
						|
    III.ZeroIsSpecialOrig = 0;
 | 
						|
    III.ZeroIsSpecialNew = 0;
 | 
						|
    III.IsCommutative = true;
 | 
						|
    switch(Opc) {
 | 
						|
    default: llvm_unreachable("Unknown opcode");
 | 
						|
    case PPC::AND_rec:
 | 
						|
      III.ImmOpcode = PPC::ANDI_rec;
 | 
						|
      break;
 | 
						|
    case PPC::AND8_rec:
 | 
						|
      III.ImmOpcode = PPC::ANDI8_rec;
 | 
						|
      break;
 | 
						|
    case PPC::OR: III.ImmOpcode = PPC::ORI; break;
 | 
						|
    case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
 | 
						|
    case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
 | 
						|
    case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case PPC::RLWNM:
 | 
						|
  case PPC::RLWNM8:
 | 
						|
  case PPC::RLWNM_rec:
 | 
						|
  case PPC::RLWNM8_rec:
 | 
						|
  case PPC::SLW:
 | 
						|
  case PPC::SLW8:
 | 
						|
  case PPC::SLW_rec:
 | 
						|
  case PPC::SLW8_rec:
 | 
						|
  case PPC::SRW:
 | 
						|
  case PPC::SRW8:
 | 
						|
  case PPC::SRW_rec:
 | 
						|
  case PPC::SRW8_rec:
 | 
						|
  case PPC::SRAW:
 | 
						|
  case PPC::SRAW_rec:
 | 
						|
    III.SignedImm = false;
 | 
						|
    III.ZeroIsSpecialOrig = 0;
 | 
						|
    III.ZeroIsSpecialNew = 0;
 | 
						|
    III.IsCommutative = false;
 | 
						|
    // This isn't actually true, but the instructions ignore any of the
 | 
						|
    // upper bits, so any immediate loaded with an LI is acceptable.
 | 
						|
    // This does not apply to shift right algebraic because a value
 | 
						|
    // out of range will produce a -1/0.
 | 
						|
    III.ImmWidth = 16;
 | 
						|
    if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
 | 
						|
        Opc == PPC::RLWNM8_rec)
 | 
						|
      III.TruncateImmTo = 5;
 | 
						|
    else
 | 
						|
      III.TruncateImmTo = 6;
 | 
						|
    switch(Opc) {
 | 
						|
    default: llvm_unreachable("Unknown opcode");
 | 
						|
    case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
 | 
						|
    case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
 | 
						|
    case PPC::RLWNM_rec:
 | 
						|
      III.ImmOpcode = PPC::RLWINM_rec;
 | 
						|
      break;
 | 
						|
    case PPC::RLWNM8_rec:
 | 
						|
      III.ImmOpcode = PPC::RLWINM8_rec;
 | 
						|
      break;
 | 
						|
    case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
 | 
						|
    case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
 | 
						|
    case PPC::SLW_rec:
 | 
						|
      III.ImmOpcode = PPC::RLWINM_rec;
 | 
						|
      break;
 | 
						|
    case PPC::SLW8_rec:
 | 
						|
      III.ImmOpcode = PPC::RLWINM8_rec;
 | 
						|
      break;
 | 
						|
    case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
 | 
						|
    case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
 | 
						|
    case PPC::SRW_rec:
 | 
						|
      III.ImmOpcode = PPC::RLWINM_rec;
 | 
						|
      break;
 | 
						|
    case PPC::SRW8_rec:
 | 
						|
      III.ImmOpcode = PPC::RLWINM8_rec;
 | 
						|
      break;
 | 
						|
    case PPC::SRAW:
 | 
						|
      III.ImmWidth = 5;
 | 
						|
      III.TruncateImmTo = 0;
 | 
						|
      III.ImmOpcode = PPC::SRAWI;
 | 
						|
      break;
 | 
						|
    case PPC::SRAW_rec:
 | 
						|
      III.ImmWidth = 5;
 | 
						|
      III.TruncateImmTo = 0;
 | 
						|
      III.ImmOpcode = PPC::SRAWI_rec;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case PPC::RLDCL:
 | 
						|
  case PPC::RLDCL_rec:
 | 
						|
  case PPC::RLDCR:
 | 
						|
  case PPC::RLDCR_rec:
 | 
						|
  case PPC::SLD:
 | 
						|
  case PPC::SLD_rec:
 | 
						|
  case PPC::SRD:
 | 
						|
  case PPC::SRD_rec:
 | 
						|
  case PPC::SRAD:
 | 
						|
  case PPC::SRAD_rec:
 | 
						|
    III.SignedImm = false;
 | 
						|
    III.ZeroIsSpecialOrig = 0;
 | 
						|
    III.ZeroIsSpecialNew = 0;
 | 
						|
    III.IsCommutative = false;
 | 
						|
    // This isn't actually true, but the instructions ignore any of the
 | 
						|
    // upper bits, so any immediate loaded with an LI is acceptable.
 | 
						|
    // This does not apply to shift right algebraic because a value
 | 
						|
    // out of range will produce a -1/0.
 | 
						|
    III.ImmWidth = 16;
 | 
						|
    if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
 | 
						|
        Opc == PPC::RLDCR_rec)
 | 
						|
      III.TruncateImmTo = 6;
 | 
						|
    else
 | 
						|
      III.TruncateImmTo = 7;
 | 
						|
    switch(Opc) {
 | 
						|
    default: llvm_unreachable("Unknown opcode");
 | 
						|
    case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
 | 
						|
    case PPC::RLDCL_rec:
 | 
						|
      III.ImmOpcode = PPC::RLDICL_rec;
 | 
						|
      break;
 | 
						|
    case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
 | 
						|
    case PPC::RLDCR_rec:
 | 
						|
      III.ImmOpcode = PPC::RLDICR_rec;
 | 
						|
      break;
 | 
						|
    case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
 | 
						|
    case PPC::SLD_rec:
 | 
						|
      III.ImmOpcode = PPC::RLDICR_rec;
 | 
						|
      break;
 | 
						|
    case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
 | 
						|
    case PPC::SRD_rec:
 | 
						|
      III.ImmOpcode = PPC::RLDICL_rec;
 | 
						|
      break;
 | 
						|
    case PPC::SRAD:
 | 
						|
      III.ImmWidth = 6;
 | 
						|
      III.TruncateImmTo = 0;
 | 
						|
      III.ImmOpcode = PPC::SRADI;
 | 
						|
       break;
 | 
						|
    case PPC::SRAD_rec:
 | 
						|
      III.ImmWidth = 6;
 | 
						|
      III.TruncateImmTo = 0;
 | 
						|
      III.ImmOpcode = PPC::SRADI_rec;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  // Loads and stores:
 | 
						|
  case PPC::LBZX:
 | 
						|
  case PPC::LBZX8:
 | 
						|
  case PPC::LHZX:
 | 
						|
  case PPC::LHZX8:
 | 
						|
  case PPC::LHAX:
 | 
						|
  case PPC::LHAX8:
 | 
						|
  case PPC::LWZX:
 | 
						|
  case PPC::LWZX8:
 | 
						|
  case PPC::LWAX:
 | 
						|
  case PPC::LDX:
 | 
						|
  case PPC::LFSX:
 | 
						|
  case PPC::LFDX:
 | 
						|
  case PPC::STBX:
 | 
						|
  case PPC::STBX8:
 | 
						|
  case PPC::STHX:
 | 
						|
  case PPC::STHX8:
 | 
						|
  case PPC::STWX:
 | 
						|
  case PPC::STWX8:
 | 
						|
  case PPC::STDX:
 | 
						|
  case PPC::STFSX:
 | 
						|
  case PPC::STFDX:
 | 
						|
    III.SignedImm = true;
 | 
						|
    III.ZeroIsSpecialOrig = 1;
 | 
						|
    III.ZeroIsSpecialNew = 2;
 | 
						|
    III.IsCommutative = true;
 | 
						|
    III.IsSummingOperands = true;
 | 
						|
    III.ImmOpNo = 1;
 | 
						|
    III.OpNoForForwarding = 2;
 | 
						|
    switch(Opc) {
 | 
						|
    default: llvm_unreachable("Unknown opcode");
 | 
						|
    case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
 | 
						|
    case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
 | 
						|
    case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
 | 
						|
    case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
 | 
						|
    case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
 | 
						|
    case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
 | 
						|
    case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
 | 
						|
    case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
 | 
						|
    case PPC::LWAX:
 | 
						|
      III.ImmOpcode = PPC::LWA;
 | 
						|
