586 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			586 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the generic AliasAnalysis interface which is used as the
 | |
| // common interface used by all clients and implementations of alias analysis.
 | |
| //
 | |
| // This file also implements the default version of the AliasAnalysis interface
 | |
| // that is to be used when no other implementation is specified.  This does some
 | |
| // simple tests that detect obvious cases: two different global pointers cannot
 | |
| // alias, a global cannot alias a malloc, two different mallocs cannot alias,
 | |
| // etc.
 | |
| //
 | |
| // This alias analysis implementation really isn't very good for anything, but
 | |
| // it is very fast, and makes a nice clean default implementation.  Because it
 | |
| // handles lots of little corner cases, other, more complex, alias analysis
 | |
| // implementations may choose to rely on this pass to resolve these simple and
 | |
| // easy cases.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/CFLAliasAnalysis.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ScopedNoAliasAA.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Pass.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// Allow disabling BasicAA from the AA results. This is particularly useful
 | |
| /// when testing to isolate a single AA implementation.
 | |
| static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
 | |
|                                     cl::init(false));
 | |
| 
 | |
| AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) {
 | |
|   for (auto &AA : AAs)
 | |
|     AA->setAAResults(this);
 | |
| }
 | |
| 
 | |
| AAResults &AAResults::operator=(AAResults &&Arg) {
 | |
|   AAs = std::move(Arg.AAs);
 | |
|   for (auto &AA : AAs)
 | |
|     AA->setAAResults(this);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| AAResults::~AAResults() {
 | |
| // FIXME; It would be nice to at least clear out the pointers back to this
 | |
| // aggregation here, but we end up with non-nesting lifetimes in the legacy
 | |
| // pass manager that prevent this from working. In the legacy pass manager
 | |
| // we'll end up with dangling references here in some cases.
 | |
| #if 0
 | |
|   for (auto &AA : AAs)
 | |
|     AA->setAAResults(nullptr);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Default chaining methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| AliasResult AAResults::alias(const MemoryLocation &LocA,
 | |
|                              const MemoryLocation &LocB) {
 | |
|   for (const auto &AA : AAs) {
 | |
|     auto Result = AA->alias(LocA, LocB);
 | |
|     if (Result != MayAlias)
 | |
|       return Result;
 | |
|   }
 | |
|   return MayAlias;
 | |
| }
 | |
| 
 | |
| bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
 | |
|                                        bool OrLocal) {
 | |
|   for (const auto &AA : AAs)
 | |
|     if (AA->pointsToConstantMemory(Loc, OrLocal))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
 | |
|   ModRefInfo Result = MRI_ModRef;
 | |
| 
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx));
 | |
| 
 | |
|     // Early-exit the moment we reach the bottom of the lattice.
 | |
|     if (Result == MRI_NoModRef)
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
 | |
|   // We may have two calls
 | |
|   if (auto CS = ImmutableCallSite(I)) {
 | |
|     // Check if the two calls modify the same memory
 | |
|     return getModRefInfo(Call, CS);
 | |
|   } else {
 | |
|     // Otherwise, check if the call modifies or references the
 | |
|     // location this memory access defines.  The best we can say
 | |
|     // is that if the call references what this instruction
 | |
|     // defines, it must be clobbered by this location.
 | |
|     const MemoryLocation DefLoc = MemoryLocation::get(I);
 | |
|     if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
 | |
|       return MRI_ModRef;
 | |
|   }
 | |
|   return MRI_NoModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   ModRefInfo Result = MRI_ModRef;
 | |
| 
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc));
 | |
| 
 | |
|     // Early-exit the moment we reach the bottom of the lattice.
 | |
|     if (Result == MRI_NoModRef)
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
 | |
|                                     ImmutableCallSite CS2) {
 | |
|   ModRefInfo Result = MRI_ModRef;
 | |
| 
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2));
 | |
| 
 | |
|     // Early-exit the moment we reach the bottom of the lattice.
 | |
|     if (Result == MRI_NoModRef)
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
 | |
|   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
 | |
| 
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
 | |
| 
 | |
|     // Early-exit the moment we reach the bottom of the lattice.
 | |
|     if (Result == FMRB_DoesNotAccessMemory)
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
 | |
|   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
 | |
| 
 | |
|   for (const auto &AA : AAs) {
 | |
|     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
 | |
| 
 | |
|     // Early-exit the moment we reach the bottom of the lattice.
 | |
|     if (Result == FMRB_DoesNotAccessMemory)
 | |
|       return Result;
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper method implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   // Be conservative in the face of volatile/atomic.
