1617 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1617 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the primary stateless implementation of the
 | |
| // Alias Analysis interface that implements identities (two different
 | |
| // globals cannot alias, etc), but does no stateful analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/BasicAliasAnalysis.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// Enable analysis of recursive PHI nodes.
 | |
| static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
 | |
|                                           cl::init(false));
 | |
| 
 | |
| /// SearchLimitReached / SearchTimes shows how often the limit of
 | |
| /// to decompose GEPs is reached. It will affect the precision
 | |
| /// of basic alias analysis.
 | |
| #define DEBUG_TYPE "basicaa"
 | |
| STATISTIC(SearchLimitReached, "Number of times the limit to "
 | |
|                               "decompose GEPs is reached");
 | |
| STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
 | |
| 
 | |
| /// Cutoff after which to stop analysing a set of phi nodes potentially involved
 | |
| /// in a cycle. Because we are analysing 'through' phi nodes we need to be
 | |
| /// careful with value equivalence. We use reachability to make sure a value
 | |
| /// cannot be involved in a cycle.
 | |
| const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
 | |
| 
 | |
| // The max limit of the search depth in DecomposeGEPExpression() and
 | |
| // GetUnderlyingObject(), both functions need to use the same search
 | |
| // depth otherwise the algorithm in aliasGEP will assert.
 | |
| static const unsigned MaxLookupSearchDepth = 6;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Useful predicates
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Returns true if the pointer is to a function-local object that never
 | |
| /// escapes from the function.
 | |
| static bool isNonEscapingLocalObject(const Value *V) {
 | |
|   // If this is a local allocation, check to see if it escapes.
 | |
|   if (isa<AllocaInst>(V) || isNoAliasCall(V))
 | |
|     // Set StoreCaptures to True so that we can assume in our callers that the
 | |
|     // pointer is not the result of a load instruction. Currently
 | |
|     // PointerMayBeCaptured doesn't have any special analysis for the
 | |
|     // StoreCaptures=false case; if it did, our callers could be refined to be
 | |
|     // more precise.
 | |
|     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | |
| 
 | |
|   // If this is an argument that corresponds to a byval or noalias argument,
 | |
|   // then it has not escaped before entering the function.  Check if it escapes
 | |
|   // inside the function.
 | |
|   if (const Argument *A = dyn_cast<Argument>(V))
 | |
|     if (A->hasByValAttr() || A->hasNoAliasAttr())
 | |
|       // Note even if the argument is marked nocapture we still need to check
 | |
|       // for copies made inside the function. The nocapture attribute only
 | |
|       // specifies that there are no copies made that outlive the function.
 | |
|       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if the pointer is one which would have been considered an
 | |
| /// escape by isNonEscapingLocalObject.
 | |
| static bool isEscapeSource(const Value *V) {
 | |
|   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
 | |
|     return true;
 | |
| 
 | |
|   // The load case works because isNonEscapingLocalObject considers all
 | |
|   // stores to be escapes (it passes true for the StoreCaptures argument
 | |
|   // to PointerMayBeCaptured).
 | |
|   if (isa<LoadInst>(V))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns the size of the object specified by V, or UnknownSize if unknown.
 | |
| static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
 | |
|                               const TargetLibraryInfo &TLI,
 | |
|                               bool RoundToAlign = false) {
 | |
|   uint64_t Size;
 | |
|   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
 | |
|     return Size;
 | |
|   return MemoryLocation::UnknownSize;
 | |
| }
 | |
| 
 | |
| /// Returns true if we can prove that the object specified by V is smaller than
 | |
| /// Size.
 | |
| static bool isObjectSmallerThan(const Value *V, uint64_t Size,
 | |
|                                 const DataLayout &DL,
 | |
|                                 const TargetLibraryInfo &TLI) {
 | |
|   // Note that the meanings of the "object" are slightly different in the
 | |
|   // following contexts:
 | |
|   //    c1: llvm::getObjectSize()
 | |
|   //    c2: llvm.objectsize() intrinsic
 | |
|   //    c3: isObjectSmallerThan()
 | |
|   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
 | |
|   // refers to the "entire object".
 | |
|   //
 | |
|   //  Consider this example:
 | |
|   //     char *p = (char*)malloc(100)
 | |
|   //     char *q = p+80;
 | |
|   //
 | |
|   //  In the context of c1 and c2, the "object" pointed by q refers to the
 | |
|   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
 | |
|   //
 | |
|   //  However, in the context of c3, the "object" refers to the chunk of memory
 | |
|   // being allocated. So, the "object" has 100 bytes, and q points to the middle
 | |
|   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
 | |
|   // parameter, before the llvm::getObjectSize() is called to get the size of
 | |
|   // entire object, we should:
 | |
|   //    - either rewind the pointer q to the base-address of the object in
 | |
|   //      question (in this case rewind to p), or
 | |
|   //    - just give up. It is up to caller to make sure the pointer is pointing
 | |
|   //      to the base address the object.
 | |
|   //
 | |
|   // We go for 2nd option for simplicity.
 | |
|   if (!isIdentifiedObject(V))
 | |
|     return false;
 | |
| 
 | |
|   // This function needs to use the aligned object size because we allow
 | |
|   // reads a bit past the end given sufficient alignment.
 | |
|   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);
 | |
| 
 | |
|   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
 | |
| }
 | |
| 
 | |
| /// Returns true if we can prove that the object specified by V has size Size.
 | |
| static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
 | |
|                          const TargetLibraryInfo &TLI) {
 | |
|   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
 | |
|   return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // GetElementPtr Instruction Decomposition and Analysis
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Analyzes the specified value as a linear expression: "A*V + B", where A and
 | |
| /// B are constant integers.
 | |
| ///
 | |
| /// Returns the scale and offset values as APInts and return V as a Value*, and
 | |
| /// return whether we looked through any sign or zero extends.  The incoming
 | |
| /// Value is known to have IntegerType and it may already be sign or zero
 | |
| /// extended.
 | |
| ///
 | |
| /// Note that this looks through extends, so the high bits may not be
 | |
| /// represented in the result.
 | |
| /*static*/ const Value *BasicAAResult::GetLinearExpression(
 | |
|     const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
 | |
|     unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
 | |
|     AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
 | |
|   assert(V->getType()->isIntegerTy() && "Not an integer value");
 | |
| 
 | |
|   // Limit our recursion depth.
 | |
|   if (Depth == 6) {
 | |
|     Scale = 1;
 | |
|     Offset = 0;
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
 | |
|     // if it's a constant, just convert it to an offset and remove the variable.
 | |
|     // If we've been called recursively the Offset bit width will be greater
 | |
|     // than the constant's (the Offset's always as wide as the outermost call),
 | |
|     // so we'll zext here and process any extension in the isa<SExtInst> &
 | |
|     // isa<ZExtInst> cases below.
 | |
|     Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
 | |
|     assert(Scale == 0 && "Constant values don't have a scale");
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
 | |
|     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
 | |
| 
 | |
|       // If we've been called recursively then Offset and Scale will be wider
 | |
|       // that the BOp operands. We'll always zext it here as we'll process sign
 | |
|       // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
 | |
|       APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());
 | |
| 
 | |
|       switch (BOp->getOpcode()) {
 | |
|       default:
 | |
|         // We don't understand this instruction, so we can't decompose it any
 | |
|         // further.
 | |
|         Scale = 1;
 | |
|         Offset = 0;
 | |
|         return V;
 | |
|       case Instruction::Or:
 | |
|         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
 | |
|         // analyze it.
 | |
|         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
 | |
|                                BOp, DT)) {
 | |
|           Scale = 1;
 | |
|           Offset = 0;
 | |
|           return V;
 | |
|         }
 | |
|       // FALL THROUGH.
