335 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			335 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
| //== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file defines SimpleConstraintManager, a class that holds code shared
 | |
| //  between BasicConstraintManager and RangeConstraintManager.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SimpleConstraintManager.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
 | |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
 | |
| 
 | |
| namespace clang {
 | |
| 
 | |
| namespace ento {
 | |
| 
 | |
| SimpleConstraintManager::~SimpleConstraintManager() {}
 | |
| 
 | |
| bool SimpleConstraintManager::canReasonAbout(SVal X) const {
 | |
|   Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
 | |
|   if (SymVal && SymVal->isExpression()) {
 | |
|     const SymExpr *SE = SymVal->getSymbol();
 | |
| 
 | |
|     if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
 | |
|       switch (SIE->getOpcode()) {
 | |
|           // We don't reason yet about bitwise-constraints on symbolic values.
 | |
|         case BO_And:
 | |
|         case BO_Or:
 | |
|         case BO_Xor:
 | |
|           return false;
 | |
|         // We don't reason yet about these arithmetic constraints on
 | |
|         // symbolic values.
 | |
|         case BO_Mul:
 | |
|         case BO_Div:
 | |
|         case BO_Rem:
 | |
|         case BO_Shl:
 | |
|         case BO_Shr:
 | |
|           return false;
 | |
|         // All other cases.
 | |
|         default:
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
 | |
|       if (BinaryOperator::isComparisonOp(SSE->getOpcode())) {
 | |
|         // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
 | |
|         if (Loc::isLocType(SSE->getLHS()->getType())) {
 | |
|           assert(Loc::isLocType(SSE->getRHS()->getType()));
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
 | |
|                                                DefinedSVal Cond,
 | |
|                                                bool Assumption) {
 | |
|   // If we have a Loc value, cast it to a bool NonLoc first.
 | |
|   if (Optional<Loc> LV = Cond.getAs<Loc>()) {
 | |
|     SValBuilder &SVB = state->getStateManager().getSValBuilder();
 | |
|     QualType T;
 | |
|     const MemRegion *MR = LV->getAsRegion();
 | |
|     if (const TypedRegion *TR = dyn_cast_or_null<TypedRegion>(MR))
 | |
|       T = TR->getLocationType();
 | |
|     else
 | |
|       T = SVB.getContext().VoidPtrTy;
 | |
| 
 | |
|     Cond = SVB.evalCast(*LV, SVB.getContext().BoolTy, T).castAs<DefinedSVal>();
 | |
|   }
 | |
| 
 | |
|   return assume(state, Cond.castAs<NonLoc>(), Assumption);
 | |
| }
 | |
| 
 | |
| ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
 | |
|                                                NonLoc cond,
 | |
|                                                bool assumption) {
 | |
|   state = assumeAux(state, cond, assumption);
 | |
|   if (NotifyAssumeClients && SU)
 | |
|     return SU->processAssume(state, cond, assumption);
 | |
|   return state;
 | |
| }
 | |
| 
 | |
| 
 | |
| ProgramStateRef
 | |
| SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State,
 | |
|                                             SymbolRef Sym, bool Assumption) {
 | |
|   BasicValueFactory &BVF = getBasicVals();
 | |
|   QualType T = Sym->getType();
 | |
| 
 | |
|   // None of the constraint solvers currently support non-integer types.
 | |
|   if (!T->isIntegralOrEnumerationType())
 | |
|     return State;
 | |
| 
 | |
|   const llvm::APSInt &zero = BVF.getValue(0, T);
 | |
|   if (Assumption)
 | |
|     return assumeSymNE(State, Sym, zero, zero);
 | |
|   else
 | |
|     return assumeSymEQ(State, Sym, zero, zero);
 | |
| }
 | |
| 
 | |
| ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
 | |
|                                                   NonLoc Cond,
 | |
|                                                   bool Assumption) {
 | |
| 
 | |
|   // We cannot reason about SymSymExprs, and can only reason about some
 | |
|   // SymIntExprs.
 | |
|   if (!canReasonAbout(Cond)) {
 | |
|     // Just add the constraint to the expression without trying to simplify.
 | |
|     SymbolRef sym = Cond.getAsSymExpr();
 | |
|     return assumeAuxForSymbol(state, sym, Assumption);
 | |
|   }
 | |
| 
 | |
|   switch (Cond.getSubKind()) {
 | |
|   default:
 | |
|     llvm_unreachable("'Assume' not implemented for this NonLoc");
 | |
| 
 | |
|   case nonloc::SymbolValKind: {
 | |
|     nonloc::SymbolVal SV = Cond.castAs<nonloc::SymbolVal>();
 | |
|     SymbolRef sym = SV.getSymbol();
 | |
|     assert(sym);
 | |
| 
 | |
|     // Handle SymbolData.
