698 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			698 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defines RangeConstraintManager, a class that tracks simple
 | |
| //  equality and inequality constraints on symbolic values of ProgramState.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SimpleConstraintManager.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/ImmutableSet.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace ento;
 | |
| 
 | |
| /// A Range represents the closed range [from, to].  The caller must
 | |
| /// guarantee that from <= to.  Note that Range is immutable, so as not
 | |
| /// to subvert RangeSet's immutability.
 | |
| namespace {
 | |
| class Range : public std::pair<const llvm::APSInt*,
 | |
|                                                 const llvm::APSInt*> {
 | |
| public:
 | |
|   Range(const llvm::APSInt &from, const llvm::APSInt &to)
 | |
|     : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
 | |
|     assert(from <= to);
 | |
|   }
 | |
|   bool Includes(const llvm::APSInt &v) const {
 | |
|     return *first <= v && v <= *second;
 | |
|   }
 | |
|   const llvm::APSInt &From() const {
 | |
|     return *first;
 | |
|   }
 | |
|   const llvm::APSInt &To() const {
 | |
|     return *second;
 | |
|   }
 | |
|   const llvm::APSInt *getConcreteValue() const {
 | |
|     return &From() == &To() ? &From() : nullptr;
 | |
|   }
 | |
| 
 | |
|   void Profile(llvm::FoldingSetNodeID &ID) const {
 | |
|     ID.AddPointer(&From());
 | |
|     ID.AddPointer(&To());
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| class RangeTrait : public llvm::ImutContainerInfo<Range> {
 | |
| public:
 | |
|   // When comparing if one Range is less than another, we should compare
 | |
|   // the actual APSInt values instead of their pointers.  This keeps the order
 | |
|   // consistent (instead of comparing by pointer values) and can potentially
 | |
|   // be used to speed up some of the operations in RangeSet.
 | |
|   static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
 | |
|     return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
 | |
|                                        *lhs.second < *rhs.second);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// RangeSet contains a set of ranges. If the set is empty, then
 | |
| ///  there the value of a symbol is overly constrained and there are no
 | |
| ///  possible values for that symbol.
 | |
| class RangeSet {
 | |
|   typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
 | |
|   PrimRangeSet ranges; // no need to make const, since it is an
 | |
|                        // ImmutableSet - this allows default operator=
 | |
|                        // to work.
 | |
| public:
 | |
|   typedef PrimRangeSet::Factory Factory;
 | |
|   typedef PrimRangeSet::iterator iterator;
 | |
| 
 | |
|   RangeSet(PrimRangeSet RS) : ranges(RS) {}
 | |
| 
 | |
|   /// Create a new set with all ranges of this set and RS.
 | |
|   /// Possible intersections are not checked here.
 | |
|   RangeSet addRange(Factory &F, const RangeSet &RS) {
 | |
|     PrimRangeSet Ranges(RS.ranges);
 | |
|     for (const auto &range : ranges)
 | |
|       Ranges = F.add(Ranges, range);
 | |
|     return RangeSet(Ranges);
 | |
|   }
 | |
| 
 | |
|   iterator begin() const { return ranges.begin(); }
 | |
|   iterator end() const { return ranges.end(); }
 | |
| 
 | |
|   bool isEmpty() const { return ranges.isEmpty(); }
 | |
| 
 | |
|   /// Construct a new RangeSet representing '{ [from, to] }'.
 | |
|   RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
 | |
|     : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
 | |
| 
 | |
|   /// Profile - Generates a hash profile of this RangeSet for use
 | |
|   ///  by FoldingSet.
 | |
|   void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
 | |
| 
 | |
|   /// getConcreteValue - If a symbol is contrained to equal a specific integer
 | |
|   ///  constant then this method returns that value.  Otherwise, it returns
 | |
|   ///  NULL.