 | |
|       case Instruction::Add:
 | |
|         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
 | |
|                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
 | |
|         Offset += RHS;
 | |
|         break;
 | |
|       case Instruction::Sub:
 | |
|         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
 | |
|                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
 | |
|         Offset -= RHS;
 | |
|         break;
 | |
|       case Instruction::Mul:
 | |
|         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
 | |
|                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
 | |
|         Offset *= RHS;
 | |
|         Scale *= RHS;
 | |
|         break;
 | |
|       case Instruction::Shl:
 | |
|         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
 | |
|                                 SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
 | |
|         Offset <<= RHS.getLimitedValue();
 | |
|         Scale <<= RHS.getLimitedValue();
 | |
|         // the semantics of nsw and nuw for left shifts don't match those of
 | |
|         // multiplications, so we won't propagate them.
 | |
|         NSW = NUW = false;
 | |
|         return V;
 | |
|       }
 | |
| 
 | |
|       if (isa<OverflowingBinaryOperator>(BOp)) {
 | |
|         NUW &= BOp->hasNoUnsignedWrap();
 | |
|         NSW &= BOp->hasNoSignedWrap();
 | |
|       }
 | |
|       return V;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Since GEP indices are sign extended anyway, we don't care about the high
 | |
|   // bits of a sign or zero extended value - just scales and offsets.  The
 | |
|   // extensions have to be consistent though.
 | |
|   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
 | |
|     Value *CastOp = cast<CastInst>(V)->getOperand(0);
 | |
|     unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
 | |
|     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
 | |
|     unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
 | |
|     const Value *Result =
 | |
|         GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
 | |
|                             Depth + 1, AC, DT, NSW, NUW);
 | |
| 
 | |
|     // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
 | |
|     // by just incrementing the number of bits we've extended by.
 | |
|     unsigned ExtendedBy = NewWidth - SmallWidth;
 | |
| 
 | |
|     if (isa<SExtInst>(V) && ZExtBits == 0) {
 | |
|       // sext(sext(%x, a), b) == sext(%x, a + b)
 | |
| 
 | |
|       if (NSW) {
 | |
|         // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
 | |
|         // into sext(%x) + sext(c). We'll sext the Offset ourselves:
 | |
|         unsigned OldWidth = Offset.getBitWidth();
 | |
|         Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
 | |
|       } else {
 | |
|         // We may have signed-wrapped, so don't decompose sext(%x + c) into
 | |
|         // sext(%x) + sext(c)
 | |
|         Scale = 1;
 | |
|         Offset = 0;
 | |
|         Result = CastOp;
 | |
|         ZExtBits = OldZExtBits;
 | |
|         SExtBits = OldSExtBits;
 | |
|       }
 | |
|       SExtBits += ExtendedBy;
 | |
|     } else {
 | |
|       // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)
 | |
| 
 | |
|       if (!NUW) {
 | |
|         // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
 | |
|         // zext(%x) + zext(c)
 | |
|         Scale = 1;
 | |
|         Offset = 0;
 | |
|         Result = CastOp;
 | |
|         ZExtBits = OldZExtBits;
 | |
|         SExtBits = OldSExtBits;
 | |
|       }
 | |
|       ZExtBits += ExtendedBy;
 | |
|     }
 | |
| 
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   Scale = 1;
 | |
|   Offset = 0;
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// If V is a symbolic pointer expression, decompose it into a base pointer
 | |
| /// with a constant offset and a number of scaled symbolic offsets.
 | |
| ///
 | |
| /// The scaled symbolic offsets (represented by pairs of a Value* and a scale
 | |
| /// in the VarIndices vector) are Value*'s that are known to be scaled by the
 | |
| /// specified amount, but which may have other unrepresented high bits. As
 | |
| /// such, the gep cannot necessarily be reconstructed from its decomposed form.
 | |
| ///
 | |
| /// When DataLayout is around, this function is capable of analyzing everything
 | |
| /// that GetUnderlyingObject can look through. To be able to do that
 | |
| /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
 | |
| /// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
 | |
| /// through pointer casts.
 | |
| /*static*/ const Value *BasicAAResult::DecomposeGEPExpression(
 | |
|     const Value *V, int64_t &BaseOffs,
 | |
|     SmallVectorImpl<VariableGEPIndex> &VarIndices, bool &MaxLookupReached,
 | |
|     const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT) {
 | |
|   // Limit recursion depth to limit compile time in crazy cases.
 | |
|   unsigned MaxLookup = MaxLookupSearchDepth;
 | |
|   MaxLookupReached = false;
 | |
|   SearchTimes++;
 | |
| 
 | |
|   BaseOffs = 0;
 | |
|   do {
 | |
|     // See if this is a bitcast or GEP.
 | |
|     const Operator *Op = dyn_cast<Operator>(V);
 | |
|     if (!Op) {
 | |
|       // The only non-operator case we can handle are GlobalAliases.
 | |
|       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|         if (!GA->mayBeOverridden()) {
 | |
|           V = GA->getAliasee();
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     if (Op->getOpcode() == Instruction::BitCast ||
 | |
|         Op->getOpcode() == Instruction::AddrSpaceCast) {
 | |
|       V = Op->getOperand(0);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
 | |
|     if (!GEPOp) {
 | |
|       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
 | |
|       // can come up with something. This matches what GetUnderlyingObject does.
 | |
|       if (const Instruction *I = dyn_cast<Instruction>(V))
 | |
|         // TODO: Get a DominatorTree and AssumptionCache and use them here
 | |
|         // (these are both now available in this function, but this should be
 | |
|         // updated when GetUnderlyingObject is updated). TLI should be
 | |
|         // provided also.
 | |
|         if (const Value *Simplified =
 | |
|                 SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
 | |
|           V = Simplified;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|       return V;
 | |
|     }
 | |
| 
 | |
|     // Don't attempt to analyze GEPs over unsized objects.
 | |
|     if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
 | |
|       return V;
 | |
| 
 | |
|     unsigned AS = GEPOp->getPointerAddressSpace();
 | |
|     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
 | |
|     gep_type_iterator GTI = gep_type_begin(GEPOp);
 | |
|     for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
 | |
|          I != E; ++I) {
 | |
|       const Value *Index = *I;
 | |
|       // Compute the (potentially symbolic) offset in bytes for this index.
 | |
|       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
 | |
|         // For a struct, add the member offset.
 | |
|         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
 | |
|         if (FieldNo == 0)
 | |
|           continue;
 | |
| 
 | |
|         BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // For an array/pointer, add the element offset, explicitly scaled.
 | |
|       if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
 | |
|         if (CIdx->isZero())
 | |
|           continue;
 | |
|         BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       uint64_t Scale = DL.getTypeAllocSize(*GTI);
 | |
|       unsigned ZExtBits = 0, SExtBits = 0;
 | |
| 
 | |
|       // If the integer type is smaller than the pointer size, it is implicitly
 | |
|       // sign extended to pointer size.
 | |
|       unsigned Width = Index->getType()->getIntegerBitWidth();
 | |
|       unsigned PointerSize = DL.getPointerSizeInBits(AS);
 | |
|       if (PointerSize > Width)
 | |
|         SExtBits += PointerSize - Width;
 | |
| 
 | |
|       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
 | |
|       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
 | |
|       bool NSW = true, NUW = true;
 | |
|       Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
 | |
|                                   SExtBits, DL, 0, AC, DT, NSW, NUW);
 | |
| 
 | |
|       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
 | |
|       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
 | |
|       BaseOffs += IndexOffset.getSExtValue() * Scale;
 | |
|       Scale *= IndexScale.getSExtValue();
 | |
| 
 | |
|       // If we already had an occurrence of this index variable, merge this
 | |
|       // scale into it.  For example, we want to handle:
 | |
|       //   A[x][x] -> x*16 + x*4 -> x*20
 | |
|       // This also ensures that 'x' only appears in the index list once.
 | |
|       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
 | |
|         if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits &&
 | |
|             VarIndices[i].SExtBits == SExtBits) {
 | |
|           Scale += VarIndices[i].Scale;
 | |
|           VarIndices.erase(VarIndices.begin() + i);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Make sure that we have a scale that makes sense for this target's
 | |
|       // pointer size.