 | |
|     if (!SV.isExpression()) {
 | |
|       return assumeAuxForSymbol(state, sym, Assumption);
 | |
| 
 | |
|     // Handle symbolic expression.
 | |
|     } else if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym)) {
 | |
|       // We can only simplify expressions whose RHS is an integer.
 | |
| 
 | |
|       BinaryOperator::Opcode op = SE->getOpcode();
 | |
|       if (BinaryOperator::isComparisonOp(op)) {
 | |
|         if (!Assumption)
 | |
|           op = BinaryOperator::negateComparisonOp(op);
 | |
| 
 | |
|         return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
 | |
|       }
 | |
| 
 | |
|     } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(sym)) {
 | |
|       // Translate "a != b" to "(b - a) != 0".
 | |
|       // We invert the order of the operands as a heuristic for how loop
 | |
|       // conditions are usually written ("begin != end") as compared to length
 | |
|       // calculations ("end - begin"). The more correct thing to do would be to
 | |
|       // canonicalize "a - b" and "b - a", which would allow us to treat
 | |
|       // "a != b" and "b != a" the same.
 | |
|       SymbolManager &SymMgr = getSymbolManager();
 | |
|       BinaryOperator::Opcode Op = SSE->getOpcode();
 | |
|       assert(BinaryOperator::isComparisonOp(Op));
 | |
| 
 | |
|       // For now, we only support comparing pointers.
 | |
|       assert(Loc::isLocType(SSE->getLHS()->getType()));
 | |
|       assert(Loc::isLocType(SSE->getRHS()->getType()));
 | |
|       QualType DiffTy = SymMgr.getContext().getPointerDiffType();
 | |
|       SymbolRef Subtraction = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub,
 | |
|                                                    SSE->getLHS(), DiffTy);
 | |
| 
 | |
|       const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
 | |
|       Op = BinaryOperator::reverseComparisonOp(Op);
 | |
|       if (!Assumption)
 | |
|         Op = BinaryOperator::negateComparisonOp(Op);
 | |
|       return assumeSymRel(state, Subtraction, Op, Zero);
 | |
|     }
 | |
| 
 | |
|     // If we get here, there's nothing else we can do but treat the symbol as
 | |
|     // opaque.
 | |
|     return assumeAuxForSymbol(state, sym, Assumption);
 | |
|   }
 | |
| 
 | |
|   case nonloc::ConcreteIntKind: {
 | |
|     bool b = Cond.castAs<nonloc::ConcreteInt>().getValue() != 0;
 | |
|     bool isFeasible = b ? Assumption : !Assumption;
 | |
|     return isFeasible ? state : nullptr;
 | |
|   }
 | |
| 
 | |
|   case nonloc::LocAsIntegerKind:
 | |
|     return assume(state, Cond.castAs<nonloc::LocAsInteger>().getLoc(),
 | |
|                   Assumption);
 | |
|   } // end switch
 | |
| }
 | |
| 
 | |
| ProgramStateRef SimpleConstraintManager::assumeWithinInclusiveRange(
 | |
|     ProgramStateRef State, NonLoc Value, const llvm::APSInt &From,
 | |
|     const llvm::APSInt &To, bool InRange) {
 | |
| 
 | |
|   assert(From.isUnsigned() == To.isUnsigned() &&
 | |
|          From.getBitWidth() == To.getBitWidth() &&
 | |
|          "Values should have same types!");
 | |
| 
 | |
|   if (!canReasonAbout(Value)) {
 | |
|     // Just add the constraint to the expression without trying to simplify.
 | |
|     SymbolRef Sym = Value.getAsSymExpr();
 | |
|     assert(Sym);
 | |
|     return assumeSymWithinInclusiveRange(State, Sym, From, To, InRange);
 | |
|   }
 | |
| 
 | |
|   switch (Value.getSubKind()) {
 | |
|   default:
 | |
|     llvm_unreachable("'assumeWithinInclusiveRange' is not implemented"
 | |
|                      "for this NonLoc");
 | |
| 
 | |
|   case nonloc::LocAsIntegerKind:
 | |
|   case nonloc::SymbolValKind: {
 | |
|     if (SymbolRef Sym = Value.getAsSymbol())
 | |
|       return assumeSymWithinInclusiveRange(State, Sym, From, To, InRange);
 | |
|     return State;
 | |
|   } // end switch
 | |
| 
 | |
|   case nonloc::ConcreteIntKind: {
 | |
|     const llvm::APSInt &IntVal = Value.castAs<nonloc::ConcreteInt>().getValue();
 | |
|     bool IsInRange = IntVal >= From && IntVal <= To;
 | |
|     bool isFeasible = (IsInRange == InRange);
 | |
|     return isFeasible ? State : nullptr;
 | |
|   }
 | |
|   } // end switch
 | |
| }
 | |
| 
 | |
| static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment) {
 | |
|   // Is it a "($sym+constant1)" expression?
