424 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			424 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- asan_interface_test.cc --------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file is a part of AddressSanitizer, an address sanity checker.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| #include "asan_test_utils.h"
 | |
| #include <sanitizer/allocator_interface.h>
 | |
| #include <sanitizer/asan_interface.h>
 | |
| 
 | |
| TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) {
 | |
|   EXPECT_EQ(0U, __sanitizer_get_estimated_allocated_size(0));
 | |
|   const size_t sizes[] = { 1, 30, 1<<30 };
 | |
|   for (size_t i = 0; i < 3; i++) {
 | |
|     EXPECT_EQ(sizes[i], __sanitizer_get_estimated_allocated_size(sizes[i]));
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const char* kGetAllocatedSizeErrorMsg =
 | |
|   "attempting to call __sanitizer_get_allocated_size";
 | |
| 
 | |
| TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) {
 | |
|   const size_t kArraySize = 100;
 | |
|   char *array = Ident((char*)malloc(kArraySize));
 | |
|   int *int_ptr = Ident(new int);
 | |
| 
 | |
|   // Allocated memory is owned by allocator. Allocated size should be
 | |
|   // equal to requested size.
 | |
|   EXPECT_EQ(true, __sanitizer_get_ownership(array));
 | |
|   EXPECT_EQ(kArraySize, __sanitizer_get_allocated_size(array));
 | |
|   EXPECT_EQ(true, __sanitizer_get_ownership(int_ptr));
 | |
|   EXPECT_EQ(sizeof(int), __sanitizer_get_allocated_size(int_ptr));
 | |
| 
 | |
|   // We cannot call GetAllocatedSize from the memory we didn't map,
 | |
|   // and from the interior pointers (not returned by previous malloc).
 | |
|   void *wild_addr = (void*)0x1;
 | |
|   EXPECT_FALSE(__sanitizer_get_ownership(wild_addr));
 | |
|   EXPECT_DEATH(__sanitizer_get_allocated_size(wild_addr),
 | |
|                kGetAllocatedSizeErrorMsg);
 | |
|   EXPECT_FALSE(__sanitizer_get_ownership(array + kArraySize / 2));
 | |
|   EXPECT_DEATH(__sanitizer_get_allocated_size(array + kArraySize / 2),
 | |
|                kGetAllocatedSizeErrorMsg);
 | |
| 
 | |
|   // NULL is not owned, but is a valid argument for
 | |
|   // __sanitizer_get_allocated_size().
 | |
|   EXPECT_FALSE(__sanitizer_get_ownership(NULL));
 | |
|   EXPECT_EQ(0U, __sanitizer_get_allocated_size(NULL));
 | |
| 
 | |
|   // When memory is freed, it's not owned, and call to GetAllocatedSize
 | |
|   // is forbidden.
 | |
|   free(array);
 | |
|   EXPECT_FALSE(__sanitizer_get_ownership(array));
 | |
|   EXPECT_DEATH(__sanitizer_get_allocated_size(array),
 | |
|                kGetAllocatedSizeErrorMsg);
 | |
|   delete int_ptr;
 | |
| 
 | |
|   void *zero_alloc = Ident(malloc(0));
 | |
|   if (zero_alloc != 0) {
 | |
|     // If malloc(0) is not null, this pointer is owned and should have valid
 | |
|     // allocated size.
 | |
|     EXPECT_TRUE(__sanitizer_get_ownership(zero_alloc));
 | |
|     // Allocated size is 0 or 1 depending on the allocator used.
 | |
|     EXPECT_LT(__sanitizer_get_allocated_size(zero_alloc), 2U);
 | |
|   }
 | |
|   free(zero_alloc);
 | |
| }
 | |
| 
 | |
| TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) {
 | |
|   size_t before_malloc, after_malloc, after_free;
 | |
|   char *array;
 | |
|   const size_t kMallocSize = 100;
 | |
|   before_malloc = __sanitizer_get_current_allocated_bytes();
 | |
| 
 | |
|   array = Ident((char*)malloc(kMallocSize));
 | |
|   after_malloc = __sanitizer_get_current_allocated_bytes();
 | |
|   EXPECT_EQ(before_malloc + kMallocSize, after_malloc);
 | |
| 
 | |
|   free(array);
 | |
|   after_free = __sanitizer_get_current_allocated_bytes();
 | |
|   EXPECT_EQ(before_malloc, after_free);
 | |
| }
 | |
| 
 | |
| TEST(AddressSanitizerInterface, GetHeapSizeTest) {
 | |
|   // ASan allocator does not keep huge chunks in free list, but unmaps them.