      III.ImmMustBeMultipleOf = 4;
 | 
						|
      break;
 | 
						|
    case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
 | 
						|
    case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
 | 
						|
    case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
 | 
						|
    case PPC::STBX: III.ImmOpcode = PPC::STB; break;
 | 
						|
    case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
 | 
						|
    case PPC::STHX: III.ImmOpcode = PPC::STH; break;
 | 
						|
    case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
 | 
						|
    case PPC::STWX: III.ImmOpcode = PPC::STW; break;
 | 
						|
    case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
 | 
						|
    case PPC::STDX:
 | 
						|
      III.ImmOpcode = PPC::STD;
 | 
						|
      III.ImmMustBeMultipleOf = 4;
 | 
						|
      break;
 | 
						|
    case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
 | 
						|
    case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case PPC::LBZUX:
 | 
						|
  case PPC::LBZUX8:
 | 
						|
  case PPC::LHZUX:
 | 
						|
  case PPC::LHZUX8:
 | 
						|
  case PPC::LHAUX:
 | 
						|
  case PPC::LHAUX8:
 | 
						|
  case PPC::LWZUX:
 | 
						|
  case PPC::LWZUX8:
 | 
						|
  case PPC::LDUX:
 | 
						|
  case PPC::LFSUX:
 | 
						|
  case PPC::LFDUX:
 | 
						|
  case PPC::STBUX:
 | 
						|
  case PPC::STBUX8:
 | 
						|
  case PPC::STHUX:
 | 
						|
  case PPC::STHUX8:
 | 
						|
  case PPC::STWUX:
 | 
						|
  case PPC::STWUX8:
 | 
						|
  case PPC::STDUX:
 | 
						|
  case PPC::STFSUX:
 | 
						|
  case PPC::STFDUX:
 | 
						|
    III.SignedImm = true;
 | 
						|
    III.ZeroIsSpecialOrig = 2;
 | 
						|
    III.ZeroIsSpecialNew = 3;
 | 
						|
    III.IsCommutative = false;
 | 
						|
    III.IsSummingOperands = true;
 | 
						|
    III.ImmOpNo = 2;
 | 
						|
    III.OpNoForForwarding = 3;
 | 
						|
    switch(Opc) {
 | 
						|
    default: llvm_unreachable("Unknown opcode");
 | 
						|
    case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
 | 
						|
    case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
 | 
						|
    case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
 | 
						|
    case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
 | 
						|
    case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
 | 
						|
    case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
 | 
						|
    case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
 | 
						|
    case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
 | 
						|
    case PPC::LDUX:
 | 
						|
      III.ImmOpcode = PPC::LDU;
 | 
						|
      III.ImmMustBeMultipleOf = 4;
 | 
						|
      break;
 | 
						|
    case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
 | 
						|
    case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
 | 
						|
    case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
 | 
						|
    case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
 | 
						|
    case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
 | 
						|
    case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
 | 
						|
    case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
 | 
						|
    case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
 | 
						|
    case PPC::STDUX:
 | 
						|
      III.ImmOpcode = PPC::STDU;
 | 
						|
      III.ImmMustBeMultipleOf = 4;
 | 
						|
      break;
 | 
						|
    case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
 | 
						|
    case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  // Power9 and up only. For some of these, the X-Form version has access to all
 | 
						|
  // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
 | 
						|
  // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
 | 
						|
  // into or stored from is one of the VR registers.
 | 
						|
  case PPC::LXVX:
 | 
						|
  case PPC::LXSSPX:
 | 
						|
  case PPC::LXSDX:
 | 
						|
  case PPC::STXVX:
 | 
						|
  case PPC::STXSSPX:
 | 
						|
  case PPC::STXSDX:
 | 
						|
  case PPC::XFLOADf32:
 | 
						|
  case PPC::XFLOADf64:
 | 
						|
  case PPC::XFSTOREf32:
 | 
						|
  case PPC::XFSTOREf64:
 | 
						|
    if (!Subtarget.hasP9Vector())
 | 
						|
      return false;
 | 
						|
    III.SignedImm = true;
 | 
						|
    III.ZeroIsSpecialOrig = 1;
 | 
						|
    III.ZeroIsSpecialNew = 2;
 | 
						|
    III.IsCommutative = true;
 | 
						|
    III.IsSummingOperands = true;
 | 
						|
    III.ImmOpNo = 1;
 | 
						|
    III.OpNoForForwarding = 2;
 | 
						|
    III.ImmMustBeMultipleOf = 4;
 | 
						|
    switch(Opc) {
 | 
						|
    default: llvm_unreachable("Unknown opcode");
 | 
						|
    case PPC::LXVX:
 | 
						|
      III.ImmOpcode = PPC::LXV;
 | 
						|
      III.ImmMustBeMultipleOf = 16;
 | 
						|
      break;
 | 
						|
    case PPC::LXSSPX:
 | 
						|
      if (PostRA) {
 | 
						|
        if (IsVFReg)
 | 
						|
          III.ImmOpcode = PPC::LXSSP;
 | 
						|
        else {
 | 
						|
          III.ImmOpcode = PPC::LFS;
 | 
						|
          III.ImmMustBeMultipleOf = 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case PPC::XFLOADf32:
 | 
						|
      III.ImmOpcode = PPC::DFLOADf32;
 | 
						|
      break;
 | 
						|
    case PPC::LXSDX:
 | 
						|
      if (PostRA) {
 | 
						|
        if (IsVFReg)
 | 
						|
          III.ImmOpcode = PPC::LXSD;
 | 
						|
        else {
 | 
						|
          III.ImmOpcode = PPC::LFD;
 | 
						|
          III.ImmMustBeMultipleOf = 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case PPC::XFLOADf64:
 | 
						|
      III.ImmOpcode = PPC::DFLOADf64;
 | 
						|
      break;
 | 
						|
    case PPC::STXVX:
 | 
						|
      III.ImmOpcode = PPC::STXV;
 | 
						|
      III.ImmMustBeMultipleOf = 16;
 | 
						|
      break;
 | 
						|
    case PPC::STXSSPX:
 | 
						|
      if (PostRA) {
 | 
						|
        if (IsVFReg)
 | 
						|
          III.ImmOpcode = PPC::STXSSP;
 | 
						|
        else {
 | 
						|
          III.ImmOpcode = PPC::STFS;
 | 
						|
          III.ImmMustBeMultipleOf = 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case PPC::XFSTOREf32:
 | 
						|
      III.ImmOpcode = PPC::DFSTOREf32;
 | 
						|
      break;
 | 
						|
    case PPC::STXSDX:
 | 
						|
      if (PostRA) {
 | 
						|
        if (IsVFReg)
 | 
						|
          III.ImmOpcode = PPC::STXSD;
 | 
						|
        else {
 | 
						|
          III.ImmOpcode = PPC::STFD;
 | 
						|
          III.ImmMustBeMultipleOf = 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case PPC::XFSTOREf64:
 | 
						|
      III.ImmOpcode = PPC::DFSTOREf64;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Utility function for swaping two arbitrary operands of an instruction.
 | 
						|
static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
 | 
						|
  assert(Op1 != Op2 && "Cannot swap operand with itself.");
 | 
						|
 | 
						|
  unsigned MaxOp = std::max(Op1, Op2);
 | 
						|
  unsigned MinOp = std::min(Op1, Op2);
 | 
						|
  MachineOperand MOp1 = MI.getOperand(MinOp);
 | 
						|
  MachineOperand MOp2 = MI.getOperand(MaxOp);
 | 
						|
  MI.RemoveOperand(std::max(Op1, Op2));
 | 
						|
  MI.RemoveOperand(std::min(Op1, Op2));
 | 
						|
 | 
						|
  // If the operands we are swapping are the two at the end (the common case)
 | 
						|
  // we can just remove both and add them in the opposite order.