 | |
|   const llvm::APSInt* getConcreteValue() const {
 | |
|     return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void IntersectInRange(BasicValueFactory &BV, Factory &F,
 | |
|                         const llvm::APSInt &Lower,
 | |
|                         const llvm::APSInt &Upper,
 | |
|                         PrimRangeSet &newRanges,
 | |
|                         PrimRangeSet::iterator &i,
 | |
|                         PrimRangeSet::iterator &e) const {
 | |
|     // There are six cases for each range R in the set:
 | |
|     //   1. R is entirely before the intersection range.
 | |
|     //   2. R is entirely after the intersection range.
 | |
|     //   3. R contains the entire intersection range.
 | |
|     //   4. R starts before the intersection range and ends in the middle.
 | |
|     //   5. R starts in the middle of the intersection range and ends after it.
 | |
|     //   6. R is entirely contained in the intersection range.
 | |
|     // These correspond to each of the conditions below.
 | |
|     for (/* i = begin(), e = end() */; i != e; ++i) {
 | |
|       if (i->To() < Lower) {
 | |
|         continue;
 | |
|       }
 | |
|       if (i->From() > Upper) {
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (i->Includes(Lower)) {
 | |
|         if (i->Includes(Upper)) {
 | |
|           newRanges = F.add(newRanges, Range(BV.getValue(Lower),
 | |
|                                              BV.getValue(Upper)));
 | |
|           break;
 | |
|         } else
 | |
|           newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
 | |
|       } else {
 | |
|         if (i->Includes(Upper)) {
 | |
|           newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
 | |
|           break;
 | |
|         } else
 | |
|           newRanges = F.add(newRanges, *i);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const llvm::APSInt &getMinValue() const {
 | |
|     assert(!isEmpty());
 | |
|     return ranges.begin()->From();
 | |
|   }
 | |
| 
 | |
|   bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
 | |
|     // This function has nine cases, the cartesian product of range-testing
 | |
|     // both the upper and lower bounds against the symbol's type.
 | |
|     // Each case requires a different pinning operation.
 | |
|     // The function returns false if the described range is entirely outside
 | |
|     // the range of values for the associated symbol.
 | |
|     APSIntType Type(getMinValue());
 | |
|     APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
 | |
|     APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
 | |
| 
 | |
|     switch (LowerTest) {
 | |
|     case APSIntType::RTR_Below:
 | |
|       switch (UpperTest) {
 | |
|       case APSIntType::RTR_Below:
 | |
|         // The entire range is outside the symbol's set of possible values.
 | |
|         // If this is a conventionally-ordered range, the state is infeasible.
 | |
|         if (Lower < Upper)
 | |
|           return false;
 | |
| 
 | |
|         // However, if the range wraps around, it spans all possible values.
 | |
|         Lower = Type.getMinValue();
 | |
|         Upper = Type.getMaxValue();
 | |
|         break;
 | |
|       case APSIntType::RTR_Within:
 | |
|         // The range starts below what's possible but ends within it. Pin.
 | |
|         Lower = Type.getMinValue();
 | |
|         Type.apply(Upper);
 | |
|         break;
 | |
|       case APSIntType::RTR_Above:
 | |
|         // The range spans all possible values for the symbol. Pin.
 | |
|         Lower = Type.getMinValue();
 | |
|         Upper = Type.getMaxValue();
 | |
|         break;
 | |
|       }
 | |
|       break;
 | |
|     case APSIntType::RTR_Within:
 | |
|       switch (UpperTest) {
 | |
|       case APSIntType::RTR_Below:
 | |
|         // The range wraps around, but all lower values are not possible.
 | |
|         Type.apply(Lower);
 | |
|         Upper = Type.getMaxValue();
 | |
|         break;
 | |
|       case APSIntType::RTR_Within:
 | |
|         // The range may or may not wrap around, but both limits are valid.
 | |
|         Type.apply(Lower);
 | |
|         Type.apply(Upper);
 | |
|         break;
 | |
|       case APSIntType::RTR_Above:
 | |
|         // The range starts within what's possible but ends above it. Pin.