 | |
|       if (unsigned ShiftBits = 64 - PointerSize) {
 | |
|         Scale <<= ShiftBits;
 | |
|         Scale = (int64_t)Scale >> ShiftBits;
 | |
|       }
 | |
| 
 | |
|       if (Scale) {
 | |
|         VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
 | |
|                                   static_cast<int64_t>(Scale)};
 | |
|         VarIndices.push_back(Entry);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Analyze the base pointer next.
 | |
|     V = GEPOp->getOperand(0);
 | |
|   } while (--MaxLookup);
 | |
| 
 | |
|   // If the chain of expressions is too deep, just return early.
 | |
|   MaxLookupReached = true;
 | |
|   SearchLimitReached++;
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// Returns whether the given pointer value points to memory that is local to
 | |
| /// the function, with global constants being considered local to all
 | |
| /// functions.
 | |
| bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
 | |
|                                            bool OrLocal) {
 | |
|   assert(Visited.empty() && "Visited must be cleared after use!");
 | |
| 
 | |
|   unsigned MaxLookup = 8;
 | |
|   SmallVector<const Value *, 16> Worklist;
 | |
|   Worklist.push_back(Loc.Ptr);
 | |
|   do {
 | |
|     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
 | |
|     if (!Visited.insert(V).second) {
 | |
|       Visited.clear();
 | |
|       return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
 | |
|     }
 | |
| 
 | |
|     // An alloca instruction defines local memory.
 | |
|     if (OrLocal && isa<AllocaInst>(V))
 | |
|       continue;
 | |
| 
 | |
|     // A global constant counts as local memory for our purposes.
 | |
|     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | |
|       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
 | |
|       // global to be marked constant in some modules and non-constant in
 | |
|       // others.  GV may even be a declaration, not a definition.
 | |
|       if (!GV->isConstant()) {
 | |
|         Visited.clear();
 | |
|         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If both select values point to local memory, then so does the select.
 | |
|     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
 | |
|       Worklist.push_back(SI->getTrueValue());
 | |
|       Worklist.push_back(SI->getFalseValue());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If all values incoming to a phi node point to local memory, then so does
 | |
|     // the phi.
 | |
|     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|       // Don't bother inspecting phi nodes with many operands.
 | |
|       if (PN->getNumIncomingValues() > MaxLookup) {
 | |
|         Visited.clear();
 | |
|         return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
 | |
|       }
 | |
|       for (Value *IncValue : PN->incoming_values())
 | |
|         Worklist.push_back(IncValue);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise be conservative.
 | |
|     Visited.clear();
 | |
|     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
 | |
| 
 | |
|   } while (!Worklist.empty() && --MaxLookup);
 | |
| 
 | |
|   Visited.clear();
 | |
|   return Worklist.empty();
 | |
| }
 | |
| 
 | |
| // FIXME: This code is duplicated with MemoryLocation and should be hoisted to
 | |
| // some common utility location.
 | |
| static bool isMemsetPattern16(const Function *MS,
 | |
|                               const TargetLibraryInfo &TLI) {
 | |
|   if (TLI.has(LibFunc::memset_pattern16) &&
 | |
|       MS->getName() == "memset_pattern16") {
 | |
|     FunctionType *MemsetType = MS->getFunctionType();
 | |
|     if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
 | |
|         isa<PointerType>(MemsetType->getParamType(0)) &&
 | |
|         isa<PointerType>(MemsetType->getParamType(1)) &&
 | |
|         isa<IntegerType>(MemsetType->getParamType(2)))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns the behavior when calling the given call site.
 | |
| FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
 | |
|   if (CS.doesNotAccessMemory())
 | |
|     // Can't do better than this.
 | |
|     return FMRB_DoesNotAccessMemory;
 | |
| 
 | |
|   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
 | |
| 
 | |
|   // If the callsite knows it only reads memory, don't return worse
 | |
|   // than that.
 | |
|   if (CS.onlyReadsMemory())
 | |
|     Min = FMRB_OnlyReadsMemory;
 | |
| 
 | |
|   if (CS.onlyAccessesArgMemory())
 | |
|     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
 | |
| 
 | |
|   // The AAResultBase base class has some smarts, lets use them.
 | |
|   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
 | |
| }
 | |
| 
 | |
| /// Returns the behavior when calling the given function. For use when the call
 | |
| /// site is not known.
 | |
| FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
 | |
|   // If the function declares it doesn't access memory, we can't do better.
 | |
|   if (F->doesNotAccessMemory())
 | |
|     return FMRB_DoesNotAccessMemory;
 | |
| 
 | |
|   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
 | |
| 
 | |
|   // If the function declares it only reads memory, go with that.
 | |
|   if (F->onlyReadsMemory())
 | |
|     Min = FMRB_OnlyReadsMemory;
 | |
| 
 | |
|   if (F->onlyAccessesArgMemory())
 | |
|     Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);
 | |
| 
 | |
|   if (isMemsetPattern16(F, TLI))
 | |
|     Min = FMRB_OnlyAccessesArgumentPointees;
 | |
| 
 | |
|   // Otherwise be conservative.
 | |
|   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(F) & Min);
 | |
| }
 | |
| 
 | |
| ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
 | |
|                                            unsigned ArgIdx) {
 | |
|   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction()))
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     default:
 | |
|       break;
 | |
|     case Intrinsic::memset:
 | |
|     case Intrinsic::memcpy:
 | |
|     case Intrinsic::memmove:
 | |
|       assert((ArgIdx == 0 || ArgIdx == 1) &&
 | |
|              "Invalid argument index for memory intrinsic");
 | |
|       return ArgIdx ? MRI_Ref : MRI_Mod;
 | |
|     }
 | |
| 
 | |
|   // We can bound the aliasing properties of memset_pattern16 just as we can
 | |
|   // for memcpy/memset.  This is particularly important because the
 | |
|   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
 | |
|   // whenever possible.
 | |
|   if (CS.getCalledFunction() &&
 | |
|       isMemsetPattern16(CS.getCalledFunction(), TLI)) {
 | |
|     assert((ArgIdx == 0 || ArgIdx == 1) &&
 | |
|            "Invalid argument index for memset_pattern16");
 | |
|     return ArgIdx ? MRI_Ref : MRI_Mod;
 | |
|   }
 | |
|   // FIXME: Handle memset_pattern4 and memset_pattern8 also.
 | |
| 
 | |
|   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
 | |
|     return MRI_Ref;
 | |
| 
 | |
|   if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
 | |
|     return MRI_NoModRef;
 | |
| 
 | |
|   return AAResultBase::getArgModRefInfo(CS, ArgIdx);
 | |
| }
 | |
| 
 | |
| static bool isAssumeIntrinsic(ImmutableCallSite CS) {
 | |
|   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
 | |
|   return II && II->getIntrinsicID() == Intrinsic::assume;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static const Function *getParent(const Value *V) {
 | |
|   if (const Instruction *inst = dyn_cast<Instruction>(V))
 | |
|     return inst->getParent()->getParent();
 | |
| 
 | |
|   if (const Argument *arg = dyn_cast<Argument>(V))
 | |
|     return arg->getParent();
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| static bool notDifferentParent(const Value *O1, const Value *O2) {
 | |
| 
 | |
|   const Function *F1 = getParent(O1);
 | |
|   const Function *F2 = getParent(O2);
 | |
| 
 | |
|   return !F1 || !F2 || F1 == F2;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
 | |
|                                  const MemoryLocation &LocB) {
 | |
|   assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
 | |
|          "BasicAliasAnalysis doesn't support interprocedural queries.");
 | |
| 
 | |
|   // If we have a directly cached entry for these locations, we have recursed
 | |
|   // through this once, so just return the cached results. Notably, when this
 | |
|   // happens, we don't clear the cache.
