534 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			534 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
| // SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defines SValBuilder, the base class for all (complete) SValBuilder
 | |
| //  implementations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
 | |
| #include "clang/AST/DeclCXX.h"
 | |
| #include "clang/AST/ExprCXX.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
 | |
| 
 | |
| using namespace clang;
 | |
| using namespace ento;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Basic SVal creation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void SValBuilder::anchor() { }
 | |
| 
 | |
| DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
 | |
|   if (Loc::isLocType(type))
 | |
|     return makeNull();
 | |
| 
 | |
|   if (type->isIntegralOrEnumerationType())
 | |
|     return makeIntVal(0, type);
 | |
| 
 | |
|   // FIXME: Handle floats.
 | |
|   // FIXME: Handle structs.
 | |
|   return UnknownVal();
 | |
| }
 | |
| 
 | |
| NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
 | |
|                                 const llvm::APSInt& rhs, QualType type) {
 | |
|   // The Environment ensures we always get a persistent APSInt in
 | |
|   // BasicValueFactory, so we don't need to get the APSInt from
 | |
|   // BasicValueFactory again.
 | |
|   assert(lhs);
 | |
|   assert(!Loc::isLocType(type));
 | |
|   return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
 | |
| }
 | |
| 
 | |
| NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
 | |
|                                BinaryOperator::Opcode op, const SymExpr *rhs,
 | |
|                                QualType type) {
 | |
|   assert(rhs);
 | |
|   assert(!Loc::isLocType(type));
 | |
|   return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
 | |
| }
 | |
| 
 | |
| NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
 | |
|                                const SymExpr *rhs, QualType type) {
 | |
|   assert(lhs && rhs);
 | |
|   assert(!Loc::isLocType(type));
 | |
|   return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
 | |
| }
 | |
| 
 | |
| NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
 | |
|                                QualType fromTy, QualType toTy) {
 | |
|   assert(operand);
 | |
|   assert(!Loc::isLocType(toTy));
 | |
|   return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
 | |
| }
 | |
| 
 | |
| SVal SValBuilder::convertToArrayIndex(SVal val) {
 | |
|   if (val.isUnknownOrUndef())
 | |
|     return val;
 | |
| 
 | |
|   // Common case: we have an appropriately sized integer.
 | |
|   if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
 | |
|     const llvm::APSInt& I = CI->getValue();
 | |
|     if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
 | |
|       return val;
 | |
|   }
 | |
| 
 | |
|   return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
 | |
| }
 | |
| 
 | |
| nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
 | |
|   return makeTruthVal(boolean->getValue());
 | |
| }
 | |
| 
 | |
| DefinedOrUnknownSVal
 | |
| SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
 | |
|   QualType T = region->getValueType();
 | |
| 
 | |
|   if (!SymbolManager::canSymbolicate(T))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   SymbolRef sym = SymMgr.getRegionValueSymbol(region);
 | |
| 
 | |
|   if (Loc::isLocType(T))
 | |
|     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 | |
| 
 | |
|   return nonloc::SymbolVal(sym);
 | |
| }
 | |
| 
 | |
| DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
 | |
|                                                    const Expr *Ex,
 | |
|                                                    const LocationContext *LCtx,
 | |
|                                                    unsigned Count) {
 | |
|   QualType T = Ex->getType();
 | |
| 
 | |
|   // Compute the type of the result. If the expression is not an R-value, the
 | |
|   // result should be a location.
