llvm-project/llvm/lib/Target/AArch64/SMEInstrFormats.td

1189 lines
51 KiB
TableGen

//=-- SMEInstrFormats.td - AArch64 SME Instruction classes -*- tablegen -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// AArch64 Scalable Matrix Extension (SME) Instruction Class Definitions.
//
//===----------------------------------------------------------------------===//
def imm_to_tile8 : ComplexPattern<i64, 1, "ImmToTile<AArch64::ZAB0>", []>;
def imm_to_tile16 : ComplexPattern<i64, 1, "ImmToTile<AArch64::ZAH0>", []>;
def imm_to_tile32 : ComplexPattern<i64, 1, "ImmToTile<AArch64::ZAS0>", []>;
def imm_to_tile64 : ComplexPattern<i64, 1, "ImmToTile<AArch64::ZAD0>", []>;
def imm_to_tile128 : ComplexPattern<i64, 1, "ImmToTile<AArch64::ZAQ0>", []>;
def tileslice8 : ComplexPattern<i32 , 2, "SelectSMETileSlice<4>", []>;
def tileslice16 : ComplexPattern<i32 , 2, "SelectSMETileSlice<3>", []>;
def tileslice32 : ComplexPattern<i32 , 2, "SelectSMETileSlice<2>", []>;
def tileslice64 : ComplexPattern<i32 , 2, "SelectSMETileSlice<1>", []>;
def tileslice128 : ComplexPattern<i32 , 2, "SelectSMETileSlice<0>", []>; // nop
def am_sme_indexed_b4 :ComplexPattern<iPTR, 2, "SelectAddrModeIndexedSVE<0,15>", [], [SDNPWantRoot]>;
//===----------------------------------------------------------------------===//
// SME Outer Products
//===----------------------------------------------------------------------===//
class sme_outer_product_pseudo<ZPRRegOp zpr_ty>
: Pseudo<(outs), (ins i64imm:$tile, PPR3bAny:$pn, PPR3bAny:$pm,
zpr_ty:$zn, zpr_ty:$zm), []>,
Sched<[]> {
// Translated to the actual instructions in AArch64ISelLowering.cpp
let usesCustomInserter = 1;
}
class sme_fp_outer_product_inst<bit S, bit sz, MatrixTileOperand za_ty,
ZPRRegOp zpr_ty, string mnemonic>
: I<(outs za_ty:$ZAda),
(ins za_ty:$_ZAda, PPR3bAny:$Pn, PPR3bAny:$Pm, zpr_ty:$Zn, zpr_ty:$Zm),
mnemonic, "\t$ZAda, $Pn/m, $Pm/m, $Zn, $Zm",
"", []>,
Sched<[]> {
bits<5> Zm;
bits<3> Pm;
bits<3> Pn;
bits<5> Zn;
let Inst{31-23} = 0b100000001;
let Inst{22} = sz;
let Inst{21} = 0b0;
let Inst{20-16} = Zm;
let Inst{15-13} = Pm;
let Inst{12-10} = Pn;
let Inst{9-5} = Zn;
let Inst{4} = S;
let Inst{3} = 0b0;
let Constraints = "$ZAda = $_ZAda";
}
multiclass sme_outer_product_fp32<bit S, string mnemonic, SDPatternOperator op> {
def NAME : sme_fp_outer_product_inst<S, 0b0, TileOp32, ZPR32, mnemonic> {
bits<2> ZAda;
let Inst{1-0} = ZAda;
let Inst{2} = 0b0;
}
def NAME # _PSEUDO : sme_outer_product_pseudo<ZPR32>;
def : Pat<(op imm0_3:$tile, (nxv4i1 PPR3bAny:$pn), (nxv4i1 PPR3bAny:$pm),
(nxv4f32 ZPR32:$zn), (nxv4f32 ZPR32:$zm)),
(!cast<Instruction>(NAME # _PSEUDO) imm0_3:$tile, $pn, $pm, $zn, $zm)>;
}
multiclass sme_outer_product_fp64<bit S, string mnemonic, SDPatternOperator op> {
def NAME : sme_fp_outer_product_inst<S, 0b1, TileOp64, ZPR64, mnemonic> {
bits<3> ZAda;
let Inst{2-0} = ZAda;
}
def NAME # _PSEUDO : sme_outer_product_pseudo<ZPR64>;
def : Pat<(op imm0_7:$tile, (nxv2i1 PPR3bAny:$pn), (nxv2i1 PPR3bAny:$pm),
(nxv2f64 ZPR64:$zn), (nxv2f64 ZPR64:$zm)),
(!cast<Instruction>(NAME # _PSEUDO) imm0_7:$tile, $pn, $pm, $zn, $zm)>;
}
class sme_int_outer_product_inst<bit u0, bit u1, bit S, bit sz,
MatrixTileOperand za_ty, ZPRRegOp zpr_ty,
string mnemonic>
: I<(outs za_ty:$ZAda),
(ins za_ty:$_ZAda, PPR3bAny:$Pn, PPR3bAny:$Pm, zpr_ty:$Zn, zpr_ty:$Zm),
mnemonic, "\t$ZAda, $Pn/m, $Pm/m, $Zn, $Zm",
"", []>,
Sched<[]> {
bits<5> Zm;
bits<3> Pm;
bits<3> Pn;
bits<5> Zn;
let Inst{31-25} = 0b1010000;
let Inst{24} = u0;
let Inst{23} = 0b1;
let Inst{22} = sz;
let Inst{21} = u1;
let Inst{20-16} = Zm;
let Inst{15-13} = Pm;
let Inst{12-10} = Pn;
let Inst{9-5} = Zn;
let Inst{4} = S;
let Inst{3} = 0b0;
let Constraints = "$ZAda = $_ZAda";
}
multiclass sme_int_outer_product_i32<bits<3> opc, string mnemonic,
SDPatternOperator op> {
def NAME : sme_int_outer_product_inst<opc{2}, opc{1}, opc{0}, 0b0, TileOp32,
ZPR8, mnemonic> {
bits<2> ZAda;
let Inst{1-0} = ZAda;
let Inst{2} = 0b0;
}
def NAME # _PSEUDO : sme_outer_product_pseudo<ZPR8>;
def : Pat<(op imm0_3:$tile, (nxv16i1 PPR3bAny:$pn), (nxv16i1 PPR3bAny:$pm),
(nxv16i8 ZPR8:$zn), (nxv16i8 ZPR8:$zm)),
(!cast<Instruction>(NAME # _PSEUDO) imm0_3:$tile, $pn, $pm, $zn, $zm)>;
}
multiclass sme_int_outer_product_i64<bits<3> opc, string mnemonic,
SDPatternOperator op> {
def NAME : sme_int_outer_product_inst<opc{2}, opc{1}, opc{0}, 0b1, TileOp64,
