2465 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2465 lines
		
	
	
		
			88 KiB
		
	
	
	
		
			C++
		
	
	
	
| //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines a basic region store model. In this model, we do have field
 | |
| // sensitivity. But we assume nothing about the heap shape. So recursive data
 | |
| // structures are largely ignored. Basically we do 1-limiting analysis.
 | |
| // Parameter pointers are assumed with no aliasing. Pointee objects of
 | |
| // parameters are created lazily.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #include "clang/AST/Attr.h"
 | |
| #include "clang/AST/CharUnits.h"
 | |
| #include "clang/Analysis/Analyses/LiveVariables.h"
 | |
| #include "clang/Analysis/AnalysisContext.h"
 | |
| #include "clang/Basic/TargetInfo.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
 | |
| #include "llvm/ADT/ImmutableList.h"
 | |
| #include "llvm/ADT/ImmutableMap.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace ento;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Representation of binding keys.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class BindingKey {
 | |
| public:
 | |
|   enum Kind { Default = 0x0, Direct = 0x1 };
 | |
| private:
 | |
|   enum { Symbolic = 0x2 };
 | |
| 
 | |
|   llvm::PointerIntPair<const MemRegion *, 2> P;
 | |
|   uint64_t Data;
 | |
| 
 | |
|   /// Create a key for a binding to region \p r, which has a symbolic offset
 | |
|   /// from region \p Base.
 | |
|   explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
 | |
|     : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
 | |
|     assert(r && Base && "Must have known regions.");
 | |
|     assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
 | |
|   }
 | |
| 
 | |
|   /// Create a key for a binding at \p offset from base region \p r.
 | |
|   explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
 | |
|     : P(r, k), Data(offset) {
 | |
|     assert(r && "Must have known regions.");
 | |
|     assert(getOffset() == offset && "Failed to store offset");
 | |
|     assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
 | |
|   }
 | |
| public:
 | |
| 
 | |
|   bool isDirect() const { return P.getInt() & Direct; }
 | |
|   bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
 | |
| 
 | |
|   const MemRegion *getRegion() const { return P.getPointer(); }
 | |
|   uint64_t getOffset() const {
 | |
|     assert(!hasSymbolicOffset());
 | |
|     return Data;
 | |
|   }
 | |
| 
 | |
|   const SubRegion *getConcreteOffsetRegion() const {
 | |
|     assert(hasSymbolicOffset());
 | |
|     return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
 | |
|   }
 | |
| 
 | |
|   const MemRegion *getBaseRegion() const {
 | |
|     if (hasSymbolicOffset())
 | |
|       return getConcreteOffsetRegion()->getBaseRegion();
 | |
|     return getRegion()->getBaseRegion();
 | |
|   }
 | |
| 
 | |
|   void Profile(llvm::FoldingSetNodeID& ID) const {
 | |
|     ID.AddPointer(P.getOpaqueValue());
 | |
|     ID.AddInteger(Data);
 | |
|   }
 | |
| 
 | |
|   static BindingKey Make(const MemRegion *R, Kind k);
 | |
| 
 | |
|   bool operator<(const BindingKey &X) const {
 | |
|     if (P.getOpaqueValue() < X.P.getOpaqueValue())
 | |
|       return true;
 | |
|     if (P.getOpaqueValue() > X.P.getOpaqueValue())
 | |
|       return false;
 | |
|     return Data < X.Data;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const BindingKey &X) const {
 | |
|     return P.getOpaqueValue() == X.P.getOpaqueValue() &&
 | |
|            Data == X.Data;
 | |
|   }
 | |
| 
 | |
|   void dump() const;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
 | |
|   const RegionOffset &RO = R->getAsOffset();
 | |
|   if (RO.hasSymbolicOffset())
 | |
|     return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
 | |
| 
 | |
|   return BindingKey(RO.getRegion(), RO.getOffset(), k);
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
|   static inline
 | |
|   raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
 | |
|     os << '(' << K.getRegion();
 | |
|     if (!K.hasSymbolicOffset())
 | |
|       os << ',' << K.getOffset();
 | |
|     os << ',' << (K.isDirect() ? "direct" : "default")
 | |
|        << ')';
 | |
|     return os;
 | |
|   }
 | |
| 
 | |
|   template <typename T> struct isPodLike;
 | |
|   template <> struct isPodLike<BindingKey> {
 | |
|     static const bool value = true;
 | |
|   };
 | |
| } // end llvm namespace
 | |
| 
 | |
| LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Actual Store type.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| typedef llvm::ImmutableMap<BindingKey, SVal>    ClusterBindings;
 | |
| typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
 | |
| typedef std::pair<BindingKey, SVal> BindingPair;
 | |
| 
 | |
| typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
 | |
|         RegionBindings;
 | |
| 
 | |
| namespace {
 | |
| class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
 | |
|                                  ClusterBindings> {
 | |
|   ClusterBindings::Factory *CBFactory;
 | |
| 
 | |
| public:
 | |
|   typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
 | |
|           ParentTy;
 | |
| 
 | |
|   RegionBindingsRef(ClusterBindings::Factory &CBFactory,
 | |
|                     const RegionBindings::TreeTy *T,
 | |
|                     RegionBindings::TreeTy::Factory *F)
 | |
|       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
 | |
|         CBFactory(&CBFactory) {}
 | |
| 
 | |
|   RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
 | |
|       : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
 | |
|         CBFactory(&CBFactory) {}
 | |
| 
 | |
|   RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
 | |
|     return RegionBindingsRef(static_cast<const ParentTy *>(this)->add(K, D),
 | |
|                              *CBFactory);
 | |
|   }
 | |
| 
 | |
|   RegionBindingsRef remove(key_type_ref K) const {
 | |
|     return RegionBindingsRef(static_cast<const ParentTy *>(this)->remove(K),
 | |
|                              *CBFactory);
 | |
|   }
 | |
| 
 | |
|   RegionBindingsRef addBinding(BindingKey K, SVal V) const;
 | |
| 
 | |
|   RegionBindingsRef addBinding(const MemRegion *R,
 | |
|                                BindingKey::Kind k, SVal V) const;
 | |
| 
 | |
|   const SVal *lookup(BindingKey K) const;
 | |
|   const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
 | |
|   using llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>::lookup;
 | |
| 
 | |
|   RegionBindingsRef removeBinding(BindingKey K);
 | |
| 
 | |
|   RegionBindingsRef removeBinding(const MemRegion *R,
 | |
|                                   BindingKey::Kind k);
 | |
| 
 | |
|   RegionBindingsRef removeBinding(const MemRegion *R) {
 | |
|     return removeBinding(R, BindingKey::Direct).
 | |
|            removeBinding(R, BindingKey::Default);
 | |
|   }
 | |
| 
 | |
|   Optional<SVal> getDirectBinding(const MemRegion *R) const;
 | |
| 
 | |
|   /// getDefaultBinding - Returns an SVal* representing an optional default
 | |
|   ///  binding associated with a region and its subregions.
 | |
|   Optional<SVal> getDefaultBinding(const MemRegion *R) const;
 | |
| 
 | |
|   /// Return the internal tree as a Store.
 | |
|   Store asStore() const {
 | |
|     return asImmutableMap().getRootWithoutRetain();
 | |
|   }
 | |
| 
 | |
|   void dump(raw_ostream &OS, const char *nl) const {
 | |
|    for (iterator I = begin(), E = end(); I != E; ++I) {
 | |
|      const ClusterBindings &Cluster = I.getData();
 | |
|      for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
 | |
|           CI != CE; ++CI) {
 | |
|        OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
 | |
|      }
 | |
|      OS << nl;
 | |
|    }
 | |
|   }
 | |
| 
 | |
|   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| typedef const RegionBindingsRef& RegionBindingsConstRef;
 | |
| 
 | |
| Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
 | |
|   return Optional<SVal>::create(lookup(R, BindingKey::Direct));
 | |
| }
 | |
| 
 | |
| Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
 | |
|   if (R->isBoundable())
 | |
|     if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
 | |
|       if (TR->getValueType()->isUnionType())
 | |
|         return UnknownVal();
 | |
| 
 | |
|   return Optional<SVal>::create(lookup(R, BindingKey::Default));
 | |
| }
 | |
| 
 | |
| RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
 | |
|   const MemRegion *Base = K.getBaseRegion();
 | |
| 
 | |
|   const ClusterBindings *ExistingCluster = lookup(Base);
 | |
|   ClusterBindings Cluster =
 | |
|       (ExistingCluster ? *ExistingCluster : CBFactory->getEmptyMap());
 | |
| 
 | |
|   ClusterBindings NewCluster = CBFactory->add(Cluster, K, V);
 | |
|   return add(Base, NewCluster);
 | |
| }
 | |
| 
 | |
| 
 | |
| RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
 | |
|                                                 BindingKey::Kind k,
 | |
|                                                 SVal V) const {
 | |
|   return addBinding(BindingKey::Make(R, k), V);
 | |
| }
 | |
| 
 | |
| const SVal *RegionBindingsRef::lookup(BindingKey K) const {
 | |
|   const ClusterBindings *Cluster = lookup(K.getBaseRegion());
 | |
|   if (!Cluster)
 | |
|     return nullptr;
 | |
|   return Cluster->lookup(K);
 | |
| }
 | |
| 
 | |
| const SVal *RegionBindingsRef::lookup(const MemRegion *R,
 | |
|                                       BindingKey::Kind k) const {
 | |
|   return lookup(BindingKey::Make(R, k));
 | |
| }
 | |
| 
 | |
| RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
 | |
|   const MemRegion *Base = K.getBaseRegion();
 | |
|   const ClusterBindings *Cluster = lookup(Base);
 | |
|   if (!Cluster)
 | |
|     return *this;
 | |
| 
 | |
|   ClusterBindings NewCluster = CBFactory->remove(*Cluster, K);
 | |
|   if (NewCluster.isEmpty())
 | |
|     return remove(Base);
 | |
|   return add(Base, NewCluster);
 | |
| }
 | |
| 
 | |
| RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
 | |
|                                                 BindingKey::Kind k){
 | |
|   return removeBinding(BindingKey::Make(R, k));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Fine-grained control of RegionStoreManager.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| struct minimal_features_tag {};
 | |
| struct maximal_features_tag {};
 | |
| 
 | |
| class RegionStoreFeatures {
 | |
|   bool SupportsFields;
 | |
| public:
 | |
|   RegionStoreFeatures(minimal_features_tag) :
 | |
|     SupportsFields(false) {}
 | |
| 
 | |
|   RegionStoreFeatures(maximal_features_tag) :
 | |
|     SupportsFields(true) {}
 | |
| 
 | |
|   void enableFields(bool t) { SupportsFields = t; }
 | |
| 
 | |
|   bool supportsFields() const { return SupportsFields; }
 | |
| };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Main RegionStore logic.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class invalidateRegionsWorker;
 | |
| 
 | |
| class RegionStoreManager : public StoreManager {
 | |
| public:
 | |
|   const RegionStoreFeatures Features;
 | |
| 
 | |
|   RegionBindings::Factory RBFactory;
 | |
|   mutable ClusterBindings::Factory CBFactory;
 | |
| 
 | |
|   typedef std::vector<SVal> SValListTy;
 | |
| private:
 | |
|   typedef llvm::DenseMap<const LazyCompoundValData *,
 | |
|                          SValListTy> LazyBindingsMapTy;
 | |
|   LazyBindingsMapTy LazyBindingsMap;
 | |
| 
 | |
|   /// The largest number of fields a struct can have and still be
 | |
|   /// considered "small".
 | |
|   ///
 | |
|   /// This is currently used to decide whether or not it is worth "forcing" a
 | |
|   /// LazyCompoundVal on bind.