 | |
|   if (!L->isUnordered())
 | |
|     return MRI_ModRef;
 | |
| 
 | |
|   // If the load address doesn't alias the given address, it doesn't read
 | |
|   // or write the specified memory.
 | |
|   if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
 | |
|     return MRI_NoModRef;
 | |
| 
 | |
|   // Otherwise, a load just reads.
 | |
|   return MRI_Ref;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   // Be conservative in the face of volatile/atomic.
 | |
|   if (!S->isUnordered())
 | |
|     return MRI_ModRef;
 | |
| 
 | |
|   if (Loc.Ptr) {
 | |
|     // If the store address cannot alias the pointer in question, then the
 | |
|     // specified memory cannot be modified by the store.
 | |
|     if (!alias(MemoryLocation::get(S), Loc))
 | |
|       return MRI_NoModRef;
 | |
| 
 | |
|     // If the pointer is a pointer to constant memory, then it could not have
 | |
|     // been modified by this store.
 | |
|     if (pointsToConstantMemory(Loc))
 | |
|       return MRI_NoModRef;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, a store just writes.
 | |
|   return MRI_Mod;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
 | |
|                                     const MemoryLocation &Loc) {
 | |
| 
 | |
|   if (Loc.Ptr) {
 | |
|     // If the va_arg address cannot alias the pointer in question, then the
 | |
|     // specified memory cannot be accessed by the va_arg.
 | |
|     if (!alias(MemoryLocation::get(V), Loc))
 | |
|       return MRI_NoModRef;
 | |
| 
 | |
|     // If the pointer is a pointer to constant memory, then it could not have
 | |
|     // been modified by this va_arg.
 | |
|     if (pointsToConstantMemory(Loc))
 | |
|       return MRI_NoModRef;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, a va_arg reads and writes.
 | |
|   return MRI_ModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   if (Loc.Ptr) {
 | |
|     // If the pointer is a pointer to constant memory,
 | |
|     // then it could not have been modified by this catchpad.
 | |
|     if (pointsToConstantMemory(Loc))
 | |
|       return MRI_NoModRef;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, a catchpad reads and writes.
 | |
|   return MRI_ModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   if (Loc.Ptr) {
 | |
|     // If the pointer is a pointer to constant memory,
 | |
|     // then it could not have been modified by this catchpad.
 | |
|     if (pointsToConstantMemory(Loc))
 | |
|       return MRI_NoModRef;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, a catchret reads and writes.
 | |
|   return MRI_ModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
 | |
|   if (CX->getSuccessOrdering() > Monotonic)
 | |
|     return MRI_ModRef;
 | |
| 
 | |
|   // If the cmpxchg address does not alias the location, it does not access it.
 | |
|   if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
 | |
|     return MRI_NoModRef;
 | |
| 
 | |
|   return MRI_ModRef;
 | |
| }
 | |
| 
 | |
| ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
 | |
|   if (RMW->getOrdering() > Monotonic)
 | |
|     return MRI_ModRef;
 | |
| 
 | |
|   // If the atomicrmw address does not alias the location, it does not access it.
 | |
|   if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
 | |
|     return MRI_NoModRef;
 | |
| 
 | |
|   return MRI_ModRef;
 | |
| }
 | |
| 
 | |
| /// \brief Return information about whether a particular call site modifies
 | |
| /// or reads the specified memory location \p MemLoc before instruction \p I
 | |
| /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
 | |
| /// instruction-ordering queries inside the BasicBlock containing \p I.
 | |
| /// FIXME: this is really just shoring-up a deficiency in alias analysis.
 | |
| /// BasicAA isn't willing to spend linear time determining whether an alloca
 | |
| /// was captured before or after this particular call, while we are. However,
 | |
| /// with a smarter AA in place, this test is just wasting compile time.
 | |
| ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
 | |
|                                          const MemoryLocation &MemLoc,
 | |
|                                          DominatorTree *DT,
 | |
|                                          OrderedBasicBlock *OBB) {
 | |
|   if (!DT)
 | |
|     return MRI_ModRef;
 | |
| 
 | |
|   const Value *Object =
 | |
|       GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
 | |
|   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
 | |
|       isa<Constant>(Object))
 | |
|     return MRI_ModRef;
 | |
| 
 | |
|   ImmutableCallSite CS(I);
 | |
|   if (!CS.getInstruction() || CS.getInstruction() == Object)
 | |
|     return MRI_ModRef;
 | |
| 
 | |
|   if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
 | |
|                                        /* StoreCaptures */ true, I, DT,
 | |
|                                        /* include Object */ true,
 | |
|                                        /* OrderedBasicBlock */ OBB))
 | |
|     return MRI_ModRef;
 | |
| 
 | |
|   unsigned ArgNo = 0;
 | |
|   ModRefInfo R = MRI_NoModRef;
 | |
|   for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
 | |
|        CI != CE; ++CI, ++ArgNo) {
 | |
|     // Only look at the no-capture or byval pointer arguments.  If this
 | |
|     // pointer were passed to arguments that were neither of these, then it
 | |
|     // couldn't be no-capture.