 | |
|   QualType ExType = Ex->getType();
 | |
|   if (Ex->isGLValue())
 | |
|     T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
 | |
| 
 | |
|   return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
 | |
| }
 | |
| 
 | |
| DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
 | |
|                                                    const Expr *expr,
 | |
|                                                    const LocationContext *LCtx,
 | |
|                                                    QualType type,
 | |
|                                                    unsigned count) {
 | |
|   if (!SymbolManager::canSymbolicate(type))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
 | |
| 
 | |
|   if (Loc::isLocType(type))
 | |
|     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 | |
| 
 | |
|   return nonloc::SymbolVal(sym);
 | |
| }
 | |
| 
 | |
| 
 | |
| DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
 | |
|                                                    const LocationContext *LCtx,
 | |
|                                                    QualType type,
 | |
|                                                    unsigned visitCount) {
 | |
|   if (!SymbolManager::canSymbolicate(type))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
 | |
| 
 | |
|   if (Loc::isLocType(type))
 | |
|     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 | |
| 
 | |
|   return nonloc::SymbolVal(sym);
 | |
| }
 | |
| 
 | |
| DefinedOrUnknownSVal
 | |
| SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
 | |
|                                       const LocationContext *LCtx,
 | |
|                                       unsigned VisitCount) {
 | |
|   QualType T = E->getType();
 | |
|   assert(Loc::isLocType(T));
 | |
|   assert(SymbolManager::canSymbolicate(T));
 | |
| 
 | |
|   SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
 | |
|   return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
 | |
| }
 | |
| 
 | |
| DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
 | |
|                                               const MemRegion *region,
 | |
|                                               const Expr *expr, QualType type,
 | |
|                                               unsigned count) {
 | |
|   assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
 | |
| 
 | |
|   SymbolRef sym =
 | |
|       SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
 | |
| 
 | |
|   if (Loc::isLocType(type))
 | |
|     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 | |
| 
 | |
|   return nonloc::SymbolVal(sym);
 | |
| }
 | |
| 
 | |
| DefinedOrUnknownSVal
 | |
| SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
 | |
|                                              const TypedValueRegion *region) {
 | |
|   QualType T = region->getValueType();
 | |
| 
 | |
|   if (!SymbolManager::canSymbolicate(T))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
 | |
| 
 | |
|   if (Loc::isLocType(T))
 | |
|     return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
 | |
| 
 | |
|   return nonloc::SymbolVal(sym);
 | |
| }
 | |
| 
 | |
| DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
 | |
|   return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
 | |
| }
 | |
| 
 | |
| DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
 | |
|                                          CanQualType locTy,
 | |
|                                          const LocationContext *locContext,
 | |
|                                          unsigned blockCount) {
 | |
|   const BlockTextRegion *BC =
 | |
|     MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
 | |
|   const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
 | |
|                                                         blockCount);
 | |
|   return loc::MemRegionVal(BD);
 | |
| }
 | |
| 
 | |
| /// Return a memory region for the 'this' object reference.
 | |
| loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
 | |
|                                           const StackFrameContext *SFC) {
 | |
|   return loc::MemRegionVal(getRegionManager().
 | |
|                            getCXXThisRegion(D->getThisType(getContext()), SFC));
 | |
| }
 | |
| 
 | |
| /// Return a memory region for the 'this' object reference.
 | |
| loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
 | |
|                                           const StackFrameContext *SFC) {
 | |
|   const Type *T = D->getTypeForDecl();
 | |
|   QualType PT = getContext().getPointerType(QualType(T, 0));
 | |
|   return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
 | |
| }
 | |
| 
 | |
| Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
 | |
|   E = E->IgnoreParens();
 | |
| 
 | |
|   switch (E->getStmtClass()) {
 | |
|   // Handle expressions that we treat differently from the AST's constant
 | |
|   // evaluator.