 | |
|   ///
 | |
|   /// This is controlled by 'region-store-small-struct-limit' option.
 | |
|   /// To disable all small-struct-dependent behavior, set the option to "0".
 | |
|   unsigned SmallStructLimit;
 | |
| 
 | |
|   /// \brief A helper used to populate the work list with the given set of
 | |
|   /// regions.
 | |
|   void populateWorkList(invalidateRegionsWorker &W,
 | |
|                         ArrayRef<SVal> Values,
 | |
|                         InvalidatedRegions *TopLevelRegions);
 | |
| 
 | |
| public:
 | |
|   RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
 | |
|     : StoreManager(mgr), Features(f),
 | |
|       RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
 | |
|       SmallStructLimit(0) {
 | |
|     if (SubEngine *Eng = StateMgr.getOwningEngine()) {
 | |
|       AnalyzerOptions &Options = Eng->getAnalysisManager().options;
 | |
|       SmallStructLimit =
 | |
|         Options.getOptionAsInteger("region-store-small-struct-limit", 2);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// setImplicitDefaultValue - Set the default binding for the provided
 | |
|   ///  MemRegion to the value implicitly defined for compound literals when
 | |
|   ///  the value is not specified.
 | |
|   RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
 | |
|                                             const MemRegion *R, QualType T);
 | |
| 
 | |
|   /// ArrayToPointer - Emulates the "decay" of an array to a pointer
 | |
|   ///  type.  'Array' represents the lvalue of the array being decayed
 | |
|   ///  to a pointer, and the returned SVal represents the decayed
 | |
|   ///  version of that lvalue (i.e., a pointer to the first element of
 | |
|   ///  the array).  This is called by ExprEngine when evaluating
 | |
|   ///  casts from arrays to pointers.
 | |
|   SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
 | |
| 
 | |
|   StoreRef getInitialStore(const LocationContext *InitLoc) override {
 | |
|     return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
 | |
|   }
 | |
| 
 | |
|   //===-------------------------------------------------------------------===//
 | |
|   // Binding values to regions.
 | |
|   //===-------------------------------------------------------------------===//
 | |
|   RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
 | |
|                                            const Expr *Ex,
 | |
|                                            unsigned Count,
 | |
|                                            const LocationContext *LCtx,
 | |
|                                            RegionBindingsRef B,
 | |
|                                            InvalidatedRegions *Invalidated);
 | |
| 
 | |
|   StoreRef invalidateRegions(Store store,
 | |
|                              ArrayRef<SVal> Values,
 | |
|                              const Expr *E, unsigned Count,
 | |
|                              const LocationContext *LCtx,
 | |
|                              const CallEvent *Call,
 | |
|                              InvalidatedSymbols &IS,
 | |
|                              RegionAndSymbolInvalidationTraits &ITraits,
 | |
|                              InvalidatedRegions *Invalidated,
 | |
|                              InvalidatedRegions *InvalidatedTopLevel) override;
 | |
| 
 | |
|   bool scanReachableSymbols(Store S, const MemRegion *R,
 | |
|                             ScanReachableSymbols &Callbacks) override;
 | |
| 
 | |
|   RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
 | |
|                                             const SubRegion *R);
 | |
| 
 | |
| public: // Part of public interface to class.
 | |
| 
 | |
|   StoreRef Bind(Store store, Loc LV, SVal V) override {
 | |
|     return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
 | |
|   }
 | |
| 
 | |
|   RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
 | |
| 
 | |
|   // BindDefault is only used to initialize a region with a default value.
 | |
|   StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override {
 | |
|     RegionBindingsRef B = getRegionBindings(store);
 | |
|     assert(!B.lookup(R, BindingKey::Direct));
 | |
| 
 | |
|     BindingKey Key = BindingKey::Make(R, BindingKey::Default);
 | |
|     if (B.lookup(Key)) {
 | |
|       const SubRegion *SR = cast<SubRegion>(R);
 | |
|       assert(SR->getAsOffset().getOffset() ==
 | |
|              SR->getSuperRegion()->getAsOffset().getOffset() &&
 | |
|              "A default value must come from a super-region");
 | |
|       B = removeSubRegionBindings(B, SR);
 | |
|     } else {
 | |
|       B = B.addBinding(Key, V);
 | |
|     }
 | |
| 
 | |
|     return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
 | |
|   }
 | |
| 
 | |
|   /// Attempt to extract the fields of \p LCV and bind them to the struct region
 | |
|   /// \p R.
 | |
|   ///
 | |
|   /// This path is used when it seems advantageous to "force" loading the values
 | |
|   /// within a LazyCompoundVal to bind memberwise to the struct region, rather
 | |
|   /// than using a Default binding at the base of the entire region. This is a
 | |
|   /// heuristic attempting to avoid building long chains of LazyCompoundVals.
 | |
|   ///
 | |
|   /// \returns The updated store bindings, or \c None if binding non-lazily
 | |
|   ///          would be too expensive.
 | |
|   Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
 | |
|                                                  const TypedValueRegion *R,
 | |
|                                                  const RecordDecl *RD,
 | |
|                                                  nonloc::LazyCompoundVal LCV);
 | |
| 
 | |
|   /// BindStruct - Bind a compound value to a structure.
 | |
|   RegionBindingsRef bindStruct(RegionBindingsConstRef B,
 | |
|                                const TypedValueRegion* R, SVal V);
 | |
| 
 | |
|   /// BindVector - Bind a compound value to a vector.
 | |
|   RegionBindingsRef bindVector(RegionBindingsConstRef B,
 | |
|                                const TypedValueRegion* R, SVal V);
 | |
| 
 | |
|   RegionBindingsRef bindArray(RegionBindingsConstRef B,
 | |
|                               const TypedValueRegion* R,
 | |
|                               SVal V);
 | |
| 
 | |
|   /// Clears out all bindings in the given region and assigns a new value
 | |
|   /// as a Default binding.
 | |
|   RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
 | |
|                                   const TypedRegion *R,
 | |
|                                   SVal DefaultVal);
 | |
| 
 | |
|   /// \brief Create a new store with the specified binding removed.
 | |
|   /// \param ST the original store, that is the basis for the new store.
 | |
|   /// \param L the location whose binding should be removed.
 | |
|   StoreRef killBinding(Store ST, Loc L) override;
 | |
| 
 | |
|   void incrementReferenceCount(Store store) override {
 | |
|     getRegionBindings(store).manualRetain();
 | |
|   }
 | |
| 
 | |
|   /// If the StoreManager supports it, decrement the reference count of
 | |
|   /// the specified Store object.  If the reference count hits 0, the memory
 | |
|   /// associated with the object is recycled.
 | |
|   void decrementReferenceCount(Store store) override {
 | |
|     getRegionBindings(store).manualRelease();
 | |
|   }
 | |
| 
 | |
|   bool includedInBindings(Store store, const MemRegion *region) const override;
 | |
| 
 | |
|   /// \brief Return the value bound to specified location in a given state.
 | |
|   ///
 | |
|   /// The high level logic for this method is this:
 | |
|   /// getBinding (L)
 | |
|   ///   if L has binding
 | |
|   ///     return L's binding
 | |
|   ///   else if L is in killset
 | |
|   ///     return unknown
 | |
|   ///   else
 | |
|   ///     if L is on stack or heap
 | |
|   ///       return undefined
 | |
|   ///     else
 | |
|   ///       return symbolic
 | |
|   SVal getBinding(Store S, Loc L, QualType T) override {
 | |
|     return getBinding(getRegionBindings(S), L, T);
 | |
|   }
 | |
| 
 | |
|   SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
 | |
| 
 | |
|   SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
 | |
| 
 | |
|   SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
 | |
| 
 | |
|   SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
 | |
| 
 | |
|   SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
 | |
| 
 | |
|   SVal getBindingForLazySymbol(const TypedValueRegion *R);
 | |
| 
 | |
|   SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
 | |
|                                          const TypedValueRegion *R,
 | |
|                                          QualType Ty);
 | |
| 
 | |
|   SVal getLazyBinding(const SubRegion *LazyBindingRegion,
 | |
|                       RegionBindingsRef LazyBinding);
 | |
| 
 | |
|   /// Get bindings for the values in a struct and return a CompoundVal, used
 | |
|   /// when doing struct copy:
 | |
|   /// struct s x, y;
 | |
|   /// x = y;
 | |
|   /// y's value is retrieved by this method.
 | |
|   SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
 | |
|   SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
 | |
|   NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
 | |
| 
 | |
|   /// Used to lazily generate derived symbols for bindings that are defined
 | |
|   /// implicitly by default bindings in a super region.
 | |
|   ///
 | |
|   /// Note that callers may need to specially handle LazyCompoundVals, which
 | |
|   /// are returned as is in case the caller needs to treat them differently.
 | |
|   Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
 | |
|                                                   const MemRegion *superR,
 | |
|                                                   const TypedValueRegion *R,
 | |
|                                                   QualType Ty);
 | |
| 
 | |
|   /// Get the state and region whose binding this region \p R corresponds to.
 | |
|   ///
 | |
|   /// If there is no lazy binding for \p R, the returned value will have a null
 | |
|   /// \c second. Note that a null pointer can represents a valid Store.
 | |
|   std::pair<Store, const SubRegion *>
 | |
|   findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
 | |
|                   const SubRegion *originalRegion);
 | |
| 
 | |
|   /// Returns the cached set of interesting SVals contained within a lazy
 | |
|   /// binding.
 | |
|   ///
 | |
|   /// The precise value of "interesting" is determined for the purposes of
 | |
|   /// RegionStore's internal analysis. It must always contain all regions and
 | |
|   /// symbols, but may omit constants and other kinds of SVal.
 | |
|   const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
 | |
| 
 | |
|   //===------------------------------------------------------------------===//
 | |
|   // State pruning.
 | |
|   //===------------------------------------------------------------------===//
 | |
| 
 | |
|   /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
 | |
|   ///  It returns a new Store with these values removed.
 | |
|   StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
 | |
|                               SymbolReaper& SymReaper) override;
 | |
| 
 | |
|   //===------------------------------------------------------------------===//
 | |
|   // Region "extents".
 | |
|   //===------------------------------------------------------------------===//
 | |
| 
 | |
|   // FIXME: This method will soon be eliminated; see the note in Store.h.
 | |
|   DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
 | |
|                                          const MemRegion* R,
 | |
|                                          QualType EleTy) override;
 | |
| 
 | |
|   //===------------------------------------------------------------------===//
 | |
|   // Utility methods.
 | |
|   //===------------------------------------------------------------------===//
 | |
| 
 | |
|   RegionBindingsRef getRegionBindings(Store store) const {
 | |
|     return RegionBindingsRef(CBFactory,
 | |
|                              static_cast<const RegionBindings::TreeTy*>(store),
 | |
|                              RBFactory.getTreeFactory());
 | |
|   }
 | |
| 
 | |
|   void print(Store store, raw_ostream &Out, const char* nl,
 | |
|              const char *sep) override;
 | |
| 
 | |
|   void iterBindings(Store store, BindingsHandler& f) override {
 | |
|     RegionBindingsRef B = getRegionBindings(store);
 | |
|     for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | |
|       const ClusterBindings &Cluster = I.getData();
 | |
|       for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
 | |
|            CI != CE; ++CI) {
 | |
|         const BindingKey &K = CI.getKey();
 | |
|         if (!K.isDirect())
 | |
|           continue;
 | |
|         if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
 | |
|           // FIXME: Possibly incorporate the offset?