ZPR16, mnemonic> {
bits<3> ZAda;
let Inst{2-0} = ZAda;
}
def NAME # _PSEUDO : sme_outer_product_pseudo<ZPR16>;
def : Pat<(op imm0_7:$tile, (nxv8i1 PPR3bAny:$pn), (nxv8i1 PPR3bAny:$pm),
(nxv8i16 ZPR16:$zn), (nxv8i16 ZPR16:$zm)),
(!cast<Instruction>(NAME # _PSEUDO) imm0_7:$tile, $pn, $pm, $zn, $zm)>;
}
class sme_outer_product_widening_inst<bit op, bit S, string mnemonic>
: I<(outs TileOp32:$ZAda),
(ins TileOp32:$_ZAda, PPR3bAny:$Pn, PPR3bAny:$Pm, ZPR16:$Zn, ZPR16:$Zm),
mnemonic, "\t$ZAda, $Pn/m, $Pm/m, $Zn, $Zm",
"", []>,
Sched<[]> {
bits<5> Zm;
bits<3> Pm;
bits<3> Pn;
bits<5> Zn;
bits<2> ZAda;
let Inst{31-22} = 0b1000000110;
let Inst{21} = op;
let Inst{20-16} = Zm;
let Inst{15-13} = Pm;
let Inst{12-10} = Pn;
let Inst{9-5} = Zn;
let Inst{4} = S;
let Inst{3-2} = 0b00;
let Inst{1-0} = ZAda;
let Constraints = "$ZAda = $_ZAda";
}
multiclass sme_bf16_outer_product<bit S, string mnemonic, SDPatternOperator op> {
def NAME : sme_outer_product_widening_inst<0b0, S, mnemonic>;
def NAME # _PSEUDO : sme_outer_product_pseudo<ZPR16>;
def : Pat<(op imm0_3:$tile, (nxv8i1 PPR3bAny:$pn), (nxv8i1 PPR3bAny:$pm),
(nxv8bf16 ZPR16:$zn), (nxv8bf16 ZPR16:$zm)),
(!cast<Instruction>(NAME # _PSEUDO) imm0_3:$tile, $pn, $pm, $zn, $zm)>;
}
multiclass sme_f16_outer_product<bit S, string mnemonic, SDPatternOperator op> {
def NAME : sme_outer_product_widening_inst<0b1, S, mnemonic>;
def NAME # _PSEUDO : sme_outer_product_pseudo<ZPR16>;
def : Pat<(op imm0_3:$tile, (nxv8i1 PPR3bAny:$pn), (nxv8i1 PPR3bAny:$pm),
(nxv8f16 ZPR16:$zn), (nxv8f16 ZPR16:$zm)),
(!cast<Instruction>(NAME # _PSEUDO) imm0_3:$tile, $pn, $pm, $zn, $zm)>;
}
//===----------------------------------------------------------------------===//
// SME Add Vector to Tile
//===----------------------------------------------------------------------===//
class sme_add_vector_to_tile_inst<bit op, bit V, MatrixTileOperand tile_ty,
ZPRRegOp zpr_ty, string mnemonic>
: I<(outs tile_ty:$ZAda),
(ins tile_ty:$_ZAda, PPR3bAny:$Pn, PPR3bAny:$Pm, zpr_ty:$Zn),
mnemonic, "\t$ZAda, $Pn/m, $Pm/m, $Zn",
"", []>, Sched<[]> {
bits<3> Pm;
bits<3> Pn;
bits<5> Zn;
let Inst{31-23} = 0b110000001;
let Inst{22} = op;
let Inst{21-17} = 0b01000;
let Inst{16} = V;
let Inst{15-13} = Pm;
let Inst{12-10} = Pn;
let Inst{9-5} = Zn;
let Inst{4-3} = 0b00;
let Constraints = "$ZAda = $_ZAda";
}
class sme_add_vector_to_tile_u32<bit V, string mnemonic>
: sme_add_vector_to_tile_inst<0b0, V, TileOp32, ZPR32, mnemonic> {
bits<2> ZAda;
let Inst{2} = 0b0;
let Inst{1-0} = ZAda;
}
class sme_add_vector_to_tile_u64<bit V, string mnemonic>
: sme_add_vector_to_tile_inst<0b1, V, TileOp64, ZPR64, mnemonic> {
bits<3> ZAda;
let Inst{2-0} = ZAda;
}
class sme_add_vector_to_tile_pseudo<ZPRRegOp zpr_ty>
: Pseudo<(outs),
(ins i64imm:$tile, PPR3bAny:$Pn, PPR3bAny:$Pm, zpr_ty:$Zn), []>,
Sched<[]> {
// Translated to the actual instructions in AArch64ISelLowering.cpp
let usesCustomInserter = 1;
}
def ADDHA_MPPZ_PSEUDO_S : sme_add_vector_to_tile_pseudo<ZPR32>;
def ADDVA_MPPZ_PSEUDO_S : sme_add_vector_to_tile_pseudo<ZPR32>;
def : Pat<(int_aarch64_sme_addha
imm0_3:$tile, (nxv4i1 PPR3bAny:$pn), (nxv4i1 PPR3bAny:$pm),
(nxv4i32 ZPR32:$zn)),
(ADDHA_MPPZ_PSEUDO_S imm0_3:$tile, $pn, $pm, $zn)>;
def : Pat<(int_aarch64_sme_addva
imm0_3:$tile, (nxv4i1 PPR3bAny:$pn), (nxv4i1 PPR3bAny:$pm),
(nxv4i32 ZPR32:$zn)),
(ADDVA_MPPZ_PSEUDO_S imm0_3:$tile, $pn, $pm, $zn)>;
let Predicates = [HasSMEI64] in {
def ADDHA_MPPZ_PSEUDO_D : sme_add_vector_to_tile_pseudo<ZPR64>;
def ADDVA_MPPZ_PSEUDO_D : sme_add_vector_to_tile_pseudo<ZPR64>;
def : Pat<(int_aarch64_sme_addha
imm0_7:$tile, (nxv2i1 PPR3bAny:$pn), (nxv2i1 PPR3bAny:$pm),
(nxv2i64 ZPR64:$zn)),
(ADDHA_MPPZ_PSEUDO_D imm0_7:$tile, $pn, $pm, $zn)>;
def : Pat<(int_aarch64_sme_addva
imm0_7:$tile, (nxv2i1 PPR3bAny:$pn), (nxv2i1 PPR3bAny:$pm),
(nxv2i64 ZPR64:$zn)),
(ADDVA_MPPZ_PSEUDO_D imm0_7:$tile, $pn, $pm, $zn)>;
}
//===----------------------------------------------------------------------===//
// SME Contiguous Loads
//===----------------------------------------------------------------------===//
class sme_mem_ld_ss_base<bit Q, bit V, bits<2> msz, dag outs, dag ins,
string mnemonic, string argstr>
: I<outs, ins, mnemonic, argstr, "", []>, Sched<[]> {
bits<5> Rm;
bits<2> Rv;
bits<3> Pg;
bits<5> Rn;
let Inst{31-25} = 0b1110000;
let Inst{24} = Q;
let Inst{23-22} = msz;
let Inst{21} = 0b0;