 | |
|     if (!(*CI)->getType()->isPointerTy() ||
 | |
|         (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
 | |
|       continue;
 | |
| 
 | |
|     // If this is a no-capture pointer argument, see if we can tell that it
 | |
|     // is impossible to alias the pointer we're checking.  If not, we have to
 | |
|     // assume that the call could touch the pointer, even though it doesn't
 | |
|     // escape.
 | |
|     if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
 | |
|       continue;
 | |
|     if (CS.doesNotAccessMemory(ArgNo))
 | |
|       continue;
 | |
|     if (CS.onlyReadsMemory(ArgNo)) {
 | |
|       R = MRI_Ref;
 | |
|       continue;
 | |
|     }
 | |
|     return MRI_ModRef;
 | |
|   }
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| /// canBasicBlockModify - Return true if it is possible for execution of the
 | |
| /// specified basic block to modify the location Loc.
 | |
| ///
 | |
| bool AAResults::canBasicBlockModify(const BasicBlock &BB,
 | |
|                                     const MemoryLocation &Loc) {
 | |
|   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
 | |
| }
 | |
| 
 | |
| /// canInstructionRangeModRef - Return true if it is possible for the
 | |
| /// execution of the specified instructions to mod\ref (according to the
 | |
| /// mode) the location Loc. The instructions to consider are all
 | |
| /// of the instructions in the range of [I1,I2] INCLUSIVE.
 | |
| /// I1 and I2 must be in the same basic block.
 | |
| bool AAResults::canInstructionRangeModRef(const Instruction &I1,
 | |
|                                           const Instruction &I2,
 | |
|                                           const MemoryLocation &Loc,
 | |
|                                           const ModRefInfo Mode) {
 | |
|   assert(I1.getParent() == I2.getParent() &&
 | |
|          "Instructions not in same basic block!");
 | |
|   BasicBlock::const_iterator I = I1.getIterator();
 | |
|   BasicBlock::const_iterator E = I2.getIterator();
 | |
|   ++E;  // Convert from inclusive to exclusive range.
 | |
| 
 | |
|   for (; I != E; ++I) // Check every instruction in range
 | |
|     if (getModRefInfo(&*I, Loc) & Mode)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Provide a definition for the root virtual destructor.
 | |
| AAResults::Concept::~Concept() {}
 | |
| 
 | |
| namespace {
 | |
| /// A wrapper pass for external alias analyses. This just squirrels away the
 | |
| /// callback used to run any analyses and register their results.
 | |
| struct ExternalAAWrapperPass : ImmutablePass {
 | |
|   typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT;
 | |
| 
 | |
|   CallbackT CB;
 | |
| 
 | |
|   static char ID;
 | |
| 
 | |
|   ExternalAAWrapperPass() : ImmutablePass(ID) {
 | |
|     initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   explicit ExternalAAWrapperPass(CallbackT CB)
 | |
|       : ImmutablePass(ID), CB(std::move(CB)) {
 | |
|     initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesAll();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| char ExternalAAWrapperPass::ID = 0;
 | |
| INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
 | |
|                 false, true)
 | |
| 
 | |
| ImmutablePass *
 | |
| llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
 | |
|   return new ExternalAAWrapperPass(std::move(Callback));
 | |
| }
 | |
| 
 | |
| AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
 | |
|   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| char AAResultsWrapperPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
 | |
|                       "Function Alias Analysis Results", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
 | |
| INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
 | |
|                     "Function Alias Analysis Results", false, true)
 | |
| 
 | |
| FunctionPass *llvm::createAAResultsWrapperPass() {
 | |
|   return new AAResultsWrapperPass();
 | |
| }
 | |
| 
 | |
| /// Run the wrapper pass to rebuild an aggregation over known AA passes.
 | |
| ///
 | |
| /// This is the legacy pass manager's interface to the new-style AA results
 | |
| /// aggregation object. Because this is somewhat shoe-horned into the legacy
 | |
| /// pass manager, we hard code all the specific alias analyses available into
 | |
| /// it. While the particular set enabled is configured via commandline flags,
 | |
| /// adding a new alias analysis to LLVM will require adding support for it to
 | |
| /// this list.