 | |
|   auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
 | |
|   if (CacheIt != AliasCache.end())
 | |
|     return CacheIt->second;
 | |
| 
 | |
|   AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
 | |
|                                  LocB.Size, LocB.AATags);
 | |
|   // AliasCache rarely has more than 1 or 2 elements, always use
 | |
|   // shrink_and_clear so it quickly returns to the inline capacity of the
 | |
|   // SmallDenseMap if it ever grows larger.
 | |
|   // FIXME: This should really be shrink_to_inline_capacity_and_clear().
 | |
|   AliasCache.shrink_and_clear();
 | |
|   VisitedPhiBBs.clear();
 | |
|   return Alias;
 | |
| }
 | |
| 
 | |
| /// Checks to see if the specified callsite can clobber the specified memory
 | |
| /// object.
 | |
| ///
 | |
| /// Since we only look at local properties of this function, we really can't
 | |
| /// say much about this query.  We do, however, use simple "address taken"
 | |
| /// analysis on local objects.
 | |
| ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
 | |
|                                         const MemoryLocation &Loc) {
 | |
|   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
 | |
|          "AliasAnalysis query involving multiple functions!");
 | |
| 
 | |
|   const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);
 | |
| 
 | |
|   // If this is a tail call and Loc.Ptr points to a stack location, we know that
 | |
|   // the tail call cannot access or modify the local stack.
 | |
|   // We cannot exclude byval arguments here; these belong to the caller of
 | |
|   // the current function not to the current function, and a tail callee
 | |
|   // may reference them.
 | |
|   if (isa<AllocaInst>(Object))
 | |
|     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
 | |
|       if (CI->isTailCall())
 | |
|         return MRI_NoModRef;
 | |
| 
 | |
|   // If the pointer is to a locally allocated object that does not escape,
 | |
|   // then the call can not mod/ref the pointer unless the call takes the pointer
 | |
|   // as an argument, and itself doesn't capture it.
 | |
|   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
 | |
|       isNonEscapingLocalObject(Object)) {
 | |
|     bool PassedAsArg = false;
 | |
|     unsigned ArgNo = 0;
 | |
|     for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
 | |
|          CI != CE; ++CI, ++ArgNo) {
 | |
|       // Only look at the no-capture or byval pointer arguments.  If this
 | |
|       // pointer were passed to arguments that were neither of these, then it
 | |
|       // couldn't be no-capture.
 | |
|       if (!(*CI)->getType()->isPointerTy() ||
 | |
|           (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
 | |
|         continue;
 | |
| 
 | |
|       // If this is a no-capture pointer argument, see if we can tell that it
 | |
|       // is impossible to alias the pointer we're checking.  If not, we have to
 | |
|       // assume that the call could touch the pointer, even though it doesn't
 | |
|       // escape.
 | |
|       AliasResult AR =
 | |
|           getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
 | |
|       if (AR) {
 | |
|         PassedAsArg = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!PassedAsArg)
 | |
|       return MRI_NoModRef;
 | |
|   }
 | |
| 
 | |
|   // While the assume intrinsic is marked as arbitrarily writing so that
 | |
|   // proper control dependencies will be maintained, it never aliases any
 | |
|   // particular memory location.
 | |
|   if (isAssumeIntrinsic(CS))
 | |
|     return MRI_NoModRef;
 | |
| 
 | |
|   // The AAResultBase base class has some smarts, lets use them.
 | |
|   return AAResultBase::getModRefInfo(CS, Loc);
 | |
| }
 | |
| 
 | |
| ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
 | |
|                                         ImmutableCallSite CS2) {
 | |
|   // While the assume intrinsic is marked as arbitrarily writing so that
 | |
|   // proper control dependencies will be maintained, it never aliases any
 | |
|   // particular memory location.
 | |
|   if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
 | |
|     return MRI_NoModRef;
 | |
| 
 | |
|   // The AAResultBase base class has some smarts, lets use them.
 | |
|   return AAResultBase::getModRefInfo(CS1, CS2);
 | |
| }
 | |
| 
 | |
| /// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
 | |
| /// both having the exact same pointer operand.
 | |
| static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
 | |
|                                             uint64_t V1Size,
 | |
|                                             const GEPOperator *GEP2,
 | |
|                                             uint64_t V2Size,
 | |
|                                             const DataLayout &DL) {
 | |
| 
 | |
|   assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
 | |
|          "Expected GEPs with the same pointer operand");
 | |
| 
 | |
|   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
 | |
|   // such that the struct field accesses provably cannot alias.
 | |
|   // We also need at least two indices (the pointer, and the struct field).
 | |
|   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
 | |
|       GEP1->getNumIndices() < 2)
 | |
|     return MayAlias;
 | |
| 
 | |
|   // If we don't know the size of the accesses through both GEPs, we can't
 | |
|   // determine whether the struct fields accessed can't alias.
 | |
|   if (V1Size == MemoryLocation::UnknownSize ||
 | |
|       V2Size == MemoryLocation::UnknownSize)
 | |
|     return MayAlias;
 | |
| 
 | |
|   ConstantInt *C1 =
 | |
|       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
 | |
|   ConstantInt *C2 =
 | |
|       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
 | |
| 
 | |
|   // If the last (struct) indices are constants and are equal, the other indices
 | |
|   // might be also be dynamically equal, so the GEPs can alias.
 | |
|   if (C1 && C2 && C1 == C2)
 | |
|     return MayAlias;
 | |
| 
 | |
|   // Find the last-indexed type of the GEP, i.e., the type you'd get if
 | |
|   // you stripped the last index.
 | |
|   // On the way, look at each indexed type.  If there's something other
 | |
|   // than an array, different indices can lead to different final types.
 | |
|   SmallVector<Value *, 8> IntermediateIndices;
 | |
| 
 | |
|   // Insert the first index; we don't need to check the type indexed
 | |
|   // through it as it only drops the pointer indirection.
 | |
|   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
 | |
|   IntermediateIndices.push_back(GEP1->getOperand(1));
 | |
| 
 | |
|   // Insert all the remaining indices but the last one.
 | |
|   // Also, check that they all index through arrays.
 | |
|   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
 | |
|     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
 | |
|             GEP1->getSourceElementType(), IntermediateIndices)))
 | |
|       return MayAlias;
 | |
|     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
 | |
|   }
 | |
| 
 | |
|   auto *Ty = GetElementPtrInst::getIndexedType(
 | |
|     GEP1->getSourceElementType(), IntermediateIndices);
 | |
|   StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);
 | |
| 
 | |
|   if (isa<SequentialType>(Ty)) {
 | |
|     // We know that:
 | |
|     // - both GEPs begin indexing from the exact same pointer;
 | |
|     // - the last indices in both GEPs are constants, indexing into a sequential
 | |
|     //   type (array or pointer);
 | |
|     // - both GEPs only index through arrays prior to that.
 | |
|     //
 | |
|     // Because array indices greater than the number of elements are valid in
 | |
|     // GEPs, unless we know the intermediate indices are identical between
 | |
|     // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
 | |
|     // partially overlap. We also need to check that the loaded size matches
 | |
|     // the element size, otherwise we could still have overlap.
 | |
|     const uint64_t ElementSize =
 | |
|         DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
 | |
|     if (V1Size != ElementSize || V2Size != ElementSize)
 | |
|       return MayAlias;
 | |
| 
 | |
|     for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
 | |
|       if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
 | |
|         return MayAlias;
 | |
| 
 | |
|     // Now we know that the array/pointer that GEP1 indexes into and that
 | |
|     // that GEP2 indexes into must either precisely overlap or be disjoint.
 | |
|     // Because they cannot partially overlap and because fields in an array
 | |
|     // cannot overlap, if we can prove the final indices are different between
 | |
|     // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
 | |
|     
 | |
|     // If the last indices are constants, we've already checked they don't
 | |
|     // equal each other so we can exit early.