let Inst{20-16} = Rm;
let Inst{15} = V;
let Inst{14-13} = Rv;
let Inst{12-10} = Pg;
let Inst{9-5} = Rn;
let Inst{4} = 0b0;
let mayLoad = 1;
}
class sme_mem_ld_ss_inst<bit Q, bits<2> msz, string mnemonic,
MatrixTileVectorOperand tile_ty, bit is_col,
Operand imm_ty, RegisterOperand gpr_ty>
: sme_mem_ld_ss_base<
Q, is_col, msz, (outs tile_ty:$ZAt),
(ins MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, GPR64sp:$Rn,
gpr_ty:$Rm),
mnemonic, "\t\\{$ZAt[$Rv, $imm]\\}, $Pg/z, [$Rn, $Rm]">;
multiclass sme_mem_ss_aliases_base<string mnemonic, Instruction inst,
MatrixTileVectorOperand tile_ty,
Operand imm_ty, RegisterOperand gpr_ty,
string pg_suffix=""> {
def : InstAlias<mnemonic # "\t$ZAt[$Rv, $imm], $Pg" # pg_suffix # ", [$Rn, $Rm]",
(inst tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, GPR64sp:$Rn, gpr_ty:$Rm), 0>;
// Default XZR offset aliases
def : InstAlias<mnemonic # "\t\\{$ZAt[$Rv, $imm]\\}, $Pg" # pg_suffix # ", [$Rn]",
(inst tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, GPR64sp:$Rn, XZR), 1>;
def : InstAlias<mnemonic # "\t$ZAt[$Rv, $imm], $Pg" # pg_suffix # ", [$Rn]",
(inst tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, GPR64sp:$Rn, XZR), 0>;
}
multiclass sme_mem_ss_aliases<string mnemonic, string inst, bit is_col,
string pg_suffix=""> {
defm : sme_mem_ss_aliases_base<mnemonic # "b", !cast<Instruction>(inst # _B),
!if(is_col, TileVectorOpV8, TileVectorOpH8),
sme_elm_idx0_15, GPR64shifted8, pg_suffix>;
defm : sme_mem_ss_aliases_base<mnemonic # "h", !cast<Instruction>(inst # _H),
!if(is_col, TileVectorOpV16, TileVectorOpH16),
sme_elm_idx0_7, GPR64shifted16, pg_suffix>;
defm : sme_mem_ss_aliases_base<mnemonic # "w", !cast<Instruction>(inst # _S),
!if(is_col, TileVectorOpV32, TileVectorOpH32),
sme_elm_idx0_3, GPR64shifted32, pg_suffix>;
defm : sme_mem_ss_aliases_base<mnemonic # "d", !cast<Instruction>(inst # _D),
!if(is_col, TileVectorOpV64, TileVectorOpH64),
sme_elm_idx0_1, GPR64shifted64, pg_suffix>;
defm : sme_mem_ss_aliases_base<mnemonic # "q", !cast<Instruction>(inst # _Q),
!if(is_col, TileVectorOpV128, TileVectorOpH128),
sme_elm_idx0_0, GPR64shifted128, pg_suffix>;
}
multiclass sme_mem_ld_ss_aliases<string inst, bit is_col> {
defm NAME : sme_mem_ss_aliases<"ld1", inst, is_col, "/z">;
}
multiclass sme_mem_ld_ss_patterns<Instruction Inst, SDPatternOperator Load,
Operand tile_ty, Operand offset_ty,
ComplexPattern addr,
ComplexPattern tileslice> {
// base, tileslice
def : Pat<(Load PPR3bAny:$pg, GPR64sp:$base, tile_ty:$tile,
(i32 (tileslice MatrixIndexGPR32Op12_15:$idx, offset_ty:$imm))),
(Inst tile_ty:$tile, $idx, $imm, $pg, $base, XZR)>;
// reg + reg, tileslice
let AddedComplexity = 1 in {
def : Pat<(Load PPR3bAny:$pg, (addr GPR64sp:$base, GPR64:$offset),
tile_ty:$tile, (i32 (tileslice MatrixIndexGPR32Op12_15:$idx,
offset_ty:$imm))),
(Inst tile_ty:$tile, $idx, $imm, $pg, $base, $offset)>;
}
}
class sme_load_pseudo
: Pseudo<(outs), (ins i64imm:$tile, MatrixIndexGPR32Op12_15:$idx,
i64imm:$imm, PPR3bAny:$pg, GPR64sp:$base, GPR64:$offset), []>,
Sched<[]> {
// Translated to the actual instructions in AArch64ISelLowering.cpp
let usesCustomInserter = 1;
let mayLoad = 1;
}
multiclass sme_mem_ld_v_ss<string mnemonic, bit is_col> {
def _B : sme_mem_ld_ss_inst<0b0, 0b00, mnemonic # "b",
!if(is_col, TileVectorOpV8, TileVectorOpH8),
is_col, sme_elm_idx0_15, GPR64shifted8> {
bits<4> imm;
let Inst{3-0} = imm;
}
def _H : sme_mem_ld_ss_inst<0b0, 0b01, mnemonic # "h",
!if(is_col, TileVectorOpV16, TileVectorOpH16),
is_col, sme_elm_idx0_7, GPR64shifted16> {
bits<1> ZAt;
bits<3> imm;
let Inst{3} = ZAt;
let Inst{2-0} = imm;
}
def _S : sme_mem_ld_ss_inst<0b0, 0b10, mnemonic # "w",
!if(is_col, TileVectorOpV32, TileVectorOpH32),
is_col, sme_elm_idx0_3, GPR64shifted32> {
bits<2> ZAt;
bits<2> imm;
let Inst{3-2} = ZAt;
let Inst{1-0} = imm;
}
def _D : sme_mem_ld_ss_inst<0b0, 0b11, mnemonic # "d",
!if(is_col, TileVectorOpV64, TileVectorOpH64),
is_col, sme_elm_idx0_1, GPR64shifted64> {
bits<3> ZAt;
bits<1> imm;
let Inst{3-1} = ZAt;
let Inst{0} = imm;
}
def _Q : sme_mem_ld_ss_inst<0b1, 0b11, mnemonic # "q",
!if(is_col, TileVectorOpV128, TileVectorOpH128),
is_col, sme_elm_idx0_0, GPR64shifted128> {
bits<4> ZAt;
let Inst{3-0} = ZAt;
}
defm : sme_mem_ld_ss_aliases<NAME, is_col>;
// Pseudo instructions for lowering intrinsics, using immediates instead of
// tile registers.
