397 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			397 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass mutates the form of VSX FMA instructions to avoid unnecessary
 | 
						|
// copies.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "MCTargetDesc/PPCPredicates.h"
 | 
						|
#include "PPC.h"
 | 
						|
#include "PPCInstrBuilder.h"
 | 
						|
#include "PPCInstrInfo.h"
 | 
						|
#include "PPCMachineFunctionInfo.h"
 | 
						|
#include "PPCTargetMachine.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervals.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CodeGen/SlotIndexes.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/MC/MCAsmInfo.h"
 | 
						|
#include "llvm/MC/TargetRegistry.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
// Temporarily disable FMA mutation by default, since it doesn't handle
 | 
						|
// cross-basic-block intervals well.
 | 
						|
// See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html
 | 
						|
//      http://reviews.llvm.org/D17087
 | 
						|
static cl::opt<bool> DisableVSXFMAMutate(
 | 
						|
    "disable-ppc-vsx-fma-mutation",
 | 
						|
    cl::desc("Disable VSX FMA instruction mutation"), cl::init(true),
 | 
						|
    cl::Hidden);
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppc-vsx-fma-mutate"
 | 
						|
 | 
						|
namespace llvm { namespace PPC {
 | 
						|
  int getAltVSXFMAOpcode(uint16_t Opcode);
 | 
						|
} }
 | 
						|
 | 
						|
namespace {
 | 
						|
  // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
 | 
						|
  // (Altivec and scalar floating-point registers), we need to transform the
 | 
						|
  // copies into subregister copies with other restrictions.
 | 
						|
  struct PPCVSXFMAMutate : public MachineFunctionPass {
 | 
						|
    static char ID;
 | 
						|
    PPCVSXFMAMutate() : MachineFunctionPass(ID) {
 | 
						|
      initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    LiveIntervals *LIS;
 | 
						|
    const PPCInstrInfo *TII;
 | 
						|
 | 
						|
protected:
 | 
						|
    bool processBlock(MachineBasicBlock &MBB) {
 | 
						|
      bool Changed = false;
 | 
						|
 | 
						|
      MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | 
						|
      const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
 | 
						|
      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
 | 
						|
           I != IE; ++I) {
 | 
						|
        MachineInstr &MI = *I;
 | 
						|
 | 
						|
        // The default (A-type) VSX FMA form kills the addend (it is taken from
 | 
						|
        // the target register, which is then updated to reflect the result of
 | 
						|
        // the FMA). If the instruction, however, kills one of the registers
 | 
						|
        // used for the product, then we can use the M-form instruction (which
 | 
						|
        // will take that value from the to-be-defined register).
 | 
						|
 | 
						|
        int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
 | 
						|
        if (AltOpc == -1)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // This pass is run after register coalescing, and so we're looking for
 | 
						|
        // a situation like this:
 | 
						|
        //   ...
 | 
						|
        //   %5 = COPY %9; VSLRC:%5,%9
 | 
						|
        //   %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
 | 
						|
        //                         implicit %rm; VSLRC:%5,%17,%16
 | 
						|
        //   ...
 | 
						|
        //   %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19,
 | 
						|
        //                         implicit %rm; VSLRC:%9,%17,%19
 | 
						|
        //   ...
 | 
						|
        // Where we can eliminate the copy by changing from the A-type to the
 | 
						|
        // M-type instruction. Specifically, for this example, this means:
 | 
						|
        //   %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
 | 
						|
        //                         implicit %rm; VSLRC:%5,%17,%16
 | 
						|
        // is replaced by:
 | 
						|
        //   %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9,
 | 
						|
        //                         implicit %rm; VSLRC:%16,%18,%9
 | 
						|
        // and we remove: %5 = COPY %9; VSLRC:%5,%9
 | 
						|
 | 
						|
        SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
 | 
						|
 | 
						|
        VNInfo *AddendValNo =
 | 
						|
            LIS->getInterval(MI.getOperand(1).getReg()).Query(FMAIdx).valueIn();
 | 
						|
 | 
						|
        // This can be null if the register is undef.
 | 
						|
        if (!AddendValNo)
 | 
						|
          continue;
 | 
						|
 | 
						|
        MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
 | 
						|
 | 
						|
        // The addend and this instruction must be in the same block.