 | |
|     if (C1 && C2)
 | |
|       return NoAlias;
 | |
|     if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
 | |
|                         GEP2->getOperand(GEP2->getNumOperands() - 1),
 | |
|                         DL))
 | |
|       return NoAlias;
 | |
|     return MayAlias;
 | |
|   } else if (!LastIndexedStruct || !C1 || !C2) {
 | |
|     return MayAlias;
 | |
|   }
 | |
| 
 | |
|   // We know that:
 | |
|   // - both GEPs begin indexing from the exact same pointer;
 | |
|   // - the last indices in both GEPs are constants, indexing into a struct;
 | |
|   // - said indices are different, hence, the pointed-to fields are different;
 | |
|   // - both GEPs only index through arrays prior to that.
 | |
|   //
 | |
|   // This lets us determine that the struct that GEP1 indexes into and the
 | |
|   // struct that GEP2 indexes into must either precisely overlap or be
 | |
|   // completely disjoint.  Because they cannot partially overlap, indexing into
 | |
|   // different non-overlapping fields of the struct will never alias.
 | |
| 
 | |
|   // Therefore, the only remaining thing needed to show that both GEPs can't
 | |
|   // alias is that the fields are not overlapping.
 | |
|   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
 | |
|   const uint64_t StructSize = SL->getSizeInBytes();
 | |
|   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
 | |
|   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
 | |
| 
 | |
|   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
 | |
|                                       uint64_t V2Off, uint64_t V2Size) {
 | |
|     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
 | |
|            ((V2Off + V2Size <= StructSize) ||
 | |
|             (V2Off + V2Size - StructSize <= V1Off));
 | |
|   };
 | |
| 
 | |
|   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
 | |
|       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
 | |
|     return NoAlias;
 | |
| 
 | |
|   return MayAlias;
 | |
| }
 | |
| 
 | |
| /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
 | |
| /// another pointer.
 | |
| ///
 | |
| /// We know that V1 is a GEP, but we don't know anything about V2.
 | |
| /// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
 | |
| /// V2.
 | |
| AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
 | |
|                                     const AAMDNodes &V1AAInfo, const Value *V2,
 | |
|                                     uint64_t V2Size, const AAMDNodes &V2AAInfo,
 | |
|                                     const Value *UnderlyingV1,
 | |
|                                     const Value *UnderlyingV2) {
 | |
|   int64_t GEP1BaseOffset;
 | |
|   bool GEP1MaxLookupReached;
 | |
|   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
 | |
| 
 | |
|   // If we have two gep instructions with must-alias or not-alias'ing base
 | |
|   // pointers, figure out if the indexes to the GEP tell us anything about the
 | |
|   // derived pointer.
 | |
|   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
 | |
|     // Do the base pointers alias?
 | |
|     AliasResult BaseAlias =
 | |
|         aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
 | |
|                    UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());
 | |
| 
 | |
|     // Check for geps of non-aliasing underlying pointers where the offsets are
 | |
|     // identical.
 | |
|     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
 | |
|       // Do the base pointers alias assuming type and size.
 | |
|       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
 | |
|                                                 UnderlyingV2, V2Size, V2AAInfo);
 | |
|       if (PreciseBaseAlias == NoAlias) {
 | |
|         // See if the computed offset from the common pointer tells us about the
 | |
|         // relation of the resulting pointer.
 | |
|         int64_t GEP2BaseOffset;
 | |
|         bool GEP2MaxLookupReached;
 | |
|         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
 | |
|         const Value *GEP2BasePtr =
 | |
|             DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
 | |
|                                    GEP2MaxLookupReached, DL, &AC, DT);
 | |
|         const Value *GEP1BasePtr =
 | |
|             DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
 | |
|                                    GEP1MaxLookupReached, DL, &AC, DT);
 | |
|         // DecomposeGEPExpression and GetUnderlyingObject should return the
 | |
|         // same result except when DecomposeGEPExpression has no DataLayout.
 | |
|         // FIXME: They always have a DataLayout so this should become an
 | |
|         // assert.
 | |
|         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
 | |
|           return MayAlias;
 | |
|         }
 | |
|         // If the max search depth is reached the result is undefined
 | |
|         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
 | |
|           return MayAlias;
 | |
| 
 | |
|         // Same offsets.
 | |
|         if (GEP1BaseOffset == GEP2BaseOffset &&
 | |
|             GEP1VariableIndices == GEP2VariableIndices)
 | |
|           return NoAlias;
 | |
|         GEP1VariableIndices.clear();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we get a No or May, then return it immediately, no amount of analysis
 | |
|     // will improve this situation.
 | |
|     if (BaseAlias != MustAlias)
 | |
|       return BaseAlias;
 | |
| 
 | |
|     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
 | |
|     // exactly, see if the computed offset from the common pointer tells us
 | |
|     // about the relation of the resulting pointer.
 | |
|     const Value *GEP1BasePtr =
 | |
|         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
 | |
|                                GEP1MaxLookupReached, DL, &AC, DT);
 | |
| 
 | |
|     int64_t GEP2BaseOffset;
 | |
|     bool GEP2MaxLookupReached;
 | |
|     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
 | |
|     const Value *GEP2BasePtr =
 | |
|         DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
 | |
|                                GEP2MaxLookupReached, DL, &AC, DT);
 | |
| 
 | |
|     // DecomposeGEPExpression and GetUnderlyingObject should return the
 | |
|     // same result except when DecomposeGEPExpression has no DataLayout.
 | |
|     // FIXME: They always have a DataLayout so this should become an assert.
 | |
|     if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
 | |
|       return MayAlias;
 | |
|     }
 | |
| 
 | |
|     // If we know the two GEPs are based off of the exact same pointer (and not
 | |
|     // just the same underlying object), see if that tells us anything about
 | |
|     // the resulting pointers.
 | |
|     if (GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
 | |
|       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
 | |
|       // If we couldn't find anything interesting, don't abandon just yet.
 | |
|       if (R != MayAlias)
 | |
|         return R;
 | |
|     }
 | |
| 
 | |
|     // If the max search depth is reached the result is undefined
 | |
|     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
 | |
|       return MayAlias;
 | |
| 
 | |
|     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
 | |
|     // symbolic difference.
 | |
|     GEP1BaseOffset -= GEP2BaseOffset;
 | |
|     GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
 | |
| 
 | |
|   } else {
 | |
|     // Check to see if these two pointers are related by the getelementptr
 | |
|     // instruction.  If one pointer is a GEP with a non-zero index of the other
 | |
|     // pointer, we know they cannot alias.
 | |
| 
 | |
|     // If both accesses are unknown size, we can't do anything useful here.
 | |
|     if (V1Size == MemoryLocation::UnknownSize &&
 | |
|         V2Size == MemoryLocation::UnknownSize)
 | |
|       return MayAlias;
 | |
| 
 | |
|     AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
 | |
|                                AAMDNodes(), V2, V2Size, V2AAInfo);
 | |
|     if (R != MustAlias)
 | |
|       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
 | |
|       // If V2 is known not to alias GEP base pointer, then the two values
 | |
|       // cannot alias per GEP semantics: "A pointer value formed from a
 | |
|       // getelementptr instruction is associated with the addresses associated
 | |
|       // with the first operand of the getelementptr".
 | |
|       return R;
 | |
| 
 | |
|     const Value *GEP1BasePtr =
 | |
|         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
 | |
|                                GEP1MaxLookupReached, DL, &AC, DT);
 | |
| 
 | |
|     // DecomposeGEPExpression and GetUnderlyingObject should return the
 | |
|     // same result except when DecomposeGEPExpression has no DataLayout.
 | |
|     // FIXME: They always have a DataLayout so this should become an assert.
 | |
|     if (GEP1BasePtr != UnderlyingV1) {
 | |
|       return MayAlias;
 | |
|     }
 | |
|     // If the max search depth is reached the result is undefined
 | |
|     if (GEP1MaxLookupReached)
 | |
|       return MayAlias;
 | |
|   }
 | |
| 
 | |
|   // In the two GEP Case, if there is no difference in the offsets of the
 | |
|   // computed pointers, the resultant pointers are a must alias.  This
 | |
|   // hapens when we have two lexically identical GEP's (for example).