 | |
|         Type.apply(Lower);
 | |
|         Upper = Type.getMaxValue();
 | |
|         break;
 | |
|       }
 | |
|       break;
 | |
|     case APSIntType::RTR_Above:
 | |
|       switch (UpperTest) {
 | |
|       case APSIntType::RTR_Below:
 | |
|         // The range wraps but is outside the symbol's set of possible values.
 | |
|         return false;
 | |
|       case APSIntType::RTR_Within:
 | |
|         // The range starts above what's possible but ends within it (wrap).
 | |
|         Lower = Type.getMinValue();
 | |
|         Type.apply(Upper);
 | |
|         break;
 | |
|       case APSIntType::RTR_Above:
 | |
|         // The entire range is outside the symbol's set of possible values.
 | |
|         // If this is a conventionally-ordered range, the state is infeasible.
 | |
|         if (Lower < Upper)
 | |
|           return false;
 | |
| 
 | |
|         // However, if the range wraps around, it spans all possible values.
 | |
|         Lower = Type.getMinValue();
 | |
|         Upper = Type.getMaxValue();
 | |
|         break;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   // Returns a set containing the values in the receiving set, intersected with
 | |
|   // the closed range [Lower, Upper]. Unlike the Range type, this range uses
 | |
|   // modular arithmetic, corresponding to the common treatment of C integer
 | |
|   // overflow. Thus, if the Lower bound is greater than the Upper bound, the
 | |
|   // range is taken to wrap around. This is equivalent to taking the
 | |
|   // intersection with the two ranges [Min, Upper] and [Lower, Max],
 | |
|   // or, alternatively, /removing/ all integers between Upper and Lower.
 | |
|   RangeSet Intersect(BasicValueFactory &BV, Factory &F,
 | |
|                      llvm::APSInt Lower, llvm::APSInt Upper) const {
 | |
|     if (!pin(Lower, Upper))
 | |
|       return F.getEmptySet();
 | |
| 
 | |
|     PrimRangeSet newRanges = F.getEmptySet();
 | |
| 
 | |
|     PrimRangeSet::iterator i = begin(), e = end();
 | |
|     if (Lower <= Upper)
 | |
|       IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
 | |
|     else {
 | |
|       // The order of the next two statements is important!
 | |
|       // IntersectInRange() does not reset the iteration state for i and e.
 | |
|       // Therefore, the lower range most be handled first.
 | |
|       IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
 | |
|       IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
 | |
|     }
 | |
| 
 | |
|     return newRanges;
 | |
|   }
 | |
| 
 | |
|   void print(raw_ostream &os) const {
 | |
|     bool isFirst = true;
 | |
|     os << "{ ";
 | |
|     for (iterator i = begin(), e = end(); i != e; ++i) {
 | |
|       if (isFirst)
 | |
|         isFirst = false;
 | |
|       else
 | |
|         os << ", ";
 | |
| 
 | |
|       os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
 | |
|          << ']';
 | |
|     }
 | |
|     os << " }";
 | |
|   }
 | |
| 
 | |
|   bool operator==(const RangeSet &other) const {
 | |
|     return ranges == other.ranges;
 | |
|   }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
 | |
|                                  CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
 | |
|                                                              RangeSet))
 | |
| 
 | |
| namespace {
 | |
| class RangeConstraintManager : public SimpleConstraintManager{
 | |
|   RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
 | |
| public:
 | |
|   RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB)
 | |
|     : SimpleConstraintManager(subengine, SVB) {}
 | |
| 
 | |
|   ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
 | |
|                              const llvm::APSInt& Int,
 | |
|                              const llvm::APSInt& Adjustment) override;
 | |
| 
 | |
|   ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
 | |
|                              const llvm::APSInt& Int,
 | |
|                              const llvm::APSInt& Adjustment) override;
 | |
| 
 | |
|   ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
 | |
|                              const llvm::APSInt& Int,
 | |
|                              const llvm::APSInt& Adjustment) override;
 | |
| 
 | |
|   ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
 | |
|                              const llvm::APSInt& Int,
 | |
|                              const llvm::APSInt& Adjustment) override;
 | |
| 
 | |
|   ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
 | |
|                              const llvm::APSInt& Int,
 | |
|                              const llvm::APSInt& Adjustment) override;
