3308 lines
		
	
	
		
			131 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3308 lines
		
	
	
		
			131 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines an instruction selector for the AArch64 target.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AArch64TargetMachine.h"
 | |
| #include "MCTargetDesc/AArch64AddressingModes.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/CodeGen/SelectionDAGISel.h"
 | |
| #include "llvm/IR/Function.h" // To access function attributes.
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "aarch64-isel"
 | |
| 
 | |
| //===--------------------------------------------------------------------===//
 | |
| /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
 | |
| /// instructions for SelectionDAG operations.
 | |
| ///
 | |
| namespace {
 | |
| 
 | |
| class AArch64DAGToDAGISel : public SelectionDAGISel {
 | |
| 
 | |
|   /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
 | |
|   /// make the right decision when generating code for different targets.
 | |
|   const AArch64Subtarget *Subtarget;
 | |
| 
 | |
|   bool ForCodeSize;
 | |
| 
 | |
| public:
 | |
|   explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
 | |
|                                CodeGenOpt::Level OptLevel)
 | |
|       : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
 | |
|         ForCodeSize(false) {}
 | |
| 
 | |
|   const char *getPassName() const override {
 | |
|     return "AArch64 Instruction Selection";
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override {
 | |
|     ForCodeSize = MF.getFunction()->optForSize();
 | |
|     Subtarget = &MF.getSubtarget<AArch64Subtarget>();
 | |
|     return SelectionDAGISel::runOnMachineFunction(MF);
 | |
|   }
 | |
| 
 | |
|   SDNode *Select(SDNode *Node) override;
 | |
| 
 | |
|   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
 | |
|   /// inline asm expressions.
 | |
|   bool SelectInlineAsmMemoryOperand(const SDValue &Op,
 | |
|                                     unsigned ConstraintID,
 | |
|                                     std::vector<SDValue> &OutOps) override;
 | |
| 
 | |
|   SDNode *SelectMLAV64LaneV128(SDNode *N);
 | |
|   SDNode *SelectMULLV64LaneV128(unsigned IntNo, SDNode *N);
 | |
|   bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
 | |
|   bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
 | |
|   bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
 | |
|   bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
 | |
|     return SelectShiftedRegister(N, false, Reg, Shift);
 | |
|   }
 | |
|   bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
 | |
|     return SelectShiftedRegister(N, true, Reg, Shift);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed(N, 1, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed(N, 2, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed(N, 4, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed(N, 8, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeIndexed(N, 16, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeUnscaled(N, 1, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeUnscaled(N, 2, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeUnscaled(N, 4, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeUnscaled(N, 8, Base, OffImm);
 | |
|   }
 | |
|   bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
 | |
|     return SelectAddrModeUnscaled(N, 16, Base, OffImm);
 | |
|   }
 | |
| 
 | |
|   template<int Width>
 | |
|   bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                          SDValue &SignExtend, SDValue &DoShift) {
 | |
|     return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
 | |
|   }
 | |
| 
 | |
|   template<int Width>
 | |
|   bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
 | |
|                          SDValue &SignExtend, SDValue &DoShift) {
 | |
|     return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// Form sequences of consecutive 64/128-bit registers for use in NEON
 | |
|   /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
 | |
|   /// between 1 and 4 elements. If it contains a single element that is returned
 | |
|   /// unchanged; otherwise a REG_SEQUENCE value is returned.
 | |
|   SDValue createDTuple(ArrayRef<SDValue> Vecs);
 | |
|   SDValue createQTuple(ArrayRef<SDValue> Vecs);
 | |
| 
 | |
|   /// Generic helper for the createDTuple/createQTuple
 | |
|   /// functions. Those should almost always be called instead.