 | |
|   //
 | |
|   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
 | |
|   // must aliases the GEP, the end result is a must alias also.
 | |
|   if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
 | |
|     return MustAlias;
 | |
| 
 | |
|   // If there is a constant difference between the pointers, but the difference
 | |
|   // is less than the size of the associated memory object, then we know
 | |
|   // that the objects are partially overlapping.  If the difference is
 | |
|   // greater, we know they do not overlap.
 | |
|   if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
 | |
|     if (GEP1BaseOffset >= 0) {
 | |
|       if (V2Size != MemoryLocation::UnknownSize) {
 | |
|         if ((uint64_t)GEP1BaseOffset < V2Size)
 | |
|           return PartialAlias;
 | |
|         return NoAlias;
 | |
|       }
 | |
|     } else {
 | |
|       // We have the situation where:
 | |
|       // +                +
 | |
|       // | BaseOffset     |
 | |
|       // ---------------->|
 | |
|       // |-->V1Size       |-------> V2Size
 | |
|       // GEP1             V2
 | |
|       // We need to know that V2Size is not unknown, otherwise we might have
 | |
|       // stripped a gep with negative index ('gep <ptr>, -1, ...).
 | |
|       if (V1Size != MemoryLocation::UnknownSize &&
 | |
|           V2Size != MemoryLocation::UnknownSize) {
 | |
|         if (-(uint64_t)GEP1BaseOffset < V1Size)
 | |
|           return PartialAlias;
 | |
|         return NoAlias;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!GEP1VariableIndices.empty()) {
 | |
|     uint64_t Modulo = 0;
 | |
|     bool AllPositive = true;
 | |
|     for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
 | |
| 
 | |
|       // Try to distinguish something like &A[i][1] against &A[42][0].
 | |
|       // Grab the least significant bit set in any of the scales. We
 | |
|       // don't need std::abs here (even if the scale's negative) as we'll
 | |
|       // be ^'ing Modulo with itself later.
 | |
|       Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
 | |
| 
 | |
|       if (AllPositive) {
 | |
|         // If the Value could change between cycles, then any reasoning about
 | |
|         // the Value this cycle may not hold in the next cycle. We'll just
 | |
|         // give up if we can't determine conditions that hold for every cycle:
 | |
|         const Value *V = GEP1VariableIndices[i].V;
 | |
| 
 | |
|         bool SignKnownZero, SignKnownOne;
 | |
|         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
 | |
|                        0, &AC, nullptr, DT);
 | |
| 
 | |
|         // Zero-extension widens the variable, and so forces the sign
 | |
|         // bit to zero.
 | |
|         bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
 | |
|         SignKnownZero |= IsZExt;
 | |
|         SignKnownOne &= !IsZExt;
 | |
| 
 | |
|         // If the variable begins with a zero then we know it's
 | |
|         // positive, regardless of whether the value is signed or
 | |
|         // unsigned.
 | |
|         int64_t Scale = GEP1VariableIndices[i].Scale;
 | |
|         AllPositive =
 | |
|             (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Modulo = Modulo ^ (Modulo & (Modulo - 1));
 | |
| 
 | |
|     // We can compute the difference between the two addresses
 | |
|     // mod Modulo. Check whether that difference guarantees that the
 | |
|     // two locations do not alias.
 | |
|     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
 | |
|     if (V1Size != MemoryLocation::UnknownSize &&
 | |
|         V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
 | |
|         V1Size <= Modulo - ModOffset)
 | |
|       return NoAlias;
 | |
| 
 | |
|     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
 | |
|     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
 | |
|     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
 | |
|     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
 | |
|       return NoAlias;
 | |
| 
 | |
|     if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size,
 | |
|                                 GEP1BaseOffset, &AC, DT))
 | |
|       return NoAlias;
 | |
|   }
 | |
| 
 | |
|   // Statically, we can see that the base objects are the same, but the
 | |
|   // pointers have dynamic offsets which we can't resolve. And none of our
 | |
|   // little tricks above worked.
 | |
|   //
 | |
|   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
 | |
|   // practical effect of this is protecting TBAA in the case of dynamic
 | |
|   // indices into arrays of unions or malloc'd memory.
 | |
|   return PartialAlias;
 | |
| }
 | |
| 
 | |
| static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
 | |
|   // If the results agree, take it.
 | |
|   if (A == B)
 | |
|     return A;
 | |
|   // A mix of PartialAlias and MustAlias is PartialAlias.
 | |
|   if ((A == PartialAlias && B == MustAlias) ||
 | |
|       (B == PartialAlias && A == MustAlias))
 | |
|     return PartialAlias;
 | |
|   // Otherwise, we don't know anything.
 | |
|   return MayAlias;
 | |
| }
 | |
| 
 | |
| /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
 | |
| /// against another.
 | |
| AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
 | |
|                                        const AAMDNodes &SIAAInfo,
 | |
|                                        const Value *V2, uint64_t V2Size,
 | |
|                                        const AAMDNodes &V2AAInfo) {
 | |
|   // If the values are Selects with the same condition, we can do a more precise
 | |
|   // check: just check for aliases between the values on corresponding arms.
 | |
|   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
 | |
|     if (SI->getCondition() == SI2->getCondition()) {
 | |
|       AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
 | |
|                                      SI2->getTrueValue(), V2Size, V2AAInfo);
 | |
|       if (Alias == MayAlias)
 | |
|         return MayAlias;
 | |
|       AliasResult ThisAlias =
 | |
|           aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
 | |
|                      SI2->getFalseValue(), V2Size, V2AAInfo);
 | |
|       return MergeAliasResults(ThisAlias, Alias);
 | |
|     }
 | |
| 
 | |
|   // If both arms of the Select node NoAlias or MustAlias V2, then returns
 | |
|   // NoAlias / MustAlias. Otherwise, returns MayAlias.
 | |
|   AliasResult Alias =
 | |
|       aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
 | |
|   if (Alias == MayAlias)
 | |
|     return MayAlias;
 | |
| 
 | |
|   AliasResult ThisAlias =
 | |
|       aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
 | |
|   return MergeAliasResults(ThisAlias, Alias);
 | |
| }
 | |
| 
 | |
| /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
 | |
| /// another.
 | |
| AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
 | |
|                                     const AAMDNodes &PNAAInfo, const Value *V2,
 | |
|                                     uint64_t V2Size,
 | |
|                                     const AAMDNodes &V2AAInfo) {
 | |
|   // Track phi nodes we have visited. We use this information when we determine
 | |
|   // value equivalence.
 | |
|   VisitedPhiBBs.insert(PN->getParent());
 | |
| 
 | |
|   // If the values are PHIs in the same block, we can do a more precise
 | |
|   // as well as efficient check: just check for aliases between the values
 | |
|   // on corresponding edges.
 | |
|   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
 | |
|     if (PN2->getParent() == PN->getParent()) {
 | |
|       LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
 | |
|                    MemoryLocation(V2, V2Size, V2AAInfo));
 | |
|       if (PN > V2)
 | |
|         std::swap(Locs.first, Locs.second);
 | |
|       // Analyse the PHIs' inputs under the assumption that the PHIs are
 | |
|       // NoAlias.
 | |
|       // If the PHIs are May/MustAlias there must be (recursively) an input
 | |
|       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
 | |
|       // there must be an operation on the PHIs within the PHIs' value cycle
 | |
|       // that causes a MayAlias.
 | |
|       // Pretend the phis do not alias.
 | |
|       AliasResult Alias = NoAlias;
 | |
|       assert(AliasCache.count(Locs) &&
 | |
|              "There must exist an entry for the phi node");
 | |
|       AliasResult OrigAliasResult = AliasCache[Locs];
 | |
|       AliasCache[Locs] = NoAlias;
 | |
| 
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         AliasResult ThisAlias =
 | |
|             aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
 | |
|                        PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
 | |
|                        V2Size, V2AAInfo);
 | |
|         Alias = MergeAliasResults(ThisAlias, Alias);
 | |
|         if (Alias == MayAlias)
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       // Reset if speculation failed.