 | |
| 
 | |
|   ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
 | |
|                              const llvm::APSInt& Int,
 | |
|                              const llvm::APSInt& Adjustment) override;
 | |
| 
 | |
|   ProgramStateRef assumeSymbolWithinInclusiveRange(
 | |
|         ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
 | |
|         const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
 | |
| 
 | |
|   ProgramStateRef assumeSymbolOutOfInclusiveRange(
 | |
|         ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
 | |
|         const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
 | |
| 
 | |
|   const llvm::APSInt* getSymVal(ProgramStateRef St,
 | |
|                                 SymbolRef sym) const override;
 | |
|   ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
 | |
| 
 | |
|   ProgramStateRef removeDeadBindings(ProgramStateRef St,
 | |
|                                      SymbolReaper& SymReaper) override;
 | |
| 
 | |
|   void print(ProgramStateRef St, raw_ostream &Out,
 | |
|              const char* nl, const char *sep) override;
 | |
| 
 | |
| private:
 | |
|   RangeSet::Factory F;
 | |
|   RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
 | |
|                          const llvm::APSInt &Int,
 | |
|                          const llvm::APSInt &Adjustment);
 | |
|   RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
 | |
|                          const llvm::APSInt &Int,
 | |
|                          const llvm::APSInt &Adjustment);
 | |
|   RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
 | |
|                          const llvm::APSInt &Int,
 | |
|                          const llvm::APSInt &Adjustment);
 | |
|   RangeSet getSymLERange(const RangeSet &RS, const llvm::APSInt &Int,
 | |
|                          const llvm::APSInt &Adjustment);
 | |
|   RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
 | |
|                          const llvm::APSInt &Int,
 | |
|                          const llvm::APSInt &Adjustment);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| std::unique_ptr<ConstraintManager>
 | |
| ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
 | |
|   return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
 | |
| }
 | |
| 
 | |
| const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
 | |
|                                                       SymbolRef sym) const {
 | |
|   const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
 | |
|   return T ? T->getConcreteValue() : nullptr;
 | |
| }
 | |
| 
 | |
| ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
 | |
|                                                     SymbolRef Sym) {
 | |
|   const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
 | |
| 
 | |
|   // If we don't have any information about this symbol, it's underconstrained.
 | |
|   if (!Ranges)
 | |
|     return ConditionTruthVal();
 | |
| 
 | |
|   // If we have a concrete value, see if it's zero.
 | |
|   if (const llvm::APSInt *Value = Ranges->getConcreteValue())
 | |
|     return *Value == 0;
 | |
| 
 | |
|   BasicValueFactory &BV = getBasicVals();
 | |
|   APSIntType IntType = BV.getAPSIntType(Sym->getType());
 | |
|   llvm::APSInt Zero = IntType.getZeroValue();
 | |
| 
 | |
|   // Check if zero is in the set of possible values.
 | |
|   if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
 | |
|     return false;
 | |
| 
 | |
|   // Zero is a possible value, but it is not the /only/ possible value.
 | |
|   return ConditionTruthVal();
 | |
| }
 | |
| 
 | |
| /// Scan all symbols referenced by the constraints. If the symbol is not alive
 | |
| /// as marked in LSymbols, mark it as dead in DSymbols.
 | |
| ProgramStateRef
 | |
| RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
 | |
|                                            SymbolReaper& SymReaper) {
 | |
| 
 | |
|   ConstraintRangeTy CR = state->get<ConstraintRange>();
 | |
|   ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
 | |
| 
 | |
|   for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
 | |
|     SymbolRef sym = I.getKey();
 | |
|     if (SymReaper.maybeDead(sym))
 | |
|       CR = CRFactory.remove(CR, sym);
 | |
|   }
 | |
| 
 | |
|   return state->set<ConstraintRange>(CR);
 | |
| }
 | |
| 
 | |
| RangeSet
 | |
| RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
 | |
|   if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
 | |
|     return *V;
 | |
| 
 | |
|   // Lazily generate a new RangeSet representing all possible values for the
 | |
|   // given symbol type.
