736 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			736 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| // For best-case performance on Cortex-A57, we should try to use a balanced
 | |
| // mix of odd and even D-registers when performing a critical sequence of
 | |
| // independent, non-quadword FP/ASIMD floating-point multiply or
 | |
| // multiply-accumulate operations.
 | |
| //
 | |
| // This pass attempts to detect situations where the register allocation may
 | |
| // adversely affect this load balancing and to change the registers used so as
 | |
| // to better utilize the CPU.
 | |
| //
 | |
| // Ideally we'd just take each multiply or multiply-accumulate in turn and
 | |
| // allocate it alternating even or odd registers. However, multiply-accumulates
 | |
| // are most efficiently performed in the same functional unit as their
 | |
| // accumulation operand. Therefore this pass tries to find maximal sequences
 | |
| // ("Chains") of multiply-accumulates linked via their accumulation operand,
 | |
| // and assign them all the same "color" (oddness/evenness).
 | |
| //
 | |
| // This optimization affects S-register and D-register floating point
 | |
| // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
 | |
| // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
 | |
| // not affected.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AArch64.h"
 | |
| #include "AArch64InstrInfo.h"
 | |
| #include "AArch64Subtarget.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/EquivalenceClasses.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/RegisterClassInfo.h"
 | |
| #include "llvm/CodeGen/RegisterScavenging.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <list>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
 | |
| 
 | |
| // Enforce the algorithm to use the scavenged register even when the original
 | |
| // destination register is the correct color. Used for testing.
 | |
| static cl::opt<bool>
 | |
| TransformAll("aarch64-a57-fp-load-balancing-force-all",
 | |
|              cl::desc("Always modify dest registers regardless of color"),
 | |
|              cl::init(false), cl::Hidden);
 | |
| 
 | |
| // Never use the balance information obtained from chains - return a specific
 | |
| // color always. Used for testing.
 | |
| static cl::opt<unsigned>
 | |
| OverrideBalance("aarch64-a57-fp-load-balancing-override",
 | |
|               cl::desc("Ignore balance information, always return "
 | |
|                        "(1: Even, 2: Odd)."),
 | |
|               cl::init(0), cl::Hidden);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Helper functions
 | |
| 
 | |
| // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
 | |
| static bool isMul(MachineInstr *MI) {
 | |
|   switch (MI->getOpcode()) {
 | |
|   case AArch64::FMULSrr:
 | |
|   case AArch64::FNMULSrr:
 | |
|   case AArch64::FMULDrr:
 | |
|   case AArch64::FNMULDrr:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
 | |
| static bool isMla(MachineInstr *MI) {
 | |
|   switch (MI->getOpcode()) {
 | |
|   case AArch64::FMSUBSrrr:
 | |
|   case AArch64::FMADDSrrr:
 | |
|   case AArch64::FNMSUBSrrr:
 | |
|   case AArch64::FNMADDSrrr:
 | |
|   case AArch64::FMSUBDrrr:
 | |
|   case AArch64::FMADDDrrr:
 | |
|   case AArch64::FNMSUBDrrr:
 | |
|   case AArch64::FNMADDDrrr:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| static void initializeAArch64A57FPLoadBalancingPass(PassRegistry &);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// A "color", which is either even or odd. Yes, these aren't really colors
 | |
| /// but the algorithm is conceptually doing two-color graph coloring.