 | 
						|
  if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
 | 
						|
    MI.addOperand(MOp2);
 | 
						|
    MI.addOperand(MOp1);
 | 
						|
  } else {
 | 
						|
    // Store all operands in a temporary vector, remove them and re-add in the
 | 
						|
    // right order.
 | 
						|
    SmallVector<MachineOperand, 2> MOps;
 | 
						|
    unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
 | 
						|
    for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
 | 
						|
      MOps.push_back(MI.getOperand(i));
 | 
						|
      MI.RemoveOperand(i);
 | 
						|
    }
 | 
						|
    // MOp2 needs to be added next.
 | 
						|
    MI.addOperand(MOp2);
 | 
						|
    // Now add the rest.
 | 
						|
    for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
 | 
						|
      if (i == MaxOp)
 | 
						|
        MI.addOperand(MOp1);
 | 
						|
      else {
 | 
						|
        MI.addOperand(MOps.back());
 | 
						|
        MOps.pop_back();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Check if the 'MI' that has the index OpNoForForwarding
 | 
						|
// meets the requirement described in the ImmInstrInfo.
 | 
						|
bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
 | 
						|
                                               const ImmInstrInfo &III,
 | 
						|
                                               unsigned OpNoForForwarding
 | 
						|
                                               ) const {
 | 
						|
  // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
 | 
						|
  // would not work pre-RA, we can only do the check post RA.
 | 
						|
  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
 | 
						|
  if (MRI.isSSA())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Cannot do the transform if MI isn't summing the operands.
 | 
						|
  if (!III.IsSummingOperands)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
 | 
						|
  if (!III.ZeroIsSpecialOrig)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We cannot do the transform if the operand we are trying to replace
 | 
						|
  // isn't the same as the operand the instruction allows.
 | 
						|
  if (OpNoForForwarding != III.OpNoForForwarding)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the instruction we are trying to transform really has
 | 
						|
  // the special zero register as its operand.
 | 
						|
  if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
 | 
						|
      MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This machine instruction is convertible if it is,
 | 
						|
  // 1. summing the operands.
 | 
						|
  // 2. one of the operands is special zero register.
 | 
						|
  // 3. the operand we are trying to replace is allowed by the MI.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Check if the DefMI is the add inst and set the ImmMO and RegMO
 | 
						|
// accordingly.
 | 
						|
bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
 | 
						|
                                               const ImmInstrInfo &III,
 | 
						|
                                               MachineOperand *&ImmMO,
 | 
						|
                                               MachineOperand *&RegMO) const {
 | 
						|
  unsigned Opc = DefMI.getOpcode();
 | 
						|
  if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(DefMI.getNumOperands() >= 3 &&
 | 
						|
         "Add inst must have at least three operands");
 | 
						|
  RegMO = &DefMI.getOperand(1);
 | 
						|
  ImmMO = &DefMI.getOperand(2);
 | 
						|
 | 
						|
  // Before RA, ADDI first operand could be a frame index.
 | 
						|
  if (!RegMO->isReg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This DefMI is elgible for forwarding if it is:
 | 
						|
  // 1. add inst
 | 
						|
  // 2. one of the operands is Imm/CPI/Global.
 | 
						|
  return isAnImmediateOperand(*ImmMO);
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::isRegElgibleForForwarding(
 | 
						|
    const MachineOperand &RegMO, const MachineInstr &DefMI,
 | 
						|
    const MachineInstr &MI, bool KillDefMI,
 | 
						|
    bool &IsFwdFeederRegKilled) const {
 | 
						|
  // x = addi y, imm
 | 
						|
  // ...
 | 
						|
  // z = lfdx 0, x   -> z = lfd imm(y)
 | 
						|
  // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
 | 
						|
  // of "y" between the DEF of "x" and "z".
 | 
						|
  // The query is only valid post RA.
 | 
						|
  const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
 | 
						|
  if (MRI.isSSA())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Register Reg = RegMO.getReg();
 | 
						|
 | 
						|
  // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
 | 
						|
  MachineBasicBlock::const_reverse_iterator It = MI;
 | 
						|
  MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
 | 
						|
  It++;
 | 
						|
  for (; It != E; ++It) {
 | 
						|
    if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
 | 
						|
      return false;
 | 
						|
    else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
 | 
						|
      IsFwdFeederRegKilled = true;
 | 
						|
    // Made it to DefMI without encountering a clobber.
 | 
						|
    if ((&*It) == &DefMI)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  assert((&*It) == &DefMI && "DefMI is missing");
 | 
						|
 | 
						|
  // If DefMI also defines the register to be forwarded, we can only forward it
 | 
						|
  // if DefMI is being erased.
 | 
						|
  if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
 | 
						|
    return KillDefMI;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
 | 
						|
                                             const MachineInstr &DefMI,
 | 
						|
                                             const ImmInstrInfo &III,
 | 
						|
                                             int64_t &Imm,
 | 
						|
                                             int64_t BaseImm) const {
 | 
						|
  assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
 | 
						|
  if (DefMI.getOpcode() == PPC::ADDItocL) {
 | 
						|
    // The operand for ADDItocL is CPI, which isn't imm at compiling time,
 | 
						|
    // However, we know that, it is 16-bit width, and has the alignment of 4.
 | 
						|
    // Check if the instruction met the requirement.
 | 
						|
    if (III.ImmMustBeMultipleOf > 4 ||
 | 
						|
       III.TruncateImmTo || III.ImmWidth != 16)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Going from XForm to DForm loads means that the displacement needs to be
 | 
						|
    // not just an immediate but also a multiple of 4, or 16 depending on the
 | 
						|
    // load. A DForm load cannot be represented if it is a multiple of say 2.
 | 
						|
    // XForm loads do not have this restriction.
 | 
						|
    if (ImmMO.isGlobal()) {
 | 
						|
      const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
 | 
						|
      if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ImmMO.isImm()) {
 | 
						|
    // It is Imm, we need to check if the Imm fit the range.
 | 
						|
    // Sign-extend to 64-bits.
 | 
						|
    // DefMI may be folded with another imm form instruction, the result Imm is
 | 
						|
    // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
 | 
						|
    APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
 | 
						|
    if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
 | 
						|
      return false;
 | 
						|
    if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
 | 
						|
      return false;
 | 
						|
    Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
 | 
						|
 | 
						|
    if (Imm % III.ImmMustBeMultipleOf)
 | 
						|
      return false;
 | 
						|
    if (III.TruncateImmTo)
 | 
						|
      Imm &= ((1 << III.TruncateImmTo) - 1);
 | 
						|
  }
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This ImmMO is forwarded if it meets the requriement describle
 | 
						|
  // in ImmInstrInfo
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
 | 
						|
                                unsigned OpNoForForwarding,
 | 
						|
                                MachineInstr **KilledDef) const {
 | 
						|
  if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
 | 
						|
      !DefMI.getOperand(1).isImm())
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineFunction *MF = MI.getParent()->getParent();
 | 
						|
  MachineRegisterInfo *MRI = &MF->getRegInfo();
 | 
						|
  bool PostRA = !MRI->isSSA();
 | 
						|
 | 
						|
  int64_t Immediate = DefMI.getOperand(1).getImm();
 | 
						|
  // Sign-extend to 64-bits.
 | 
						|
  int64_t SExtImm = SignExtend64<16>(Immediate);
 | 
						|
 | 
						|
  bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
 | 
						|
  Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
 | 
						|
 | 
						|
  bool ReplaceWithLI = false;
 | 
						|
  bool Is64BitLI = false;
 | 
						|
  int64_t NewImm = 0;
 | 
						|
  bool SetCR = false;
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
 | 
						|
  // FIXME: Any branches conditional on such a comparison can be made
 | 
						|
  // unconditional. At this time, this happens too infrequently to be worth
 | 
						|
  // the implementation effort, but if that ever changes, we could convert
 | 
						|
  // such a pattern here.
 | 
						|
  case PPC::CMPWI:
 | 
						|
  case PPC::CMPLWI:
 | 
						|
  case PPC::CMPDI:
 | 
						|
  case PPC::CMPLDI: {
 | 
						|
    // Doing this post-RA would require dataflow analysis to reliably find uses
 | 
						|
    // of the CR register set by the compare.
 | 
						|
    // No need to fixup killed/dead flag since this transformation is only valid
 | 
						|
    // before RA.