 | |
|   // The chunk should be greater than the quarantine size,
 | |
|   // otherwise it will be stuck in quarantine instead of being unmaped.
 | |
|   static const size_t kLargeMallocSize = (1 << 28) + 1;  // 256M
 | |
|   free(Ident(malloc(kLargeMallocSize)));  // Drain quarantine.
 | |
|   size_t old_heap_size = __sanitizer_get_heap_size();
 | |
|   for (int i = 0; i < 3; i++) {
 | |
|     // fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
 | |
|     free(Ident(malloc(kLargeMallocSize)));
 | |
|     EXPECT_EQ(old_heap_size, __sanitizer_get_heap_size());
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<14, 357};
 | |
| static const size_t kManyThreadsIterations = 250;
 | |
| static const size_t kManyThreadsNumThreads =
 | |
|   (SANITIZER_WORDSIZE == 32) ? 40 : 200;
 | |
| 
 | |
| static void *ManyThreadsWithStatsWorker(void *arg) {
 | |
|   (void)arg;
 | |
|   for (size_t iter = 0; iter < kManyThreadsIterations; iter++) {
 | |
|     for (size_t size_index = 0; size_index < 4; size_index++) {
 | |
|       free(Ident(malloc(kManyThreadsMallocSizes[size_index])));
 | |
|     }
 | |
|   }
 | |
|   // Just one large allocation.
 | |
|   free(Ident(malloc(1 << 20)));
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) {
 | |
|   size_t before_test, after_test, i;
 | |
|   pthread_t threads[kManyThreadsNumThreads];
 | |
|   before_test = __sanitizer_get_current_allocated_bytes();
 | |
|   for (i = 0; i < kManyThreadsNumThreads; i++) {
 | |
|     PTHREAD_CREATE(&threads[i], 0,
 | |
|                    (void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i);
 | |
|   }
 | |
|   for (i = 0; i < kManyThreadsNumThreads; i++) {
 | |
|     PTHREAD_JOIN(threads[i], 0);
 | |
|   }
 | |
|   after_test = __sanitizer_get_current_allocated_bytes();
 | |
|   // ASan stats also reflect memory usage of internal ASan RTL structs,
 | |
|   // so we can't check for equality here.
 | |
|   EXPECT_LT(after_test, before_test + (1UL<<20));
 | |
| }
 | |
| 
 | |
| static void DoDoubleFree() {
 | |
|   int *x = Ident(new int);
 | |
|   delete Ident(x);
 | |
|   delete Ident(x);
 | |
| }
 | |
| 
 | |
| static void MyDeathCallback() {
 | |
|   fprintf(stderr, "MyDeathCallback\n");
 | |
|   fflush(0);  // On Windows, stderr doesn't flush on crash.
 | |
| }
 | |
| 
 | |
| TEST(AddressSanitizerInterface, DeathCallbackTest) {
 | |
|   __asan_set_death_callback(MyDeathCallback);
 | |
|   EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback");
 | |
|   __asan_set_death_callback(NULL);
 | |
| }
 | |
| 
 | |
| static const char* kUseAfterPoisonErrorMessage = "use-after-poison";
 | |
| 
 | |
| #define GOOD_ACCESS(ptr, offset)  \
 | |
|     EXPECT_FALSE(__asan_address_is_poisoned(ptr + offset))
 | |
| 
 | |
| #define BAD_ACCESS(ptr, offset) \
 | |
|     EXPECT_TRUE(__asan_address_is_poisoned(ptr + offset))
 | |
| 
 | |
| TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) {
 | |
|   char *array = Ident((char*)malloc(120));
 | |
|   // poison array[40..80)
 | |
|   __asan_poison_memory_region(array + 40, 40);
 | |
|   GOOD_ACCESS(array, 39);
 | |
|   GOOD_ACCESS(array, 80);
 | |
|   BAD_ACCESS(array, 40);
 | |
|   BAD_ACCESS(array, 60);
 | |
|   BAD_ACCESS(array, 79);
 | |
|   char value;
 | |
|   EXPECT_DEATH(value = Ident(array[40]), kUseAfterPoisonErrorMessage);
 | |
|   __asan_unpoison_memory_region(array + 40, 40);
 | |
|   // access previously poisoned memory.