 | |
| enum class Color { Even, Odd };
 | |
| #ifndef NDEBUG
 | |
| static const char *ColorNames[2] = { "Even", "Odd" };
 | |
| #endif
 | |
| 
 | |
| class Chain;
 | |
| 
 | |
| class AArch64A57FPLoadBalancing : public MachineFunctionPass {
 | |
|   MachineRegisterInfo *MRI;
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   RegisterClassInfo RCI;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
|   explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
 | |
|     initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &F) override;
 | |
| 
 | |
|   const char *getPassName() const override {
 | |
|     return "A57 FP Anti-dependency breaker";
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool runOnBasicBlock(MachineBasicBlock &MBB);
 | |
|   bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
 | |
|                      int &Balance);
 | |
|   bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
 | |
|   int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
 | |
|   void scanInstruction(MachineInstr *MI, unsigned Idx,
 | |
|                        std::map<unsigned, Chain*> &Active,
 | |
|                        std::vector<std::unique_ptr<Chain>> &AllChains);
 | |
|   void maybeKillChain(MachineOperand &MO, unsigned Idx,
 | |
|                       std::map<unsigned, Chain*> &RegChains);
 | |
|   Color getColor(unsigned Register);
 | |
|   Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
 | |
| };
 | |
| }
 | |
| 
 | |
| char AArch64A57FPLoadBalancing::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
 | |
|                       "AArch64 A57 FP Load-Balancing", false, false)
 | |
| INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
 | |
|                     "AArch64 A57 FP Load-Balancing", false, false)
 | |
| 
 | |
| namespace {
 | |
| /// A Chain is a sequence of instructions that are linked together by 
 | |
| /// an accumulation operand. For example:
 | |
| ///
 | |
| ///   fmul d0<def>, ?
 | |
| ///   fmla d1<def>, ?, ?, d0<kill>
 | |
| ///   fmla d2<def>, ?, ?, d1<kill>
 | |
| ///
 | |
| /// There may be other instructions interleaved in the sequence that
 | |
| /// do not belong to the chain. These other instructions must not use
 | |
| /// the "chain" register at any point.
 | |
| ///
 | |
| /// We currently only support chains where the "chain" operand is killed
 | |
| /// at each link in the chain for simplicity.
 | |
| /// A chain has three important instructions - Start, Last and Kill.
 | |
| ///   * The start instruction is the first instruction in the chain.
 | |
| ///   * Last is the final instruction in the chain.
 | |
| ///   * Kill may or may not be defined. If defined, Kill is the instruction
 | |
| ///     where the outgoing value of the Last instruction is killed.
 | |
| ///     This information is important as if we know the outgoing value is
 | |
| ///     killed with no intervening uses, we can safely change its register.
 | |
| ///
 | |
| /// Without a kill instruction, we must assume the outgoing value escapes
 | |
| /// beyond our model and either must not change its register or must
 | |
| /// create a fixup FMOV to keep the old register value consistent.
 | |
| ///
 | |
| class Chain {
 | |
| public:
 | |
|   /// The important (marker) instructions.
 | |
|   MachineInstr *StartInst, *LastInst, *KillInst;
 | |
|   /// The index, from the start of the basic block, that each marker
 | |
|   /// appears. These are stored so we can do quick interval tests.
 | |
|   unsigned StartInstIdx, LastInstIdx, KillInstIdx;
 | |
|   /// All instructions in the chain.
 | |
|   std::set<MachineInstr*> Insts;
 | |
|   /// True if KillInst cannot be modified. If this is true,
 | |
|   /// we cannot change LastInst's outgoing register.
 | |
|   /// This will be true for tied values and regmasks.
 | |
|   bool KillIsImmutable;
 | |
|   /// The "color" of LastInst. This will be the preferred chain color,
 | |
|   /// as changing intermediate nodes is easy but changing the last
 | |
|   /// instruction can be more tricky.
 | |
|   Color LastColor;
 | |
| 
 | |
|   Chain(MachineInstr *MI, unsigned Idx, Color C)
 | |
|       : StartInst(MI), LastInst(MI), KillInst(nullptr),
 | |
|         StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
 | |
|         LastColor(C) {
 | |
|     Insts.insert(MI);
 | |
|   }
 | |
| 
 | |
|   /// Add a new instruction into the chain. The instruction's dest operand
 | |
|   /// has the given color.
 | |
|   void add(MachineInstr *MI, unsigned Idx, Color C) {
 | |
|     LastInst = MI;
 | |
|     LastInstIdx = Idx;
 | |
|     LastColor = C;
 | |
|     assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
 | |
|            "Chain: broken invariant. A Chain can only be killed after its last "
 | |
|            "def");
 | |
| 
 | |
|     Insts.insert(MI);
 | |
|   }
 | |
| 
 | |
|   /// Return true if MI is a member of the chain.
 | |
|   bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; }
 | |
| 
 | |
|   /// Return the number of instructions in the chain.