 | 
						|
    if (PostRA)
 | 
						|
      return false;
 | 
						|
    // If a compare-immediate is fed by an immediate and is itself an input of
 | 
						|
    // an ISEL (the most common case) into a COPY of the correct register.
 | 
						|
    bool Changed = false;
 | 
						|
    Register DefReg = MI.getOperand(0).getReg();
 | 
						|
    int64_t Comparand = MI.getOperand(2).getImm();
 | 
						|
    int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
 | 
						|
                                ? (Comparand | 0xFFFFFFFFFFFF0000)
 | 
						|
                                : Comparand;
 | 
						|
 | 
						|
    for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
 | 
						|
      unsigned UseOpc = CompareUseMI.getOpcode();
 | 
						|
      if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
 | 
						|
        continue;
 | 
						|
      unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
 | 
						|
      Register TrueReg = CompareUseMI.getOperand(1).getReg();
 | 
						|
      Register FalseReg = CompareUseMI.getOperand(2).getReg();
 | 
						|
      unsigned RegToCopy =
 | 
						|
          selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
 | 
						|
      if (RegToCopy == PPC::NoRegister)
 | 
						|
        continue;
 | 
						|
      // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
 | 
						|
      if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
 | 
						|
        CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
 | 
						|
        replaceInstrOperandWithImm(CompareUseMI, 1, 0);
 | 
						|
        CompareUseMI.RemoveOperand(3);
 | 
						|
        CompareUseMI.RemoveOperand(2);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
 | 
						|
      LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
 | 
						|
      LLVM_DEBUG(dbgs() << "Is converted to:\n");
 | 
						|
      // Convert to copy and remove unneeded operands.
 | 
						|
      CompareUseMI.setDesc(get(PPC::COPY));
 | 
						|
      CompareUseMI.RemoveOperand(3);
 | 
						|
      CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
 | 
						|
      CmpIselsConverted++;
 | 
						|
      Changed = true;
 | 
						|
      LLVM_DEBUG(CompareUseMI.dump());
 | 
						|
    }
 | 
						|
    if (Changed)
 | 
						|
      return true;
 | 
						|
    // This may end up incremented multiple times since this function is called
 | 
						|
    // during a fixed-point transformation, but it is only meant to indicate the
 | 
						|
    // presence of this opportunity.
 | 
						|
    MissedConvertibleImmediateInstrs++;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Immediate forms - may simply be convertable to an LI.
 | 
						|
  case PPC::ADDI:
 | 
						|
  case PPC::ADDI8: {
 | 
						|
    // Does the sum fit in a 16-bit signed field?
 | 
						|
    int64_t Addend = MI.getOperand(2).getImm();
 | 
						|
    if (isInt<16>(Addend + SExtImm)) {
 | 
						|
      ReplaceWithLI = true;
 | 
						|
      Is64BitLI = Opc == PPC::ADDI8;
 | 
						|
      NewImm = Addend + SExtImm;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case PPC::SUBFIC:
 | 
						|
  case PPC::SUBFIC8: {
 | 
						|
    // Only transform this if the CARRY implicit operand is dead.
 | 
						|
    if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
 | 
						|
      return false;
 | 
						|
    int64_t Minuend = MI.getOperand(2).getImm();
 | 
						|
    if (isInt<16>(Minuend - SExtImm)) {
 | 
						|
      ReplaceWithLI = true;
 | 
						|
      Is64BitLI = Opc == PPC::SUBFIC8;
 | 
						|
      NewImm = Minuend - SExtImm;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case PPC::RLDICL:
 | 
						|
  case PPC::RLDICL_rec:
 | 
						|
  case PPC::RLDICL_32:
 | 
						|
  case PPC::RLDICL_32_64: {
 | 
						|
    // Use APInt's rotate function.
 | 
						|
    int64_t SH = MI.getOperand(2).getImm();
 | 
						|
    int64_t MB = MI.getOperand(3).getImm();
 | 
						|
    APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
 | 
						|
                SExtImm, true);
 | 
						|
    InVal = InVal.rotl(SH);
 | 
						|
    uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
 | 
						|
    InVal &= Mask;
 | 
						|
    // Can't replace negative values with an LI as that will sign-extend
 | 
						|
    // and not clear the left bits. If we're setting the CR bit, we will use
 | 
						|
    // ANDI_rec which won't sign extend, so that's safe.
 | 
						|
    if (isUInt<15>(InVal.getSExtValue()) ||
 | 
						|
        (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
 | 
						|
      ReplaceWithLI = true;
 | 
						|
      Is64BitLI = Opc != PPC::RLDICL_32;
 | 
						|
      NewImm = InVal.getSExtValue();
 | 
						|
      SetCR = Opc == PPC::RLDICL_rec;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case PPC::RLWINM:
 | 
						|
  case PPC::RLWINM8:
 | 
						|
  case PPC::RLWINM_rec:
 | 
						|
  case PPC::RLWINM8_rec: {
 | 
						|
    int64_t SH = MI.getOperand(2).getImm();
 | 
						|
    int64_t MB = MI.getOperand(3).getImm();
 | 
						|
    int64_t ME = MI.getOperand(4).getImm();
 | 
						|
    APInt InVal(32, SExtImm, true);
 | 
						|
    InVal = InVal.rotl(SH);
 | 
						|
    APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
 | 
						|
    InVal &= Mask;
 | 
						|
    // Can't replace negative values with an LI as that will sign-extend
 | 
						|
    // and not clear the left bits. If we're setting the CR bit, we will use
 | 
						|
    // ANDI_rec which won't sign extend, so that's safe.
 | 
						|
    bool ValueFits = isUInt<15>(InVal.getSExtValue());
 | 
						|
    ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
 | 
						|
                  isUInt<16>(InVal.getSExtValue()));
 | 
						|
    if (ValueFits) {
 | 
						|
      ReplaceWithLI = true;
 | 
						|
      Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
 | 
						|
      NewImm = InVal.getSExtValue();
 | 
						|
      SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  case PPC::ORI:
 | 
						|
  case PPC::ORI8:
 | 
						|
  case PPC::XORI:
 | 
						|
  case PPC::XORI8: {
 | 
						|
    int64_t LogicalImm = MI.getOperand(2).getImm();
 | 
						|
    int64_t Result = 0;
 | 
						|
    if (Opc == PPC::ORI || Opc == PPC::ORI8)
 | 
						|
      Result = LogicalImm | SExtImm;
 | 
						|
    else
 | 
						|
      Result = LogicalImm ^ SExtImm;
 | 
						|
    if (isInt<16>(Result)) {
 | 
						|
      ReplaceWithLI = true;
 | 
						|
      Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
 | 
						|
      NewImm = Result;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (ReplaceWithLI) {
 | 
						|
    // We need to be careful with CR-setting instructions we're replacing.
 | 
						|
    if (SetCR) {
 | 
						|
      // We don't know anything about uses when we're out of SSA, so only
 | 
						|
      // replace if the new immediate will be reproduced.
 | 
						|
      bool ImmChanged = (SExtImm & NewImm) != NewImm;
 | 
						|
      if (PostRA && ImmChanged)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!PostRA) {
 | 
						|
        // If the defining load-immediate has no other uses, we can just replace
 | 
						|
        // the immediate with the new immediate.
 | 
						|
        if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
 | 
						|
          DefMI.getOperand(1).setImm(NewImm);
 | 
						|
 | 
						|
        // If we're not using the GPR result of the CR-setting instruction, we
 | 
						|
        // just need to and with zero/non-zero depending on the new immediate.
 | 
						|
        else if (MRI->use_empty(MI.getOperand(0).getReg())) {
 | 
						|
          if (NewImm) {
 | 
						|
            assert(Immediate && "Transformation converted zero to non-zero?");
 | 
						|
            NewImm = Immediate;
 | 
						|
          }
 | 
						|
        } else if (ImmChanged)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
 | 
						|
    LLVM_DEBUG(MI.dump());
 | 
						|
    LLVM_DEBUG(dbgs() << "Fed by:\n");
 | 
						|
    LLVM_DEBUG(DefMI.dump());
 | 
						|
    LoadImmediateInfo LII;
 | 
						|
    LII.Imm = NewImm;
 | 
						|
    LII.Is64Bit = Is64BitLI;
 | 
						|
    LII.SetCR = SetCR;
 | 
						|
    // If we're setting the CR, the original load-immediate must be kept (as an
 | 
						|
    // operand to ANDI_rec/ANDI8_rec).