 | |
|   BasicValueFactory &BV = getBasicVals();
 | |
|   QualType T = sym->getType();
 | |
| 
 | |
|   RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
 | |
| 
 | |
|   // Special case: references are known to be non-zero.
 | |
|   if (T->isReferenceType()) {
 | |
|     APSIntType IntType = BV.getAPSIntType(T);
 | |
|     Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
 | |
|                                      --IntType.getZeroValue());
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===------------------------------------------------------------------------===
 | |
| // assumeSymX methods: public interface for RangeConstraintManager.
 | |
| //===------------------------------------------------------------------------===/
 | |
| 
 | |
| // The syntax for ranges below is mathematical, using [x, y] for closed ranges
 | |
| // and (x, y) for open ranges. These ranges are modular, corresponding with
 | |
| // a common treatment of C integer overflow. This means that these methods
 | |
| // do not have to worry about overflow; RangeSet::Intersect can handle such a
 | |
| // "wraparound" range.
 | |
| // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
 | |
| // UINT_MAX, 0, 1, and 2.
 | |
| 
 | |
| ProgramStateRef
 | |
| RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
 | |
|                                     const llvm::APSInt &Int,
 | |
|                                     const llvm::APSInt &Adjustment) {
 | |
|   // Before we do any real work, see if the value can even show up.
 | |
|   APSIntType AdjustmentType(Adjustment);
 | |
|   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
 | |
|     return St;
 | |
| 
 | |
|   llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
 | |
|   llvm::APSInt Upper = Lower;
 | |
|   --Lower;
 | |
|   ++Upper;
 | |
| 
 | |
|   // [Int-Adjustment+1, Int-Adjustment-1]
 | |
|   // Notice that the lower bound is greater than the upper bound.
 | |
|   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
 | |
|   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
 | |
| }
 | |
| 
 | |
| ProgramStateRef
 | |
| RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
 | |
|                                     const llvm::APSInt &Int,
 | |
|                                     const llvm::APSInt &Adjustment) {
 | |
|   // Before we do any real work, see if the value can even show up.
 | |
|   APSIntType AdjustmentType(Adjustment);
 | |
|   if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
 | |
|     return nullptr;
 | |
| 
 | |
|   // [Int-Adjustment, Int-Adjustment]
 | |
|   llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
 | |
|   RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
 | |
|   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
 | |
| }
 | |
| 
 | |
| RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
 | |
|                                                SymbolRef Sym,
 | |
|                                                const llvm::APSInt &Int,
 | |
|                                                const llvm::APSInt &Adjustment) {
 | |
|   // Before we do any real work, see if the value can even show up.
 | |
|   APSIntType AdjustmentType(Adjustment);
 | |
|   switch (AdjustmentType.testInRange(Int, true)) {
 | |
|   case APSIntType::RTR_Below:
 | |
|     return F.getEmptySet();
 | |
|   case APSIntType::RTR_Within:
 | |
|     break;
 | |
|   case APSIntType::RTR_Above:
 | |
|     return GetRange(St, Sym);
 | |
|   }
 | |
| 
 | |
|   // Special case for Int == Min. This is always false.