 | |
|   unsigned size() const {
 | |
|     return Insts.size();
 | |
|   }
 | |
| 
 | |
|   /// Inform the chain that its last active register (the dest register of
 | |
|   /// LastInst) is killed by MI with no intervening uses or defs.
 | |
|   void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
 | |
|     KillInst = MI;
 | |
|     KillInstIdx = Idx;
 | |
|     KillIsImmutable = Immutable;
 | |
|     assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
 | |
|            "Chain: broken invariant. A Chain can only be killed after its last "
 | |
|            "def");
 | |
|   }
 | |
| 
 | |
|   /// Return the first instruction in the chain.
 | |
|   MachineInstr *getStart() const { return StartInst; }
 | |
|   /// Return the last instruction in the chain.
 | |
|   MachineInstr *getLast() const { return LastInst; }
 | |
|   /// Return the "kill" instruction (as set with setKill()) or NULL.
 | |
|   MachineInstr *getKill() const { return KillInst; }
 | |
|   /// Return an instruction that can be used as an iterator for the end
 | |
|   /// of the chain. This is the maximum of KillInst (if set) and LastInst.
 | |
|   MachineBasicBlock::iterator getEnd() const {
 | |
|     return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
 | |
|   }
 | |
| 
 | |
|   /// Can the Kill instruction (assuming one exists) be modified?
 | |
|   bool isKillImmutable() const { return KillIsImmutable; }
 | |
| 
 | |
|   /// Return the preferred color of this chain.
 | |
|   Color getPreferredColor() {
 | |
|     if (OverrideBalance != 0)
 | |
|       return OverrideBalance == 1 ? Color::Even : Color::Odd;
 | |
|     return LastColor;
 | |
|   }
 | |
| 
 | |
|   /// Return true if this chain (StartInst..KillInst) overlaps with Other.
 | |
|   bool rangeOverlapsWith(const Chain &Other) const {
 | |
|     unsigned End = KillInst ? KillInstIdx : LastInstIdx;
 | |
|     unsigned OtherEnd = Other.KillInst ?
 | |
|       Other.KillInstIdx : Other.LastInstIdx;
 | |
| 
 | |
|     return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
 | |
|   }
 | |
| 
 | |
|   /// Return true if this chain starts before Other.
 | |
|   bool startsBefore(const Chain *Other) const {
 | |
|     return StartInstIdx < Other->StartInstIdx;
 | |
|   }
 | |
| 
 | |
|   /// Return true if the group will require a fixup MOV at the end.
 | |
|   bool requiresFixup() const {
 | |
|     return (getKill() && isKillImmutable()) || !getKill();
 | |
|   }
 | |
| 
 | |
|   /// Return a simple string representation of the chain.
 | |
|   std::string str() const {
 | |
|     std::string S;
 | |
|     raw_string_ostream OS(S);
 | |
|     
 | |
|     OS << "{";
 | |
|     StartInst->print(OS, /* SkipOpers= */true);
 | |
|     OS << " -> ";
 | |
|     LastInst->print(OS, /* SkipOpers= */true);
 | |
|     if (KillInst) {
 | |
|       OS << " (kill @ ";
 | |
|       KillInst->print(OS, /* SkipOpers= */true);
 | |
|       OS << ")";
 | |
|     }
 | |
|     OS << "}";
 | |
| 
 | |
|     return OS.str();
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
 | |
|   // Don't do anything if this isn't an A53 or A57.
 | |
|   if (!(F.getSubtarget<AArch64Subtarget>().isCortexA53() ||
 | |
|         F.getSubtarget<AArch64Subtarget>().isCortexA57()))
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
 | |
| 
 | |
|   MRI = &F.getRegInfo();
 | |
|   TRI = F.getRegInfo().getTargetRegisterInfo();
 | |
|   RCI.runOnMachineFunction(F);
 | |
| 
 | |
|   for (auto &MBB : F) {
 | |
|     Changed |= runOnBasicBlock(MBB);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
 | |
|   bool Changed = false;
 | |
|   DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n");
 | |
| 
 | |
|   // First, scan the basic block producing a set of chains.