 | 
						|
    if (KilledDef && SetCR)
 | 
						|
      *KilledDef = nullptr;
 | 
						|
    replaceInstrWithLI(MI, LII);
 | 
						|
 | 
						|
    // Fixup killed/dead flag after transformation.
 | 
						|
    // Pattern:
 | 
						|
    // ForwardingOperandReg = LI imm1
 | 
						|
    // y = op2 imm2, ForwardingOperandReg(killed)
 | 
						|
    if (IsForwardingOperandKilled)
 | 
						|
      fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "With:\n");
 | 
						|
    LLVM_DEBUG(MI.dump());
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::transformToNewImmFormFedByAdd(
 | 
						|
    MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
 | 
						|
  MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
 | 
						|
  bool PostRA = !MRI->isSSA();
 | 
						|
  // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
 | 
						|
  // for post-ra.
 | 
						|
  if (PostRA)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only handle load/store.
 | 
						|
  if (!MI.mayLoadOrStore())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
 | 
						|
 | 
						|
  assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
 | 
						|
         "MI must have x-form opcode");
 | 
						|
 | 
						|
  // get Imm Form info.
 | 
						|
  ImmInstrInfo III;
 | 
						|
  bool IsVFReg = MI.getOperand(0).isReg()
 | 
						|
                     ? isVFRegister(MI.getOperand(0).getReg())
 | 
						|
                     : false;
 | 
						|
 | 
						|
  if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!III.IsSummingOperands)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (OpNoForForwarding != III.OpNoForForwarding)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
 | 
						|
  if (!ImmOperandMI.isImm())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check DefMI.
 | 
						|
  MachineOperand *ImmMO = nullptr;
 | 
						|
  MachineOperand *RegMO = nullptr;
 | 
						|
  if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
 | 
						|
    return false;
 | 
						|
  assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
 | 
						|
 | 
						|
  // Check Imm.
 | 
						|
  // Set ImmBase from imm instruction as base and get new Imm inside
 | 
						|
  // isImmElgibleForForwarding.
 | 
						|
  int64_t ImmBase = ImmOperandMI.getImm();
 | 
						|
  int64_t Imm = 0;
 | 
						|
  if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get killed info in case fixup needed after transformation.
 | 
						|
  unsigned ForwardKilledOperandReg = ~0U;
 | 
						|
  if (MI.getOperand(III.OpNoForForwarding).isKill())
 | 
						|
    ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
 | 
						|
 | 
						|
  // Do the transform
 | 
						|
  LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
 | 
						|
  LLVM_DEBUG(MI.dump());
 | 
						|
  LLVM_DEBUG(dbgs() << "Fed by:\n");
 | 
						|
  LLVM_DEBUG(DefMI.dump());
 | 
						|
 | 
						|
  MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
 | 
						|
  if (RegMO->isKill()) {
 | 
						|
    MI.getOperand(III.OpNoForForwarding).setIsKill(true);
 | 
						|
    // Clear the killed flag in RegMO. Doing this here can handle some cases
 | 
						|
    // that DefMI and MI are not in same basic block.
 | 
						|
    RegMO->setIsKill(false);
 | 
						|
  }
 | 
						|
  MI.getOperand(III.ImmOpNo).setImm(Imm);
 | 
						|
 | 
						|
  // FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
 | 
						|
  if (DefMI.getParent() == MI.getParent()) {
 | 
						|
    // Check if reg is killed between MI and DefMI.
 | 
						|
    auto IsKilledFor = [&](unsigned Reg) {
 | 
						|
      MachineBasicBlock::const_reverse_iterator It = MI;
 | 
						|
      MachineBasicBlock::const_reverse_iterator E = DefMI;
 | 
						|
      It++;
 | 
						|
      for (; It != E; ++It) {
 | 
						|
        if (It->killsRegister(Reg))
 | 
						|
          return true;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    };
 | 
						|
 | 
						|
    // Update kill flag
 | 
						|
    if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
 | 
						|
      fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
 | 
						|
    if (ForwardKilledOperandReg != ~0U)
 | 
						|
      fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "With:\n");
 | 
						|
  LLVM_DEBUG(MI.dump());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// If an X-Form instruction is fed by an add-immediate and one of its operands
 | 
						|
// is the literal zero, attempt to forward the source of the add-immediate to
 | 
						|
// the corresponding D-Form instruction with the displacement coming from
 | 
						|
// the immediate being added.
 | 
						|
bool PPCInstrInfo::transformToImmFormFedByAdd(
 | 
						|
    MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
 | 
						|
    MachineInstr &DefMI, bool KillDefMI) const {
 | 
						|
  //         RegMO ImmMO
 | 
						|
  //           |    |
 | 
						|
  // x = addi reg, imm  <----- DefMI
 | 
						|
  // y = op    0 ,  x   <----- MI
 | 
						|
  //                |
 | 
						|
  //         OpNoForForwarding
 | 
						|
  // Check if the MI meet the requirement described in the III.
 | 
						|
  if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check if the DefMI meet the requirement
 | 
						|
  // described in the III. If yes, set the ImmMO and RegMO accordingly.
 | 
						|
  MachineOperand *ImmMO = nullptr;
 | 
						|
  MachineOperand *RegMO = nullptr;
 | 
						|
  if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
 | 
						|
    return false;
 | 
						|
  assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
 | 
						|
 | 
						|
  // As we get the Imm operand now, we need to check if the ImmMO meet
 | 
						|
  // the requirement described in the III. If yes set the Imm.
 | 
						|
  int64_t Imm = 0;
 | 
						|
  if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool IsFwdFeederRegKilled = false;
 | 
						|
  // Check if the RegMO can be forwarded to MI.
 | 
						|
  if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
 | 
						|
                                 IsFwdFeederRegKilled))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get killed info in case fixup needed after transformation.
 | 
						|
  unsigned ForwardKilledOperandReg = ~0U;
 | 
						|
  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
 | 
						|
  bool PostRA = !MRI.isSSA();
 | 
						|
  if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
 | 
						|
    ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
 | 
						|
 | 
						|
  // We know that, the MI and DefMI both meet the pattern, and
 | 
						|
  // the Imm also meet the requirement with the new Imm-form.
 | 
						|
  // It is safe to do the transformation now.
 | 
						|
  LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
 | 
						|
  LLVM_DEBUG(MI.dump());
 | 
						|
  LLVM_DEBUG(dbgs() << "Fed by:\n");
 | 
						|
  LLVM_DEBUG(DefMI.dump());
 | 
						|
 | 
						|
  // Update the base reg first.
 | 
						|
  MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
 | 
						|
                                                        false, false,
 | 
						|
                                                        RegMO->isKill());
 | 
						|
 | 
						|
  // Then, update the imm.
 | 
						|
  if (ImmMO->isImm()) {
 | 
						|
    // If the ImmMO is Imm, change the operand that has ZERO to that Imm
 | 
						|
    // directly.
 | 
						|
    replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // Otherwise, it is Constant Pool Index(CPI) or Global,
 | 
						|
    // which is relocation in fact. We need to replace the special zero
 | 
						|
    // register with ImmMO.
 | 
						|
    // Before that, we need to fixup the target flags for imm.
 | 
						|
    // For some reason, we miss to set the flag for the ImmMO if it is CPI.
 | 
						|
    if (DefMI.getOpcode() == PPC::ADDItocL)
 | 
						|
      ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
 | 
						|
 | 
						|
    // MI didn't have the interface such as MI.setOperand(i) though
 | 
						|
    // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
 | 
						|
    // ImmMO, we need to remove ZERO operand and all the operands behind it,
 | 
						|
    // and, add the ImmMO, then, move back all the operands behind ZERO.
 | 
						|
    SmallVector<MachineOperand, 2> MOps;
 | 
						|
    for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
 | 
						|
      MOps.push_back(MI.getOperand(i));
 | 
						|
      MI.RemoveOperand(i);
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove the last MO in the list, which is ZERO operand in fact.