 | |
|       if (Alias != NoAlias)
 | |
|         AliasCache[Locs] = OrigAliasResult;
 | |
| 
 | |
|       return Alias;
 | |
|     }
 | |
| 
 | |
|   SmallPtrSet<Value *, 4> UniqueSrc;
 | |
|   SmallVector<Value *, 4> V1Srcs;
 | |
|   bool isRecursive = false;
 | |
|   for (Value *PV1 : PN->incoming_values()) {
 | |
|     if (isa<PHINode>(PV1))
 | |
|       // If any of the source itself is a PHI, return MayAlias conservatively
 | |
|       // to avoid compile time explosion. The worst possible case is if both
 | |
|       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
 | |
|       // and 'n' are the number of PHI sources.
 | |
|       return MayAlias;
 | |
| 
 | |
|     if (EnableRecPhiAnalysis)
 | |
|       if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
 | |
|         // Check whether the incoming value is a GEP that advances the pointer
 | |
|         // result of this PHI node (e.g. in a loop). If this is the case, we
 | |
|         // would recurse and always get a MayAlias. Handle this case specially
 | |
|         // below.
 | |
|         if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
 | |
|             isa<ConstantInt>(PV1GEP->idx_begin())) {
 | |
|           isRecursive = true;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     if (UniqueSrc.insert(PV1).second)
 | |
|       V1Srcs.push_back(PV1);
 | |
|   }
 | |
| 
 | |
|   // If this PHI node is recursive, set the size of the accessed memory to
 | |
|   // unknown to represent all the possible values the GEP could advance the
 | |
|   // pointer to.
 | |
|   if (isRecursive)
 | |
|     PNSize = MemoryLocation::UnknownSize;
 | |
| 
 | |
|   AliasResult Alias =
 | |
|       aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);
 | |
| 
 | |
|   // Early exit if the check of the first PHI source against V2 is MayAlias.
 | |
|   // Other results are not possible.
 | |
|   if (Alias == MayAlias)
 | |
|     return MayAlias;
 | |
| 
 | |
|   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
 | |
|   // NoAlias / MustAlias. Otherwise, returns MayAlias.
 | |
|   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
 | |
|     Value *V = V1Srcs[i];
 | |
| 
 | |
|     AliasResult ThisAlias =
 | |
|         aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
 | |
|     Alias = MergeAliasResults(ThisAlias, Alias);
 | |
|     if (Alias == MayAlias)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return Alias;
 | |
| }
 | |
| 
 | |
| /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
 | |
| /// array references.
 | |
| AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
 | |
|                                       AAMDNodes V1AAInfo, const Value *V2,
 | |
|                                       uint64_t V2Size, AAMDNodes V2AAInfo) {
 | |
|   // If either of the memory references is empty, it doesn't matter what the
 | |
|   // pointer values are.
 | |
|   if (V1Size == 0 || V2Size == 0)
 | |
|     return NoAlias;
 | |
| 
 | |
|   // Strip off any casts if they exist.
 | |
|   V1 = V1->stripPointerCasts();
 | |
|   V2 = V2->stripPointerCasts();
 | |
| 
 | |
|   // If V1 or V2 is undef, the result is NoAlias because we can always pick a
 | |
|   // value for undef that aliases nothing in the program.
 | |
|   if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
 | |
|     return NoAlias;
 | |
| 
 | |
|   // Are we checking for alias of the same value?
 | |
|   // Because we look 'through' phi nodes we could look at "Value" pointers from
 | |
|   // different iterations. We must therefore make sure that this is not the
 | |
|   // case. The function isValueEqualInPotentialCycles ensures that this cannot
 | |
|   // happen by looking at the visited phi nodes and making sure they cannot
 | |
|   // reach the value.
 | |
|   if (isValueEqualInPotentialCycles(V1, V2))
 | |
|     return MustAlias;
 | |
| 
 | |
|   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
 | |
|     return NoAlias; // Scalars cannot alias each other
 | |
| 
 | |
|   // Figure out what objects these things are pointing to if we can.
 | |
|   const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
 | |
|   const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);
 | |
| 
 | |
|   // Null values in the default address space don't point to any object, so they
 | |
|   // don't alias any other pointer.
 | |
|   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
 | |
|     if (CPN->getType()->getAddressSpace() == 0)
 | |
|       return NoAlias;
 | |
|   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
 | |
|     if (CPN->getType()->getAddressSpace() == 0)
 | |
|       return NoAlias;
 | |
| 
 | |
|   if (O1 != O2) {
 | |
|     // If V1/V2 point to two different objects we know that we have no alias.
 | |
|     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
 | |
|       return NoAlias;
 | |
| 
 | |
|     // Constant pointers can't alias with non-const isIdentifiedObject objects.
 | |
|     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
 | |
|         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
 | |
|       return NoAlias;
 | |
| 
 | |
|     // Function arguments can't alias with things that are known to be
 | |
|     // unambigously identified at the function level.
 | |
|     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
 | |
|         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
 | |
|       return NoAlias;
 | |
| 
 | |
|     // Most objects can't alias null.
 | |
|     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
 | |
|         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
 | |
|       return NoAlias;
 | |
| 
 | |
|     // If one pointer is the result of a call/invoke or load and the other is a
 | |
|     // non-escaping local object within the same function, then we know the
 | |
|     // object couldn't escape to a point where the call could return it.
 | |
|     //
 | |
|     // Note that if the pointers are in different functions, there are a
 | |
|     // variety of complications. A call with a nocapture argument may still
 | |
|     // temporary store the nocapture argument's value in a temporary memory
 | |
|     // location if that memory location doesn't escape. Or it may pass a
 | |
|     // nocapture value to other functions as long as they don't capture it.
 | |
|     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
 | |
|       return NoAlias;
 | |
|     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
 | |
|       return NoAlias;
 | |
|   }
 | |
| 
 | |
|   // If the size of one access is larger than the entire object on the other
 | |
|   // side, then we know such behavior is undefined and can assume no alias.
 | |
|   if ((V1Size != MemoryLocation::UnknownSize &&
 | |
|        isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
 | |
|       (V2Size != MemoryLocation::UnknownSize &&
 | |
|        isObjectSmallerThan(O1, V2Size, DL, TLI)))
 | |
|     return NoAlias;
 | |
| 
 | |
|   // Check the cache before climbing up use-def chains. This also terminates
 | |
|   // otherwise infinitely recursive queries.
 | |
|   LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
 | |
|                MemoryLocation(V2, V2Size, V2AAInfo));
 | |
|   if (V1 > V2)
 | |
|     std::swap(Locs.first, Locs.second);
 | |
|   std::pair<AliasCacheTy::iterator, bool> Pair =
 | |
|       AliasCache.insert(std::make_pair(Locs, MayAlias));
 | |
|   if (!Pair.second)
 | |
|     return Pair.first->second;
 | |
| 
 | |
|   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
 | |
|   // GEP can't simplify, we don't even look at the PHI cases.
 | |
|   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
 | |
|     std::swap(V1, V2);
 | |
|     std::swap(V1Size, V2Size);
 | |
|     std::swap(O1, O2);
 | |
|     std::swap(V1AAInfo, V2AAInfo);
 | |
|   }
 | |
|   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
 | |
|     AliasResult Result =
 | |
|         aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
 | |
|     if (Result != MayAlias)
 | |
|       return AliasCache[Locs] = Result;
 | |
|   }
 | |
| 
 | |
|   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
 | |
|     std::swap(V1, V2);
 | |
|     std::swap(V1Size, V2Size);
 | |
|     std::swap(V1AAInfo, V2AAInfo);
 | |
|   }
 | |
|   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
 | |
|     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
 | |
|     if (Result != MayAlias)
 | |
|       return AliasCache[Locs] = Result;
 | |
|   }
 | |
| 
 | |
|   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
 | |
|     std::swap(V1, V2);
 | |
|     std::swap(V1Size, V2Size);
 | |
|     std::swap(V1AAInfo, V2AAInfo);
 | |
|   }
 | |
|   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
 | |
|     AliasResult Result =
 | |
|         aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
 | |
|     if (Result != MayAlias)
 | |
|       return AliasCache[Locs] = Result;
 | |
|   }
 | |
| 
 | |
|   // If both pointers are pointing into the same object and one of them
 | |
|   // accesses is accessing the entire object, then the accesses must
 | |
|   // overlap in some way.