def _PSEUDO_B : sme_load_pseudo;
def _PSEUDO_H : sme_load_pseudo;
def _PSEUDO_S : sme_load_pseudo;
def _PSEUDO_D : sme_load_pseudo;
def _PSEUDO_Q : sme_load_pseudo;
defm : sme_mem_ld_ss_patterns<!cast<Instruction>(NAME # _PSEUDO_B),
!if(is_col, int_aarch64_sme_ld1b_vert,
int_aarch64_sme_ld1b_horiz),
sme_elm_idx0_0, imm0_15, am_sve_regreg_lsl0,
tileslice8>;
defm : sme_mem_ld_ss_patterns<!cast<Instruction>(NAME # _PSEUDO_H),
!if(is_col, int_aarch64_sme_ld1h_vert,
int_aarch64_sme_ld1h_horiz),
imm0_1, imm0_7, am_sve_regreg_lsl1,
tileslice16>;
defm : sme_mem_ld_ss_patterns<!cast<Instruction>(NAME # _PSEUDO_S),
!if(is_col, int_aarch64_sme_ld1w_vert,
int_aarch64_sme_ld1w_horiz),
imm0_3, imm0_3, am_sve_regreg_lsl2,
tileslice32>;
defm : sme_mem_ld_ss_patterns<!cast<Instruction>(NAME # _PSEUDO_D),
!if(is_col, int_aarch64_sme_ld1d_vert,
int_aarch64_sme_ld1d_horiz),
imm0_7, imm0_1, am_sve_regreg_lsl3,
tileslice64>;
defm : sme_mem_ld_ss_patterns<!cast<Instruction>(NAME # _PSEUDO_Q),
!if(is_col, int_aarch64_sme_ld1q_vert,
int_aarch64_sme_ld1q_horiz),
imm0_15, sme_elm_idx0_0, am_sve_regreg_lsl4,
tileslice128>;
}
multiclass sme_mem_ld_ss<string mnemonic> {
defm _H : sme_mem_ld_v_ss<mnemonic, /*is_col=*/0b0>;
defm _V : sme_mem_ld_v_ss<mnemonic, /*is_col=*/0b1>;
}
//===----------------------------------------------------------------------===//
// SME Contiguous Stores
//===----------------------------------------------------------------------===//
class sme_mem_st_ss_base<bit Q, bit V, bits<2> msz, dag ins,
string mnemonic, string argstr>
: I<(outs), ins, mnemonic, argstr, "", []>, Sched<[]> {
bits<5> Rm;
bits<2> Rv;
bits<3> Pg;
bits<5> Rn;
let Inst{31-25} = 0b1110000;
let Inst{24} = Q;
let Inst{23-22} = msz;
let Inst{21} = 0b1;
let Inst{20-16} = Rm;
let Inst{15} = V;
let Inst{14-13} = Rv;
let Inst{12-10} = Pg;
let Inst{9-5} = Rn;
let Inst{4} = 0b0;
let mayStore = 1;
let hasSideEffects = 1;
}
class sme_mem_st_ss_inst<bit Q, bits<2> msz, string mnemonic,
MatrixTileVectorOperand tile_ty, bit is_col,
Operand imm_ty, RegisterOperand gpr_ty>
: sme_mem_st_ss_base<
Q, is_col, msz,
(ins tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg,
GPR64sp:$Rn, gpr_ty:$Rm),
mnemonic, "\t\\{$ZAt[$Rv, $imm]\\}, $Pg, [$Rn, $Rm]">;
multiclass sme_mem_st_ss_aliases<string inst, bit is_col> {
defm NAME : sme_mem_ss_aliases<"st1", inst, is_col>;
}
multiclass sme_mem_st_ss_patterns<Instruction Inst, SDPatternOperator Store,
Operand offset_ty,
ComplexPattern imm2tile,
ComplexPattern addr,
ComplexPattern tileslice> {
// base, tileslice
def : Pat<(Store PPR3bAny:$pg, GPR64sp:$base, (imm2tile untyped:$tile),
(i32 (tileslice MatrixIndexGPR32Op12_15:$idx, offset_ty:$imm))),
(Inst $tile, $idx, $imm, $pg, $base, XZR)>;
// reg + reg, tileslice
let AddedComplexity = 1 in {
def : Pat<(Store PPR3bAny:$pg, (addr GPR64sp:$base, GPR64:$offset),
(imm2tile untyped:$tile),
(i32 (tileslice MatrixIndexGPR32Op12_15:$idx, offset_ty:$imm))),
(Inst $tile, $idx, $imm, $pg, $base, $offset)>;
}
}
multiclass sme_mem_st_v_ss<string mnemonic, bit is_col> {
def _B : sme_mem_st_ss_inst<0b0, 0b00, mnemonic # "b",
!if(is_col, TileVectorOpV8, TileVectorOpH8),
is_col, sme_elm_idx0_15, GPR64shifted8> {
bits<4> imm;
let Inst{3-0} = imm;
}
def _H : sme_mem_st_ss_inst<0b0, 0b01, mnemonic # "h",
!if(is_col, TileVectorOpV16, TileVectorOpH16),
is_col, sme_elm_idx0_7, GPR64shifted16> {
bits<1> ZAt;
bits<3> imm;
let Inst{3} = ZAt;
let Inst{2-0} = imm;
}
def _S : sme_mem_st_ss_inst<0b0, 0b10, mnemonic # "w",
!if(is_col, TileVectorOpV32, TileVectorOpH32),
is_col, sme_elm_idx0_3, GPR64shifted32> {
bits<2> ZAt;
bits<2> imm;
let Inst{3-2} = ZAt;
let Inst{1-0} = imm;
}
def _D : sme_mem_st_ss_inst<0b0, 0b11, mnemonic # "d",
!if(is_col, TileVectorOpV64, TileVectorOpH64),
is_col, sme_elm_idx0_1, GPR64shifted64> {
bits<3> ZAt;
bits<1> imm;
let Inst{3-1} = ZAt;
let Inst{0} = imm;
}
def _Q : sme_mem_st_ss_inst<0b1, 0b11, mnemonic # "q",
!if(is_col, TileVectorOpV128, TileVectorOpH128),
is_col, sme_elm_idx0_0, GPR64shifted128> {
bits<4> ZAt;
let Inst{3-0} = ZAt;
}
defm : sme_mem_st_ss_aliases<NAME, is_col>;
defm : sme_mem_st_ss_patterns<!cast<Instruction>(NAME # _B),
!if(is_col, int_aarch64_sme_st1b_vert,
int_aarch64_sme_st1b_horiz),
imm0_15, imm_to_tile8, am_sve_regreg_lsl0,
tileslice8>;
defm : sme_mem_st_ss_patterns<!cast<Instruction>(NAME # _H),
!if(is_col, int_aarch64_sme_st1h_vert,
int_aarch64_sme_st1h_horiz),
imm0_7, imm_to_tile16, am_sve_regreg_lsl1,
tileslice16>;
defm : sme_mem_st_ss_patterns<!cast<Instruction>(NAME # _S),
!if(is_col, int_aarch64_sme_st1w_vert,
int_aarch64_sme_st1w_horiz),
imm0_3, imm_to_tile32, am_sve_regreg_lsl2,
tileslice32>;
defm : sme_mem_st_ss_patterns<!cast<Instruction>(NAME # _D),
!if(is_col, int_aarch64_sme_st1d_vert,
int_aarch64_sme_st1d_horiz),
imm0_1, imm_to_tile64, am_sve_regreg_lsl3,
tileslice64>;
defm : sme_mem_st_ss_patterns<!cast<Instruction>(NAME # _Q),
!if(is_col, int_aarch64_sme_st1q_vert,
int_aarch64_sme_st1q_horiz),
sme_elm_idx0_0, imm_to_tile128,
am_sve_regreg_lsl4, tileslice128>;
}
multiclass sme_mem_st_ss<string mnemonic> {
defm _H : sme_mem_st_v_ss<mnemonic, /*is_col=*/0b0>;
defm _V : sme_mem_st_v_ss<mnemonic, /*is_col=*/0b1>;
}
//===----------------------------------------------------------------------===//
// SME Save and Restore Array