 | |
| 
 | |
|   // The currently "active" chains - chains that can be added to and haven't
 | |
|   // been killed yet. This is keyed by register - all chains can only have one
 | |
|   // "link" register between each inst in the chain.
 | |
|   std::map<unsigned, Chain*> ActiveChains;
 | |
|   std::vector<std::unique_ptr<Chain>> AllChains;
 | |
|   unsigned Idx = 0;
 | |
|   for (auto &MI : MBB)
 | |
|     scanInstruction(&MI, Idx++, ActiveChains, AllChains);
 | |
| 
 | |
|   DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n");
 | |
| 
 | |
|   // Group the chains into disjoint sets based on their liveness range. This is
 | |
|   // a poor-man's version of graph coloring. Ideally we'd create an interference
 | |
|   // graph and perform full-on graph coloring on that, but;
 | |
|   //   (a) That's rather heavyweight for only two colors.
 | |
|   //   (b) We expect multiple disjoint interference regions - in practice the live
 | |
|   //       range of chains is quite small and they are clustered between loads
 | |
|   //       and stores.
 | |
|   EquivalenceClasses<Chain*> EC;
 | |
|   for (auto &I : AllChains)
 | |
|     EC.insert(I.get());
 | |
| 
 | |
|   for (auto &I : AllChains)
 | |
|     for (auto &J : AllChains)
 | |
|       if (I != J && I->rangeOverlapsWith(*J))
 | |
|         EC.unionSets(I.get(), J.get());
 | |
|   DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
 | |
| 
 | |
|   // Now we assume that every member of an equivalence class interferes
 | |
|   // with every other member of that class, and with no members of other classes.
 | |
| 
 | |
|   // Convert the EquivalenceClasses to a simpler set of sets.
 | |
|   std::vector<std::vector<Chain*> > V;
 | |
|   for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
 | |
|     std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
 | |
|     if (Cs.empty()) continue;
 | |
|     V.push_back(std::move(Cs));
 | |
|   }
 | |
| 
 | |
|   // Now we have a set of sets, order them by start address so
 | |
|   // we can iterate over them sequentially.
 | |
|   std::sort(V.begin(), V.end(),
 | |
|             [](const std::vector<Chain*> &A,
 | |
|                const std::vector<Chain*> &B) {
 | |
|       return A.front()->startsBefore(B.front());
 | |
|     });
 | |
| 
 | |
|   // As we only have two colors, we can track the global (BB-level) balance of
 | |
|   // odds versus evens. We aim to keep this near zero to keep both execution
 | |
|   // units fed.
 | |
|   // Positive means we're even-heavy, negative we're odd-heavy.
 | |
|   //
 | |
|   // FIXME: If chains have interdependencies, for example:
 | |
|   //   mul r0, r1, r2
 | |
|   //   mul r3, r0, r1
 | |
|   // We do not model this and may color each one differently, assuming we'll
 | |
|   // get ILP when we obviously can't. This hasn't been seen to be a problem
 | |
|   // in practice so far, so we simplify the algorithm by ignoring it.
 | |
|   int Parity = 0;
 | |
| 
 | |
|   for (auto &I : V)
 | |
|     Changed |= colorChainSet(std::move(I), MBB, Parity);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
 | |
|                                                   std::vector<Chain*> &L) {
 | |
|   if (L.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   // We try and get the best candidate from L to color next, given that our
 | |
|   // preferred color is "PreferredColor". L is ordered from larger to smaller
 | |
|   // chains. It is beneficial to color the large chains before the small chains,
 | |
|   // but if we can't find a chain of the maximum length with the preferred color,
 | |
|   // we fuzz the size and look for slightly smaller chains before giving up and
 | |
|   // returning a chain that must be recolored.
 | |
| 
 | |
|   // FIXME: Does this need to be configurable?
 | |
|   const unsigned SizeFuzz = 1;
 | |
|   unsigned MinSize = L.front()->size() - SizeFuzz;
 | |
|   for (auto I = L.begin(), E = L.end(); I != E; ++I) {
 | |
|     if ((*I)->size() <= MinSize) {
 | |
|       // We've gone past the size limit. Return the previous item.