 | |
|   case Stmt::AddrLabelExprClass:
 | |
|     return makeLoc(cast<AddrLabelExpr>(E));
 | |
| 
 | |
|   case Stmt::CXXScalarValueInitExprClass:
 | |
|   case Stmt::ImplicitValueInitExprClass:
 | |
|     return makeZeroVal(E->getType());
 | |
| 
 | |
|   case Stmt::ObjCStringLiteralClass: {
 | |
|     const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
 | |
|     return makeLoc(getRegionManager().getObjCStringRegion(SL));
 | |
|   }
 | |
| 
 | |
|   case Stmt::StringLiteralClass: {
 | |
|     const StringLiteral *SL = cast<StringLiteral>(E);
 | |
|     return makeLoc(getRegionManager().getStringRegion(SL));
 | |
|   }
 | |
| 
 | |
|   // Fast-path some expressions to avoid the overhead of going through the AST's
 | |
|   // constant evaluator
 | |
|   case Stmt::CharacterLiteralClass: {
 | |
|     const CharacterLiteral *C = cast<CharacterLiteral>(E);
 | |
|     return makeIntVal(C->getValue(), C->getType());
 | |
|   }
 | |
| 
 | |
|   case Stmt::CXXBoolLiteralExprClass:
 | |
|     return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
 | |
| 
 | |
|   case Stmt::TypeTraitExprClass: {
 | |
|     const TypeTraitExpr *TE = cast<TypeTraitExpr>(E);
 | |
|     return makeTruthVal(TE->getValue(), TE->getType());
 | |
|   }
 | |
| 
 | |
|   case Stmt::IntegerLiteralClass:
 | |
|     return makeIntVal(cast<IntegerLiteral>(E));
 | |
| 
 | |
|   case Stmt::ObjCBoolLiteralExprClass:
 | |
|     return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
 | |
| 
 | |
|   case Stmt::CXXNullPtrLiteralExprClass:
 | |
|     return makeNull();
 | |
| 
 | |
|   case Stmt::ImplicitCastExprClass: {
 | |
|     const CastExpr *CE = cast<CastExpr>(E);
 | |
|     if (CE->getCastKind() == CK_ArrayToPointerDecay) {
 | |
|       Optional<SVal> ArrayVal = getConstantVal(CE->getSubExpr());
 | |
|       if (!ArrayVal)
 | |
|         return None;
 | |
|       return evalCast(*ArrayVal, CE->getType(), CE->getSubExpr()->getType());
 | |
|     }
 | |
|     // FALLTHROUGH
 | |
|   }
 | |
| 
 | |
|   // If we don't have a special case, fall back to the AST's constant evaluator.
 | |
|   default: {
 | |
|     // Don't try to come up with a value for materialized temporaries.
 | |
|     if (E->isGLValue())
 | |
|       return None;
 | |
| 
 | |
|     ASTContext &Ctx = getContext();
 | |
|     llvm::APSInt Result;
 | |
|     if (E->EvaluateAsInt(Result, Ctx))
 | |
|       return makeIntVal(Result);
 | |
| 
 | |
|     if (Loc::isLocType(E->getType()))
 | |
|       if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
 | |
|         return makeNull();
 | |
| 
 | |
|     return None;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
 | |
|                                    BinaryOperator::Opcode Op,
 | |
|                                    NonLoc LHS, NonLoc RHS,
 | |
|                                    QualType ResultTy) {
 | |
|   if (!State->isTainted(RHS) && !State->isTainted(LHS))
 | |
|     return UnknownVal();
 | |
| 
 | |
|   const SymExpr *symLHS = LHS.getAsSymExpr();
 | |
|   const SymExpr *symRHS = RHS.getAsSymExpr();
 | |
|   // TODO: When the Max Complexity is reached, we should conjure a symbol
 | |
|   // instead of generating an Unknown value and propagate the taint info to it.
 | |
|   const unsigned MaxComp = 10000; // 100000 28X
 | |
| 
 | |
|   if (symLHS && symRHS &&
 | |
|       (symLHS->computeComplexity() + symRHS->computeComplexity()) <  MaxComp)
 | |
|     return makeNonLoc(symLHS, Op, symRHS, ResultTy);
 | |
| 
 | |
|   if (symLHS && symLHS->computeComplexity() < MaxComp)
 | |
|     if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
 | |
|       return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
 | |
| 
 | |
|   if (symRHS && symRHS->computeComplexity() < MaxComp)
 | |
|     if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
 | |
|       return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
 | |
| 
 | |
|   return UnknownVal();
 | |
| }
 | |
| 
 | |
| 
 | |
| SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
 | |
|                             SVal lhs, SVal rhs, QualType type) {
 | |
| 
 | |
|   if (lhs.isUndef() || rhs.isUndef())
 | |
|     return UndefinedVal();
 | |
| 
 | |
|   if (lhs.isUnknown() || rhs.isUnknown())
 | |
|     return UnknownVal();
 | |
| 
 | |
|   if (Optional<Loc> LV = lhs.getAs<Loc>()) {
 | |
|     if (Optional<Loc> RV = rhs.getAs<Loc>())
 | |
|       return evalBinOpLL(state, op, *LV, *RV, type);
 | |
| 
 | |
|     return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
 | |
|   }
 | |
| 
 | |
|   if (Optional<Loc> RV = rhs.getAs<Loc>()) {
 | |
|     // Support pointer arithmetic where the addend is on the left
 | |
|     // and the pointer on the right.