 | |
|   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
 | |
|   llvm::APSInt Min = AdjustmentType.getMinValue();
 | |
|   if (ComparisonVal == Min)
 | |
|     return F.getEmptySet();
 | |
| 
 | |
|   llvm::APSInt Lower = Min - Adjustment;
 | |
|   llvm::APSInt Upper = ComparisonVal - Adjustment;
 | |
|   --Upper;
 | |
| 
 | |
|   return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
 | |
| }
 | |
| 
 | |
| ProgramStateRef
 | |
| RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
 | |
|                                     const llvm::APSInt &Int,
 | |
|                                     const llvm::APSInt &Adjustment) {
 | |
|   RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
 | |
|   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
 | |
| }
 | |
| 
 | |
| RangeSet
 | |
| RangeConstraintManager::getSymGTRange(ProgramStateRef St, SymbolRef Sym,
 | |
|                                       const llvm::APSInt &Int,
 | |
|                                       const llvm::APSInt &Adjustment) {
 | |
|   // Before we do any real work, see if the value can even show up.
 | |
|   APSIntType AdjustmentType(Adjustment);
 | |
|   switch (AdjustmentType.testInRange(Int, true)) {
 | |
|   case APSIntType::RTR_Below:
 | |
|     return GetRange(St, Sym);
 | |
|   case APSIntType::RTR_Within:
 | |
|     break;
 | |
|   case APSIntType::RTR_Above:
 | |
|     return F.getEmptySet();
 | |
|   }
 | |
| 
 | |
|   // Special case for Int == Max. This is always false.
 | |
|   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
 | |
|   llvm::APSInt Max = AdjustmentType.getMaxValue();
 | |
|   if (ComparisonVal == Max)
 | |
|     return F.getEmptySet();
 | |
| 
 | |
|   llvm::APSInt Lower = ComparisonVal - Adjustment;
 | |
|   llvm::APSInt Upper = Max - Adjustment;
 | |
|   ++Lower;
 | |
| 
 | |
|   return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
 | |
| }
 | |
| 
 | |
| ProgramStateRef
 | |
| RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
 | |
|                                     const llvm::APSInt &Int,
 | |
|                                     const llvm::APSInt &Adjustment) {
 | |
|   RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
 | |
|   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
 | |
| }
 | |
| 
 | |
| RangeSet
 | |
| RangeConstraintManager::getSymGERange(ProgramStateRef St, SymbolRef Sym,
 | |
|                                       const llvm::APSInt &Int,
 | |
|                                       const llvm::APSInt &Adjustment) {
 | |
|   // Before we do any real work, see if the value can even show up.
 | |
|   APSIntType AdjustmentType(Adjustment);
 | |
|   switch (AdjustmentType.testInRange(Int, true)) {
 | |
|   case APSIntType::RTR_Below:
 | |
|     return GetRange(St, Sym);
 | |
|   case APSIntType::RTR_Within:
 | |
|     break;
 | |
|   case APSIntType::RTR_Above:
 | |
|     return F.getEmptySet();
 | |
|   }
 | |
| 
 | |
|   // Special case for Int == Min. This is always feasible.
 | |
|   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
 | |
|   llvm::APSInt Min = AdjustmentType.getMinValue();
 | |
|   if (ComparisonVal == Min)
 | |
|     return GetRange(St, Sym);
 | |
| 
 | |
|   llvm::APSInt Max = AdjustmentType.getMaxValue();
 | |
|   llvm::APSInt Lower = ComparisonVal - Adjustment;
 | |
|   llvm::APSInt Upper = Max - Adjustment;
 | |
| 
 | |
|   return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
 | |
| }
 | |
| 
 | |
| ProgramStateRef
 | |
| RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
 | |
|                                     const llvm::APSInt &Int,
 | |
|                                     const llvm::APSInt &Adjustment) {
 | |
|   RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
 | |
|   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
 | |
| }
 | |
| 
 | |
| RangeSet
 | |
| RangeConstraintManager::getSymLERange(const RangeSet &RS,
 | |
|                                       const llvm::APSInt &Int,
 | |
|                                       const llvm::APSInt &Adjustment) {
 | |
|   // Before we do any real work, see if the value can even show up.
 | |
|   APSIntType AdjustmentType(Adjustment);
 | |
|   switch (AdjustmentType.testInRange(Int, true)) {
 | |
|   case APSIntType::RTR_Below:
 | |
|     return F.getEmptySet();
 | |
|   case APSIntType::RTR_Within:
 | |
|     break;
 | |
|   case APSIntType::RTR_Above:
 | |
|     return RS;
 | |
|   }
 | |
| 
 | |
|   // Special case for Int == Max. This is always feasible.