 | |
|   SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
 | |
|                       const unsigned SubRegs[]);
 | |
| 
 | |
|   SDNode *SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
 | |
| 
 | |
|   SDNode *SelectIndexedLoad(SDNode *N, bool &Done);
 | |
| 
 | |
|   SDNode *SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
 | |
|                      unsigned SubRegIdx);
 | |
|   SDNode *SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
 | |
|                          unsigned SubRegIdx);
 | |
|   SDNode *SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
 | |
|   SDNode *SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
 | |
| 
 | |
|   SDNode *SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
 | |
|   SDNode *SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
 | |
|   SDNode *SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
 | |
|   SDNode *SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
 | |
| 
 | |
|   SDNode *SelectBitfieldExtractOp(SDNode *N);
 | |
|   SDNode *SelectBitfieldInsertOp(SDNode *N);
 | |
|   SDNode *SelectBitfieldInsertInZeroOp(SDNode *N);
 | |
| 
 | |
|   SDNode *SelectReadRegister(SDNode *N);
 | |
|   SDNode *SelectWriteRegister(SDNode *N);
 | |
| 
 | |
| // Include the pieces autogenerated from the target description.
 | |
| #include "AArch64GenDAGISel.inc"
 | |
| 
 | |
| private:
 | |
|   bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
 | |
|                              SDValue &Shift);
 | |
|   bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
 | |
|                                SDValue &OffImm);
 | |
|   bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
 | |
|                              SDValue &OffImm);
 | |
|   bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
 | |
|                               SDValue &OffImm);
 | |
|   bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
 | |
|                          SDValue &Offset, SDValue &SignExtend,
 | |
|                          SDValue &DoShift);
 | |
|   bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
 | |
|                          SDValue &Offset, SDValue &SignExtend,
 | |
|                          SDValue &DoShift);
 | |
|   bool isWorthFolding(SDValue V) const;
 | |
|   bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
 | |
|                          SDValue &Offset, SDValue &SignExtend);
 | |
| 
 | |
|   template<unsigned RegWidth>
 | |
|   bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
 | |
|     return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
 | |
|   }
 | |
| 
 | |
|   bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// isIntImmediate - This method tests to see if the node is a constant
 | |
| /// operand. If so Imm will receive the 32-bit value.
 | |
| static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
 | |
|   if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
 | |
|     Imm = C->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // isIntImmediate - This method tests to see if a constant operand.
 | |
| // If so Imm will receive the value.
 | |
| static bool isIntImmediate(SDValue N, uint64_t &Imm) {
 | |
|   return isIntImmediate(N.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific
 | |
| // opcode and that it has a immediate integer right operand.
 | |
| // If so Imm will receive the 32 bit value.
 | |
| static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
 | |
|                                   uint64_t &Imm) {
 | |
|   return N->getOpcode() == Opc &&
 | |
|          isIntImmediate(N->getOperand(1).getNode(), Imm);
 | |
| }
 | |
| 
 | |
| bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
 | |
|     const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
 | |
|   switch(ConstraintID) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected asm memory constraint");
 | |
|   case InlineAsm::Constraint_i:
 | |
|   case InlineAsm::Constraint_m:
 | |
|   case InlineAsm::Constraint_Q:
 | |
|     // Require the address to be in a register.  That is safe for all AArch64
 | |
|     // variants and it is hard to do anything much smarter without knowing
 | |
|     // how the operand is used.
 | |
|     OutOps.push_back(Op);
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectArithImmed - Select an immediate value that can be represented as
 | |
| /// a 12-bit value shifted left by either 0 or 12.  If so, return true with
 | |
| /// Val set to the 12-bit value and Shift set to the shifter operand.
 | |
| bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
 | |
|                                            SDValue &Shift) {
 | |
|   // This function is called from the addsub_shifted_imm ComplexPattern,
 | |
|   // which lists [imm] as the list of opcode it's interested in, however
 | |
|   // we still need to check whether the operand is actually an immediate
 | |
|   // here because the ComplexPattern opcode list is only used in
 | |
|   // root-level opcode matching.
 | |
|   if (!isa<ConstantSDNode>(N.getNode()))
 | |
|     return false;
 | |
| 
 | |
|   uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
 | |
|   unsigned ShiftAmt;
 | |
| 
 | |
|   if (Immed >> 12 == 0) {
 | |
|     ShiftAmt = 0;
 | |
|   } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
 | |
|     ShiftAmt = 12;
 | |
|     Immed = Immed >> 12;
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
 | |
|   SDLoc dl(N);
 | |
|   Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
 | |
|   Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectNegArithImmed - As above, but negates the value before trying to
 | |
| /// select it.