 | |
|   if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
 | |
|     BinaryOperator::Opcode Op = SE->getOpcode();
 | |
|     if (Op == BO_Add || Op == BO_Sub) {
 | |
|       Sym = SE->getLHS();
 | |
|       Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
 | |
| 
 | |
|       // Don't forget to negate the adjustment if it's being subtracted.
 | |
|       // This should happen /after/ promotion, in case the value being
 | |
|       // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
 | |
|       if (Op == BO_Sub)
 | |
|         Adjustment = -Adjustment;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state,
 | |
|                                                      const SymExpr *LHS,
 | |
|                                                      BinaryOperator::Opcode op,
 | |
|                                                      const llvm::APSInt& Int) {
 | |
|   assert(BinaryOperator::isComparisonOp(op) &&
 | |
|          "Non-comparison ops should be rewritten as comparisons to zero.");
 | |
| 
 | |
|   // Get the type used for calculating wraparound.
 | |
|   BasicValueFactory &BVF = getBasicVals();
 | |
|   APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType());
 | |
| 
 | |
|   // We only handle simple comparisons of the form "$sym == constant"
 | |
|   // or "($sym+constant1) == constant2".
 | |
|   // The adjustment is "constant1" in the above expression. It's used to
 | |
|   // "slide" the solution range around for modular arithmetic. For example,
 | |
|   // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
 | |
|   // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
 | |
|   // the subclasses of SimpleConstraintManager to handle the adjustment.
 | |
|   SymbolRef Sym = LHS;
 | |
|   llvm::APSInt Adjustment = WraparoundType.getZeroValue();
 | |
|   computeAdjustment(Sym, Adjustment);
 | |
| 
 | |
|   // Convert the right-hand side integer as necessary.
 | |
|   APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
 | |
|   llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
 | |
| 
 | |
|   // Prefer unsigned comparisons.
 | |
|   if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
 | |
|       ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
 | |
|     Adjustment.setIsSigned(false);
 | |
| 
 | |
|   switch (op) {
 | |
|   default:
 | |
|     llvm_unreachable("invalid operation not caught by assertion above");
 | |
| 
 | |
|   case BO_EQ:
 | |
|     return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
 | |
| 
 | |
|   case BO_NE:
 | |
|     return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
 | |
| 
 | |
|   case BO_GT:
 | |
|     return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
 | |
| 
 | |
|   case BO_GE:
 | |
|     return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
 | |
| 
 | |
|   case BO_LT:
 | |
|     return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
 | |
| 
 | |
|   case BO_LE:
 | |
|     return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
 | |
|   } // end switch
 | |
| }
 | |
| 
 | |
| ProgramStateRef
 | |
| SimpleConstraintManager::assumeSymWithinInclusiveRange(ProgramStateRef State,
 | |
|                                                        SymbolRef Sym,
 | |
|                                                        const llvm::APSInt &From,
 | |
|                                                        const llvm::APSInt &To,
 | |
|                                                        bool InRange) {
 | |
|   // Get the type used for calculating wraparound.
 | |
|   BasicValueFactory &BVF = getBasicVals();
 | |
|   APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
 | |
| 
 | |
|   llvm::APSInt Adjustment = WraparoundType.getZeroValue();
 | |
|   SymbolRef AdjustedSym = Sym;
 | |
|   computeAdjustment(AdjustedSym, Adjustment);
 | |
| 
 | |
|   // Convert the right-hand side integer as necessary.
 | |
|   APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
 | |
|   llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
 | |
|   llvm::APSInt ConvertedTo = ComparisonType.convert(To);
 | |
| 
 | |
|   // Prefer unsigned comparisons.
 | |
|   if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
 | |
|       ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
 | |
|     Adjustment.setIsSigned(false);
 | |
| 
 | |
|   if (InRange)
 | |
|     return assumeSymbolWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
 | |
|                                             ConvertedTo, Adjustment);
 | |
|   return assumeSymbolOutOfInclusiveRange(State, AdjustedSym, ConvertedFrom,
 | |
|                                          ConvertedTo, Adjustment);
 | |
| }
 | |
| 
 | |
| } // end of namespace ento
 | |
| 
 | |
| } // end of namespace clang
 |