 | |
|           if (!f.HandleBinding(*this, store, R, CI.getData()))
 | |
|             return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // RegionStore creation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| std::unique_ptr<StoreManager>
 | |
| ento::CreateRegionStoreManager(ProgramStateManager &StMgr) {
 | |
|   RegionStoreFeatures F = maximal_features_tag();
 | |
|   return llvm::make_unique<RegionStoreManager>(StMgr, F);
 | |
| }
 | |
| 
 | |
| std::unique_ptr<StoreManager>
 | |
| ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
 | |
|   RegionStoreFeatures F = minimal_features_tag();
 | |
|   F.enableFields(true);
 | |
|   return llvm::make_unique<RegionStoreManager>(StMgr, F);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Region Cluster analysis.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// Used to determine which global regions are automatically included in the
 | |
| /// initial worklist of a ClusterAnalysis.
 | |
| enum GlobalsFilterKind {
 | |
|   /// Don't include any global regions.
 | |
|   GFK_None,
 | |
|   /// Only include system globals.
 | |
|   GFK_SystemOnly,
 | |
|   /// Include all global regions.
 | |
|   GFK_All
 | |
| };
 | |
| 
 | |
| template <typename DERIVED>
 | |
| class ClusterAnalysis  {
 | |
| protected:
 | |
|   typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
 | |
|   typedef const MemRegion * WorkListElement;
 | |
|   typedef SmallVector<WorkListElement, 10> WorkList;
 | |
| 
 | |
|   llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
 | |
| 
 | |
|   WorkList WL;
 | |
| 
 | |
|   RegionStoreManager &RM;
 | |
|   ASTContext &Ctx;
 | |
|   SValBuilder &svalBuilder;
 | |
| 
 | |
|   RegionBindingsRef B;
 | |
| 
 | |
| 
 | |
| protected:
 | |
|   const ClusterBindings *getCluster(const MemRegion *R) {
 | |
|     return B.lookup(R);
 | |
|   }
 | |
| 
 | |
|   /// Returns true if all clusters in the given memspace should be initially
 | |
|   /// included in the cluster analysis. Subclasses may provide their
 | |
|   /// own implementation.
 | |
|   bool includeEntireMemorySpace(const MemRegion *Base) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
 | |
|                   RegionBindingsRef b )
 | |
|     : RM(rm), Ctx(StateMgr.getContext()),
 | |
|       svalBuilder(StateMgr.getSValBuilder()),
 | |
|       B(b) {}
 | |
| 
 | |
|   RegionBindingsRef getRegionBindings() const { return B; }
 | |
| 
 | |
|   bool isVisited(const MemRegion *R) {
 | |
|     return Visited.count(getCluster(R));
 | |
|   }
 | |
| 
 | |
|   void GenerateClusters() {
 | |
|     // Scan the entire set of bindings and record the region clusters.
 | |
|     for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
 | |
|          RI != RE; ++RI){
 | |
|       const MemRegion *Base = RI.getKey();
 | |
| 
 | |
|       const ClusterBindings &Cluster = RI.getData();
 | |
|       assert(!Cluster.isEmpty() && "Empty clusters should be removed");
 | |
|       static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
 | |
| 
 | |
|       // If the base's memspace should be entirely invalidated, add the cluster
 | |
|       // to the workspace up front.
 | |
|       if (static_cast<DERIVED*>(this)->includeEntireMemorySpace(Base))
 | |
|         AddToWorkList(WorkListElement(Base), &Cluster);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
 | |
|     if (C && !Visited.insert(C).second)
 | |
|       return false;
 | |
|     WL.push_back(E);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool AddToWorkList(const MemRegion *R) {
 | |
|     return static_cast<DERIVED*>(this)->AddToWorkList(R);
 | |
|   }
 | |
| 
 | |
|   void RunWorkList() {
 | |
|     while (!WL.empty()) {
 | |
|       WorkListElement E = WL.pop_back_val();
 | |
|       const MemRegion *BaseR = E;
 | |
| 
 | |
|       static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
 | |
|   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
 | |
| 
 | |
|   void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
 | |
|                     bool Flag) {
 | |
|     static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Binding invalidation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
 | |
|                                               ScanReachableSymbols &Callbacks) {
 | |
|   assert(R == R->getBaseRegion() && "Should only be called for base regions");
 | |
|   RegionBindingsRef B = getRegionBindings(S);
 | |
|   const ClusterBindings *Cluster = B.lookup(R);
 | |
| 
 | |
|   if (!Cluster)
 | |
|     return true;
 | |
| 
 | |
|   for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
 | |
|        RI != RE; ++RI) {
 | |
|     if (!Callbacks.scan(RI.getData()))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static inline bool isUnionField(const FieldRegion *FR) {
 | |
|   return FR->getDecl()->getParent()->isUnion();
 | |
| }
 | |
| 
 | |
| typedef SmallVector<const FieldDecl *, 8> FieldVector;
 | |
| 
 | |
| static void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
 | |
|   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
 | |
| 
 | |
|   const MemRegion *Base = K.getConcreteOffsetRegion();
 | |
|   const MemRegion *R = K.getRegion();
 | |
| 
 | |
|   while (R != Base) {
 | |
|     if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
 | |
|       if (!isUnionField(FR))
 | |
|         Fields.push_back(FR->getDecl());
 | |
| 
 | |
|     R = cast<SubRegion>(R)->getSuperRegion();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
 | |
|   assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
 | |
| 
 | |
|   if (Fields.empty())
 | |
|     return true;
 | |
| 
 | |
|   FieldVector FieldsInBindingKey;
 | |
|   getSymbolicOffsetFields(K, FieldsInBindingKey);
 | |
| 
 | |
|   ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
 | |
|   if (Delta >= 0)
 | |
|     return std::equal(FieldsInBindingKey.begin() + Delta,
 | |
|                       FieldsInBindingKey.end(),
 | |
|                       Fields.begin());
 | |
|   else
 | |
|     return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
 | |
|                       Fields.begin() - Delta);
 | |
| }
 | |
| 
 | |
| /// Collects all bindings in \p Cluster that may refer to bindings within
 | |
| /// \p Top.
 | |
| ///
 | |
| /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
 | |
| /// \c second is the value (an SVal).
 | |
| ///
 | |
| /// The \p IncludeAllDefaultBindings parameter specifies whether to include
 | |
| /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
 | |
| /// an aggregate within a larger aggregate with a default binding.
 | |
| static void
 | |
| collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
 | |
|                          SValBuilder &SVB, const ClusterBindings &Cluster,
 | |
|                          const SubRegion *Top, BindingKey TopKey,
 | |
|                          bool IncludeAllDefaultBindings) {
 | |
|   FieldVector FieldsInSymbolicSubregions;
 | |
|   if (TopKey.hasSymbolicOffset()) {
 | |
|     getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
 | |
|     Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
 | |
|     TopKey = BindingKey::Make(Top, BindingKey::Default);
 | |
|   }
 | |
| 
 | |
|   // Find the length (in bits) of the region being invalidated.
 | |
|   uint64_t Length = UINT64_MAX;
 | |
|   SVal Extent = Top->getExtent(SVB);
 | |
|   if (Optional<nonloc::ConcreteInt> ExtentCI =
 | |
|           Extent.getAs<nonloc::ConcreteInt>()) {
 | |
|     const llvm::APSInt &ExtentInt = ExtentCI->getValue();
 | |
|     assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
 | |
|     // Extents are in bytes but region offsets are in bits. Be careful!
 | |
|     Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
 | |
|   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
 | |
|     if (FR->getDecl()->isBitField())
 | |
|       Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
 | |
|   }
 | |
| 
 | |
|   for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
 | |
|        I != E; ++I) {
 | |
|     BindingKey NextKey = I.getKey();
 | |
|     if (NextKey.getRegion() == TopKey.getRegion()) {
 | |
|       // FIXME: This doesn't catch the case where we're really invalidating a
 | |
|       // region with a symbolic offset. Example:
 | |
|       //      R: points[i].y
 | |
|       //   Next: points[0].x
 | |
| 
 | |
|       if (NextKey.getOffset() > TopKey.getOffset() &&
 | |
|           NextKey.getOffset() - TopKey.getOffset() < Length) {
 | |
|         // Case 1: The next binding is inside the region we're invalidating.
 | |
|         // Include it.
 | |
|         Bindings.push_back(*I);
 | |
| 
 | |
|       } else if (NextKey.getOffset() == TopKey.getOffset()) {
 | |
|         // Case 2: The next binding is at the same offset as the region we're
 | |
|         // invalidating. In this case, we need to leave default bindings alone,
 | |
|         // since they may be providing a default value for a regions beyond what
 | |
|         // we're invalidating.
 | |
|         // FIXME: This is probably incorrect; consider invalidating an outer
 | |
|         // struct whose first field is bound to a LazyCompoundVal.
 | |
|         if (IncludeAllDefaultBindings || NextKey.isDirect())
 | |
|           Bindings.push_back(*I);
 | |
|       }
 | |
| 
 | |
|     } else if (NextKey.hasSymbolicOffset()) {
 | |
|       const MemRegion *Base = NextKey.getConcreteOffsetRegion();
 | |
|       if (Top->isSubRegionOf(Base)) {
 | |
|         // Case 3: The next key is symbolic and we just changed something within
 | |
|         // its concrete region. We don't know if the binding is still valid, so
 | |
|         // we'll be conservative and include it.
 | |
|         if (IncludeAllDefaultBindings || NextKey.isDirect())
 | |
|           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
 | |
|             Bindings.push_back(*I);
 | |
|       } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
 | |
|         // Case 4: The next key is symbolic, but we changed a known
 | |
|         // super-region. In this case the binding is certainly included.
 | |
|         if (Top == Base || BaseSR->isSubRegionOf(Top))
 | |
|           if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
 | |
|             Bindings.push_back(*I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void
 | |
| collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
 | |
|                          SValBuilder &SVB, const ClusterBindings &Cluster,
 | |
|                          const SubRegion *Top, bool IncludeAllDefaultBindings) {
 | |
|   collectSubRegionBindings(Bindings, SVB, Cluster, Top,
 | |
|                            BindingKey::Make(Top, BindingKey::Default),
 | |
|                            IncludeAllDefaultBindings);
 | |
| }
 | |
| 
 | |
| RegionBindingsRef
 | |
| RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
 | |
|                                             const SubRegion *Top) {
 | |
|   BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
 | |
|   const MemRegion *ClusterHead = TopKey.getBaseRegion();
 | |
| 
 | |
|   if (Top == ClusterHead) {
 | |
|     // We can remove an entire cluster's bindings all in one go.
 | |
|     return B.remove(Top);
 | |
|   }
 | |
| 
 | |
|   const ClusterBindings *Cluster = B.lookup(ClusterHead);
 | |
|   if (!Cluster) {
 | |
|     // If we're invalidating a region with a symbolic offset, we need to make
 | |
|     // sure we don't treat the base region as uninitialized anymore.
 | |
|     if (TopKey.hasSymbolicOffset()) {
 | |
|       const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
 | |
|       return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
 | |
|     }
 | |
|     return B;
 | |
|   }
 | |
| 
 | |
|   SmallVector<BindingPair, 32> Bindings;
 | |
|   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
 | |
|                            /*IncludeAllDefaultBindings=*/false);
 | |
| 
 | |
|   ClusterBindingsRef Result(*Cluster, CBFactory);
 | |
|   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
 | |
|                                                     E = Bindings.end();
 | |
|        I != E; ++I)
 | |
|     Result = Result.remove(I->first);
 | |
| 
 | |
|   // If we're invalidating a region with a symbolic offset, we need to make sure
 | |
|   // we don't treat the base region as uninitialized anymore.
 | |
|   // FIXME: This isn't very precise; see the example in
 | |
|   // collectSubRegionBindings.