 | |
| bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
 | |
|                                               SDValue &Shift) {
 | |
|   // This function is called from the addsub_shifted_imm ComplexPattern,
 | |
|   // which lists [imm] as the list of opcode it's interested in, however
 | |
|   // we still need to check whether the operand is actually an immediate
 | |
|   // here because the ComplexPattern opcode list is only used in
 | |
|   // root-level opcode matching.
 | |
|   if (!isa<ConstantSDNode>(N.getNode()))
 | |
|     return false;
 | |
| 
 | |
|   // The immediate operand must be a 24-bit zero-extended immediate.
 | |
|   uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
 | |
| 
 | |
|   // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
 | |
|   // have the opposite effect on the C flag, so this pattern mustn't match under
 | |
|   // those circumstances.
 | |
|   if (Immed == 0)
 | |
|     return false;
 | |
| 
 | |
|   if (N.getValueType() == MVT::i32)
 | |
|     Immed = ~((uint32_t)Immed) + 1;
 | |
|   else
 | |
|     Immed = ~Immed + 1ULL;
 | |
|   if (Immed & 0xFFFFFFFFFF000000ULL)
 | |
|     return false;
 | |
| 
 | |
|   Immed &= 0xFFFFFFULL;
 | |
|   return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
 | |
|                           Shift);
 | |
| }
 | |
| 
 | |
| /// getShiftTypeForNode - Translate a shift node to the corresponding
 | |
| /// ShiftType value.
 | |
| static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
 | |
|   switch (N.getOpcode()) {
 | |
|   default:
 | |
|     return AArch64_AM::InvalidShiftExtend;
 | |
|   case ISD::SHL:
 | |
|     return AArch64_AM::LSL;
 | |
|   case ISD::SRL:
 | |
|     return AArch64_AM::LSR;
 | |
|   case ISD::SRA:
 | |
|     return AArch64_AM::ASR;
 | |
|   case ISD::ROTR:
 | |
|     return AArch64_AM::ROR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Determine whether it is worth to fold V into an extended register.
 | |
| bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
 | |
|   // it hurts if the value is used at least twice, unless we are optimizing
 | |
|   // for code size.
 | |
|   if (ForCodeSize || V.hasOneUse())
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// SelectShiftedRegister - Select a "shifted register" operand.  If the value
 | |
| /// is not shifted, set the Shift operand to default of "LSL 0".  The logical
 | |
| /// instructions allow the shifted register to be rotated, but the arithmetic
 | |
| /// instructions do not.  The AllowROR parameter specifies whether ROR is
 | |
| /// supported.
 | |
| bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
 | |
|                                                 SDValue &Reg, SDValue &Shift) {
 | |
|   AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
 | |
|   if (ShType == AArch64_AM::InvalidShiftExtend)
 | |
|     return false;
 | |
|   if (!AllowROR && ShType == AArch64_AM::ROR)
 | |
|     return false;
 | |
| 
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|     unsigned BitSize = N.getValueType().getSizeInBits();
 | |
|     unsigned Val = RHS->getZExtValue() & (BitSize - 1);
 | |
|     unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
 | |
| 
 | |
|     Reg = N.getOperand(0);
 | |
|     Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
 | |
|     return isWorthFolding(N);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getExtendTypeForNode - Translate an extend node to the corresponding
 | |
| /// ExtendType value.