 | 
						|
 | 
						|
        if (!AddendMI || AddendMI->getParent() != MI.getParent())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // The addend must be a full copy within the same register class.
 | 
						|
 | 
						|
        if (!AddendMI->isFullCopy())
 | 
						|
          continue;
 | 
						|
 | 
						|
        Register AddendSrcReg = AddendMI->getOperand(1).getReg();
 | 
						|
        if (Register::isVirtualRegister(AddendSrcReg)) {
 | 
						|
          if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
 | 
						|
              MRI.getRegClass(AddendSrcReg))
 | 
						|
            continue;
 | 
						|
        } else {
 | 
						|
          // If AddendSrcReg is a physical register, make sure the destination
 | 
						|
          // register class contains it.
 | 
						|
          if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
 | 
						|
                ->contains(AddendSrcReg))
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // In theory, there could be other uses of the addend copy before this
 | 
						|
        // fma.  We could deal with this, but that would require additional
 | 
						|
        // logic below and I suspect it will not occur in any relevant
 | 
						|
        // situations.  Additionally, check whether the copy source is killed
 | 
						|
        // prior to the fma.  In order to replace the addend here with the
 | 
						|
        // source of the copy, it must still be live here.  We can't use
 | 
						|
        // interval testing for a physical register, so as long as we're
 | 
						|
        // walking the MIs we may as well test liveness here.
 | 
						|
        //
 | 
						|
        // FIXME: There is a case that occurs in practice, like this:
 | 
						|
        //   %9 = COPY %f1; VSSRC:%9
 | 
						|
        //   ...
 | 
						|
        //   %6 = COPY %9; VSSRC:%6,%9
 | 
						|
        //   %7 = COPY %9; VSSRC:%7,%9
 | 
						|
        //   %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC:
 | 
						|
        //   %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC:
 | 
						|
        //   %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC:
 | 
						|
        // which prevents an otherwise-profitable transformation.
 | 
						|
        bool OtherUsers = false, KillsAddendSrc = false;
 | 
						|
        for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
 | 
						|
             J != JE; --J) {
 | 
						|
          if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
 | 
						|
            OtherUsers = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          if (J->modifiesRegister(AddendSrcReg, TRI) ||
 | 
						|
              J->killsRegister(AddendSrcReg, TRI)) {
 | 
						|
            KillsAddendSrc = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (OtherUsers || KillsAddendSrc)
 | 
						|
          continue;
 | 
						|
 | 
						|
 | 
						|
        // The transformation doesn't work well with things like:
 | 
						|
        //    %5 = A-form-op %5, %11, %5;
 | 
						|
        // unless %11 is also a kill, so skip when it is not,
 | 
						|
        // and check operand 3 to see it is also a kill to handle the case:
 | 
						|
        //   %5 = A-form-op %5, %5, %11;
 | 
						|
        // where %5 and %11 are both kills. This case would be skipped
 | 
						|
        // otherwise.
 | 
						|
        Register OldFMAReg = MI.getOperand(0).getReg();
 | 
						|
 | 
						|
        // Find one of the product operands that is killed by this instruction.
 | 
						|
        unsigned KilledProdOp = 0, OtherProdOp = 0;
 | 
						|
        Register Reg2 = MI.getOperand(2).getReg();
 | 
						|
        Register Reg3 = MI.getOperand(3).getReg();
 | 
						|
        if (LIS->getInterval(Reg2).Query(FMAIdx).isKill()
 | 
						|
            && Reg2 != OldFMAReg) {
 | 
						|
          KilledProdOp = 2;
 | 
						|
          OtherProdOp  = 3;
 | 
						|
        } else if (LIS->getInterval(Reg3).Query(FMAIdx).isKill()
 | 
						|
            && Reg3 != OldFMAReg) {
 | 
						|
          KilledProdOp = 3;
 | 
						|
          OtherProdOp  = 2;
 | 
						|
        }
 | 
						|
 | 
						|
        // If there are no usable killed product operands, then this
 | 
						|
        // transformation is likely not profitable.
 | 
						|
        if (!KilledProdOp)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If the addend copy is used only by this MI, then the addend source
 | 
						|
        // register is likely not live here. This could be fixed (based on the
 | 
						|
        // legality checks above, the live range for the addend source register
 | 
						|
        // could be extended), but it seems likely that such a trivial copy can
 | 
						|
        // be coalesced away later, and thus is not worth the effort.