 | |
|   if (TopKey.hasSymbolicOffset()) {
 | |
|     const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
 | |
|     Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
 | |
|                         UnknownVal());
 | |
|   }
 | |
| 
 | |
|   if (Result.isEmpty())
 | |
|     return B.remove(ClusterHead);
 | |
|   return B.add(ClusterHead, Result.asImmutableMap());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
 | |
| {
 | |
|   const Expr *Ex;
 | |
|   unsigned Count;
 | |
|   const LocationContext *LCtx;
 | |
|   InvalidatedSymbols &IS;
 | |
|   RegionAndSymbolInvalidationTraits &ITraits;
 | |
|   StoreManager::InvalidatedRegions *Regions;
 | |
|   GlobalsFilterKind GlobalsFilter;
 | |
| public:
 | |
|   invalidateRegionsWorker(RegionStoreManager &rm,
 | |
|                           ProgramStateManager &stateMgr,
 | |
|                           RegionBindingsRef b,
 | |
|                           const Expr *ex, unsigned count,
 | |
|                           const LocationContext *lctx,
 | |
|                           InvalidatedSymbols &is,
 | |
|                           RegionAndSymbolInvalidationTraits &ITraitsIn,
 | |
|                           StoreManager::InvalidatedRegions *r,
 | |
|                           GlobalsFilterKind GFK)
 | |
|      : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b),
 | |
|        Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r),
 | |
|        GlobalsFilter(GFK) {}
 | |
| 
 | |
|   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
 | |
|   void VisitBinding(SVal V);
 | |
| 
 | |
|   using ClusterAnalysis::AddToWorkList;
 | |
| 
 | |
|   bool AddToWorkList(const MemRegion *R);
 | |
| 
 | |
|   /// Returns true if all clusters in the memory space for \p Base should be
 | |
|   /// be invalidated.
 | |
|   bool includeEntireMemorySpace(const MemRegion *Base);
 | |
| 
 | |
|   /// Returns true if the memory space of the given region is one of the global
 | |
|   /// regions specially included at the start of invalidation.
 | |
|   bool isInitiallyIncludedGlobalRegion(const MemRegion *R);
 | |
| };
 | |
| }
 | |
| 
 | |
| bool invalidateRegionsWorker::AddToWorkList(const MemRegion *R) {
 | |
|   bool doNotInvalidateSuperRegion = ITraits.hasTrait(
 | |
|       R, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
 | |
|   const MemRegion *BaseR = doNotInvalidateSuperRegion ? R : R->getBaseRegion();
 | |
|   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
 | |
| }
 | |
| 
 | |
| void invalidateRegionsWorker::VisitBinding(SVal V) {
 | |
|   // A symbol?  Mark it touched by the invalidation.
 | |
|   if (SymbolRef Sym = V.getAsSymbol())
 | |
|     IS.insert(Sym);
 | |
| 
 | |
|   if (const MemRegion *R = V.getAsRegion()) {
 | |
|     AddToWorkList(R);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Is it a LazyCompoundVal?  All references get invalidated as well.
 | |
|   if (Optional<nonloc::LazyCompoundVal> LCS =
 | |
|           V.getAs<nonloc::LazyCompoundVal>()) {
 | |
| 
 | |
|     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
 | |
| 
 | |
|     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
 | |
|                                                         E = Vals.end();
 | |
|          I != E; ++I)
 | |
|       VisitBinding(*I);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
 | |
|                                            const ClusterBindings *C) {
 | |
| 
 | |
|   bool PreserveRegionsContents =
 | |
|       ITraits.hasTrait(baseR,
 | |
|                        RegionAndSymbolInvalidationTraits::TK_PreserveContents);
 | |
| 
 | |
|   if (C) {
 | |
|     for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
 | |
|       VisitBinding(I.getData());
 | |
| 
 | |
|     // Invalidate regions contents.
 | |
|     if (!PreserveRegionsContents)
 | |
|       B = B.remove(baseR);
 | |
|   }
 | |
| 
 | |
|   // BlockDataRegion?  If so, invalidate captured variables that are passed
 | |
|   // by reference.
 | |
|   if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
 | |
|     for (BlockDataRegion::referenced_vars_iterator
 | |
|          BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
 | |
|          BI != BE; ++BI) {
 | |
|       const VarRegion *VR = BI.getCapturedRegion();
 | |
|       const VarDecl *VD = VR->getDecl();
 | |
|       if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
 | |
|         AddToWorkList(VR);
 | |
|       }
 | |
|       else if (Loc::isLocType(VR->getValueType())) {
 | |
|         // Map the current bindings to a Store to retrieve the value
 | |
|         // of the binding.  If that binding itself is a region, we should
 | |
|         // invalidate that region.  This is because a block may capture
 | |
|         // a pointer value, but the thing pointed by that pointer may
 | |
|         // get invalidated.
 | |
|         SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
 | |
|         if (Optional<Loc> L = V.getAs<Loc>()) {
 | |
|           if (const MemRegion *LR = L->getAsRegion())
 | |
|             AddToWorkList(LR);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Symbolic region?
 | |
|   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
 | |
|     IS.insert(SR->getSymbol());
 | |
| 
 | |
|   // Nothing else should be done in the case when we preserve regions context.
 | |
|   if (PreserveRegionsContents)
 | |
|     return;
 | |
| 
 | |
|   // Otherwise, we have a normal data region. Record that we touched the region.
 | |
|   if (Regions)
 | |
|     Regions->push_back(baseR);
 | |
| 
 | |
|   if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
 | |
|     // Invalidate the region by setting its default value to
 | |
|     // conjured symbol. The type of the symbol is irrelevant.
 | |
|     DefinedOrUnknownSVal V =
 | |
|       svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
 | |
|     B = B.addBinding(baseR, BindingKey::Default, V);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!baseR->isBoundable())
 | |
|     return;
 | |
| 
 | |
|   const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
 | |
|   QualType T = TR->getValueType();
 | |
| 
 | |
|   if (isInitiallyIncludedGlobalRegion(baseR)) {
 | |
|     // If the region is a global and we are invalidating all globals,
 | |
|     // erasing the entry is good enough.  This causes all globals to be lazily
 | |
|     // symbolicated from the same base symbol.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (T->isStructureOrClassType()) {
 | |
|     // Invalidate the region by setting its default value to
 | |
|     // conjured symbol. The type of the symbol is irrelevant.
 | |
|     DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
 | |
|                                                           Ctx.IntTy, Count);
 | |
|     B = B.addBinding(baseR, BindingKey::Default, V);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
 | |
|     bool doNotInvalidateSuperRegion = ITraits.hasTrait(
 | |
|         baseR,
 | |
|         RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
 | |
| 
 | |
|     if (doNotInvalidateSuperRegion) {
 | |
|       // We are not doing blank invalidation of the whole array region so we
 | |
|       // have to manually invalidate each elements.
 | |
|       Optional<uint64_t> NumElements;
 | |
| 
 | |
|       // Compute lower and upper offsets for region within array.
 | |
|       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
 | |
|         NumElements = CAT->getSize().getZExtValue();
 | |
|       if (!NumElements) // We are not dealing with a constant size array
 | |
|         goto conjure_default;
 | |
|       QualType ElementTy = AT->getElementType();
 | |
|       uint64_t ElemSize = Ctx.getTypeSize(ElementTy);
 | |
|       const RegionOffset &RO = baseR->getAsOffset();
 | |
|       const MemRegion *SuperR = baseR->getBaseRegion();
 | |
|       if (RO.hasSymbolicOffset()) {
 | |
|         // If base region has a symbolic offset,
 | |
|         // we revert to invalidating the super region.
 | |
|         if (SuperR)
 | |
|           AddToWorkList(SuperR);
 | |
|         goto conjure_default;
 | |
|       }
 | |
| 
 | |
|       uint64_t LowerOffset = RO.getOffset();
 | |
|       uint64_t UpperOffset = LowerOffset + *NumElements * ElemSize;
 | |
|       bool UpperOverflow = UpperOffset < LowerOffset;
 | |
| 
 | |
|       // Invalidate regions which are within array boundaries,
 | |
|       // or have a symbolic offset.
 | |
|       if (!SuperR)
 | |
|         goto conjure_default;
 | |
| 
 | |
|       const ClusterBindings *C = B.lookup(SuperR);
 | |
|       if (!C)
 | |
|         goto conjure_default;
 | |
| 
 | |
|       for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E;
 | |
|            ++I) {
 | |
|         const BindingKey &BK = I.getKey();
 | |
|         Optional<uint64_t> ROffset =
 | |
|             BK.hasSymbolicOffset() ? Optional<uint64_t>() : BK.getOffset();
 | |
| 
 | |
|         // Check offset is not symbolic and within array's boundaries.
 | |
|         // Handles arrays of 0 elements and of 0-sized elements as well.
 | |
|         if (!ROffset ||
 | |
|             (ROffset &&
 | |
|              ((*ROffset >= LowerOffset && *ROffset < UpperOffset) ||
 | |
|               (UpperOverflow &&
 | |
|                (*ROffset >= LowerOffset || *ROffset < UpperOffset)) ||
 | |
|               (LowerOffset == UpperOffset && *ROffset == LowerOffset)))) {
 | |
|           B = B.removeBinding(I.getKey());
 | |
|           // Bound symbolic regions need to be invalidated for dead symbol
 | |
|           // detection.
 | |
|           SVal V = I.getData();
 | |
|           const MemRegion *R = V.getAsRegion();
 | |
|           if (R && isa<SymbolicRegion>(R))
 | |
|             VisitBinding(V);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   conjure_default:
 | |
|       // Set the default value of the array to conjured symbol.
 | |
|     DefinedOrUnknownSVal V =
 | |
|     svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
 | |
|                                      AT->getElementType(), Count);
 | |
|     B = B.addBinding(baseR, BindingKey::Default, V);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
 | |
|                                                         T,Count);
 | |
|   assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
 | |
|   B = B.addBinding(baseR, BindingKey::Direct, V);
 | |
| }
 | |
| 
 | |
| bool invalidateRegionsWorker::isInitiallyIncludedGlobalRegion(
 | |
|     const MemRegion *R) {
 | |
|   switch (GlobalsFilter) {
 | |
|   case GFK_None:
 | |
|     return false;
 | |
|   case GFK_SystemOnly:
 | |
|     return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
 | |
|   case GFK_All:
 | |
|     return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unknown globals filter");
 | |
| }
 | |
| 
 | |
| bool invalidateRegionsWorker::includeEntireMemorySpace(const MemRegion *Base) {
 | |
|   if (isInitiallyIncludedGlobalRegion(Base))
 | |
|     return true;
 | |
| 
 | |
|   const MemSpaceRegion *MemSpace = Base->getMemorySpace();
 | |
|   return ITraits.hasTrait(MemSpace,
 | |
|                           RegionAndSymbolInvalidationTraits::TK_EntireMemSpace);
 | |
| }
 | |
| 
 | |
| RegionBindingsRef
 | |
| RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
 | |
|                                            const Expr *Ex,
 | |
|                                            unsigned Count,
 | |
|                                            const LocationContext *LCtx,
 | |
|                                            RegionBindingsRef B,
 | |
|                                            InvalidatedRegions *Invalidated) {
 | |
|   // Bind the globals memory space to a new symbol that we will use to derive
 | |
|   // the bindings for all globals.
 | |
|   const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
 | |
|   SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
 | |
|                                         /* type does not matter */ Ctx.IntTy,
 | |
|                                         Count);
 | |
| 
 | |
|   B = B.removeBinding(GS)
 | |
|        .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
 | |
| 
 | |
|   // Even if there are no bindings in the global scope, we still need to
 | |
|   // record that we touched it.