 | |
|       Chain *Ch = *--I;
 | |
|       L.erase(I);
 | |
|       return Ch;
 | |
|     }
 | |
| 
 | |
|     if ((*I)->getPreferredColor() == PreferredColor) {
 | |
|       Chain *Ch = *I;
 | |
|       L.erase(I);
 | |
|       return Ch;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Bailout case - just return the first item.
 | |
|   Chain *Ch = L.front();
 | |
|   L.erase(L.begin());
 | |
|   return Ch;
 | |
| }
 | |
| 
 | |
| bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
 | |
|                                               MachineBasicBlock &MBB,
 | |
|                                               int &Parity) {
 | |
|   bool Changed = false;
 | |
|   DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
 | |
| 
 | |
|   // Sort by descending size order so that we allocate the most important
 | |
|   // sets first.
 | |
|   // Tie-break equivalent sizes by sorting chains requiring fixups before
 | |
|   // those without fixups. The logic here is that we should look at the
 | |
|   // chains that we cannot change before we look at those we can,
 | |
|   // so the parity counter is updated and we know what color we should
 | |
|   // change them to!
 | |
|   // Final tie-break with instruction order so pass output is stable (i.e. not
 | |
|   // dependent on malloc'd pointer values).
 | |
|   std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) {
 | |
|       if (G1->size() != G2->size())
 | |
|         return G1->size() > G2->size();
 | |
|       if (G1->requiresFixup() != G2->requiresFixup())
 | |
|         return G1->requiresFixup() > G2->requiresFixup();
 | |
|       // Make sure startsBefore() produces a stable final order.
 | |
|       assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
 | |
|              "Starts before not total order!");
 | |
|       return G1->startsBefore(G2);
 | |
|     });
 | |
| 
 | |
|   Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
 | |
|   while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
 | |
|     // Start off by assuming we'll color to our own preferred color.
 | |
|     Color C = PreferredColor;
 | |
|     if (Parity == 0)
 | |
|       // But if we really don't care, use the chain's preferred color.
 | |
|       C = G->getPreferredColor();
 | |
| 
 | |
|     DEBUG(dbgs() << " - Parity=" << Parity << ", Color="
 | |
|           << ColorNames[(int)C] << "\n");
 | |
| 
 | |
|     // If we'll need a fixup FMOV, don't bother. Testing has shown that this
 | |
|     // happens infrequently and when it does it has at least a 50% chance of
 | |
|     // slowing code down instead of speeding it up.
 | |
|     if (G->requiresFixup() && C != G->getPreferredColor()) {
 | |
|       C = G->getPreferredColor();
 | |
|       DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; "
 | |
|             "color remains " << ColorNames[(int)C] << "\n");
 | |
|     }
 | |
| 
 | |
|     Changed |= colorChain(G, C, MBB);
 | |
| 
 | |
|     Parity += (C == Color::Even) ? G->size() : -G->size();
 | |
|     PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
 | |
|                                                 MachineBasicBlock &MBB) {
 | |
|   RegScavenger RS;
 | |
|   RS.enterBasicBlock(&MBB);
 | |
|   RS.forward(MachineBasicBlock::iterator(G->getStart()));
 | |
| 
 | |
|   // Can we find an appropriate register that is available throughout the life 
 | |
|   // of the chain?
 | |
|   unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass;
 | |
|   BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID));
 | |
|   for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
 | |
|        I != E; ++I) {
 | |
|     RS.forward(I);
 | |
|     AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID));
 | |
| 
 | |
|     // Remove any registers clobbered by a regmask or any def register that is
 | |
|     // immediately dead.
 | |
|     for (auto J : I->operands()) {
 | |
|       if (J.isRegMask())
 | |
|         AvailableRegs.clearBitsNotInMask(J.getRegMask());
 | |
| 
 | |
|       if (J.isReg() && J.isDef()) {
 | |
|         MCRegAliasIterator AI(J.getReg(), TRI, /*IncludeSelf=*/true);
 | |
|         if (J.isDead())
 | |
|           for (; AI.isValid(); ++AI)
 | |
|             AvailableRegs.reset(*AI);
 | |
| #ifndef NDEBUG
 | |
|         else
 | |
|           for (; AI.isValid(); ++AI)
 | |
|             assert(!AvailableRegs[*AI] &&
 | |
|                    "Non-dead def should have been removed by now!");
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Make sure we allocate in-order, to get the cheapest registers first.