 | 
						|
        if (Register::isVirtualRegister(AddendSrcReg) &&
 | 
						|
            !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
 | 
						|
 | 
						|
        Register KilledProdReg = MI.getOperand(KilledProdOp).getReg();
 | 
						|
        Register OtherProdReg = MI.getOperand(OtherProdOp).getReg();
 | 
						|
 | 
						|
        unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
 | 
						|
        unsigned KilledProdSubReg = MI.getOperand(KilledProdOp).getSubReg();
 | 
						|
        unsigned OtherProdSubReg = MI.getOperand(OtherProdOp).getSubReg();
 | 
						|
 | 
						|
        bool AddRegKill = AddendMI->getOperand(1).isKill();
 | 
						|
        bool KilledProdRegKill = MI.getOperand(KilledProdOp).isKill();
 | 
						|
        bool OtherProdRegKill = MI.getOperand(OtherProdOp).isKill();
 | 
						|
 | 
						|
        bool AddRegUndef = AddendMI->getOperand(1).isUndef();
 | 
						|
        bool KilledProdRegUndef = MI.getOperand(KilledProdOp).isUndef();
 | 
						|
        bool OtherProdRegUndef = MI.getOperand(OtherProdOp).isUndef();
 | 
						|
 | 
						|
        // If there isn't a class that fits, we can't perform the transform.
 | 
						|
        // This is needed for correctness with a mixture of VSX and Altivec
 | 
						|
        // instructions to make sure that a low VSX register is not assigned to
 | 
						|
        // the Altivec instruction.
 | 
						|
        if (!MRI.constrainRegClass(KilledProdReg,
 | 
						|
                                   MRI.getRegClass(OldFMAReg)))
 | 
						|
          continue;
 | 
						|
 | 
						|
        assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
 | 
						|
               "Addend copy not tied to old FMA output!");
 | 
						|
 | 
						|
        LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n    " << MI);
 | 
						|
 | 
						|
        MI.getOperand(0).setReg(KilledProdReg);
 | 
						|
        MI.getOperand(1).setReg(KilledProdReg);
 | 
						|
        MI.getOperand(3).setReg(AddendSrcReg);
 | 
						|
 | 
						|
        MI.getOperand(0).setSubReg(KilledProdSubReg);
 | 
						|
        MI.getOperand(1).setSubReg(KilledProdSubReg);
 | 
						|
        MI.getOperand(3).setSubReg(AddSubReg);
 | 
						|
 | 
						|
        MI.getOperand(1).setIsKill(KilledProdRegKill);
 | 
						|
        MI.getOperand(3).setIsKill(AddRegKill);
 | 
						|
 | 
						|
        MI.getOperand(1).setIsUndef(KilledProdRegUndef);
 | 
						|
        MI.getOperand(3).setIsUndef(AddRegUndef);
 | 
						|
 | 
						|
        MI.setDesc(TII->get(AltOpc));
 | 
						|
 | 
						|
        // If the addend is also a multiplicand, replace it with the addend
 | 
						|
        // source in both places.
 | 
						|
        if (OtherProdReg == AddendMI->getOperand(0).getReg()) {
 | 
						|
          MI.getOperand(2).setReg(AddendSrcReg);
 | 
						|
          MI.getOperand(2).setSubReg(AddSubReg);
 | 
						|
          MI.getOperand(2).setIsKill(AddRegKill);
 | 
						|
          MI.getOperand(2).setIsUndef(AddRegUndef);
 | 
						|
        } else {
 | 
						|
          MI.getOperand(2).setReg(OtherProdReg);
 | 
						|
          MI.getOperand(2).setSubReg(OtherProdSubReg);
 | 
						|
          MI.getOperand(2).setIsKill(OtherProdRegKill);
 | 
						|
          MI.getOperand(2).setIsUndef(OtherProdRegUndef);
 | 
						|
        }
 | 
						|
 | 
						|
        LLVM_DEBUG(dbgs() << " -> " << MI);
 | 
						|
 | 
						|
        // The killed product operand was killed here, so we can reuse it now
 | 
						|
        // for the result of the fma.