 | |
|   if (Invalidated)
 | |
|     Invalidated->push_back(GS);
 | |
| 
 | |
|   return B;
 | |
| }
 | |
| 
 | |
| void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
 | |
|                                           ArrayRef<SVal> Values,
 | |
|                                           InvalidatedRegions *TopLevelRegions) {
 | |
|   for (ArrayRef<SVal>::iterator I = Values.begin(),
 | |
|                                 E = Values.end(); I != E; ++I) {
 | |
|     SVal V = *I;
 | |
|     if (Optional<nonloc::LazyCompoundVal> LCS =
 | |
|         V.getAs<nonloc::LazyCompoundVal>()) {
 | |
| 
 | |
|       const SValListTy &Vals = getInterestingValues(*LCS);
 | |
| 
 | |
|       for (SValListTy::const_iterator I = Vals.begin(),
 | |
|                                       E = Vals.end(); I != E; ++I) {
 | |
|         // Note: the last argument is false here because these are
 | |
|         // non-top-level regions.
 | |
|         if (const MemRegion *R = (*I).getAsRegion())
 | |
|           W.AddToWorkList(R);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (const MemRegion *R = V.getAsRegion()) {
 | |
|       if (TopLevelRegions)
 | |
|         TopLevelRegions->push_back(R);
 | |
|       W.AddToWorkList(R);
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| StoreRef
 | |
| RegionStoreManager::invalidateRegions(Store store,
 | |
|                                      ArrayRef<SVal> Values,
 | |
|                                      const Expr *Ex, unsigned Count,
 | |
|                                      const LocationContext *LCtx,
 | |
|                                      const CallEvent *Call,
 | |
|                                      InvalidatedSymbols &IS,
 | |
|                                      RegionAndSymbolInvalidationTraits &ITraits,
 | |
|                                      InvalidatedRegions *TopLevelRegions,
 | |
|                                      InvalidatedRegions *Invalidated) {
 | |
|   GlobalsFilterKind GlobalsFilter;
 | |
|   if (Call) {
 | |
|     if (Call->isInSystemHeader())
 | |
|       GlobalsFilter = GFK_SystemOnly;
 | |
|     else
 | |
|       GlobalsFilter = GFK_All;
 | |
|   } else {
 | |
|     GlobalsFilter = GFK_None;
 | |
|   }
 | |
| 
 | |
|   RegionBindingsRef B = getRegionBindings(store);
 | |
|   invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
 | |
|                             Invalidated, GlobalsFilter);
 | |
| 
 | |
|   // Scan the bindings and generate the clusters.
 | |
|   W.GenerateClusters();
 | |
| 
 | |
|   // Add the regions to the worklist.
 | |
|   populateWorkList(W, Values, TopLevelRegions);
 | |
| 
 | |
|   W.RunWorkList();
 | |
| 
 | |
|   // Return the new bindings.
 | |
|   B = W.getRegionBindings();
 | |
| 
 | |
|   // For calls, determine which global regions should be invalidated and
 | |
|   // invalidate them. (Note that function-static and immutable globals are never
 | |
|   // invalidated by this.)
 | |
|   // TODO: This could possibly be more precise with modules.
 | |
|   switch (GlobalsFilter) {
 | |
|   case GFK_All:
 | |
|     B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
 | |
|                                Ex, Count, LCtx, B, Invalidated);
 | |
|     // FALLTHROUGH
 | |
|   case GFK_SystemOnly:
 | |
|     B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
 | |
|                                Ex, Count, LCtx, B, Invalidated);
 | |
|     // FALLTHROUGH
 | |
|   case GFK_None:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return StoreRef(B.asStore(), *this);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Extents for regions.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| DefinedOrUnknownSVal
 | |
| RegionStoreManager::getSizeInElements(ProgramStateRef state,
 | |
|                                       const MemRegion *R,
 | |
|                                       QualType EleTy) {
 | |
|   SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
 | |
|   const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
 | |
|   if (!SizeInt)
 | |
|     return UnknownVal();
 | |
| 
 | |
|   CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
 | |
| 
 | |
|   if (Ctx.getAsVariableArrayType(EleTy)) {
 | |
|     // FIXME: We need to track extra state to properly record the size
 | |
|     // of VLAs.  Returning UnknownVal here, however, is a stop-gap so that
 | |
|     // we don't have a divide-by-zero below.
 | |
|     return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
 | |
| 
 | |
|   // If a variable is reinterpreted as a type that doesn't fit into a larger
 | |
|   // type evenly, round it down.
 | |
|   // This is a signed value, since it's used in arithmetic with signed indices.
 | |
|   return svalBuilder.makeIntVal(RegionSize / EleSize, false);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Location and region casting.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ArrayToPointer - Emulates the "decay" of an array to a pointer
 | |
| ///  type.  'Array' represents the lvalue of the array being decayed
 | |
| ///  to a pointer, and the returned SVal represents the decayed
 | |
| ///  version of that lvalue (i.e., a pointer to the first element of
 | |
| ///  the array).  This is called by ExprEngine when evaluating casts
 | |
| ///  from arrays to pointers.
 | |
| SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
 | |
|   if (!Array.getAs<loc::MemRegionVal>())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
 | |
|   NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
 | |
|   return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Loading values from regions.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
 | |
|   assert(!L.getAs<UnknownVal>() && "location unknown");
 | |
|   assert(!L.getAs<UndefinedVal>() && "location undefined");
 | |
| 
 | |
|   // For access to concrete addresses, return UnknownVal.  Checks
 | |
|   // for null dereferences (and similar errors) are done by checkers, not
 | |
|   // the Store.
 | |
|   // FIXME: We can consider lazily symbolicating such memory, but we really
 | |
|   // should defer this when we can reason easily about symbolicating arrays
 | |
|   // of bytes.
 | |
|   if (L.getAs<loc::ConcreteInt>()) {
 | |
|     return UnknownVal();
 | |
|   }
 | |
|   if (!L.getAs<loc::MemRegionVal>()) {
 | |
|     return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
 | |
| 
 | |
|   if (isa<BlockDataRegion>(MR)) {
 | |
|     return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   if (isa<AllocaRegion>(MR) ||
 | |
|       isa<SymbolicRegion>(MR) ||
 | |
|       isa<CodeTextRegion>(MR)) {
 | |
|     if (T.isNull()) {
 | |
|       if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
 | |
|         T = TR->getLocationType();
 | |
|       else {
 | |
|         const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
 | |
|         T = SR->getSymbol()->getType();
 | |
|       }
 | |
|     }
 | |
|     MR = GetElementZeroRegion(MR, T);
 | |
|   }
 | |
| 
 | |
|   // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
 | |
|   //  instead of 'Loc', and have the other Loc cases handled at a higher level.
 | |
|   const TypedValueRegion *R = cast<TypedValueRegion>(MR);
 | |
|   QualType RTy = R->getValueType();
 | |
| 
 | |
|   // FIXME: we do not yet model the parts of a complex type, so treat the
 | |
|   // whole thing as "unknown".
 | |
|   if (RTy->isAnyComplexType())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // FIXME: We should eventually handle funny addressing.  e.g.:
 | |
|   //
 | |
|   //   int x = ...;
 | |
|   //   int *p = &x;
 | |
|   //   char *q = (char*) p;
 | |
|   //   char c = *q;  // returns the first byte of 'x'.
 | |
|   //
 | |
|   // Such funny addressing will occur due to layering of regions.
 | |
|   if (RTy->isStructureOrClassType())
 | |
|     return getBindingForStruct(B, R);
 | |
| 
 | |
|   // FIXME: Handle unions.
 | |
|   if (RTy->isUnionType())
 | |
|     return createLazyBinding(B, R);
 | |
| 
 | |
|   if (RTy->isArrayType()) {
 | |
|     if (RTy->isConstantArrayType())
 | |
|       return getBindingForArray(B, R);
 | |
|     else
 | |
|       return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   // FIXME: handle Vector types.
 | |
|   if (RTy->isVectorType())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
 | |
|     return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
 | |
| 
 | |
|   if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
 | |
|     // FIXME: Here we actually perform an implicit conversion from the loaded
 | |
|     // value to the element type.  Eventually we want to compose these values
 | |
|     // more intelligently.  For example, an 'element' can encompass multiple
 | |
|     // bound regions (e.g., several bound bytes), or could be a subset of
 | |
|     // a larger value.
 | |
|     return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
 | |
|   }
 | |
| 
 | |
|   if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
 | |
|     // FIXME: Here we actually perform an implicit conversion from the loaded
 | |
|     // value to the ivar type.  What we should model is stores to ivars
 | |
|     // that blow past the extent of the ivar.  If the address of the ivar is
 | |
|     // reinterpretted, it is possible we stored a different value that could
 | |
|     // fit within the ivar.  Either we need to cast these when storing them
 | |
|     // or reinterpret them lazily (as we do here).
 | |
|     return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
 | |
|   }
 | |
| 
 | |
|   if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
 | |
|     // FIXME: Here we actually perform an implicit conversion from the loaded
 | |
|     // value to the variable type.  What we should model is stores to variables
 | |
|     // that blow past the extent of the variable.  If the address of the
 | |
|     // variable is reinterpretted, it is possible we stored a different value
 | |
|     // that could fit within the variable.  Either we need to cast these when
 | |
|     // storing them or reinterpret them lazily (as we do here).
 | |
|     return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
 | |
|   }
 | |
| 
 | |
|   const SVal *V = B.lookup(R, BindingKey::Direct);
 | |
| 
 | |
|   // Check if the region has a binding.
 | |
|   if (V)
 | |
|     return *V;
 | |
| 
 | |
|   // The location does not have a bound value.  This means that it has
 | |
|   // the value it had upon its creation and/or entry to the analyzed
 | |
|   // function/method.  These are either symbolic values or 'undefined'.
 | |
|   if (R->hasStackNonParametersStorage()) {
 | |
|     // All stack variables are considered to have undefined values
 | |
|     // upon creation.  All heap allocated blocks are considered to
 | |
|     // have undefined values as well unless they are explicitly bound
 | |
|     // to specific values.
 | |
|     return UndefinedVal();
 | |
|   }
 | |
| 
 | |
|   // All other values are symbolic.
 | |
|   return svalBuilder.getRegionValueSymbolVal(R);
 | |
| }
 | |
| 
 | |
| static QualType getUnderlyingType(const SubRegion *R) {
 | |
|   QualType RegionTy;
 | |
|   if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
 | |
|     RegionTy = TVR->getValueType();
 | |
| 
 | |
|   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
 | |
|     RegionTy = SR->getSymbol()->getType();
 | |
| 
 | |
|   return RegionTy;
 | |
| }
 | |
| 
 | |
| /// Checks to see if store \p B has a lazy binding for region \p R.
 | |
| ///
 | |
| /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
 | |
| /// if there are additional bindings within \p R.
 | |
| ///
 | |
| /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
 | |
| /// for lazy bindings for super-regions of \p R.
 | |
| static Optional<nonloc::LazyCompoundVal>
 | |
| getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
 | |
|                        const SubRegion *R, bool AllowSubregionBindings) {
 | |
|   Optional<SVal> V = B.getDefaultBinding(R);
 | |
|   if (!V)
 | |
|     return None;
 | |
| 
 | |
|   Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
 | |
|   if (!LCV)
 | |
|     return None;
 | |
| 
 | |
|   // If the LCV is for a subregion, the types might not match, and we shouldn't
 | |
|   // reuse the binding.
 | |
|   QualType RegionTy = getUnderlyingType(R);
 | |
|   if (!RegionTy.isNull() &&
 | |
|       !RegionTy->isVoidPointerType()) {
 | |
|     QualType SourceRegionTy = LCV->getRegion()->getValueType();
 | |
|     if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
 | |
|       return None;
 | |
|   }
 | |
| 
 | |
|   if (!AllowSubregionBindings) {
 | |
|     // If there are any other bindings within this region, we shouldn't reuse
 | |
|     // the top-level binding.