 | |
|     assert(op == BO_Add);
 | |
| 
 | |
|     // Commute the operands.
 | |
|     return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
 | |
|   }
 | |
| 
 | |
|   return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
 | |
|                      type);
 | |
| }
 | |
| 
 | |
| DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
 | |
|                                          DefinedOrUnknownSVal lhs,
 | |
|                                          DefinedOrUnknownSVal rhs) {
 | |
|   return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType())
 | |
|       .castAs<DefinedOrUnknownSVal>();
 | |
| }
 | |
| 
 | |
| /// Recursively check if the pointer types are equal modulo const, volatile,
 | |
| /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
 | |
| /// Assumes the input types are canonical.
 | |
| static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
 | |
|                                                          QualType FromTy) {
 | |
|   while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
 | |
|     Qualifiers Quals1, Quals2;
 | |
|     ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
 | |
|     FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
 | |
| 
 | |
|     // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
 | |
|     // spaces) are identical.
 | |
|     Quals1.removeCVRQualifiers();
 | |
|     Quals2.removeCVRQualifiers();
 | |
|     if (Quals1 != Quals2)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If we are casting to void, the 'From' value can be used to represent the
 | |
|   // 'To' value.
 | |
|   if (ToTy->isVoidType())
 | |
|     return true;
 | |
| 
 | |
|   if (ToTy != FromTy)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // FIXME: should rewrite according to the cast kind.
 | |
| SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
 | |
|   castTy = Context.getCanonicalType(castTy);
 | |
|   originalTy = Context.getCanonicalType(originalTy);
 | |
|   if (val.isUnknownOrUndef() || castTy == originalTy)
 | |
|     return val;
 | |
| 
 | |
|   if (castTy->isBooleanType()) {
 | |
|     if (val.isUnknownOrUndef())
 | |
|       return val;
 | |
|     if (val.isConstant())
 | |
|       return makeTruthVal(!val.isZeroConstant(), castTy);
 | |
|     if (!Loc::isLocType(originalTy) &&
 | |
|         !originalTy->isIntegralOrEnumerationType() &&
 | |
|         !originalTy->isMemberPointerType())
 | |
|       return UnknownVal();
 | |
|     if (SymbolRef Sym = val.getAsSymbol(true)) {
 | |
|       BasicValueFactory &BVF = getBasicValueFactory();
 | |
|       // FIXME: If we had a state here, we could see if the symbol is known to
 | |
|       // be zero, but we don't.
 | |
|       return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
 | |
|     }
 | |
|     // Loc values are not always true, they could be weakly linked functions.
 | |
|     if (Optional<Loc> L = val.getAs<Loc>())
 | |
|       return evalCastFromLoc(*L, castTy);
 | |
| 
 | |
|     Loc L = val.castAs<nonloc::LocAsInteger>().getLoc();
 | |
|     return evalCastFromLoc(L, castTy);
 | |
|   }
 | |
| 
 | |
|   // For const casts, casts to void, just propagate the value.
 | |
|   if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
 | |
|     if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
 | |
|                                          Context.getPointerType(originalTy)))
 | |
|       return val;
 | |
| 
 | |
|   // Check for casts from pointers to integers.
 | |
|   if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
 | |
|     return evalCastFromLoc(val.castAs<Loc>(), castTy);
 | |
| 
 | |
|   // Check for casts from integers to pointers.