 | |
|   GOOD_ACCESS(array, 40);
 | |
|   GOOD_ACCESS(array, 79);
 | |
|   free(array);
 | |
| }
 | |
| 
 | |
| TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) {
 | |
|   char *array = Ident((char*)malloc(120));
 | |
|   // Poison [0..40) and [80..120)
 | |
|   __asan_poison_memory_region(array, 40);
 | |
|   __asan_poison_memory_region(array + 80, 40);
 | |
|   BAD_ACCESS(array, 20);
 | |
|   GOOD_ACCESS(array, 60);
 | |
|   BAD_ACCESS(array, 100);
 | |
|   // Poison whole array - [0..120)
 | |
|   __asan_poison_memory_region(array, 120);
 | |
|   BAD_ACCESS(array, 60);
 | |
|   // Unpoison [24..96)
 | |
|   __asan_unpoison_memory_region(array + 24, 72);
 | |
|   BAD_ACCESS(array, 23);
 | |
|   GOOD_ACCESS(array, 24);
 | |
|   GOOD_ACCESS(array, 60);
 | |
|   GOOD_ACCESS(array, 95);
 | |
|   BAD_ACCESS(array, 96);
 | |
|   free(array);
 | |
| }
 | |
| 
 | |
| TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) {
 | |
|   // Vector of capacity 20
 | |
|   char *vec = Ident((char*)malloc(20));
 | |
|   __asan_poison_memory_region(vec, 20);
 | |
|   for (size_t i = 0; i < 7; i++) {
 | |
|     // Simulate push_back.
 | |
|     __asan_unpoison_memory_region(vec + i, 1);
 | |
|     GOOD_ACCESS(vec, i);
 | |
|     BAD_ACCESS(vec, i + 1);
 | |
|   }
 | |
|   for (size_t i = 7; i > 0; i--) {
 | |
|     // Simulate pop_back.
 | |
|     __asan_poison_memory_region(vec + i - 1, 1);
 | |
|     BAD_ACCESS(vec, i - 1);
 | |
|     if (i > 1) GOOD_ACCESS(vec, i - 2);
 | |
|   }
 | |
|   free(vec);
 | |
| }
 | |
| 
 | |
| // Make sure that each aligned block of size "2^granularity" doesn't have
 | |
| // "true" value before "false" value.
 | |
| static void MakeShadowValid(bool *shadow, int length, int granularity) {
 | |
|   bool can_be_poisoned = true;
 | |
|   for (int i = length - 1; i >= 0; i--) {
 | |
|     if (!shadow[i])
 | |
|       can_be_poisoned = false;
 | |
|     if (!can_be_poisoned)
 | |
|       shadow[i] = false;
 | |
|     if (i % (1 << granularity) == 0) {
 | |
|       can_be_poisoned = true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| TEST(AddressSanitizerInterface, PoisoningStressTest) {
 | |
|   const size_t kSize = 24;
 | |
|   bool expected[kSize];
 | |
|   char *arr = Ident((char*)malloc(kSize));
 | |
|   for (size_t l1 = 0; l1 < kSize; l1++) {
 | |
|     for (size_t s1 = 1; l1 + s1 <= kSize; s1++) {
 | |
|       for (size_t l2 = 0; l2 < kSize; l2++) {
 | |
|         for (size_t s2 = 1; l2 + s2 <= kSize; s2++) {
 | |
|           // Poison [l1, l1+s1), [l2, l2+s2) and check result.
 | |
|           __asan_unpoison_memory_region(arr, kSize);
 | |
|           __asan_poison_memory_region(arr + l1, s1);
 | |
|           __asan_poison_memory_region(arr + l2, s2);
 | |
|           memset(expected, false, kSize);
 | |
|           memset(expected + l1, true, s1);
 | |
|           MakeShadowValid(expected, kSize, /*granularity*/ 3);
 | |
|           memset(expected + l2, true, s2);
 | |
|           MakeShadowValid(expected, kSize, /*granularity*/ 3);
 | |
|           for (size_t i = 0; i < kSize; i++) {
 | |
|             ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
 | |
|           }
 | |
|           // Unpoison [l1, l1+s1) and [l2, l2+s2) and check result.