 | |
|     SmallVector<BindingPair, 16> Bindings;
 | |
|     collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
 | |
|                              /*IncludeAllDefaultBindings=*/true);
 | |
|     if (Bindings.size() > 1)
 | |
|       return None;
 | |
|   }
 | |
| 
 | |
|   return *LCV;
 | |
| }
 | |
| 
 | |
| 
 | |
| std::pair<Store, const SubRegion *>
 | |
| RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
 | |
|                                    const SubRegion *R,
 | |
|                                    const SubRegion *originalRegion) {
 | |
|   if (originalRegion != R) {
 | |
|     if (Optional<nonloc::LazyCompoundVal> V =
 | |
|           getExistingLazyBinding(svalBuilder, B, R, true))
 | |
|       return std::make_pair(V->getStore(), V->getRegion());
 | |
|   }
 | |
| 
 | |
|   typedef std::pair<Store, const SubRegion *> StoreRegionPair;
 | |
|   StoreRegionPair Result = StoreRegionPair();
 | |
| 
 | |
|   if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
 | |
|     Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
 | |
|                              originalRegion);
 | |
| 
 | |
|     if (Result.second)
 | |
|       Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
 | |
| 
 | |
|   } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
 | |
|     Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
 | |
|                                        originalRegion);
 | |
| 
 | |
|     if (Result.second)
 | |
|       Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
 | |
| 
 | |
|   } else if (const CXXBaseObjectRegion *BaseReg =
 | |
|                dyn_cast<CXXBaseObjectRegion>(R)) {
 | |
|     // C++ base object region is another kind of region that we should blast
 | |
|     // through to look for lazy compound value. It is like a field region.
 | |
|     Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
 | |
|                              originalRegion);
 | |
| 
 | |
|     if (Result.second)
 | |
|       Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
 | |
|                                                             Result.second);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
 | |
|                                               const ElementRegion* R) {
 | |
|   // We do not currently model bindings of the CompoundLiteralregion.
 | |
|   if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Check if the region has a binding.
 | |
|   if (const Optional<SVal> &V = B.getDirectBinding(R))
 | |
|     return *V;
 | |
| 
 | |
|   const MemRegion* superR = R->getSuperRegion();
 | |
| 
 | |
|   // Check if the region is an element region of a string literal.
 | |
|   if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
 | |
|     // FIXME: Handle loads from strings where the literal is treated as
 | |
|     // an integer, e.g., *((unsigned int*)"hello")
 | |
|     QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
 | |
|     if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
 | |
|       return UnknownVal();
 | |
| 
 | |
|     const StringLiteral *Str = StrR->getStringLiteral();
 | |
|     SVal Idx = R->getIndex();
 | |
|     if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
 | |
|       int64_t i = CI->getValue().getSExtValue();
 | |
|       // Abort on string underrun.  This can be possible by arbitrary
 | |
|       // clients of getBindingForElement().
 | |
|       if (i < 0)
 | |
|         return UndefinedVal();
 | |
|       int64_t length = Str->getLength();
 | |
|       // Technically, only i == length is guaranteed to be null.
 | |
|       // However, such overflows should be caught before reaching this point;
 | |
|       // the only time such an access would be made is if a string literal was
 | |
|       // used to initialize a larger array.
 | |
|       char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
 | |
|       return svalBuilder.makeIntVal(c, T);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for loads from a code text region.  For such loads, just give up.
 | |
|   if (isa<CodeTextRegion>(superR))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   // Handle the case where we are indexing into a larger scalar object.
 | |
|   // For example, this handles:
 | |
|   //   int x = ...
 | |
|   //   char *y = &x;
 | |
|   //   return *y;
 | |
|   // FIXME: This is a hack, and doesn't do anything really intelligent yet.
 | |
|   const RegionRawOffset &O = R->getAsArrayOffset();
 | |
| 
 | |
|   // If we cannot reason about the offset, return an unknown value.
 | |
|   if (!O.getRegion())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   if (const TypedValueRegion *baseR =
 | |
|         dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
 | |
|     QualType baseT = baseR->getValueType();
 | |
|     if (baseT->isScalarType()) {
 | |
|       QualType elemT = R->getElementType();
 | |
|       if (elemT->isScalarType()) {
 | |
|         if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
 | |
|           if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
 | |
|             if (SymbolRef parentSym = V->getAsSymbol())
 | |
|               return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
 | |
| 
 | |
|             if (V->isUnknownOrUndef())
 | |
|               return *V;
 | |
|             // Other cases: give up.  We are indexing into a larger object
 | |
|             // that has some value, but we don't know how to handle that yet.
 | |
|             return UnknownVal();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return getBindingForFieldOrElementCommon(B, R, R->getElementType());
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
 | |
|                                             const FieldRegion* R) {
 | |
| 
 | |
|   // Check if the region has a binding.
 | |
|   if (const Optional<SVal> &V = B.getDirectBinding(R))
 | |
|     return *V;
 | |
| 
 | |
|   QualType Ty = R->getValueType();
 | |
|   return getBindingForFieldOrElementCommon(B, R, Ty);
 | |
| }
 | |
| 
 | |
| Optional<SVal>
 | |
| RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
 | |
|                                                      const MemRegion *superR,
 | |
|                                                      const TypedValueRegion *R,
 | |
|                                                      QualType Ty) {
 | |
| 
 | |
|   if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
 | |
|     const SVal &val = D.getValue();
 | |
|     if (SymbolRef parentSym = val.getAsSymbol())
 | |
|       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
 | |
| 
 | |
|     if (val.isZeroConstant())
 | |
|       return svalBuilder.makeZeroVal(Ty);
 | |
| 
 | |
|     if (val.isUnknownOrUndef())
 | |
|       return val;
 | |
| 
 | |
|     // Lazy bindings are usually handled through getExistingLazyBinding().
 | |
|     // We should unify these two code paths at some point.
 | |
|     if (val.getAs<nonloc::LazyCompoundVal>())
 | |
|       return val;
 | |
| 
 | |
|     llvm_unreachable("Unknown default value");
 | |
|   }
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
 | |
|                                         RegionBindingsRef LazyBinding) {
 | |
|   SVal Result;
 | |
|   if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
 | |
|     Result = getBindingForElement(LazyBinding, ER);
 | |
|   else
 | |
|     Result = getBindingForField(LazyBinding,
 | |
|                                 cast<FieldRegion>(LazyBindingRegion));
 | |
| 
 | |
|   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
 | |
|   // default value for /part/ of an aggregate from a default value for the
 | |
|   // /entire/ aggregate. The most common case of this is when struct Outer
 | |
|   // has as its first member a struct Inner, which is copied in from a stack
 | |
|   // variable. In this case, even if the Outer's default value is symbolic, 0,
 | |
|   // or unknown, it gets overridden by the Inner's default value of undefined.
 | |
|   //
 | |
|   // This is a general problem -- if the Inner is zero-initialized, the Outer
 | |
|   // will now look zero-initialized. The proper way to solve this is with a
 | |
|   // new version of RegionStore that tracks the extent of a binding as well
 | |
|   // as the offset.
 | |
|   //
 | |
|   // This hack only takes care of the undefined case because that can very
 | |
|   // quickly result in a warning.
 | |
|   if (Result.isUndef())
 | |
|     Result = UnknownVal();
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SVal
 | |
| RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
 | |
|                                                       const TypedValueRegion *R,
 | |
|                                                       QualType Ty) {
 | |
| 
 | |
|   // At this point we have already checked in either getBindingForElement or
 | |
|   // getBindingForField if 'R' has a direct binding.
 | |
| 
 | |
|   // Lazy binding?
 | |
|   Store lazyBindingStore = nullptr;
 | |
|   const SubRegion *lazyBindingRegion = nullptr;
 | |
|   std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
 | |
|   if (lazyBindingRegion)
 | |
|     return getLazyBinding(lazyBindingRegion,
 | |
|                           getRegionBindings(lazyBindingStore));
 | |
| 
 | |
|   // Record whether or not we see a symbolic index.  That can completely
 | |
|   // be out of scope of our lookup.
 | |
|   bool hasSymbolicIndex = false;
 | |
| 
 | |
|   // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
 | |
|   // default value for /part/ of an aggregate from a default value for the
 | |
|   // /entire/ aggregate. The most common case of this is when struct Outer
 | |
|   // has as its first member a struct Inner, which is copied in from a stack
 | |
|   // variable. In this case, even if the Outer's default value is symbolic, 0,
 | |
|   // or unknown, it gets overridden by the Inner's default value of undefined.
 | |
|   //
 | |
|   // This is a general problem -- if the Inner is zero-initialized, the Outer
 | |
|   // will now look zero-initialized. The proper way to solve this is with a
 | |
|   // new version of RegionStore that tracks the extent of a binding as well
 | |
|   // as the offset.
 | |
|   //
 | |
|   // This hack only takes care of the undefined case because that can very
 | |
|   // quickly result in a warning.
 | |
|   bool hasPartialLazyBinding = false;
 | |
| 
 | |
|   const SubRegion *SR = dyn_cast<SubRegion>(R);
 | |
|   while (SR) {
 | |
|     const MemRegion *Base = SR->getSuperRegion();
 | |
|     if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
 | |
|       if (D->getAs<nonloc::LazyCompoundVal>()) {
 | |
|         hasPartialLazyBinding = true;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       return *D;
 | |
|     }
 | |
| 
 | |
|     if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
 | |
|       NonLoc index = ER->getIndex();
 | |
|       if (!index.isConstant())
 | |
|         hasSymbolicIndex = true;
 | |
|     }
 | |
| 
 | |
|     // If our super region is a field or element itself, walk up the region
 | |
|     // hierarchy to see if there is a default value installed in an ancestor.
 | |
|     SR = dyn_cast<SubRegion>(Base);
 | |
|   }
 | |
| 
 | |
|   if (R->hasStackNonParametersStorage()) {
 | |
|     if (isa<ElementRegion>(R)) {
 | |
|       // Currently we don't reason specially about Clang-style vectors.  Check
 | |
|       // if superR is a vector and if so return Unknown.
 | |
|       if (const TypedValueRegion *typedSuperR =
 | |
|             dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
 | |
|         if (typedSuperR->getValueType()->isVectorType())
 | |
|           return UnknownVal();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // FIXME: We also need to take ElementRegions with symbolic indexes into
 | |
|     // account.  This case handles both directly accessing an ElementRegion
 | |
|     // with a symbolic offset, but also fields within an element with
 | |
|     // a symbolic offset.
 | |
|     if (hasSymbolicIndex)
 | |
|       return UnknownVal();
 | |
| 
 | |
|     if (!hasPartialLazyBinding)
 | |
|       return UndefinedVal();
 | |
|   }
 | |
| 
 | |
|   // All other values are symbolic.
 | |
|   return svalBuilder.getRegionValueSymbolVal(R);
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
 | |
|                                                const ObjCIvarRegion* R) {
 | |
|   // Check if the region has a binding.
 | |
|   if (const Optional<SVal> &V = B.getDirectBinding(R))
 | |
|     return *V;
 | |
| 
 | |
|   const MemRegion *superR = R->getSuperRegion();
 | |
| 
 | |
|   // Check if the super region has a default binding.
 | |
|   if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
 | |
|     if (SymbolRef parentSym = V->getAsSymbol())
 | |
|       return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
 | |
| 
 | |
|     // Other cases: give up.
 | |
|     return UnknownVal();
 | |
|   }
 | |
| 
 | |
|   return getBindingForLazySymbol(R);
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
 | |
|                                           const VarRegion *R) {
 | |
| 
 | |
|   // Check if the region has a binding.