//===----------------------------------------------------------------------===//
class sme_spill_fill_base<bit isStore, dag outs, dag ins, string opcodestr>
: I<outs, ins, opcodestr, "\t$ZAt[$Rv, $imm4], [$Rn, $offset, mul vl]", "",
[]>,
Sched<[]> {
bits<2> Rv;
bits<5> Rn;
bits<4> imm4;
let Inst{31-22} = 0b1110000100;
let Inst{21} = isStore;
let Inst{20-15} = 0b000000;
let Inst{14-13} = Rv;
let Inst{12-10} = 0b000;
let Inst{9-5} = Rn;
let Inst{4} = 0b0;
let Inst{3-0} = imm4;
}
let mayStore = 1 in
class sme_spill_inst<string opcodestr>
: sme_spill_fill_base<0b1, (outs),
(ins MatrixOp:$ZAt, MatrixIndexGPR32Op12_15:$Rv,
sme_elm_idx0_15:$imm4, GPR64sp:$Rn,
imm0_15:$offset),
opcodestr>;
let mayLoad = 1 in
class sme_fill_inst<string opcodestr>
: sme_spill_fill_base<0b0, (outs MatrixOp:$ZAt),
(ins MatrixIndexGPR32Op12_15:$Rv,
sme_elm_idx0_15:$imm4, GPR64sp:$Rn,
imm0_15:$offset),
opcodestr>;
multiclass sme_spill<string opcodestr> {
def NAME : sme_spill_inst<opcodestr>;
def : InstAlias<opcodestr # "\t$ZAt[$Rv, $imm4], [$Rn]",
(!cast<Instruction>(NAME) MatrixOp:$ZAt,
MatrixIndexGPR32Op12_15:$Rv, sme_elm_idx0_15:$imm4, GPR64sp:$Rn, 0), 1>;
// base
def : Pat<(int_aarch64_sme_str MatrixIndexGPR32Op12_15:$idx, GPR64sp:$base),
(!cast<Instruction>(NAME) ZA, $idx, 0, $base, 0)>;
// scalar + immediate (mul vl)
let AddedComplexity = 2 in {
def : Pat<(int_aarch64_sme_str MatrixIndexGPR32Op12_15:$idx,
(am_sme_indexed_b4 GPR64sp:$base, imm0_15:$imm4)),
(!cast<Instruction>(NAME) ZA, $idx, 0, $base, $imm4)>;
}
}
multiclass sme_fill<string opcodestr> {
def NAME : sme_fill_inst<opcodestr>;
def : InstAlias<opcodestr # "\t$ZAt[$Rv, $imm4], [$Rn]",
(!cast<Instruction>(NAME) MatrixOp:$ZAt,
MatrixIndexGPR32Op12_15:$Rv, sme_elm_idx0_15:$imm4, GPR64sp:$Rn, 0), 1>;
def NAME # _PSEUDO
: Pseudo<(outs),
(ins MatrixIndexGPR32Op12_15:$idx, imm0_15:$imm4,
GPR64sp:$base), []>,
Sched<[]> {
// Translated to actual instruction in AArch64ISelLowering.cpp
let usesCustomInserter = 1;
let mayLoad = 1;
}
// base
def : Pat<(int_aarch64_sme_ldr MatrixIndexGPR32Op12_15:$idx, GPR64sp:$base),
(!cast<Instruction>(NAME # _PSEUDO) $idx, 0, $base)>;
// scalar + immediate (mul vl)
let AddedComplexity = 2 in {
def : Pat<(int_aarch64_sme_ldr MatrixIndexGPR32Op12_15:$idx,
(am_sme_indexed_b4 GPR64sp:$base, imm0_15:$imm4)),
(!cast<Instruction>(NAME # _PSEUDO) $idx, $imm4, $base)>;
}
}
//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//
class sme_vector_to_tile_base<bit Q, bit V, bits<2> sz, dag outs, dag ins,
string mnemonic, string argstr>
: I<outs, ins, mnemonic, argstr, "", []>, Sched<[]> {
bits<2> Rv;
bits<3> Pg;
bits<5> Zn;
let Inst{31-24} = 0b11000000;
let Inst{23-22} = sz;
let Inst{21-17} = 0b00000;
let Inst{16} = Q;
let Inst{15} = V;
let Inst{14-13} = Rv;
let Inst{12-10} = Pg;
let Inst{9-5} = Zn;
let Inst{4} = 0b0;
}
class sme_vector_to_tile_inst<bit Q, bits<2> sz, MatrixTileVectorOperand tile_ty,
bit is_col, Operand imm_ty, ZPRRegOp zpr_ty,
string mnemonic>
: sme_vector_to_tile_base<Q, is_col, sz, (outs tile_ty:$ZAd),
(ins tile_ty:$_ZAd, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, zpr_ty:$Zn),
mnemonic, "\t$ZAd[$Rv, $imm], $Pg/m, $Zn">{
let Constraints = "$ZAd = $_ZAd";
}
multiclass sme_vector_to_tile_aliases<Instruction inst,
MatrixTileVectorOperand tile_ty,
ZPRRegOp zpr_ty, Operand imm_ty> {
def : InstAlias<"mov\t$ZAd[$Rv, $imm], $Pg/m, $Zn",
(inst tile_ty:$ZAd, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, zpr_ty:$Zn), 1>;
}
multiclass sme_vector_to_tile_patterns<Instruction inst, ValueType zpr_vt,
ValueType ppr_vt, Operand imm_ty,
Operand offset_ty,
SDPatternOperator op,
ComplexPattern tileslice> {
def : Pat<(op imm_ty:$tile, MatrixIndexGPR32Op12_15:$idx,
(ppr_vt PPR3bAny:$pg), (zpr_vt ZPRAny:$zn)),
(inst imm_ty:$tile, $idx, 0, $pg, $zn)>;
let AddedComplexity = 1 in {
def : Pat<(op imm_ty:$tile, (i32 (tileslice MatrixIndexGPR32Op12_15:$idx,
offset_ty:$imm)),
(ppr_vt PPR3bAny:$pg), (zpr_vt ZPRAny:$zn)),
(inst imm_ty:$tile, $idx, $imm, $pg, $zn)>;
}
}
class sme_mova_insert_pseudo
: Pseudo<(outs), (ins i64imm:$tile, MatrixIndexGPR32Op12_15:$idx,
i64imm:$imm, PPR3bAny:$pg, ZPRAny:$zn), []>,
Sched<[]> {
// Translated to the actual instructions in AArch64ISelLowering.cpp
let usesCustomInserter = 1;
}
multiclass sme_vector_v_to_tile<string mnemonic, bit is_col> {
def _B : sme_vector_to_tile_inst<0b0, 0b00, !if(is_col, TileVectorOpV8,
TileVectorOpH8),
is_col, sme_elm_idx0_15, ZPR8, mnemonic> {
bits<4> imm;
let Inst{3-0} = imm;
}
def _H : sme_vector_to_tile_inst<0b0, 0b01, !if(is_col, TileVectorOpV16,
TileVectorOpH16),
is_col, sme_elm_idx0_7, ZPR16, mnemonic> {
bits<1> ZAd;
bits<3> imm;
let Inst{3} = ZAd;
let Inst{2-0} = imm;
}
def _S : sme_vector_to_tile_inst<0b0, 0b10, !if(is_col, TileVectorOpV32,
TileVectorOpH32),
is_col, sme_elm_idx0_3, ZPR32, mnemonic> {
bits<2> ZAd;
bits<2> imm;
let Inst{3-2} = ZAd;
let Inst{1-0} = imm;
}
def _D : sme_vector_to_tile_inst<0b0, 0b11, !if(is_col, TileVectorOpV64,
TileVectorOpH64),
is_col, sme_elm_idx0_1, ZPR64, mnemonic> {
bits<3> ZAd;
bits<1> imm;
let Inst{3-1} = ZAd;
let Inst{0} = imm;
}
def _Q : sme_vector_to_tile_inst<0b1, 0b11, !if(is_col, TileVectorOpV128,
TileVectorOpH128),
is_col, sme_elm_idx0_0, ZPR128, mnemonic> {
bits<4> ZAd;
bits<1> imm;
let Inst{3-0} = ZAd;
}
// Pseudo instructions for lowering intrinsics, using immediates instead of
// tile registers.