 | |
| static AArch64_AM::ShiftExtendType
 | |
| getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
 | |
|   if (N.getOpcode() == ISD::SIGN_EXTEND ||
 | |
|       N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
 | |
|     EVT SrcVT;
 | |
|     if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
 | |
|       SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
 | |
|     else
 | |
|       SrcVT = N.getOperand(0).getValueType();
 | |
| 
 | |
|     if (!IsLoadStore && SrcVT == MVT::i8)
 | |
|       return AArch64_AM::SXTB;
 | |
|     else if (!IsLoadStore && SrcVT == MVT::i16)
 | |
|       return AArch64_AM::SXTH;
 | |
|     else if (SrcVT == MVT::i32)
 | |
|       return AArch64_AM::SXTW;
 | |
|     assert(SrcVT != MVT::i64 && "extend from 64-bits?");
 | |
| 
 | |
|     return AArch64_AM::InvalidShiftExtend;
 | |
|   } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
 | |
|              N.getOpcode() == ISD::ANY_EXTEND) {
 | |
|     EVT SrcVT = N.getOperand(0).getValueType();
 | |
|     if (!IsLoadStore && SrcVT == MVT::i8)
 | |
|       return AArch64_AM::UXTB;
 | |
|     else if (!IsLoadStore && SrcVT == MVT::i16)
 | |
|       return AArch64_AM::UXTH;
 | |
|     else if (SrcVT == MVT::i32)
 | |
|       return AArch64_AM::UXTW;
 | |
|     assert(SrcVT != MVT::i64 && "extend from 64-bits?");
 | |
| 
 | |
|     return AArch64_AM::InvalidShiftExtend;
 | |
|   } else if (N.getOpcode() == ISD::AND) {
 | |
|     ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|     if (!CSD)
 | |
|       return AArch64_AM::InvalidShiftExtend;
 | |
|     uint64_t AndMask = CSD->getZExtValue();
 | |
| 
 | |
|     switch (AndMask) {
 | |
|     default:
 | |
|       return AArch64_AM::InvalidShiftExtend;
 | |
|     case 0xFF:
 | |
|       return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
 | |
|     case 0xFFFF:
 | |
|       return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
 | |
|     case 0xFFFFFFFF:
 | |
|       return AArch64_AM::UXTW;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return AArch64_AM::InvalidShiftExtend;
 | |
| }
 | |
| 
 | |
| // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
 | |
| static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
 | |
|   if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
 | |
|       DL->getOpcode() != AArch64ISD::DUPLANE32)
 | |
|     return false;
 | |
| 
 | |
|   SDValue SV = DL->getOperand(0);
 | |
|   if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
 | |
|     return false;
 | |
| 
 | |
|   SDValue EV = SV.getOperand(1);
 | |
|   if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
 | |
|     return false;
 | |
| 
 | |
|   ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
 | |
|   ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
 | |
|   LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
 | |
|   LaneOp = EV.getOperand(0);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
 | |
| // high lane extract.
 | |
| static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
 | |
|                              SDValue &LaneOp, int &LaneIdx) {
 | |
| 
 | |
|   if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
 | |
|     std::swap(Op0, Op1);
 | |
|     if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
 | |
|       return false;
 | |
|   }
 | |
|   StdOp = Op1;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
 | |
| /// is a lane in the upper half of a 128-bit vector.  Recognize and select this
 | |
| /// so that we don't emit unnecessary lane extracts.
 | |
| SDNode *AArch64DAGToDAGISel::SelectMLAV64LaneV128(SDNode *N) {
 | |
|   SDLoc dl(N);
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   SDValue MLAOp1;   // Will hold ordinary multiplicand for MLA.
 | |
|   SDValue MLAOp2;   // Will hold lane-accessed multiplicand for MLA.
 | |
|   int LaneIdx = -1; // Will hold the lane index.
 | |
| 
 | |
|   if (Op1.getOpcode() != ISD::MUL ||
 | |
|       !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
 | |
|                         LaneIdx)) {
 | |
|     std::swap(Op0, Op1);
 | |
|     if (Op1.getOpcode() != ISD::MUL ||
 | |
|         !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
 | |
|                           LaneIdx))
 | |
|       return nullptr;
 | |
|   }
 | |
| 
 | |
|   SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
 | |
| 
 | |
|   SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
 | |
| 
 | |
|   unsigned MLAOpc = ~0U;
 | |
| 
 | |
|   switch (N->getSimpleValueType(0).SimpleTy) {
 | |
|   default:
 | |
|     llvm_unreachable("Unrecognized MLA.");
 | |