 | |
|   if (const Optional<SVal> &V = B.getDirectBinding(R))
 | |
|     return *V;
 | |
| 
 | |
|   // Lazily derive a value for the VarRegion.
 | |
|   const VarDecl *VD = R->getDecl();
 | |
|   const MemSpaceRegion *MS = R->getMemorySpace();
 | |
| 
 | |
|   // Arguments are always symbolic.
 | |
|   if (isa<StackArgumentsSpaceRegion>(MS))
 | |
|     return svalBuilder.getRegionValueSymbolVal(R);
 | |
| 
 | |
|   // Is 'VD' declared constant?  If so, retrieve the constant value.
 | |
|   if (VD->getType().isConstQualified())
 | |
|     if (const Expr *Init = VD->getInit())
 | |
|       if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
 | |
|         return *V;
 | |
| 
 | |
|   // This must come after the check for constants because closure-captured
 | |
|   // constant variables may appear in UnknownSpaceRegion.
 | |
|   if (isa<UnknownSpaceRegion>(MS))
 | |
|     return svalBuilder.getRegionValueSymbolVal(R);
 | |
| 
 | |
|   if (isa<GlobalsSpaceRegion>(MS)) {
 | |
|     QualType T = VD->getType();
 | |
| 
 | |
|     // Function-scoped static variables are default-initialized to 0; if they
 | |
|     // have an initializer, it would have been processed by now.
 | |
|     if (isa<StaticGlobalSpaceRegion>(MS))
 | |
|       return svalBuilder.makeZeroVal(T);
 | |
| 
 | |
|     if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
 | |
|       assert(!V->getAs<nonloc::LazyCompoundVal>());
 | |
|       return V.getValue();
 | |
|     }
 | |
| 
 | |
|     return svalBuilder.getRegionValueSymbolVal(R);
 | |
|   }
 | |
| 
 | |
|   return UndefinedVal();
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
 | |
|   // All other values are symbolic.
 | |
|   return svalBuilder.getRegionValueSymbolVal(R);
 | |
| }
 | |
| 
 | |
| const RegionStoreManager::SValListTy &
 | |
| RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
 | |
|   // First, check the cache.
 | |
|   LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
 | |
|   if (I != LazyBindingsMap.end())
 | |
|     return I->second;
 | |
| 
 | |
|   // If we don't have a list of values cached, start constructing it.
 | |
|   SValListTy List;
 | |
| 
 | |
|   const SubRegion *LazyR = LCV.getRegion();
 | |
|   RegionBindingsRef B = getRegionBindings(LCV.getStore());
 | |
| 
 | |
|   // If this region had /no/ bindings at the time, there are no interesting
 | |
|   // values to return.
 | |
|   const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
 | |
|   if (!Cluster)
 | |
|     return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
 | |
| 
 | |
|   SmallVector<BindingPair, 32> Bindings;
 | |
|   collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
 | |
|                            /*IncludeAllDefaultBindings=*/true);
 | |
|   for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
 | |
|                                                     E = Bindings.end();
 | |
|        I != E; ++I) {
 | |
|     SVal V = I->second;
 | |
|     if (V.isUnknownOrUndef() || V.isConstant())
 | |
|       continue;
 | |
| 
 | |
|     if (Optional<nonloc::LazyCompoundVal> InnerLCV =
 | |
|             V.getAs<nonloc::LazyCompoundVal>()) {
 | |
|       const SValListTy &InnerList = getInterestingValues(*InnerLCV);
 | |
|       List.insert(List.end(), InnerList.begin(), InnerList.end());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     List.push_back(V);
 | |
|   }
 | |
| 
 | |
|   return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
 | |
| }
 | |
| 
 | |
| NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
 | |
|                                              const TypedValueRegion *R) {
 | |
|   if (Optional<nonloc::LazyCompoundVal> V =
 | |
|         getExistingLazyBinding(svalBuilder, B, R, false))
 | |
|     return *V;
 | |
| 
 | |
|   return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
 | |
| }
 | |
| 
 | |
| static bool isRecordEmpty(const RecordDecl *RD) {
 | |
|   if (!RD->field_empty())
 | |
|     return false;
 | |
|   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
 | |
|     return CRD->getNumBases() == 0;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
 | |
|                                              const TypedValueRegion *R) {
 | |
|   const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
 | |
|   if (!RD->getDefinition() || isRecordEmpty(RD))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   return createLazyBinding(B, R);
 | |
| }
 | |
| 
 | |
| SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
 | |
|                                             const TypedValueRegion *R) {
 | |
|   assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
 | |
|          "Only constant array types can have compound bindings.");
 | |
| 
 | |
|   return createLazyBinding(B, R);
 | |
| }
 | |
| 
 | |
| bool RegionStoreManager::includedInBindings(Store store,
 | |
|                                             const MemRegion *region) const {
 | |
|   RegionBindingsRef B = getRegionBindings(store);
 | |
|   region = region->getBaseRegion();
 | |
| 
 | |
|   // Quick path: if the base is the head of a cluster, the region is live.
 | |
|   if (B.lookup(region))
 | |
|     return true;
 | |
| 
 | |
|   // Slow path: if the region is the VALUE of any binding, it is live.
 | |
|   for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
 | |
|     const ClusterBindings &Cluster = RI.getData();
 | |
|     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
 | |
|          CI != CE; ++CI) {
 | |
|       const SVal &D = CI.getData();
 | |
|       if (const MemRegion *R = D.getAsRegion())
 | |
|         if (R->getBaseRegion() == region)
 | |
|           return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Binding values to regions.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
 | |
|   if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
 | |
|     if (const MemRegion* R = LV->getRegion())
 | |
|       return StoreRef(getRegionBindings(ST).removeBinding(R)
 | |
|                                            .asImmutableMap()
 | |
|                                            .getRootWithoutRetain(),
 | |
|                       *this);
 | |
| 
 | |
|   return StoreRef(ST, *this);
 | |
| }
 | |
| 
 | |
| RegionBindingsRef
 | |
| RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
 | |
|   if (L.getAs<loc::ConcreteInt>())
 | |
|     return B;
 | |
| 
 | |
|   // If we get here, the location should be a region.
 | |
|   const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
 | |
| 
 | |
|   // Check if the region is a struct region.
 | |
|   if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
 | |
|     QualType Ty = TR->getValueType();
 | |
|     if (Ty->isArrayType())
 | |
|       return bindArray(B, TR, V);
 | |
|     if (Ty->isStructureOrClassType())
 | |
|       return bindStruct(B, TR, V);
 | |
|     if (Ty->isVectorType())
 | |
|       return bindVector(B, TR, V);
 | |
|     if (Ty->isUnionType())
 | |
|       return bindAggregate(B, TR, V);
 | |
|   }
 | |
| 
 | |
|   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
 | |
|     // Binding directly to a symbolic region should be treated as binding
 | |
|     // to element 0.
 | |
|     QualType T = SR->getSymbol()->getType();
 | |
|     if (T->isAnyPointerType() || T->isReferenceType())
 | |
|       T = T->getPointeeType();
 | |
| 
 | |
|     R = GetElementZeroRegion(SR, T);
 | |
|   }
 | |
| 
 | |
|   // Clear out bindings that may overlap with this binding.
 | |
|   RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
 | |
|   return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
 | |
| }
 | |
| 
 | |
| RegionBindingsRef
 | |
| RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
 | |
|                                             const MemRegion *R,
 | |
|                                             QualType T) {
 | |
|   SVal V;
 | |
| 
 | |
|   if (Loc::isLocType(T))
 | |
|     V = svalBuilder.makeNull();
 | |
|   else if (T->isIntegralOrEnumerationType())
 | |
|     V = svalBuilder.makeZeroVal(T);
 | |
|   else if (T->isStructureOrClassType() || T->isArrayType()) {
 | |
|     // Set the default value to a zero constant when it is a structure
 | |
|     // or array.  The type doesn't really matter.
 | |
|     V = svalBuilder.makeZeroVal(Ctx.IntTy);
 | |
|   }
 | |
|   else {
 | |
|     // We can't represent values of this type, but we still need to set a value
 | |
|     // to record that the region has been initialized.
 | |
|     // If this assertion ever fires, a new case should be added above -- we
 | |
|     // should know how to default-initialize any value we can symbolicate.
 | |
|     assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
 | |
|     V = UnknownVal();
 | |
|   }
 | |
| 
 | |
|   return B.addBinding(R, BindingKey::Default, V);
 | |
| }
 | |
| 
 | |
| RegionBindingsRef
 | |
| RegionStoreManager::bindArray(RegionBindingsConstRef B,
 | |
|                               const TypedValueRegion* R,
 | |
|                               SVal Init) {
 | |
| 
 | |
|   const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
 | |
|   QualType ElementTy = AT->getElementType();
 | |
|   Optional<uint64_t> Size;
 | |
| 
 | |
|   if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
 | |
|     Size = CAT->getSize().getZExtValue();
 | |
| 
 | |
|   // Check if the init expr is a string literal.
 | |
|   if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
 | |
|     const StringRegion *S = cast<StringRegion>(MRV->getRegion());
 | |
| 
 | |
|     // Treat the string as a lazy compound value.
 | |
|     StoreRef store(B.asStore(), *this);
 | |
|     nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
 | |
|         .castAs<nonloc::LazyCompoundVal>();
 | |
|     return bindAggregate(B, R, LCV);
 | |
|   }
 | |
| 
 | |
|   // Handle lazy compound values.
 | |
|   if (Init.getAs<nonloc::LazyCompoundVal>())
 | |
|     return bindAggregate(B, R, Init);
 | |
| 
 | |
|   // Remaining case: explicit compound values.
 | |
| 
 | |
|   if (Init.isUnknown())
 | |
|     return setImplicitDefaultValue(B, R, ElementTy);
 | |
| 
 | |
|   const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
 | |
|   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
 | |
|   uint64_t i = 0;
 | |
| 
 | |
|   RegionBindingsRef NewB(B);
 | |
| 
 | |
|   for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
 | |
|     // The init list might be shorter than the array length.
 | |
|     if (VI == VE)
 | |
|       break;
 | |
| 
 | |
|     const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
 | |
|     const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
 | |
| 
 | |
|     if (ElementTy->isStructureOrClassType())
 | |
|       NewB = bindStruct(NewB, ER, *VI);
 | |
|     else if (ElementTy->isArrayType())
 | |
|       NewB = bindArray(NewB, ER, *VI);
 | |
|     else
 | |
|       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
 | |
|   }
 | |
| 
 | |
|   // If the init list is shorter than the array length, set the
 | |
|   // array default value.
 | |
|   if (Size.hasValue() && i < Size.getValue())
 | |
|     NewB = setImplicitDefaultValue(NewB, R, ElementTy);
 | |
| 
 | |
|   return NewB;
 | |
| }
 | |
| 
 | |
| RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
 | |
|                                                  const TypedValueRegion* R,
 | |
|                                                  SVal V) {
 | |
|   QualType T = R->getValueType();
 | |
|   assert(T->isVectorType());
 | |
|   const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
 | |
| 
 | |
|   // Handle lazy compound values and symbolic values.
 | |
|   if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
 | |
|     return bindAggregate(B, R, V);
 | |
| 
 | |
|   // We may get non-CompoundVal accidentally due to imprecise cast logic or
 | |
|   // that we are binding symbolic struct value. Kill the field values, and if
 | |
|   // the value is symbolic go and bind it as a "default" binding.