 | |
|           __asan_poison_memory_region(arr, kSize);
 | |
|           __asan_unpoison_memory_region(arr + l1, s1);
 | |
|           __asan_unpoison_memory_region(arr + l2, s2);
 | |
|           memset(expected, true, kSize);
 | |
|           memset(expected + l1, false, s1);
 | |
|           MakeShadowValid(expected, kSize, /*granularity*/ 3);
 | |
|           memset(expected + l2, false, s2);
 | |
|           MakeShadowValid(expected, kSize, /*granularity*/ 3);
 | |
|           for (size_t i = 0; i < kSize; i++) {
 | |
|             ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   free(arr);
 | |
| }
 | |
| 
 | |
| TEST(AddressSanitizerInterface, GlobalRedzones) {
 | |
|   GOOD_ACCESS(glob1, 1 - 1);
 | |
|   GOOD_ACCESS(glob2, 2 - 1);
 | |
|   GOOD_ACCESS(glob3, 3 - 1);
 | |
|   GOOD_ACCESS(glob4, 4 - 1);
 | |
|   GOOD_ACCESS(glob5, 5 - 1);
 | |
|   GOOD_ACCESS(glob6, 6 - 1);
 | |
|   GOOD_ACCESS(glob7, 7 - 1);
 | |
|   GOOD_ACCESS(glob8, 8 - 1);
 | |
|   GOOD_ACCESS(glob9, 9 - 1);
 | |
|   GOOD_ACCESS(glob10, 10 - 1);
 | |
|   GOOD_ACCESS(glob11, 11 - 1);
 | |
|   GOOD_ACCESS(glob12, 12 - 1);
 | |
|   GOOD_ACCESS(glob13, 13 - 1);
 | |
|   GOOD_ACCESS(glob14, 14 - 1);
 | |
|   GOOD_ACCESS(glob15, 15 - 1);
 | |
|   GOOD_ACCESS(glob16, 16 - 1);
 | |
|   GOOD_ACCESS(glob17, 17 - 1);
 | |
|   GOOD_ACCESS(glob1000, 1000 - 1);
 | |
|   GOOD_ACCESS(glob10000, 10000 - 1);
 | |
|   GOOD_ACCESS(glob100000, 100000 - 1);
 | |
| 
 | |
|   BAD_ACCESS(glob1, 1);
 | |
|   BAD_ACCESS(glob2, 2);
 | |
|   BAD_ACCESS(glob3, 3);
 | |
|   BAD_ACCESS(glob4, 4);
 | |
|   BAD_ACCESS(glob5, 5);
 | |
|   BAD_ACCESS(glob6, 6);
 | |
|   BAD_ACCESS(glob7, 7);
 | |
|   BAD_ACCESS(glob8, 8);
 | |
|   BAD_ACCESS(glob9, 9);
 | |
|   BAD_ACCESS(glob10, 10);
 | |
|   BAD_ACCESS(glob11, 11);
 | |
|   BAD_ACCESS(glob12, 12);
 | |
|   BAD_ACCESS(glob13, 13);
 | |
|   BAD_ACCESS(glob14, 14);
 | |
|   BAD_ACCESS(glob15, 15);
 | |
|   BAD_ACCESS(glob16, 16);
 | |
|   BAD_ACCESS(glob17, 17);
 | |
|   BAD_ACCESS(glob1000, 1000);
 | |
|   BAD_ACCESS(glob1000, 1100);  // Redzone is at least 101 bytes.
 | |
|   BAD_ACCESS(glob10000, 10000);
 | |
|   BAD_ACCESS(glob10000, 11000);  // Redzone is at least 1001 bytes.
 | |
|   BAD_ACCESS(glob100000, 100000);
 | |
|   BAD_ACCESS(glob100000, 110000);  // Redzone is at least 10001 bytes.
 | |
| }
 | |
| 
 | |
| TEST(AddressSanitizerInterface, PoisonedRegion) {
 | |
|   size_t rz = 16;
 | |
|   for (size_t size = 1; size <= 64; size++) {
 | |
|     char *p = new char[size];
 | |
|     for (size_t beg = 0; beg < size + rz; beg++) {
 | |
|       for (size_t end = beg; end < size + rz; end++) {
 | |
|         void *first_poisoned = __asan_region_is_poisoned(p + beg, end - beg);
 | |
|         if (beg == end) {
 | |
|           EXPECT_FALSE(first_poisoned);
 | |
|         } else if (beg < size && end <= size) {
 | |
|           EXPECT_FALSE(first_poisoned);
 | |
|         } else if (beg >= size) {
 | |
|           EXPECT_EQ(p + beg, first_poisoned);
 | |
|         } else {
 | |
|           EXPECT_GT(end, size);
 | |
|           EXPECT_EQ(p + size, first_poisoned);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     delete [] p;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This is a performance benchmark for manual runs.