 | |
|   auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
 | |
|   for (auto Reg : Ord) {
 | |
|     if (!AvailableRegs[Reg])
 | |
|       continue;
 | |
|     if ((C == Color::Even && (Reg % 2) == 0) ||
 | |
|         (C == Color::Odd && (Reg % 2) == 1))
 | |
|       return Reg;
 | |
|   }
 | |
| 
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
 | |
|                                            MachineBasicBlock &MBB) {
 | |
|   bool Changed = false;
 | |
|   DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
 | |
|         << ColorNames[(int)C] << ")\n");
 | |
| 
 | |
|   // Try and obtain a free register of the right class. Without a register
 | |
|   // to play with we cannot continue.
 | |
|   int Reg = scavengeRegister(G, C, MBB);
 | |
|   if (Reg == -1) {
 | |
|     DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
 | |
|     return false;
 | |
|   }
 | |
|   DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n");
 | |
| 
 | |
|   std::map<unsigned, unsigned> Substs;
 | |
|   for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
 | |
|        I != E; ++I) {
 | |
|     if (!G->contains(I) &&
 | |
|         (&*I != G->getKill() || G->isKillImmutable()))
 | |
|       continue;
 | |
| 
 | |
|     // I is a member of G, or I is a mutable instruction that kills G.
 | |
| 
 | |
|     std::vector<unsigned> ToErase;
 | |
|     for (auto &U : I->operands()) {
 | |
|       if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
 | |
|         unsigned OrigReg = U.getReg();
 | |
|         U.setReg(Substs[OrigReg]);
 | |
|         if (U.isKill())
 | |
|           // Don't erase straight away, because there may be other operands
 | |
|           // that also reference this substitution!
 | |
|           ToErase.push_back(OrigReg);
 | |
|       } else if (U.isRegMask()) {
 | |
|         for (auto J : Substs) {
 | |
|           if (U.clobbersPhysReg(J.first))
 | |
|             ToErase.push_back(J.first);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     // Now it's safe to remove the substs identified earlier.
 | |
|     for (auto J : ToErase)
 | |
|       Substs.erase(J);
 | |
| 
 | |
|     // Only change the def if this isn't the last instruction.
 | |
|     if (&*I != G->getKill()) {
 | |
|       MachineOperand &MO = I->getOperand(0);
 | |
| 
 | |
|       bool Change = TransformAll || getColor(MO.getReg()) != C;
 | |
|       if (G->requiresFixup() && &*I == G->getLast())
 | |
|         Change = false;
 | |
| 
 | |
|       if (Change) {
 | |
|         Substs[MO.getReg()] = Reg;
 | |
|         MO.setReg(Reg);
 | |
| 
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   assert(Substs.size() == 0 && "No substitutions should be left active!");
 | |
| 
 | |
|   if (G->getKill()) {
 | |
|     DEBUG(dbgs() << " - Kill instruction seen.\n");
 | |
|   } else {
 | |
|     // We didn't have a kill instruction, but we didn't seem to need to change
 | |
|     // the destination register anyway.
 | |
|     DEBUG(dbgs() << " - Destination register not changed.\n");
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void AArch64A57FPLoadBalancing::scanInstruction(
 | |
|     MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
 | |
|     std::vector<std::unique_ptr<Chain>> &AllChains) {
 | |
|   // Inspect "MI", updating ActiveChains and AllChains.
 | |
| 
 | |
|   if (isMul(MI)) {
 | |
| 
 | |
|     for (auto &I : MI->uses())
 | |
|       maybeKillChain(I, Idx, ActiveChains);
 | |
|     for (auto &I : MI->defs())
 | |
|       maybeKillChain(I, Idx, ActiveChains);
 | |
| 
 | |
|     // Create a new chain. Multiplies don't require forwarding so can go on any
 | |
|     // unit.
