99 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-------------- lib/Support/BranchProbability.cpp -----------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements Branch Probability class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| const uint32_t BranchProbability::D;
 | |
| 
 | |
| raw_ostream &BranchProbability::print(raw_ostream &OS) const {
 | |
|   // Get a percentage rounded to two decimal digits. This avoids
 | |
|   // implementation-defined rounding inside printf.
 | |
|   double Percent = rint(((double)N / D) * 100.0 * 100.0) / 100.0;
 | |
|   OS << format("0x%08" PRIx32 " / 0x%08" PRIx32 " = %.2f%%", N, D, Percent);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| void BranchProbability::dump() const { print(dbgs()) << '\n'; }
 | |
| 
 | |
| BranchProbability::BranchProbability(uint32_t Numerator, uint32_t Denominator) {
 | |
|   assert(Denominator > 0 && "Denominator cannot be 0!");
 | |
|   assert(Numerator <= Denominator && "Probability cannot be bigger than 1!");
 | |
|   if (Denominator == D)
 | |
|     N = Numerator;
 | |
|   else {
 | |
|     uint64_t Prob64 =
 | |
|         (Numerator * static_cast<uint64_t>(D) + Denominator / 2) / Denominator;
 | |
|     N = static_cast<uint32_t>(Prob64);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // If ConstD is not zero, then replace D by ConstD so that division and modulo
 | |
| // operations by D can be optimized, in case this function is not inlined by the
 | |
| // compiler.
 | |
| template <uint32_t ConstD>
 | |
| static uint64_t scale(uint64_t Num, uint32_t N, uint32_t D) {
 | |
|   if (ConstD > 0)
 | |
|     D = ConstD;
 | |
| 
 | |
|   assert(D && "divide by 0");
 | |
| 
 | |
|   // Fast path for multiplying by 1.0.
 | |
|   if (!Num || D == N)
 | |
|     return Num;
 | |
| 
 | |
|   // Split Num into upper and lower parts to multiply, then recombine.
 | |
|   uint64_t ProductHigh = (Num >> 32) * N;
 | |
|   uint64_t ProductLow = (Num & UINT32_MAX) * N;
 | |
| 
 | |
|   // Split into 32-bit digits.
 | |
|   uint32_t Upper32 = ProductHigh >> 32;
 | |
|   uint32_t Lower32 = ProductLow & UINT32_MAX;
 | |
|   uint32_t Mid32Partial = ProductHigh & UINT32_MAX;
 | |
|   uint32_t Mid32 = Mid32Partial + (ProductLow >> 32);
 | |
| 
 | |
|   // Carry.
 | |
|   Upper32 += Mid32 < Mid32Partial;
 | |
| 
 | |
|   // Check for overflow.
 | |
|   if (Upper32 >= D)
 | |
|     return UINT64_MAX;
 | |
| 
 | |
|   uint64_t Rem = (uint64_t(Upper32) << 32) | Mid32;
 | |
|   uint64_t UpperQ = Rem / D;
 | |
| 
 | |
|   // Check for overflow.
 | |
|   if (UpperQ > UINT32_MAX)
 | |
|     return UINT64_MAX;
 | |
| 
 | |
|   Rem = ((Rem % D) << 32) | Lower32;
 | |
|   uint64_t LowerQ = Rem / D;
 | |
|   uint64_t Q = (UpperQ << 32) + LowerQ;
 | |
| 
 | |
|   // Check for overflow.
 | |
|   return Q < LowerQ ? UINT64_MAX : Q;
 | |
| }
 | |
| 
 | |
| uint64_t BranchProbability::scale(uint64_t Num) const {
 | |
|   return ::scale<D>(Num, N, D);
 | |
| }
 | |
| 
 | |
| uint64_t BranchProbability::scaleByInverse(uint64_t Num) const {
 | |
|   return ::scale<0>(Num, D, N);
 | |
| }
 |