 | |
|   if (O1 == O2)
 | |
|     if ((V1Size != MemoryLocation::UnknownSize &&
 | |
|          isObjectSize(O1, V1Size, DL, TLI)) ||
 | |
|         (V2Size != MemoryLocation::UnknownSize &&
 | |
|          isObjectSize(O2, V2Size, DL, TLI)))
 | |
|       return AliasCache[Locs] = PartialAlias;
 | |
| 
 | |
|   // Recurse back into the best AA results we have, potentially with refined
 | |
|   // memory locations. We have already ensured that BasicAA has a MayAlias
 | |
|   // cache result for these, so any recursion back into BasicAA won't loop.
 | |
|   AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
 | |
|   return AliasCache[Locs] = Result;
 | |
| }
 | |
| 
 | |
| /// Check whether two Values can be considered equivalent.
 | |
| ///
 | |
| /// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
 | |
| /// they can not be part of a cycle in the value graph by looking at all
 | |
| /// visited phi nodes an making sure that the phis cannot reach the value. We
 | |
| /// have to do this because we are looking through phi nodes (That is we say
 | |
| /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
 | |
| bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
 | |
|                                                   const Value *V2) {
 | |
|   if (V != V2)
 | |
|     return false;
 | |
| 
 | |
|   const Instruction *Inst = dyn_cast<Instruction>(V);
 | |
|   if (!Inst)
 | |
|     return true;
 | |
| 
 | |
|   if (VisitedPhiBBs.empty())
 | |
|     return true;
 | |
| 
 | |
|   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
 | |
|     return false;
 | |
| 
 | |
|   // Make sure that the visited phis cannot reach the Value. This ensures that
 | |
|   // the Values cannot come from different iterations of a potential cycle the
 | |
|   // phi nodes could be involved in.
 | |
|   for (auto *P : VisitedPhiBBs)
 | |
|     if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Computes the symbolic difference between two de-composed GEPs.
 | |
| ///
 | |
| /// Dest and Src are the variable indices from two decomposed GetElementPtr
 | |
| /// instructions GEP1 and GEP2 which have common base pointers.
 | |
| void BasicAAResult::GetIndexDifference(
 | |
|     SmallVectorImpl<VariableGEPIndex> &Dest,
 | |
|     const SmallVectorImpl<VariableGEPIndex> &Src) {
 | |
|   if (Src.empty())
 | |
|     return;
 | |
| 
 | |
|   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
 | |
|     const Value *V = Src[i].V;
 | |
|     unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
 | |
|     int64_t Scale = Src[i].Scale;
 | |
| 
 | |
|     // Find V in Dest.  This is N^2, but pointer indices almost never have more
 | |
|     // than a few variable indexes.
 | |
|     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
 | |
|       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
 | |
|           Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
 | |
|         continue;
 | |
| 
 | |
|       // If we found it, subtract off Scale V's from the entry in Dest.  If it
 | |
|       // goes to zero, remove the entry.
 | |
|       if (Dest[j].Scale != Scale)
 | |
|         Dest[j].Scale -= Scale;
 | |
|       else
 | |
|         Dest.erase(Dest.begin() + j);
 | |
|       Scale = 0;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If we didn't consume this entry, add it to the end of the Dest list.
 | |
|     if (Scale) {
 | |
|       VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
 | |
|       Dest.push_back(Entry);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool BasicAAResult::constantOffsetHeuristic(
 | |
|     const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
 | |
|     uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
 | |
|     DominatorTree *DT) {
 | |
|   if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
 | |
|       V2Size == MemoryLocation::UnknownSize)
 | |
|     return false;
 | |
| 
 | |
|   const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];
 | |
| 
 | |
|   if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
 | |
|       Var0.Scale != -Var1.Scale)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Width = Var1.V->getType()->getIntegerBitWidth();
 | |
| 
 | |
|   // We'll strip off the Extensions of Var0 and Var1 and do another round
 | |
|   // of GetLinearExpression decomposition. In the example above, if Var0
 | |
|   // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
 | |
| 
 | |
|   APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
 | |
|       V1Offset(Width, 0);
 | |
|   bool NSW = true, NUW = true;
 | |
|   unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
 | |
|   const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
 | |
|                                         V0SExtBits, DL, 0, AC, DT, NSW, NUW);
 | |
|   NSW = true, NUW = true;
 | |
|   const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
 | |
|                                         V1SExtBits, DL, 0, AC, DT, NSW, NUW);
 | |
| 
 | |
|   if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
 | |
|       V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
 | |
|     return false;
 | |
| 
 | |
|   // We have a hit - Var0 and Var1 only differ by a constant offset!
 | |
| 
 | |
|   // If we've been sext'ed then zext'd the maximum difference between Var0 and
 | |
|   // Var1 is possible to calculate, but we're just interested in the absolute
 | |
|   // minimum difference between the two. The minimum distance may occur due to
 | |
|   // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
 | |
|   // the minimum distance between %i and %i + 5 is 3.
 | |
|   APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
 | |
|   MinDiff = APIntOps::umin(MinDiff, Wrapped);
 | |
|   uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);
 | |
| 
 | |
|   // We can't definitely say whether GEP1 is before or after V2 due to wrapping
 | |
|   // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
 | |
|   // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
 | |
|   // V2Size can fit in the MinDiffBytes gap.
 | |
|   return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
 | |
|          V2Size + std::abs(BaseOffset) <= MinDiffBytes;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // BasicAliasAnalysis Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| char BasicAA::PassID;
 | |
| 
 | |
| BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> *AM) {
 | |
|   return BasicAAResult(F.getParent()->getDataLayout(),
 | |
|                        AM->getResult<TargetLibraryAnalysis>(F),
 | |
|                        AM->getResult<AssumptionAnalysis>(F),
 | |
|                        AM->getCachedResult<DominatorTreeAnalysis>(F),
 | |
|                        AM->getCachedResult<LoopAnalysis>(F));
 | |
| }
 | |
| 
 | |
| BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
 | |
|     initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| char BasicAAWrapperPass::ID = 0;
 | |
| void BasicAAWrapperPass::anchor() {}
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
 | |
|                       "Basic Alias Analysis (stateless AA impl)", true, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
 | |
|                     "Basic Alias Analysis (stateless AA impl)", true, true)
 | |
| 
 | |
| FunctionPass *llvm::createBasicAAWrapperPass() {
 | |
|   return new BasicAAWrapperPass();
 | |
| }
 | |
| 
 | |
| bool BasicAAWrapperPass::runOnFunction(Function &F) {
 | |
|   auto &ACT = getAnalysis<AssumptionCacheTracker>();
 | |
|   auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
 | |
|   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | |
|   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
 | |
| 
 | |
|   Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
 | |
|                                  ACT.getAssumptionCache(F),
 | |
|                                  DTWP ? &DTWP->getDomTree() : nullptr,
 | |
|                                  LIWP ? &LIWP->getLoopInfo() : nullptr));
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequired<AssumptionCacheTracker>();
 | |
|   AU.addRequired<TargetLibraryInfoWrapperPass>();
 | |
| }
 | |
| 
 | |
| BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
 | |
|   return BasicAAResult(
 | |
|       F.getParent()->getDataLayout(),
 | |
|       P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
 | |
|       P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
 | |
| }
 |