 | |
|     unsigned DestReg = MI->getOperand(0).getReg();
 | |
| 
 | |
|     DEBUG(dbgs() << "New chain started for register "
 | |
|           << TRI->getName(DestReg) << " at " << *MI);
 | |
| 
 | |
|     auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
 | |
|     ActiveChains[DestReg] = G.get();
 | |
|     AllChains.push_back(std::move(G));
 | |
| 
 | |
|   } else if (isMla(MI)) {
 | |
| 
 | |
|     // It is beneficial to keep MLAs on the same functional unit as their
 | |
|     // accumulator operand.
 | |
|     unsigned DestReg  = MI->getOperand(0).getReg();
 | |
|     unsigned AccumReg = MI->getOperand(3).getReg();
 | |
| 
 | |
|     maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
 | |
|     maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
 | |
|     if (DestReg != AccumReg)
 | |
|       maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
 | |
| 
 | |
|     if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
 | |
|       DEBUG(dbgs() << "Chain found for accumulator register "
 | |
|             << TRI->getName(AccumReg) << " in MI " << *MI);
 | |
| 
 | |
|       // For simplicity we only chain together sequences of MULs/MLAs where the
 | |
|       // accumulator register is killed on each instruction. This means we don't
 | |
|       // need to track other uses of the registers we want to rewrite.
 | |
|       //
 | |
|       // FIXME: We could extend to handle the non-kill cases for more coverage.
 | |
|       if (MI->getOperand(3).isKill()) {
 | |
|         // Add to chain.
 | |
|         DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
 | |
|         ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
 | |
|         // Handle cases where the destination is not the same as the accumulator.
 | |
|         if (DestReg != AccumReg) {
 | |
|           ActiveChains[DestReg] = ActiveChains[AccumReg];
 | |
|           ActiveChains.erase(AccumReg);
 | |
|         }
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't "
 | |
|             << "marked <kill>!\n");
 | |
|       maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "Creating new chain for dest register "
 | |
|           << TRI->getName(DestReg) << "\n");
 | |
|     auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
 | |
|     ActiveChains[DestReg] = G.get();
 | |
|     AllChains.push_back(std::move(G));
 | |
| 
 | |
|   } else {
 | |
| 
 | |
|     // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
 | |
|     // lists.
 | |
|     for (auto &I : MI->uses())
 | |
|       maybeKillChain(I, Idx, ActiveChains);
 | |
|     for (auto &I : MI->defs())
 | |
|       maybeKillChain(I, Idx, ActiveChains);
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| void AArch64A57FPLoadBalancing::
 | |
| maybeKillChain(MachineOperand &MO, unsigned Idx,
 | |
|                std::map<unsigned, Chain*> &ActiveChains) {
 | |
|   // Given an operand and the set of active chains (keyed by register),
 | |
|   // determine if a chain should be ended and remove from ActiveChains.
 | |
|   MachineInstr *MI = MO.getParent();
 | |
| 
 | |
|   if (MO.isReg()) {
 | |
| 
 | |
|     // If this is a KILL of a current chain, record it.
 | |
|     if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
 | |
|       DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg())
 | |
|             << "\n");
 | |
|       ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
 | |
|     }
 | |
|     ActiveChains.erase(MO.getReg());
 | |
| 
 | |
|   } else if (MO.isRegMask()) {
 | |
| 
 | |
|     for (auto I = ActiveChains.begin(), E = ActiveChains.end();
 | |
|          I != E;) {
 | |
|       if (MO.clobbersPhysReg(I->first)) {
 | |
|         DEBUG(dbgs() << "Kill (regmask) seen for chain "
 | |
|               << TRI->getName(I->first) << "\n");
 | |
|         I->second->setKill(MI, Idx, /*Immutable=*/true);
 | |
|         ActiveChains.erase(I++);
 | |
|       } else
 | |
|         ++I;
 | |
|     }
 | |
| 
 | |
|   }
 | |
| }
 | |
| 
 | |
| Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
 | |
|   if ((TRI->getEncodingValue(Reg) % 2) == 0)
 | |
|     return Color::Even;
 | |
|   else
 | |
|     return Color::Odd;
 | |
| }
 | |
| 
 | |
| // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
 | |
| FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
 | |
|   return new AArch64A57FPLoadBalancing();
 | |
| }
 |