def _PSEUDO_B : sme_mova_insert_pseudo;
def _PSEUDO_H : sme_mova_insert_pseudo;
def _PSEUDO_S : sme_mova_insert_pseudo;
def _PSEUDO_D : sme_mova_insert_pseudo;
def _PSEUDO_Q : sme_mova_insert_pseudo;
defm : sme_vector_to_tile_aliases<!cast<Instruction>(NAME # _B),
!if(is_col, TileVectorOpV8,
TileVectorOpH8),
ZPR8, sme_elm_idx0_15>;
defm : sme_vector_to_tile_aliases<!cast<Instruction>(NAME # _H),
!if(is_col, TileVectorOpV16,
TileVectorOpH16),
ZPR16, sme_elm_idx0_7>;
defm : sme_vector_to_tile_aliases<!cast<Instruction>(NAME # _S),
!if(is_col, TileVectorOpV32,
TileVectorOpH32),
ZPR32, sme_elm_idx0_3>;
defm : sme_vector_to_tile_aliases<!cast<Instruction>(NAME # _D),
!if(is_col, TileVectorOpV64,
TileVectorOpH64),
ZPR64, sme_elm_idx0_1>;
defm : sme_vector_to_tile_aliases<!cast<Instruction>(NAME # _Q),
!if(is_col, TileVectorOpV128,
TileVectorOpH128),
ZPR128, sme_elm_idx0_0>;
defvar op = !if(is_col, int_aarch64_sme_write_vert,
int_aarch64_sme_write_horiz);
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_B),
nxv16i8, nxv16i1, sme_elm_idx0_0, imm0_15,
op, tileslice8>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_H),
nxv8i16, nxv8i1, sme_elm_idx0_1, imm0_7,
op, tileslice16>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_H),
nxv8f16, nxv8i1, sme_elm_idx0_1, imm0_7,
op, tileslice16>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_H),
nxv8bf16, nxv8i1, sme_elm_idx0_1, imm0_7,
op, tileslice16>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_S),
nxv4i32, nxv4i1, sme_elm_idx0_3, imm0_3,
op, tileslice32>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_S),
nxv4f32, nxv4i1, sme_elm_idx0_3, imm0_3,
op, tileslice32>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_D),
nxv2i64, nxv2i1, sme_elm_idx0_7, imm0_1,
op, tileslice64>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_D),
nxv2f64, nxv2i1, sme_elm_idx0_7, imm0_1,
op, tileslice64>;
defvar opq = !if(is_col, int_aarch64_sme_writeq_vert,
int_aarch64_sme_writeq_horiz);
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_Q),
nxv16i8, nxv16i1, sme_elm_idx0_15,
sme_elm_idx0_0, opq, tileslice128>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_Q),
nxv8i16, nxv8i1, sme_elm_idx0_15,
sme_elm_idx0_0, opq, tileslice128>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_Q),
nxv8f16, nxv8i1, sme_elm_idx0_15,
sme_elm_idx0_0, opq, tileslice128>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_Q),
nxv8bf16, nxv8i1, sme_elm_idx0_15,
sme_elm_idx0_0, opq, tileslice128>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_Q),
nxv4i32, nxv4i1, sme_elm_idx0_15,
sme_elm_idx0_0, opq, tileslice128>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_Q),
nxv4f32, nxv4i1, sme_elm_idx0_15,
sme_elm_idx0_0, opq, tileslice128>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_Q),
nxv2i64, nxv2i1, sme_elm_idx0_15,
sme_elm_idx0_0, opq, tileslice128>;
defm : sme_vector_to_tile_patterns<!cast<Instruction>(NAME # _PSEUDO_Q),
nxv2f64, nxv2i1, sme_elm_idx0_15,
sme_elm_idx0_0, opq, tileslice128>;
}
multiclass sme_vector_to_tile<string mnemonic> {
defm _H : sme_vector_v_to_tile<mnemonic, /*is_col=*/0b0>;
defm _V : sme_vector_v_to_tile<mnemonic, /*is_col=*/0b1>;
}
class sme_tile_to_vector_base<bit Q, bit V, bits<2> sz, dag outs, dag ins,
string mnemonic, string argstr>
: I<outs, ins, mnemonic, argstr, "", []>, Sched<[]> {
bits<2> Rv;
bits<3> Pg;
bits<5> Zd;
let Inst{31-24} = 0b11000000;
let Inst{23-22} = sz;
let Inst{21-17} = 0b00001;
let Inst{16} = Q;
let Inst{15} = V;
let Inst{14-13} = Rv;
let Inst{12-10} = Pg;
let Inst{9} = 0b0;
let Inst{4-0} = Zd;
}
class sme_tile_to_vector_inst<bit Q, bits<2> sz, ZPRRegOp zpr_ty,
MatrixTileVectorOperand tile_ty,
bit is_col, Operand imm_ty, string mnemonic>
: sme_tile_to_vector_base<Q, is_col, sz, (outs zpr_ty:$Zd),
(ins zpr_ty:$_Zd, PPR3bAny:$Pg, tile_ty:$ZAn, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm),
mnemonic, "\t$Zd, $Pg/m, $ZAn[$Rv, $imm]"> {
let Constraints = "$Zd = $_Zd";
}
multiclass sme_tile_to_vector_aliases<Instruction inst, ZPRRegOp zpr_ty,
MatrixTileVectorOperand tile_ty,
Operand imm_ty > {
def : InstAlias<"mov\t$Zd, $Pg/m, $ZAn[$Rv, $imm]",
(inst zpr_ty:$Zd, PPR3bAny:$Pg, tile_ty:$ZAn, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm), 1>;
}
multiclass sme_tile_to_vector_patterns<Instruction inst, ValueType zpr_vt,
ValueType ppr_vt, Operand offset_ty,
ComplexPattern imm2tile,
ComplexPattern tileslice,
SDPatternOperator op> {
def : Pat<(zpr_vt (op (zpr_vt ZPRAny:$passthru), (ppr_vt PPR3bAny:$pg),
(imm2tile untyped:$tile), MatrixIndexGPR32Op12_15:$idx)),
(inst $passthru, $pg, $tile, $idx, 0)>;
let AddedComplexity = 1 in {
def : Pat<(zpr_vt (op (zpr_vt ZPRAny:$passthru), (ppr_vt PPR3bAny:$pg),
(imm2tile untyped:$tile),
(i32 (tileslice MatrixIndexGPR32Op12_15:$idx,
offset_ty:$imm)))),
(inst $passthru, $pg, $tile, $idx, $imm)>;
}
}
multiclass sme_tile_to_vector_v<string mnemonic, bit is_col> {
def _B : sme_tile_to_vector_inst<0b0, 0b00, ZPR8, !if(is_col, TileVectorOpV8,
TileVectorOpH8),
is_col, sme_elm_idx0_15, mnemonic> {
bits<4> imm;
let Inst{8-5} = imm;
}
def _H : sme_tile_to_vector_inst<0b0, 0b01, ZPR16, !if(is_col, TileVectorOpV16,
TileVectorOpH16),
is_col, sme_elm_idx0_7, mnemonic> {
bits<1> ZAn;
bits<3> imm;