 | 
						|
    MOps.pop_back();
 | 
						|
    // Add the imm operand.
 | 
						|
    MI.addOperand(*ImmMO);
 | 
						|
    // Now add the rest back.
 | 
						|
    for (auto &MO : MOps)
 | 
						|
      MI.addOperand(MO);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the opcode.
 | 
						|
  MI.setDesc(get(III.ImmOpcode));
 | 
						|
 | 
						|
  // Fix up killed/dead flag after transformation.
 | 
						|
  // Pattern 1:
 | 
						|
  // x = ADD KilledFwdFeederReg, imm
 | 
						|
  // n = opn KilledFwdFeederReg(killed), regn
 | 
						|
  // y = XOP 0, x
 | 
						|
  // Pattern 2:
 | 
						|
  // x = ADD reg(killed), imm
 | 
						|
  // y = XOP 0, x
 | 
						|
  if (IsFwdFeederRegKilled || RegMO->isKill())
 | 
						|
    fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
 | 
						|
  // Pattern 3:
 | 
						|
  // ForwardKilledOperandReg = ADD reg, imm
 | 
						|
  // y = XOP 0, ForwardKilledOperandReg(killed)
 | 
						|
  if (ForwardKilledOperandReg != ~0U)
 | 
						|
    fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "With:\n");
 | 
						|
  LLVM_DEBUG(MI.dump());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
 | 
						|
                                             const ImmInstrInfo &III,
 | 
						|
                                             unsigned ConstantOpNo,
 | 
						|
                                             MachineInstr &DefMI) const {
 | 
						|
  // DefMI must be LI or LI8.
 | 
						|
  if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
 | 
						|
      !DefMI.getOperand(1).isImm())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get Imm operand and Sign-extend to 64-bits.
 | 
						|
  int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
 | 
						|
 | 
						|
  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
 | 
						|
  bool PostRA = !MRI.isSSA();
 | 
						|
  // Exit early if we can't convert this.
 | 
						|
  if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
 | 
						|
    return false;
 | 
						|
  if (Imm % III.ImmMustBeMultipleOf)
 | 
						|
    return false;
 | 
						|
  if (III.TruncateImmTo)
 | 
						|
    Imm &= ((1 << III.TruncateImmTo) - 1);
 | 
						|
  if (III.SignedImm) {
 | 
						|
    APInt ActualValue(64, Imm, true);
 | 
						|
    if (!ActualValue.isSignedIntN(III.ImmWidth))
 | 
						|
      return false;
 | 
						|
  } else {
 | 
						|
    uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
 | 
						|
    if ((uint64_t)Imm > UnsignedMax)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we're post-RA, the instructions don't agree on whether register zero is
 | 
						|
  // special, we can transform this as long as the register operand that will
 | 
						|
  // end up in the location where zero is special isn't R0.
 | 
						|
  if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
 | 
						|
    unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
 | 
						|
      III.ZeroIsSpecialNew + 1;
 | 
						|
    Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
 | 
						|
    Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
 | 
						|
    // If R0 is in the operand where zero is special for the new instruction,
 | 
						|
    // it is unsafe to transform if the constant operand isn't that operand.
 | 
						|
    if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
 | 
						|
        ConstantOpNo != III.ZeroIsSpecialNew)
 | 
						|
      return false;
 | 
						|
    if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
 | 
						|
        ConstantOpNo != PosForOrigZero)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get killed info in case fixup needed after transformation.
 | 
						|
  unsigned ForwardKilledOperandReg = ~0U;
 | 
						|
  if (PostRA && MI.getOperand(ConstantOpNo).isKill())
 | 
						|
    ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
 | 
						|
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
  bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
 | 
						|
                        Opc == PPC::SRW || Opc == PPC::SRW_rec ||
 | 
						|
                        Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
 | 
						|
                        Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
 | 
						|
  bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
 | 
						|
                        Opc == PPC::SRD || Opc == PPC::SRD_rec;
 | 
						|
  bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
 | 
						|
               Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
 | 
						|
  bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
 | 
						|
                    Opc == PPC::SRD_rec;
 | 
						|
 | 
						|
  MI.setDesc(get(III.ImmOpcode));
 | 
						|
  if (ConstantOpNo == III.OpNoForForwarding) {
 | 
						|
    // Converting shifts to immediate form is a bit tricky since they may do
 | 
						|
    // one of three things:
 | 
						|
    // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
 | 
						|
    // 2. If the shift amount is zero, the result is unchanged (save for maybe
 | 
						|
    //    setting CR0)
 | 
						|
    // 3. If the shift amount is in [1, OpSize), it's just a shift
 | 
						|
    if (SpecialShift32 || SpecialShift64) {
 | 
						|
      LoadImmediateInfo LII;
 | 
						|
      LII.Imm = 0;
 | 
						|
      LII.SetCR = SetCR;
 | 
						|
      LII.Is64Bit = SpecialShift64;
 | 
						|
      uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
 | 
						|
      if (Imm & (SpecialShift32 ? 0x20 : 0x40))
 | 
						|
        replaceInstrWithLI(MI, LII);
 | 
						|
      // Shifts by zero don't change the value. If we don't need to set CR0,
 | 
						|
      // just convert this to a COPY. Can't do this post-RA since we've already
 | 
						|
      // cleaned up the copies.
 | 
						|
      else if (!SetCR && ShAmt == 0 && !PostRA) {
 | 
						|
        MI.RemoveOperand(2);
 | 
						|
        MI.setDesc(get(PPC::COPY));
 | 
						|
      } else {
 | 
						|
        // The 32 bit and 64 bit instructions are quite different.
 | 
						|
        if (SpecialShift32) {
 | 
						|
          // Left shifts use (N, 0, 31-N).
 | 
						|
          // Right shifts use (32-N, N, 31) if 0 < N < 32.
 | 
						|
          //              use (0, 0, 31)    if N == 0.
 | 
						|
          uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
 | 
						|
          uint64_t MB = RightShift ? ShAmt : 0;
 | 
						|
          uint64_t ME = RightShift ? 31 : 31 - ShAmt;
 | 
						|
          replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
 | 
						|
          MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
 | 
						|
            .addImm(ME);
 | 
						|
        } else {
 | 
						|
          // Left shifts use (N, 63-N).
 | 
						|
          // Right shifts use (64-N, N) if 0 < N < 64.
 | 
						|
          //              use (0, 0)    if N == 0.
 | 
						|
          uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
 | 
						|
          uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
 | 
						|
          replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
 | 
						|
          MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else
 | 
						|
      replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
 | 
						|
  }
 | 
						|
  // Convert commutative instructions (switch the operands and convert the
 | 
						|
  // desired one to an immediate.
 | 
						|
  else if (III.IsCommutative) {
 | 
						|
    replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
 | 
						|
    swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
 | 
						|
  } else
 | 
						|
    llvm_unreachable("Should have exited early!");
 | 
						|
 | 
						|
  // For instructions for which the constant register replaces a different
 | 
						|
  // operand than where the immediate goes, we need to swap them.
 | 
						|
  if (III.OpNoForForwarding != III.ImmOpNo)
 | 
						|
    swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
 | 
						|
 | 
						|
  // If the special R0/X0 register index are different for original instruction
 | 
						|
  // and new instruction, we need to fix up the register class in new
 | 
						|
  // instruction.
 | 
						|
  if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
 | 
						|
    if (III.ZeroIsSpecialNew) {
 | 
						|
      // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
 | 
						|
      // need to fix up register class.
 | 
						|
      Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
 | 
						|
      if (Register::isVirtualRegister(RegToModify)) {
 | 
						|
        const TargetRegisterClass *NewRC =
 | 
						|
          MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
 | 
						|
          &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
 | 
						|
        MRI.setRegClass(RegToModify, NewRC);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fix up killed/dead flag after transformation.