 | |
|   if (!V.getAs<nonloc::CompoundVal>()) {
 | |
|     return bindAggregate(B, R, UnknownVal());
 | |
|   }
 | |
| 
 | |
|   QualType ElemType = VT->getElementType();
 | |
|   nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
 | |
|   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
 | |
|   unsigned index = 0, numElements = VT->getNumElements();
 | |
|   RegionBindingsRef NewB(B);
 | |
| 
 | |
|   for ( ; index != numElements ; ++index) {
 | |
|     if (VI == VE)
 | |
|       break;
 | |
| 
 | |
|     NonLoc Idx = svalBuilder.makeArrayIndex(index);
 | |
|     const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
 | |
| 
 | |
|     if (ElemType->isArrayType())
 | |
|       NewB = bindArray(NewB, ER, *VI);
 | |
|     else if (ElemType->isStructureOrClassType())
 | |
|       NewB = bindStruct(NewB, ER, *VI);
 | |
|     else
 | |
|       NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
 | |
|   }
 | |
|   return NewB;
 | |
| }
 | |
| 
 | |
| Optional<RegionBindingsRef>
 | |
| RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
 | |
|                                        const TypedValueRegion *R,
 | |
|                                        const RecordDecl *RD,
 | |
|                                        nonloc::LazyCompoundVal LCV) {
 | |
|   FieldVector Fields;
 | |
| 
 | |
|   if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
 | |
|     if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
 | |
|       return None;
 | |
| 
 | |
|   for (const auto *FD : RD->fields()) {
 | |
|     if (FD->isUnnamedBitfield())
 | |
|       continue;
 | |
| 
 | |
|     // If there are too many fields, or if any of the fields are aggregates,
 | |
|     // just use the LCV as a default binding.
 | |
|     if (Fields.size() == SmallStructLimit)
 | |
|       return None;
 | |
| 
 | |
|     QualType Ty = FD->getType();
 | |
|     if (!(Ty->isScalarType() || Ty->isReferenceType()))
 | |
|       return None;
 | |
| 
 | |
|     Fields.push_back(FD);
 | |
|   }
 | |
| 
 | |
|   RegionBindingsRef NewB = B;
 | |
| 
 | |
|   for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
 | |
|     const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
 | |
|     SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
 | |
| 
 | |
|     const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
 | |
|     NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
 | |
|   }
 | |
| 
 | |
|   return NewB;
 | |
| }
 | |
| 
 | |
| RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
 | |
|                                                  const TypedValueRegion* R,
 | |
|                                                  SVal V) {
 | |
|   if (!Features.supportsFields())
 | |
|     return B;
 | |
| 
 | |
|   QualType T = R->getValueType();
 | |
|   assert(T->isStructureOrClassType());
 | |
| 
 | |
|   const RecordType* RT = T->getAs<RecordType>();
 | |
|   const RecordDecl *RD = RT->getDecl();
 | |
| 
 | |
|   if (!RD->isCompleteDefinition())
 | |
|     return B;
 | |
| 
 | |
|   // Handle lazy compound values and symbolic values.
 | |
|   if (Optional<nonloc::LazyCompoundVal> LCV =
 | |
|         V.getAs<nonloc::LazyCompoundVal>()) {
 | |
|     if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
 | |
|       return *NewB;
 | |
|     return bindAggregate(B, R, V);
 | |
|   }
 | |
|   if (V.getAs<nonloc::SymbolVal>())
 | |
|     return bindAggregate(B, R, V);
 | |
| 
 | |
|   // We may get non-CompoundVal accidentally due to imprecise cast logic or
 | |
|   // that we are binding symbolic struct value. Kill the field values, and if
 | |
|   // the value is symbolic go and bind it as a "default" binding.
 | |
|   if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
 | |
|     return bindAggregate(B, R, UnknownVal());
 | |
| 
 | |
|   const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
 | |
|   nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
 | |
| 
 | |
|   RecordDecl::field_iterator FI, FE;
 | |
|   RegionBindingsRef NewB(B);
 | |
| 
 | |
|   for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
 | |
| 
 | |
|     if (VI == VE)
 | |
|       break;
 | |
| 
 | |
|     // Skip any unnamed bitfields to stay in sync with the initializers.
 | |
|     if (FI->isUnnamedBitfield())
 | |
|       continue;
 | |
| 
 | |
|     QualType FTy = FI->getType();
 | |
|     const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
 | |
| 
 | |
|     if (FTy->isArrayType())
 | |
|       NewB = bindArray(NewB, FR, *VI);
 | |
|     else if (FTy->isStructureOrClassType())
 | |
|       NewB = bindStruct(NewB, FR, *VI);
 | |
|     else
 | |
|       NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
 | |
|     ++VI;
 | |
|   }
 | |
| 
 | |
|   // There may be fewer values in the initialize list than the fields of struct.
 | |
|   if (FI != FE) {
 | |
|     NewB = NewB.addBinding(R, BindingKey::Default,
 | |
|                            svalBuilder.makeIntVal(0, false));
 | |
|   }
 | |
| 
 | |
|   return NewB;
 | |
| }
 | |
| 
 | |
| RegionBindingsRef
 | |
| RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
 | |
|                                   const TypedRegion *R,
 | |
|                                   SVal Val) {
 | |
|   // Remove the old bindings, using 'R' as the root of all regions
 | |
|   // we will invalidate. Then add the new binding.
 | |
|   return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // State pruning.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class removeDeadBindingsWorker :
 | |
|   public ClusterAnalysis<removeDeadBindingsWorker> {
 | |
|   SmallVector<const SymbolicRegion*, 12> Postponed;
 | |
|   SymbolReaper &SymReaper;
 | |
|   const StackFrameContext *CurrentLCtx;
 | |
| 
 | |
| public:
 | |
|   removeDeadBindingsWorker(RegionStoreManager &rm,
 | |
|                            ProgramStateManager &stateMgr,
 | |
|                            RegionBindingsRef b, SymbolReaper &symReaper,
 | |
|                            const StackFrameContext *LCtx)
 | |
|     : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b),
 | |
|       SymReaper(symReaper), CurrentLCtx(LCtx) {}
 | |
| 
 | |
|   // Called by ClusterAnalysis.
 | |
|   void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
 | |
|   void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
 | |
|   using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
 | |
| 
 | |
|   using ClusterAnalysis::AddToWorkList;
 | |
| 
 | |
|   bool AddToWorkList(const MemRegion *R);
 | |
| 
 | |
|   bool UpdatePostponed();
 | |
|   void VisitBinding(SVal V);
 | |
| };
 | |
| }
 | |
| 
 | |
| bool removeDeadBindingsWorker::AddToWorkList(const MemRegion *R) {
 | |
|   const MemRegion *BaseR = R->getBaseRegion();
 | |
|   return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
 | |
| }
 | |
| 
 | |
| void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
 | |
|                                                    const ClusterBindings &C) {
 | |
| 
 | |
|   if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
 | |
|     if (SymReaper.isLive(VR))
 | |
|       AddToWorkList(baseR, &C);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
 | |
|     if (SymReaper.isLive(SR->getSymbol()))
 | |
|       AddToWorkList(SR, &C);
 | |
|     else
 | |
|       Postponed.push_back(SR);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
 | |
|     AddToWorkList(baseR, &C);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // CXXThisRegion in the current or parent location context is live.
 | |
|   if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
 | |
|     const StackArgumentsSpaceRegion *StackReg =
 | |
|       cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
 | |
|     const StackFrameContext *RegCtx = StackReg->getStackFrame();
 | |
|     if (CurrentLCtx &&
 | |
|         (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
 | |
|       AddToWorkList(TR, &C);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
 | |
|                                             const ClusterBindings *C) {
 | |
|   if (!C)
 | |
|     return;
 | |
| 
 | |
|   // Mark the symbol for any SymbolicRegion with live bindings as live itself.
 | |
|   // This means we should continue to track that symbol.
 | |
|   if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
 | |
|     SymReaper.markLive(SymR->getSymbol());
 | |
| 
 | |
|   for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
 | |
|     VisitBinding(I.getData());
 | |
| }
 | |
| 
 | |
| void removeDeadBindingsWorker::VisitBinding(SVal V) {
 | |
|   // Is it a LazyCompoundVal?  All referenced regions are live as well.
 | |
|   if (Optional<nonloc::LazyCompoundVal> LCS =
 | |
|           V.getAs<nonloc::LazyCompoundVal>()) {
 | |
| 
 | |
|     const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
 | |
| 
 | |
|     for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
 | |
|                                                         E = Vals.end();
 | |
|          I != E; ++I)
 | |
|       VisitBinding(*I);
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If V is a region, then add it to the worklist.
 | |
|   if (const MemRegion *R = V.getAsRegion()) {
 | |
|     AddToWorkList(R);
 | |
| 
 | |
|     // All regions captured by a block are also live.
 | |
|     if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
 | |
|       BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
 | |
|                                                 E = BR->referenced_vars_end();
 | |
|       for ( ; I != E; ++I)
 | |
|         AddToWorkList(I.getCapturedRegion());
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Update the set of live symbols.
 | |
|   for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
 | |
|        SI!=SE; ++SI)
 | |
|     SymReaper.markLive(*SI);
 | |
| }
 | |
| 
 | |
| bool removeDeadBindingsWorker::UpdatePostponed() {
 | |
|   // See if any postponed SymbolicRegions are actually live now, after
 | |
|   // having done a scan.
 | |
|   bool changed = false;
 | |
| 
 | |
|   for (SmallVectorImpl<const SymbolicRegion*>::iterator
 | |
|         I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
 | |
|     if (const SymbolicRegion *SR = *I) {
 | |
|       if (SymReaper.isLive(SR->getSymbol())) {
 | |
|         changed |= AddToWorkList(SR);
 | |
|         *I = nullptr;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return changed;
 | |
| }
 | |
| 
 | |
| StoreRef RegionStoreManager::removeDeadBindings(Store store,
 | |
|                                                 const StackFrameContext *LCtx,
 | |
|                                                 SymbolReaper& SymReaper) {
 | |
|   RegionBindingsRef B = getRegionBindings(store);
 | |
|   removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
 | |
|   W.GenerateClusters();
 | |
| 
 | |
|   // Enqueue the region roots onto the worklist.
 | |
|   for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
 | |
|        E = SymReaper.region_end(); I != E; ++I) {
 | |
|     W.AddToWorkList(*I);
 | |
|   }
 | |
| 
 | |
|   do W.RunWorkList(); while (W.UpdatePostponed());
 | |
| 
 | |
|   // We have now scanned the store, marking reachable regions and symbols
 | |
|   // as live.  We now remove all the regions that are dead from the store
 | |
|   // as well as update DSymbols with the set symbols that are now dead.
 | |
|   for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
 | |
|     const MemRegion *Base = I.getKey();
 | |
| 
 | |
|     // If the cluster has been visited, we know the region has been marked.
 | |
|     if (W.isVisited(Base))
 | |
|       continue;
 | |
| 
 | |
|     // Remove the dead entry.
 | |
|     B = B.remove(Base);
 | |
| 
 | |
|     if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
 | |
|       SymReaper.maybeDead(SymR->getSymbol());
 | |
| 
 | |
|     // Mark all non-live symbols that this binding references as dead.
 | |
|     const ClusterBindings &Cluster = I.getData();
 | |
|     for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
 | |
|          CI != CE; ++CI) {
 | |
|       SVal X = CI.getData();
 | |
|       SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
 | |
|       for (; SI != SE; ++SI)
 | |
|         SymReaper.maybeDead(*SI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return StoreRef(B.asStore(), *this);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Utility methods.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void RegionStoreManager::print(Store store, raw_ostream &OS,
 | |
|                                const char* nl, const char *sep) {
 | |
|   RegionBindingsRef B = getRegionBindings(store);
 | |
|   OS << "Store (direct and default bindings), "
 | |
|      << B.asStore()
 | |
|      << " :" << nl;
 | |
|   B.dump(OS, nl);
 | |
| }
 |