let Inst{8} = ZAn;
let Inst{7-5} = imm;
}
def _S : sme_tile_to_vector_inst<0b0, 0b10, ZPR32, !if(is_col, TileVectorOpV32,
TileVectorOpH32),
is_col, sme_elm_idx0_3, mnemonic> {
bits<2> ZAn;
bits<2> imm;
let Inst{8-7} = ZAn;
let Inst{6-5} = imm;
}
def _D : sme_tile_to_vector_inst<0b0, 0b11, ZPR64, !if(is_col, TileVectorOpV64,
TileVectorOpH64),
is_col, sme_elm_idx0_1, mnemonic> {
bits<3> ZAn;
bits<1> imm;
let Inst{8-6} = ZAn;
let Inst{5} = imm;
}
def _Q : sme_tile_to_vector_inst<0b1, 0b11, ZPR128, !if(is_col, TileVectorOpV128,
TileVectorOpH128),
is_col, sme_elm_idx0_0, mnemonic> {
bits<4> ZAn;
let Inst{8-5} = ZAn;
}
defm : sme_tile_to_vector_aliases<!cast<Instruction>(NAME # _B), ZPR8,
!if(is_col, TileVectorOpV8,
TileVectorOpH8), sme_elm_idx0_15>;
defm : sme_tile_to_vector_aliases<!cast<Instruction>(NAME # _H), ZPR16,
!if(is_col, TileVectorOpV16,
TileVectorOpH16), sme_elm_idx0_7>;
defm : sme_tile_to_vector_aliases<!cast<Instruction>(NAME # _S), ZPR32,
!if(is_col, TileVectorOpV32,
TileVectorOpH32), sme_elm_idx0_3>;
defm : sme_tile_to_vector_aliases<!cast<Instruction>(NAME # _D), ZPR64,
!if(is_col, TileVectorOpV64,
TileVectorOpH64), sme_elm_idx0_1>;
defm : sme_tile_to_vector_aliases<!cast<Instruction>(NAME # _Q), ZPR128,
!if(is_col, TileVectorOpV128,
TileVectorOpH128), sme_elm_idx0_0>;
defvar op = !if(is_col, int_aarch64_sme_read_vert,
int_aarch64_sme_read_horiz);
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _B),
nxv16i8, nxv16i1, imm0_15,
imm_to_tile8, tileslice8, op>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _H),
nxv8i16, nxv8i1, imm0_7,
imm_to_tile16, tileslice16, op>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _H),
nxv8f16, nxv8i1, imm0_7,
imm_to_tile16, tileslice16, op>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _H),
nxv8bf16, nxv8i1, imm0_7,
imm_to_tile16, tileslice16, op>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _S),
nxv4i32, nxv4i1, imm0_3,
imm_to_tile32, tileslice32, op>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _S),
nxv4f32, nxv4i1, imm0_3,
imm_to_tile32, tileslice32, op>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _D),
nxv2i64, nxv2i1, imm0_1,
imm_to_tile64, tileslice64, op>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _D),
nxv2f64, nxv2i1, imm0_1,
imm_to_tile64, tileslice64, op>;
defvar opq = !if(is_col, int_aarch64_sme_readq_vert,
int_aarch64_sme_readq_horiz);
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _Q),
nxv16i8, nxv16i1, sme_elm_idx0_0,
imm_to_tile128, tileslice128, opq>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _Q),
nxv8i16, nxv8i1, sme_elm_idx0_0,
imm_to_tile128, tileslice128, opq>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _Q),
nxv8f16, nxv8i1, sme_elm_idx0_0,
imm_to_tile128, tileslice128, opq>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _Q),
nxv8bf16, nxv8i1, sme_elm_idx0_0,
imm_to_tile128, tileslice128, opq>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _Q),
nxv4i32, nxv4i1, sme_elm_idx0_0,
imm_to_tile128, tileslice128, opq>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _Q),
nxv4f32, nxv4i1, sme_elm_idx0_0,
imm_to_tile128, tileslice128, opq>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _Q),
nxv2i64, nxv2i1, sme_elm_idx0_0,
imm_to_tile128, tileslice128, opq>;
defm : sme_tile_to_vector_patterns<!cast<Instruction>(NAME # _Q),
nxv2f64, nxv2i1, sme_elm_idx0_0,
imm_to_tile128, tileslice128, opq>;
}
multiclass sme_tile_to_vector<string mnemonic> {
defm _H : sme_tile_to_vector_v<mnemonic, /*is_col=*/0b0>;
defm _V : sme_tile_to_vector_v<mnemonic, /*is_col=*/0b1>;
}
//===----------------------------------------------------------------------===//
// SME Zero
//===----------------------------------------------------------------------===//
// NOTE: This definition isn't really correct because there are outputs, i.e.
// the tile registers being zeroed. We fix this up in a custom inserter that
// marks the appropriate registers as being implicitly defined.
class sme_zero_inst<string mnemonic>
: I<(outs), (ins MatrixTileList:$imm),
mnemonic, "\t$imm", "", []>, Sched<[]> {
bits<8> imm;
let Inst{31-8} = 0b110000000000100000000000;
let Inst{7-0} = imm;
}
multiclass sme_zero<string mnemonic> {
def NAME : sme_zero_inst<mnemonic>;
def : InstAlias<"zero\t\\{za\\}", (!cast<Instruction>(NAME) 0b11111111), 1>;
def : InstAlias<"zero\t\\{za0.h\\}", (!cast<Instruction>(NAME) 0b01010101), 1>;
def : InstAlias<"zero\t\\{za1.h\\}", (!cast<Instruction>(NAME) 0b10101010), 1>;
def : InstAlias<"zero\t\\{za0.s\\}", (!cast<Instruction>(NAME) 0b00010001), 1>;
def : InstAlias<"zero\t\\{za1.s\\}", (!cast<Instruction>(NAME) 0b00100010), 1>;
def : InstAlias<"zero\t\\{za2.s\\}", (!cast<Instruction>(NAME) 0b01000100), 1>;
def : InstAlias<"zero\t\\{za3.s\\}", (!cast<Instruction>(NAME) 0b10001000), 1>;
def : InstAlias<"zero\t\\{za0.s,za1.s\\}", (!cast<Instruction>(NAME) 0b00110011), 1>;
def : InstAlias<"zero\t\\{za0.s,za3.s\\}", (!cast<Instruction>(NAME) 0b10011001), 1>;
def : InstAlias<"zero\t\\{za1.s,za2.s\\}", (!cast<Instruction>(NAME) 0b01100110), 1>;
def : InstAlias<"zero\t\\{za2.s,za3.s\\}", (!cast<Instruction>(NAME) 0b11001100), 1>;
def : InstAlias<"zero\t\\{za0.s,za1.s,za2.s\\}", (!cast<Instruction>(NAME) 0b01110111), 1>;