 | 
						|
 | 
						|
        LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
 | 
						|
        VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
 | 
						|
        for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
 | 
						|
             UI != UE;) {
 | 
						|
          MachineOperand &UseMO = *UI;
 | 
						|
          MachineInstr *UseMI = UseMO.getParent();
 | 
						|
          ++UI;
 | 
						|
 | 
						|
          // Don't replace the result register of the copy we're about to erase.
 | 
						|
          if (UseMI == AddendMI)
 | 
						|
            continue;
 | 
						|
 | 
						|
          UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI);
 | 
						|
        }
 | 
						|
 | 
						|
        // Extend the live intervals of the killed product operand to hold the
 | 
						|
        // fma result.
 | 
						|
 | 
						|
        LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
 | 
						|
        for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
 | 
						|
             AI != AE; ++AI) {
 | 
						|
          // Don't add the segment that corresponds to the original copy.
 | 
						|
          if (AI->valno == AddendValNo)
 | 
						|
            continue;
 | 
						|
 | 
						|
          VNInfo *NewFMAValNo =
 | 
						|
            NewFMAInt.getNextValue(AI->start,
 | 
						|
                                   LIS->getVNInfoAllocator());
 | 
						|
 | 
						|
          NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
 | 
						|
                                                     NewFMAValNo));
 | 
						|
        }
 | 
						|
        LLVM_DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');
 | 
						|
 | 
						|
        // Extend the live interval of the addend source (it might end at the
 | 
						|
        // copy to be removed, or somewhere in between there and here). This
 | 
						|
        // is necessary only if it is a physical register.
 | 
						|
        if (!AddendSrcReg.isVirtual())
 | 
						|
          for (MCRegUnitIterator Units(AddendSrcReg.asMCReg(), TRI);
 | 
						|
               Units.isValid(); ++Units) {
 | 
						|
            unsigned Unit = *Units;
 | 
						|
 | 
						|
            LiveRange &AddendSrcRange = LIS->getRegUnit(Unit);
 | 
						|
            AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB),
 | 
						|
                                         FMAIdx.getRegSlot());
 | 
						|
            LLVM_DEBUG(dbgs() << "  extended: " << AddendSrcRange << '\n');
 | 
						|
          }
 | 
						|
 | 
						|
        FMAInt.removeValNo(FMAValNo);
 | 
						|
        LLVM_DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');
 | 
						|
 | 
						|
        // Remove the (now unused) copy.
 | 
						|
 | 
						|
        LLVM_DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
 | 
						|
        LIS->RemoveMachineInstrFromMaps(*AddendMI);
 | 
						|
        AddendMI->eraseFromParent();
 | 
						|
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
 | 
						|
public:
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override {
 | 
						|
      if (skipFunction(MF.getFunction()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // If we don't have VSX then go ahead and return without doing
 | 
						|
      // anything.
 | 
						|
      const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
 | 
						|
      if (!STI.hasVSX())
 | 
						|
        return false;
 | 
						|
 | 
						|
      LIS = &getAnalysis<LiveIntervals>();
 | 
						|
 | 
						|
      TII = STI.getInstrInfo();
 | 
						|
 | 
						|
      bool Changed = false;
 | 
						|
 | 
						|
      if (DisableVSXFMAMutate)
 | 
						|
        return Changed;
 | 
						|
 | 
						|
      for (MachineBasicBlock &B : llvm::make_early_inc_range(MF))
 | 
						|
        if (processBlock(B))
 | 
						|
          Changed = true;
 | 
						|
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<LiveIntervals>();
 | 
						|
      AU.addPreserved<LiveIntervals>();
 | 
						|
      AU.addRequired<SlotIndexes>();
 | 
						|
      AU.addPreserved<SlotIndexes>();
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addPreserved<MachineDominatorTree>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
 | 
						|
                      "PowerPC VSX FMA Mutation", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
 | 
						|
                    "PowerPC VSX FMA Mutation", false, false)
 | 
						|
 | 
						|
char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
 | 
						|
 | 
						|
char PPCVSXFMAMutate::ID = 0;
 | 
						|
FunctionPass *llvm::createPPCVSXFMAMutatePass() {
 | 
						|
  return new PPCVSXFMAMutate();
 | 
						|
}
 |