 | 
						|
  // Pattern:
 | 
						|
  // ForwardKilledOperandReg = LI imm
 | 
						|
  // y = XOP reg, ForwardKilledOperandReg(killed)
 | 
						|
  if (ForwardKilledOperandReg != ~0U)
 | 
						|
    fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
const TargetRegisterClass *
 | 
						|
PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
 | 
						|
  if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
 | 
						|
    return &PPC::VSRCRegClass;
 | 
						|
  return RC;
 | 
						|
}
 | 
						|
 | 
						|
int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
 | 
						|
  return PPC::getRecordFormOpcode(Opcode);
 | 
						|
}
 | 
						|
 | 
						|
// This function returns true if the machine instruction
 | 
						|
// always outputs a value by sign-extending a 32 bit value,
 | 
						|
// i.e. 0 to 31-th bits are same as 32-th bit.
 | 
						|
static bool isSignExtendingOp(const MachineInstr &MI) {
 | 
						|
  int Opcode = MI.getOpcode();
 | 
						|
  if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
 | 
						|
      Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
 | 
						|
      Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
 | 
						|
      Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
 | 
						|
      Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
 | 
						|
      Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
 | 
						|
      Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
 | 
						|
      Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
 | 
						|
      Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
 | 
						|
      Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
 | 
						|
      Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
 | 
						|
      Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
 | 
						|
      Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
 | 
						|
      Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
 | 
						|
      Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
 | 
						|
      Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
 | 
						|
      Opcode == PPC::EXTSB8_32_64)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
 | 
						|
       Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
 | 
						|
      MI.getOperand(3).getImm() > 0 &&
 | 
						|
      MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// This function returns true if the machine instruction
 | 
						|
// always outputs zeros in higher 32 bits.
 | 
						|
static bool isZeroExtendingOp(const MachineInstr &MI) {
 | 
						|
  int Opcode = MI.getOpcode();
 | 
						|
  // The 16-bit immediate is sign-extended in li/lis.
 | 
						|
  // If the most significant bit is zero, all higher bits are zero.
 | 
						|
  if (Opcode == PPC::LI  || Opcode == PPC::LI8 ||
 | 
						|
      Opcode == PPC::LIS || Opcode == PPC::LIS8) {
 | 
						|
    int64_t Imm = MI.getOperand(1).getImm();
 | 
						|
    if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have some variations of rotate-and-mask instructions
 | 
						|
  // that clear higher 32-bits.
 | 
						|
  if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
 | 
						|
       Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
 | 
						|
       Opcode == PPC::RLDICL_32_64) &&
 | 
						|
      MI.getOperand(3).getImm() >= 32)
 | 
						|
    return true;
 | 
						|
 | 
						|
  if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
 | 
						|
      MI.getOperand(3).getImm() >= 32 &&
 | 
						|
      MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
 | 
						|
       Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
 | 
						|
       Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
 | 
						|
      MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // There are other instructions that clear higher 32-bits.
 | 
						|
  if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
 | 
						|
      Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
 | 
						|
      Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
 | 
						|
      Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
 | 
						|
      Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
 | 
						|
      Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
 | 
						|
      Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
 | 
						|
      Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
 | 
						|
      Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
 | 
						|
      Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
 | 
						|
      Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
 | 
						|
      Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
 | 
						|
      Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
 | 
						|
      Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
 | 
						|
      Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
 | 
						|
      Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
 | 
						|
      Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
 | 
						|
      Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
 | 
						|
      Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
 | 
						|
      Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
 | 
						|
      Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
 | 
						|
      Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
 | 
						|
      Opcode == PPC::MFVSRWZ)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// This function returns true if the input MachineInstr is a TOC save
 | 
						|
// instruction.
 | 
						|
bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
 | 
						|
  if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
 | 
						|
    return false;
 | 
						|
  unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
 | 
						|
  unsigned StackOffset = MI.getOperand(1).getImm();
 | 
						|
  Register StackReg = MI.getOperand(2).getReg();
 | 
						|
  Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
 | 
						|
  if (StackReg == SPReg && StackOffset == TOCSaveOffset)
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// We limit the max depth to track incoming values of PHIs or binary ops
 | 
						|
// (e.g. AND) to avoid excessive cost.
 | 
						|
const unsigned MAX_DEPTH = 1;
 | 
						|
 | 
						|
bool
 | 
						|
PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
 | 
						|
                                   const unsigned Depth) const {
 | 
						|
  const MachineFunction *MF = MI.getParent()->getParent();
 | 
						|
  const MachineRegisterInfo *MRI = &MF->getRegInfo();
 | 
						|
 | 
						|
  // If we know this instruction returns sign- or zero-extended result,
 | 
						|
  // return true.
 | 
						|
  if (SignExt ? isSignExtendingOp(MI):
 | 
						|
                isZeroExtendingOp(MI))
 | 
						|
    return true;
 | 
						|
 | 
						|
  switch (MI.getOpcode()) {
 | 
						|
  case PPC::COPY: {
 | 
						|
    Register SrcReg = MI.getOperand(1).getReg();
 | 
						|
 | 
						|
    // In both ELFv1 and v2 ABI, method parameters and the return value
 | 
						|
    // are sign- or zero-extended.
 | 
						|
    if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
 | 
						|
      const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
 | 
						|
      // We check the ZExt/SExt flags for a method parameter.
 | 
						|
      if (MI.getParent()->getBasicBlock() ==
 | 
						|
          &MF->getFunction().getEntryBlock()) {
 | 
						|
        Register VReg = MI.getOperand(0).getReg();
 | 
						|
        if (MF->getRegInfo().isLiveIn(VReg))
 | 
						|
          return SignExt ? FuncInfo->isLiveInSExt(VReg) :
 | 
						|
                           FuncInfo->isLiveInZExt(VReg);
 | 
						|
      }
 | 
						|
 | 
						|
      // For a method return value, we check the ZExt/SExt flags in attribute.
 | 
						|
      // We assume the following code sequence for method call.
 | 
						|
      //   ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
 | 
						|
      //   BL8_NOP @func,...
 | 
						|
      //   ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
 | 
						|
      //   %5 = COPY %x3; G8RC:%5
 | 
						|
      if (SrcReg == PPC::X3) {
 | 
						|
        const MachineBasicBlock *MBB = MI.getParent();
 | 
						|
        MachineBasicBlock::const_instr_iterator II =
 | 
						|
          MachineBasicBlock::const_instr_iterator(&MI);
 | 
						|
        if (II != MBB->instr_begin() &&
 | 
						|
            (--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
 | 
						|
          const MachineInstr &CallMI = *(--II);
 | 
						|
          if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
 | 
						|
            const Function *CalleeFn =
 | 
						|
              dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
 | 
						|
            if (!CalleeFn)
 | 
						|
              return false;
 | 
						|
            const IntegerType *IntTy =
 | 
						|
              dyn_cast<IntegerType>(CalleeFn->getReturnType());
 | 
						|
            const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs();
 | 
						|
            if (IntTy && IntTy->getBitWidth() <= 32)
 | 
						|
              return Attrs.hasAttribute(SignExt ? Attribute::SExt :
 | 
						|
                                                  Attribute::ZExt);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a copy from another register, we recursively check source.
 | 
						|
    if (!Register::isVirtualRegister(SrcReg))
 | 
						|
      return false;
 | 
						|
    const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
 | 
						|
    if (SrcMI != nullptr)
 | 
						|
      return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  case PPC::ANDI_rec:
 | 
						|
  case PPC::ANDIS_rec:
 | 
						|
  case PPC::ORI:
 | 
						|
  case PPC::ORIS:
 | 
						|
  case PPC::XORI:
 | 
						|
  case PPC::XORIS:
 | 
						|
  case PPC::ANDI8_rec:
 | 
						|
  case PPC::ANDIS8_rec:
 | 
						|
  case PPC::ORI8:
 | 
						|
  case PPC::ORIS8:
 | 
						|
  case PPC::XORI8:
 | 
						|
  case PPC::XORIS8: {
 | 
						|
    // logical operation with 16-bit immediate does not change the upper bits.
 | 
						|
    // So, we track the operand register as we do for register copy.
 | 
						|
    Register SrcReg = MI.getOperand(1).getReg();
 | 
						|
    if (!Register::isVirtualRegister(SrcReg))
 | 
						|
      return false;
 | 
						|
    const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
 | 
						|
    if (SrcMI != nullptr)
 | 
						|
      return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // If all incoming values are sign-/zero-extended,
 | 
						|
  // the output of OR, ISEL or PHI is also sign-/zero-extended.