 | |
|   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
 | |
|   llvm::APSInt Max = AdjustmentType.getMaxValue();
 | |
|   if (ComparisonVal == Max)
 | |
|     return RS;
 | |
| 
 | |
|   llvm::APSInt Min = AdjustmentType.getMinValue();
 | |
|   llvm::APSInt Lower = Min - Adjustment;
 | |
|   llvm::APSInt Upper = ComparisonVal - Adjustment;
 | |
| 
 | |
|   return RS.Intersect(getBasicVals(), F, Lower, Upper);
 | |
| }
 | |
| 
 | |
| RangeSet
 | |
| RangeConstraintManager::getSymLERange(ProgramStateRef St, SymbolRef Sym,
 | |
|                                       const llvm::APSInt &Int,
 | |
|                                       const llvm::APSInt &Adjustment) {
 | |
|   // Before we do any real work, see if the value can even show up.
 | |
|   APSIntType AdjustmentType(Adjustment);
 | |
|   switch (AdjustmentType.testInRange(Int, true)) {
 | |
|   case APSIntType::RTR_Below:
 | |
|     return F.getEmptySet();
 | |
|   case APSIntType::RTR_Within:
 | |
|     break;
 | |
|   case APSIntType::RTR_Above:
 | |
|     return GetRange(St, Sym);
 | |
|   }
 | |
| 
 | |
|   // Special case for Int == Max. This is always feasible.
 | |
|   llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
 | |
|   llvm::APSInt Max = AdjustmentType.getMaxValue();
 | |
|   if (ComparisonVal == Max)
 | |
|     return GetRange(St, Sym);
 | |
| 
 | |
|   llvm::APSInt Min = AdjustmentType.getMinValue();
 | |
|   llvm::APSInt Lower = Min - Adjustment;
 | |
|   llvm::APSInt Upper = ComparisonVal - Adjustment;
 | |
| 
 | |
|   return GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
 | |
| }
 | |
| 
 | |
| ProgramStateRef
 | |
| RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
 | |
|                                     const llvm::APSInt &Int,
 | |
|                                     const llvm::APSInt &Adjustment) {
 | |
|   RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
 | |
|   return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
 | |
| }
 | |
| 
 | |
| ProgramStateRef
 | |
| RangeConstraintManager::assumeSymbolWithinInclusiveRange(
 | |
|     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
 | |
|     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
 | |
|   RangeSet New = getSymGERange(State, Sym, From, Adjustment);
 | |
|   if (New.isEmpty())
 | |
|     return nullptr;
 | |
|   New = getSymLERange(New, To, Adjustment);
 | |
|   return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
 | |
| }
 | |
| 
 | |
| ProgramStateRef
 | |
| RangeConstraintManager::assumeSymbolOutOfInclusiveRange(
 | |
|     ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
 | |
|     const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
 | |
|   RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
 | |
|   RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
 | |
|   RangeSet New(RangeLT.addRange(F, RangeGT));
 | |
|   return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
 | |
| }
 | |
| 
 | |
| //===------------------------------------------------------------------------===
 | |
| // Pretty-printing.
 | |
| //===------------------------------------------------------------------------===/
 | |
| 
 | |
| void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
 | |
|                                    const char* nl, const char *sep) {
 | |
| 
 | |
|   ConstraintRangeTy Ranges = St->get<ConstraintRange>();
 | |
| 
 | |
|   if (Ranges.isEmpty()) {
 | |
|     Out << nl << sep << "Ranges are empty." << nl;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Out << nl << sep << "Ranges of symbol values:";
 | |
|   for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
 | |
|     Out << nl << ' ' << I.getKey() << " : ";
 | |
|     I.getData().print(Out);
 | |
|   }
 | |
|   Out << nl;
 | |
| }
 |