|   case MVT::v4i16:
 | |
|     MLAOpc = AArch64::MLAv4i16_indexed;
 | |
|     break;
 | |
|   case MVT::v8i16:
 | |
|     MLAOpc = AArch64::MLAv8i16_indexed;
 | |
|     break;
 | |
|   case MVT::v2i32:
 | |
|     MLAOpc = AArch64::MLAv2i32_indexed;
 | |
|     break;
 | |
|   case MVT::v4i32:
 | |
|     MLAOpc = AArch64::MLAv4i32_indexed;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops);
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectMULLV64LaneV128(unsigned IntNo, SDNode *N) {
 | |
|   SDLoc dl(N);
 | |
|   SDValue SMULLOp0;
 | |
|   SDValue SMULLOp1;
 | |
|   int LaneIdx;
 | |
| 
 | |
|   if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
 | |
|                         LaneIdx))
 | |
|     return nullptr;
 | |
| 
 | |
|   SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
 | |
| 
 | |
|   SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
 | |
| 
 | |
|   unsigned SMULLOpc = ~0U;
 | |
| 
 | |
|   if (IntNo == Intrinsic::aarch64_neon_smull) {
 | |
|     switch (N->getSimpleValueType(0).SimpleTy) {
 | |
|     default:
 | |
|       llvm_unreachable("Unrecognized SMULL.");
 | |
|     case MVT::v4i32:
 | |
|       SMULLOpc = AArch64::SMULLv4i16_indexed;
 | |
|       break;
 | |
|     case MVT::v2i64:
 | |
|       SMULLOpc = AArch64::SMULLv2i32_indexed;
 | |
|       break;
 | |
|     }
 | |
|   } else if (IntNo == Intrinsic::aarch64_neon_umull) {
 | |
|     switch (N->getSimpleValueType(0).SimpleTy) {
 | |
|     default:
 | |
|       llvm_unreachable("Unrecognized SMULL.");
 | |
|     case MVT::v4i32:
 | |
|       SMULLOpc = AArch64::UMULLv4i16_indexed;
 | |
|       break;
 | |
|     case MVT::v2i64:
 | |
|       SMULLOpc = AArch64::UMULLv2i32_indexed;
 | |
|       break;
 | |
|     }
 | |
|   } else
 | |
|     llvm_unreachable("Unrecognized intrinsic.");
 | |
| 
 | |
|   return CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops);
 | |
| }
 | |
| 
 | |
| /// Instructions that accept extend modifiers like UXTW expect the register
 | |
| /// being extended to be a GPR32, but the incoming DAG might be acting on a
 | |
| /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
 | |
| /// this is the case.
 | |
| static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
 | |
|   if (N.getValueType() == MVT::i32)
 | |
|     return N;
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
 | |
|   MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
 | |
|                                                dl, MVT::i32, N, SubReg);
 | |
|   return SDValue(Node, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectArithExtendedRegister - Select a "extended register" operand.  This
 | |
| /// operand folds in an extend followed by an optional left shift.
 | |
| bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
 | |
|                                                       SDValue &Shift) {
 | |
|   unsigned ShiftVal = 0;
 | |
|   AArch64_AM::ShiftExtendType Ext;
 | |
| 
 | |
|   if (N.getOpcode() == ISD::SHL) {
 | |
|     ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|     if (!CSD)
 | |
|       return false;
 | |
|     ShiftVal = CSD->getZExtValue();
 | |
|     if (ShiftVal > 4)
 | |
|       return false;
 | |
| 
 | |
|     Ext = getExtendTypeForNode(N.getOperand(0));
 | |
|     if (Ext == AArch64_AM::InvalidShiftExtend)
 | |
|       return false;
 | |
| 
 | |
|     Reg = N.getOperand(0).getOperand(0);
 | |
|   } else {
 | |
|     Ext = getExtendTypeForNode(N);
 | |
|     if (Ext == AArch64_AM::InvalidShiftExtend)
 | |
|       return false;
 | |
| 
 | |
|     Reg = N.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // AArch64 mandates that the RHS of the operation must use the smallest
 | |
|   // register class that could contain the size being extended from.  Thus,
 | |
|   // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
 | |
|   // there might not be an actual 32-bit value in the program.  We can
 | |
|   // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
 | |
|   assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
 | |
|   Reg = narrowIfNeeded(CurDAG, Reg);
 | |
|   Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
 | |
|                                     MVT::i32);
 | |
|   return isWorthFolding(N);
 | |
| }
 | |
| 
 | |
| /// If there's a use of this ADDlow that's not itself a load/store then we'll
 | |
| /// need to create a real ADD instruction from it anyway and there's no point in
 | |
| /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
 | |
| /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
 | |
| /// leads to duplicated ADRP instructions.