 | 
						|
  case PPC::OR:
 | 
						|
  case PPC::OR8:
 | 
						|
  case PPC::ISEL:
 | 
						|
  case PPC::PHI: {
 | 
						|
    if (Depth >= MAX_DEPTH)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // The input registers for PHI are operand 1, 3, ...
 | 
						|
    // The input registers for others are operand 1 and 2.
 | 
						|
    unsigned E = 3, D = 1;
 | 
						|
    if (MI.getOpcode() == PPC::PHI) {
 | 
						|
      E = MI.getNumOperands();
 | 
						|
      D = 2;
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned I = 1; I != E; I += D) {
 | 
						|
      if (MI.getOperand(I).isReg()) {
 | 
						|
        Register SrcReg = MI.getOperand(I).getReg();
 | 
						|
        if (!Register::isVirtualRegister(SrcReg))
 | 
						|
          return false;
 | 
						|
        const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
 | 
						|
        if (SrcMI == nullptr ||
 | 
						|
            !isSignOrZeroExtended(*SrcMI, SignExt, Depth + 1))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
      else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // If at least one of the incoming values of an AND is zero extended
 | 
						|
  // then the output is also zero-extended. If both of the incoming values
 | 
						|
  // are sign-extended then the output is also sign extended.
 | 
						|
  case PPC::AND:
 | 
						|
  case PPC::AND8: {
 | 
						|
    if (Depth >= MAX_DEPTH)
 | 
						|
       return false;
 | 
						|
 | 
						|
    assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
 | 
						|
 | 
						|
    Register SrcReg1 = MI.getOperand(1).getReg();
 | 
						|
    Register SrcReg2 = MI.getOperand(2).getReg();
 | 
						|
 | 
						|
    if (!Register::isVirtualRegister(SrcReg1) ||
 | 
						|
        !Register::isVirtualRegister(SrcReg2))
 | 
						|
      return false;
 | 
						|
 | 
						|
    const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
 | 
						|
    const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
 | 
						|
    if (!MISrc1 || !MISrc2)
 | 
						|
        return false;
 | 
						|
 | 
						|
    if(SignExt)
 | 
						|
        return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
 | 
						|
               isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
 | 
						|
    else
 | 
						|
        return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
 | 
						|
               isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
 | 
						|
  }
 | 
						|
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
 | 
						|
  return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
 | 
						|
  MachineInstr *Loop, *EndLoop, *LoopCount;
 | 
						|
  MachineFunction *MF;
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
  int64_t TripCount;
 | 
						|
 | 
						|
public:
 | 
						|
  PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
 | 
						|
                       MachineInstr *LoopCount)
 | 
						|
      : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
 | 
						|
        MF(Loop->getParent()->getParent()),
 | 
						|
        TII(MF->getSubtarget().getInstrInfo()) {
 | 
						|
    // Inspect the Loop instruction up-front, as it may be deleted when we call
 | 
						|
    // createTripCountGreaterCondition.
 | 
						|
    if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
 | 
						|
      TripCount = LoopCount->getOperand(1).getImm();
 | 
						|
    else
 | 
						|
      TripCount = -1;
 | 
						|
  }
 | 
						|
 | 
						|
  bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
 | 
						|
    // Only ignore the terminator.
 | 
						|
    return MI == EndLoop;
 | 
						|
  }
 | 
						|
 | 
						|
  Optional<bool>
 | 
						|
  createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
 | 
						|
                                  SmallVectorImpl<MachineOperand> &Cond) override {
 | 
						|
    if (TripCount == -1) {
 | 
						|
      // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
 | 
						|
      // so we don't need to generate any thing here.
 | 
						|
      Cond.push_back(MachineOperand::CreateImm(0));
 | 
						|
      Cond.push_back(MachineOperand::CreateReg(
 | 
						|
          MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
 | 
						|
          true));
 | 
						|
      return {};
 | 
						|
    }
 | 
						|
 | 
						|
    return TripCount > TC;
 | 
						|
  }
 | 
						|
 | 
						|
  void setPreheader(MachineBasicBlock *NewPreheader) override {
 | 
						|
    // Do nothing. We want the LOOP setup instruction to stay in the *old*
 | 
						|
    // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
 | 
						|
  }
 | 
						|
 | 
						|
  void adjustTripCount(int TripCountAdjust) override {
 | 
						|
    // If the loop trip count is a compile-time value, then just change the
 | 
						|
    // value.
 | 
						|
    if (LoopCount->getOpcode() == PPC::LI8 ||
 | 
						|
        LoopCount->getOpcode() == PPC::LI) {
 | 
						|
      int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
 | 
						|
      LoopCount->getOperand(1).setImm(TripCount);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
 | 
						|
    // so we don't need to generate any thing here.
 | 
						|
  }
 | 
						|
 | 
						|
  void disposed() override {
 | 
						|
    Loop->eraseFromParent();
 | 
						|
    // Ensure the loop setup instruction is deleted too.
 | 
						|
    LoopCount->eraseFromParent();
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
 | 
						|
PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
 | 
						|
  // We really "analyze" only hardware loops right now.
 | 
						|
  MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
 | 
						|
  MachineBasicBlock *Preheader = *LoopBB->pred_begin();
 | 
						|
  if (Preheader == LoopBB)
 | 
						|
    Preheader = *std::next(LoopBB->pred_begin());
 | 
						|
  MachineFunction *MF = Preheader->getParent();
 | 
						|
 | 
						|
  if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
 | 
						|
    SmallPtrSet<MachineBasicBlock *, 8> Visited;
 | 
						|
    if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
 | 
						|
      Register LoopCountReg = LoopInst->getOperand(0).getReg();
 | 
						|
      MachineRegisterInfo &MRI = MF->getRegInfo();
 | 
						|
      MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
 | 
						|
      return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
MachineInstr *PPCInstrInfo::findLoopInstr(
 | 
						|
    MachineBasicBlock &PreHeader,
 | 
						|
    SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
 | 
						|
 | 
						|
  unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
 | 
						|
 | 
						|
  // The loop set-up instruction should be in preheader
 | 
						|
  for (auto &I : PreHeader.instrs())
 | 
						|
    if (I.getOpcode() == LOOPi)
 | 
						|
      return &I;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if get the base operand, byte offset of an instruction and the
 | 
						|
// memory width. Width is the size of memory that is being loaded/stored.
 | 
						|
bool PPCInstrInfo::getMemOperandWithOffsetWidth(
 | 
						|
    const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
 | 
						|
    unsigned &Width, const TargetRegisterInfo *TRI) const {
 | 
						|
  if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Handle only loads/stores with base register followed by immediate offset.
 | 
						|
  if (!LdSt.getOperand(1).isImm() ||
 | 
						|
      (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
 | 
						|
    return false;
 | 
						|
  if (!LdSt.getOperand(1).isImm() ||
 | 
						|
      (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!LdSt.hasOneMemOperand())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Width = (*LdSt.memoperands_begin())->getSize();
 | 
						|
  Offset = LdSt.getOperand(1).getImm();
 | 
						|
  BaseReg = &LdSt.getOperand(2);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
 | 
						|
    const MachineInstr &MIa, const MachineInstr &MIb) const {
 | 
						|
  assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
 | 
						|
  assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
 | 
						|
 | 
						|
  if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
 | 
						|
      MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Retrieve the base register, offset from the base register and width. Width
 | 
						|
  // is the size of memory that is being loaded/stored (e.g. 1, 2, 4).  If
 | 
						|
  // base registers are identical, and the offset of a lower memory access +
 | 
						|
  // the width doesn't overlap the offset of a higher memory access,
 | 
						|
  // then the memory accesses are different.
 | 
						|
  const TargetRegisterInfo *TRI = &getRegisterInfo();
 | 
						|
  const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
 | 
						|
  int64_t OffsetA = 0, OffsetB = 0;
 | 
						|
  unsigned int WidthA = 0, WidthB = 0;
 | 
						|
  if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
 | 
						|
      getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
 | 
						|
    if (BaseOpA->isIdenticalTo(*BaseOpB)) {
 | 
						|
      int LowOffset = std::min(OffsetA, OffsetB);
 | 
						|
      int HighOffset = std::max(OffsetA, OffsetB);
 | 
						|
      int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
 | 
						|
      if (LowOffset + LowWidth <= HighOffset)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 |