def : InstAlias<"zero\t\\{za0.s,za1.s,za3.s\\}", (!cast<Instruction>(NAME) 0b10111011), 1>;
def : InstAlias<"zero\t\\{za0.s,za2.s,za3.s\\}", (!cast<Instruction>(NAME) 0b11011101), 1>;
def : InstAlias<"zero\t\\{za1.s,za2.s,za3.s\\}", (!cast<Instruction>(NAME) 0b11101110), 1>;
def NAME # _PSEUDO : Pseudo<(outs), (ins i64imm:$tilelist), []>,
Sched<[]> {
// Translated to the actual instructions in AArch64ISelLowering.cpp
let usesCustomInserter = 1;
}
def : Pat<(int_aarch64_sme_zero imm:$imm),
(!cast<Instruction>(NAME # _PSEUDO) imm:$imm)>;
}
//===----------------------------------------------------------------------===//
// SVE2 Instructions
//===----------------------------------------------------------------------===//
class sve2_int_perm_revd<string asm>
: I<(outs ZPR128:$Zd), (ins ZPR128:$_Zd, PPR3bAny:$Pg, ZPR128:$Zn),
asm, "\t$Zd, $Pg/m, $Zn", "", []>,
Sched<[]> {
bits<5> Zd;
bits<3> Pg;
bits<5> Zn;
let Inst{31-24} = 0b00000101;
let Inst{23-22} = 0b00; // size
let Inst{21-13} = 0b101110100;
let Inst{12-10} = Pg;
let Inst{9-5} = Zn;
let Inst{4-0} = Zd;
let Constraints = "$Zd = $_Zd";
let DestructiveInstType = DestructiveUnary;
let ElementSize = ZPR128.ElementSize;
}
multiclass sve2_int_perm_revd<string asm, SDPatternOperator op> {
def NAME : sve2_int_perm_revd<asm>;
def : SVE_1_Op_Passthru_Pat<nxv16i8, op, nxv16i1, nxv16i8, !cast<Instruction>(NAME)>;
def : SVE_1_Op_Passthru_Pat<nxv8i16, op, nxv8i1, nxv8i16, !cast<Instruction>(NAME)>;
def : SVE_1_Op_Passthru_Pat<nxv4i32, op, nxv4i1, nxv4i32, !cast<Instruction>(NAME)>;
def : SVE_1_Op_Passthru_Pat<nxv2i64, op, nxv2i1, nxv2i64, !cast<Instruction>(NAME)>;
}
class sve2_clamp<string asm, bits<2> sz, bit U, ZPRRegOp zpr_ty>
: I<(outs zpr_ty:$Zd), (ins zpr_ty:$Zn, zpr_ty:$Zm, zpr_ty:$_Zd),
asm, "\t$Zd, $Zn, $Zm", "", []>,
Sched<[]> {
bits<5> Zm;
bits<5> Zn;
bits<5> Zd;
let Inst{31-24} = 0b01000100;
let Inst{23-22} = sz;
let Inst{21} = 0b0;
let Inst{20-16} = Zm;
let Inst{15-11} = 0b11000;
let Inst{10} = U;
let Inst{9-5} = Zn;
let Inst{4-0} = Zd;
let Constraints = "$Zd = $_Zd";
let DestructiveInstType = DestructiveOther;
let ElementSize = zpr_ty.ElementSize;
}
multiclass sve2_clamp<string asm, bit U, SDPatternOperator op> {
def _B : sve2_clamp<asm, 0b00, U, ZPR8>;
def _H : sve2_clamp<asm, 0b01, U, ZPR16>;
def _S : sve2_clamp<asm, 0b10, U, ZPR32>;
def _D : sve2_clamp<asm, 0b11, U, ZPR64>;
def : SVE_3_Op_Pat<nxv16i8, op, nxv16i8, nxv16i8, nxv16i8, !cast<Instruction>(NAME # _B)>;
def : SVE_3_Op_Pat<nxv8i16, op, nxv8i16, nxv8i16, nxv8i16, !cast<Instruction>(NAME # _H)>;
def : SVE_3_Op_Pat<nxv4i32, op, nxv4i32, nxv4i32, nxv4i32, !cast<Instruction>(NAME # _S)>;
def : SVE_3_Op_Pat<nxv2i64, op, nxv2i64, nxv2i64, nxv2i64, !cast<Instruction>(NAME # _D)>;
}
class sve2_int_perm_sel_p<string asm, PPRRegOp ppr_ty, Operand imm_ty>
: I<(outs PPRAny:$Pd), (ins PPRAny:$Pn, ppr_ty:$Pm,
MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm),
asm, "\t$Pd, $Pn, $Pm[$Rv, $imm]", "", []>,
Sched<[]> {
bits<2> Rv;
bits<4> Pn;
bits<4> Pm;
bits<4> Pd;
let Inst{31-24} = 0b00100101;
let Inst{21} = 0b1;
let Inst{17-16} = Rv;
let Inst{15-14} = 0b01;
let Inst{13-10} = Pn;
let Inst{9} = 0b0;
let Inst{8-5} = Pm;
let Inst{4} = 0b0;
let Inst{3-0} = Pd;
}
multiclass sve2_int_perm_sel_p<string asm, SDPatternOperator op> {
def _B : sve2_int_perm_sel_p<asm, PPR8, sme_elm_idx0_15> {
bits<4> imm;
let Inst{23-22} = imm{3-2};
let Inst{20-19} = imm{1-0};
let Inst{18} = 0b1;
}
def _H : sve2_int_perm_sel_p<asm, PPR16, sme_elm_idx0_7> {
bits<3> imm;
let Inst{23-22} = imm{2-1};
let Inst{20} = imm{0};
let Inst{19-18} = 0b10;
}
def _S : sve2_int_perm_sel_p<asm, PPR32, sme_elm_idx0_3> {
bits<2> imm;
let Inst{23-22} = imm{1-0};
let Inst{20-18} = 0b100;
}
def _D : sve2_int_perm_sel_p<asm, PPR64, sme_elm_idx0_1> {
bits<1> imm;
let Inst{23} = imm;
let Inst{22} = 0b1;
let Inst{20-18} = 0b000;
}
def : Pat<(nxv16i1 (op (nxv16i1 PPRAny:$Pn), (nxv16i1 PPRAny:$Pm),
MatrixIndexGPR32Op12_15:$idx)),
(!cast<Instruction>(NAME # _B) $Pn, $Pm, $idx, 0)>;
def : Pat<(nxv8i1 (op (nxv8i1 PPRAny:$Pn), (nxv8i1 PPRAny:$Pm),
MatrixIndexGPR32Op12_15:$idx)),
(!cast<Instruction>(NAME # _H) $Pn, $Pm, $idx, 0)>;
def : Pat<(nxv4i1 (op (nxv4i1 PPRAny:$Pn), (nxv4i1 PPRAny:$Pm),
MatrixIndexGPR32Op12_15:$idx)),
(!cast<Instruction>(NAME # _S) $Pn, $Pm, $idx, 0)>;
def : Pat<(nxv2i1 (op (nxv2i1 PPRAny:$Pn), (nxv2i1 PPRAny:$Pm),
MatrixIndexGPR32Op12_15:$idx)),
(!cast<Instruction>(NAME # _D) $Pn, $Pm, $idx, 0)>;
let AddedComplexity = 1 in {
def : Pat<(nxv16i1 (op (nxv16i1 PPRAny:$Pn), (nxv16i1 PPRAny:$Pm),
(i32 (tileslice8 MatrixIndexGPR32Op12_15:$idx, sme_elm_idx0_15:$imm)))),
(!cast<Instruction>(NAME # _B) $Pn, $Pm, $idx, $imm)>;
def : Pat<(nxv8i1 (op (nxv8i1 PPRAny:$Pn), (nxv8i1 PPRAny:$Pm),
(i32 (tileslice16 MatrixIndexGPR32Op12_15:$idx, sme_elm_idx0_7:$imm)))),
(!cast<Instruction>(NAME # _H) $Pn, $Pm, $idx, $imm)>;
def : Pat<(nxv4i1 (op (nxv4i1 PPRAny:$Pn), (nxv4i1 PPRAny:$Pm),
(i32 (tileslice32 MatrixIndexGPR32Op12_15:$idx, sme_elm_idx0_3:$imm)))),
(!cast<Instruction>(NAME # _S) $Pn, $Pm, $idx, $imm)>;
def : Pat<(nxv2i1 (op (nxv2i1 PPRAny:$Pn), (nxv2i1 PPRAny:$Pm),
(i32 (tileslice64 MatrixIndexGPR32Op12_15:$idx, sme_elm_idx0_1:$imm)))),
(!cast<Instruction>(NAME # _D) $Pn, $Pm, $idx, $imm)>;
}
}