 | |
| // asan's memset interceptor calls mem_is_zero for the entire shadow region.
 | |
| // the profile should look like this:
 | |
| //     89.10%   [.] __memset_sse2
 | |
| //     10.50%   [.] __sanitizer::mem_is_zero
 | |
| // I.e. mem_is_zero should consume ~ SHADOW_GRANULARITY less CPU cycles
 | |
| // than memset itself.
 | |
| TEST(AddressSanitizerInterface, DISABLED_StressLargeMemset) {
 | |
|   size_t size = 1 << 20;
 | |
|   char *x = new char[size];
 | |
|   for (int i = 0; i < 100000; i++)
 | |
|     Ident(memset)(x, 0, size);
 | |
|   delete [] x;
 | |
| }
 | |
| 
 | |
| // Same here, but we run memset with small sizes.
 | |
| TEST(AddressSanitizerInterface, DISABLED_StressSmallMemset) {
 | |
|   size_t size = 32;
 | |
|   char *x = new char[size];
 | |
|   for (int i = 0; i < 100000000; i++)
 | |
|     Ident(memset)(x, 0, size);
 | |
|   delete [] x;
 | |
| }
 | |
| static const char *kInvalidPoisonMessage = "invalid-poison-memory-range";
 | |
| static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range";
 | |
| 
 | |
| TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) {
 | |
|   char *array = Ident((char*)malloc(120));
 | |
|   __asan_unpoison_memory_region(array, 120);
 | |
|   // Try to unpoison not owned memory
 | |
|   EXPECT_DEATH(__asan_unpoison_memory_region(array, 121),
 | |
|                kInvalidUnpoisonMessage);
 | |
|   EXPECT_DEATH(__asan_unpoison_memory_region(array - 1, 120),
 | |
|                kInvalidUnpoisonMessage);
 | |
| 
 | |
|   __asan_poison_memory_region(array, 120);
 | |
|   // Try to poison not owned memory.
 | |
|   EXPECT_DEATH(__asan_poison_memory_region(array, 121), kInvalidPoisonMessage);
 | |
|   EXPECT_DEATH(__asan_poison_memory_region(array - 1, 120),
 | |
|                kInvalidPoisonMessage);
 | |
|   free(array);
 | |
| }
 | |
| 
 | |
| #if !defined(_WIN32)  // FIXME: This should really be a lit test.
 | |
| static void ErrorReportCallbackOneToZ(const char *report) {
 | |
|   int report_len = strlen(report);
 | |
|   ASSERT_EQ(6, write(2, "ABCDEF", 6));
 | |
|   ASSERT_EQ(report_len, write(2, report, report_len));
 | |
|   ASSERT_EQ(6, write(2, "ABCDEF", 6));
 | |
|   _exit(1);
 | |
| }
 | |
| 
 | |
| TEST(AddressSanitizerInterface, SetErrorReportCallbackTest) {
 | |
|   __asan_set_error_report_callback(ErrorReportCallbackOneToZ);
 | |
|   EXPECT_DEATH(__asan_report_error(0, 0, 0, 0, true, 1),
 | |
|                ASAN_PCRE_DOTALL "ABCDEF.*AddressSanitizer.*WRITE.*ABCDEF");
 | |
|   __asan_set_error_report_callback(NULL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| TEST(AddressSanitizerInterface, GetOwnershipStressTest) {
 | |
|   std::vector<char *> pointers;
 | |
|   std::vector<size_t> sizes;
 | |
|   const size_t kNumMallocs = 1 << 9;
 | |
|   for (size_t i = 0; i < kNumMallocs; i++) {
 | |
|     size_t size = i * 100 + 1;
 | |
|     pointers.push_back((char*)malloc(size));
 | |
|     sizes.push_back(size);
 | |
|   }
 | |
|   for (size_t i = 0; i < 4000000; i++) {
 | |
|     EXPECT_FALSE(__sanitizer_get_ownership(&pointers));
 | |
|     EXPECT_FALSE(__sanitizer_get_ownership((void*)0x1234));
 | |
|     size_t idx = i % kNumMallocs;
 | |
|     EXPECT_TRUE(__sanitizer_get_ownership(pointers[idx]));
 | |
|     EXPECT_EQ(sizes[idx], __sanitizer_get_allocated_size(pointers[idx]));
 | |
|   }
 | |
|   for (size_t i = 0, n = pointers.size(); i < n; i++)
 | |
|     free(pointers[i]);
 | |
| }
 | |
| 
 |