 | |
| bool AAResultsWrapperPass::runOnFunction(Function &F) {
 | |
|   // NB! This *must* be reset before adding new AA results to the new
 | |
|   // AAResults object because in the legacy pass manager, each instance
 | |
|   // of these will refer to the *same* immutable analyses, registering and
 | |
|   // unregistering themselves with them. We need to carefully tear down the
 | |
|   // previous object first, in this case replacing it with an empty one, before
 | |
|   // registering new results.
 | |
|   AAR.reset(new AAResults());
 | |
| 
 | |
|   // BasicAA is always available for function analyses. Also, we add it first
 | |
|   // so that it can trump TBAA results when it proves MustAlias.
 | |
|   // FIXME: TBAA should have an explicit mode to support this and then we
 | |
|   // should reconsider the ordering here.
 | |
|   if (!DisableBasicAA)
 | |
|     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
 | |
| 
 | |
|   // Populate the results with the currently available AAs.
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass =
 | |
|           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>())
 | |
|     AAR->addAAResult(WrapperPass->getResult());
 | |
| 
 | |
|   // If available, run an external AA providing callback over the results as
 | |
|   // well.
 | |
|   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
 | |
|     if (WrapperPass->CB)
 | |
|       WrapperPass->CB(*this, F, *AAR);
 | |
| 
 | |
|   // Analyses don't mutate the IR, so return false.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<BasicAAWrapperPass>();
 | |
| 
 | |
|   // We also need to mark all the alias analysis passes we will potentially
 | |
|   // probe in runOnFunction as used here to ensure the legacy pass manager
 | |
|   // preserves them. This hard coding of lists of alias analyses is specific to
 | |
|   // the legacy pass manager.
 | |
|   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
 | |
|   AU.addUsedIfAvailable<CFLAAWrapperPass>();
 | |
| }
 | |
| 
 | |
| AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
 | |
|                                         BasicAAResult &BAR) {
 | |
|   AAResults AAR;
 | |
| 
 | |
|   // Add in our explicitly constructed BasicAA results.
 | |
|   if (!DisableBasicAA)
 | |
|     AAR.addAAResult(BAR);
 | |
| 
 | |
|   // Populate the results with the other currently available AAs.
 | |
|   if (auto *WrapperPass =
 | |
|           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass =
 | |
|           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = P.getAnalysisIfAvailable<SCEVAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
|   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>())
 | |
|     AAR.addAAResult(WrapperPass->getResult());
 | |
| 
 | |
|   return AAR;
 | |
| }
 | |
| 
 | |
| /// isNoAliasCall - Return true if this pointer is returned by a noalias
 | |
| /// function.
 | |
| bool llvm::isNoAliasCall(const Value *V) {
 | |
|   if (auto CS = ImmutableCallSite(V))
 | |
|     return CS.paramHasAttr(0, Attribute::NoAlias);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isNoAliasArgument - Return true if this is an argument with the noalias
 | |
| /// attribute.
 | |
| bool llvm::isNoAliasArgument(const Value *V)
 | |
| {
 | |
|   if (const Argument *A = dyn_cast<Argument>(V))
 | |
|     return A->hasNoAliasAttr();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isIdentifiedObject - Return true if this pointer refers to a distinct and
 | |
| /// identifiable object.  This returns true for:
 | |
| ///    Global Variables and Functions (but not Global Aliases)
 | |
| ///    Allocas and Mallocs
 | |
| ///    ByVal and NoAlias Arguments
 | |
| ///    NoAlias returns
 | |
| ///
 | |
| bool llvm::isIdentifiedObject(const Value *V) {
 | |
|   if (isa<AllocaInst>(V))
 | |
|     return true;
 | |
|   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
 | |
|     return true;
 | |
|   if (isNoAliasCall(V))
 | |
|     return true;
 | |
|   if (const Argument *A = dyn_cast<Argument>(V))
 | |
|     return A->hasNoAliasAttr() || A->hasByValAttr();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isIdentifiedFunctionLocal - Return true if V is umabigously identified
 | |
| /// at the function-level. Different IdentifiedFunctionLocals can't alias.
 | |
| /// Further, an IdentifiedFunctionLocal can not alias with any function
 | |
| /// arguments other than itself, which is not necessarily true for
 | |
| /// IdentifiedObjects.
 | |
| bool llvm::isIdentifiedFunctionLocal(const Value *V)
 | |
| {
 | |
|   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
 | |
| }
 |