 | |
|   if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
 | |
|     if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
 | |
|       if (const MemRegion *R = LV->getLoc().getAsRegion()) {
 | |
|         StoreManager &storeMgr = StateMgr.getStoreManager();
 | |
|         R = storeMgr.castRegion(R, castTy);
 | |
|         return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
 | |
|       }
 | |
|       return LV->getLoc();
 | |
|     }
 | |
|     return dispatchCast(val, castTy);
 | |
|   }
 | |
| 
 | |
|   // Just pass through function and block pointers.
 | |
|   if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
 | |
|     assert(Loc::isLocType(castTy));
 | |
|     return val;
 | |
|   }
 | |
| 
 | |
|   // Check for casts from array type to another type.
 | |
|   if (const ArrayType *arrayT =
 | |
|                       dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
 | |
|     // We will always decay to a pointer.
 | |
|     QualType elemTy = arrayT->getElementType();
 | |
|     val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
 | |
| 
 | |
|     // Are we casting from an array to a pointer?  If so just pass on
 | |
|     // the decayed value.
 | |
|     if (castTy->isPointerType() || castTy->isReferenceType())
 | |
|       return val;
 | |
| 
 | |
|     // Are we casting from an array to an integer?  If so, cast the decayed
 | |
|     // pointer value to an integer.
 | |
|     assert(castTy->isIntegralOrEnumerationType());
 | |
| 
 | |
|     // FIXME: Keep these here for now in case we decide soon that we
 | |
|     // need the original decayed type.
 | |
|     //    QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
 | |
|     //    QualType pointerTy = C.getPointerType(elemTy);
 | |
|     return evalCastFromLoc(val.castAs<Loc>(), castTy);
 | |
|   }
 | |
| 
 | |
|   // Check for casts from a region to a specific type.
 | |
|   if (const MemRegion *R = val.getAsRegion()) {
 | |
|     // Handle other casts of locations to integers.
 | |
|     if (castTy->isIntegralOrEnumerationType())
 | |
|       return evalCastFromLoc(loc::MemRegionVal(R), castTy);
 | |
| 
 | |
|     // FIXME: We should handle the case where we strip off view layers to get
 | |
|     //  to a desugared type.
 | |
|     if (!Loc::isLocType(castTy)) {
 | |
|       // FIXME: There can be gross cases where one casts the result of a function
 | |
|       // (that returns a pointer) to some other value that happens to fit
 | |
|       // within that pointer value.  We currently have no good way to
 | |
|       // model such operations.  When this happens, the underlying operation
 | |
|       // is that the caller is reasoning about bits.  Conceptually we are
 | |
|       // layering a "view" of a location on top of those bits.  Perhaps
 | |
|       // we need to be more lazy about mutual possible views, even on an
 | |
|       // SVal?  This may be necessary for bit-level reasoning as well.
 | |
|       return UnknownVal();
 | |
|     }
 | |
| 
 | |
|     // We get a symbolic function pointer for a dereference of a function
 | |
|     // pointer, but it is of function type. Example:
 | |
| 
 | |
|     //  struct FPRec {
 | |
|     //    void (*my_func)(int * x);
 | |
|     //  };
 | |
|     //
 | |
|     //  int bar(int x);
 | |
|     //
 | |
|     //  int f1_a(struct FPRec* foo) {
 | |
|     //    int x;
 | |
|     //    (*foo->my_func)(&x);
 | |
|     //    return bar(x)+1; // no-warning
 | |
|     //  }
 | |
| 
 | |
|     assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
 | |
|            originalTy->isBlockPointerType() || castTy->isReferenceType());
 | |
| 
 | |
|     StoreManager &storeMgr = StateMgr.getStoreManager();
 | |
| 
 | |
|     // Delegate to store manager to get the result of casting a region to a
 | |
|     // different type.  If the MemRegion* returned is NULL, this expression
 | |
|     // Evaluates to UnknownVal.
 | |
|     R = storeMgr.castRegion(R, castTy);
 | |
|     return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
 | |
|   }
 | |
| 
 | |
|   return dispatchCast(val, castTy);
 | |
| }
 |