 | |
| static bool isWorthFoldingADDlow(SDValue N) {
 | |
|   for (auto Use : N->uses()) {
 | |
|     if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
 | |
|         Use->getOpcode() != ISD::ATOMIC_LOAD &&
 | |
|         Use->getOpcode() != ISD::ATOMIC_STORE)
 | |
|       return false;
 | |
| 
 | |
|     // ldar and stlr have much more restrictive addressing modes (just a
 | |
|     // register).
 | |
|     if (cast<MemSDNode>(Use)->getOrdering() > Monotonic)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectAddrModeIndexed7S - Select a "register plus scaled signed 7-bit
 | |
| /// immediate" address.  The "Size" argument is the size in bytes of the memory
 | |
| /// reference, which determines the scale.
 | |
| bool AArch64DAGToDAGISel::SelectAddrModeIndexed7S(SDValue N, unsigned Size,
 | |
|                                                   SDValue &Base,
 | |
|                                                   SDValue &OffImm) {
 | |
|   SDLoc dl(N);
 | |
|   const DataLayout &DL = CurDAG->getDataLayout();
 | |
|   const TargetLowering *TLI = getTargetLowering();
 | |
|   if (N.getOpcode() == ISD::FrameIndex) {
 | |
|     int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
 | |
|     OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // As opposed to the (12-bit) Indexed addressing mode below, the 7-bit signed
 | |
|   // selected here doesn't support labels/immediates, only base+offset.
 | |
| 
 | |
|   if (CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       int64_t RHSC = RHS->getSExtValue();
 | |
|       unsigned Scale = Log2_32(Size);
 | |
|       if ((RHSC & (Size - 1)) == 0 && RHSC >= -(0x40 << Scale) &&
 | |
|           RHSC < (0x40 << Scale)) {
 | |
|         Base = N.getOperand(0);
 | |
|         if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|           int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|           Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
 | |
|         }
 | |
|         OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Base only. The address will be materialized into a register before
 | |
|   // the memory is accessed.
 | |
|   //    add x0, Xbase, #offset
 | |
|   //    stp x1, x2, [x0]
 | |
|   Base = N;
 | |
|   OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
 | |
| /// immediate" address.  The "Size" argument is the size in bytes of the memory
 | |
| /// reference, which determines the scale.
 | |
| bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
 | |
|                                               SDValue &Base, SDValue &OffImm) {
 | |
|   SDLoc dl(N);
 | |
|   const DataLayout &DL = CurDAG->getDataLayout();
 | |
|   const TargetLowering *TLI = getTargetLowering();
 | |
|   if (N.getOpcode() == ISD::FrameIndex) {
 | |
|     int FI = cast<FrameIndexSDNode>(N)->getIndex();
 | |
|     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
 | |
|     OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
 | |
|     GlobalAddressSDNode *GAN =
 | |
|         dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
 | |
|     Base = N.getOperand(0);
 | |
|     OffImm = N.getOperand(1);
 | |
|     if (!GAN)
 | |
|       return true;
 | |
| 
 | |
|     const GlobalValue *GV = GAN->getGlobal();
 | |
|     unsigned Alignment = GV->getAlignment();
 | |
|     Type *Ty = GV->getType()->getElementType();
 | |
|     if (Alignment == 0 && Ty->isSized())
 | |
|       Alignment = DL.getABITypeAlignment(Ty);
 | |
| 
 | |
|     if (Alignment >= Size)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (CurDAG->isBaseWithConstantOffset(N)) {
 | |
|     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|       int64_t RHSC = (int64_t)RHS->getZExtValue();
 | |
|       unsigned Scale = Log2_32(Size);
 | |
|       if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
 | |
|         Base = N.getOperand(0);
 | |
|         if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|           int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|           Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
 | |
|         }
 | |
|         OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Before falling back to our general case, check if the unscaled
 | |
|   // instructions can handle this. If so, that's preferable.
 | |
|   if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
 | |
|     return false;
 | |
| 
 | |
|   // Base only. The address will be materialized into a register before
 | |
|   // the memory is accessed.
 | |
|   //    add x0, Xbase, #offset
 | |
|   //    ldr x0, [x0]
 | |
|   Base = N;
 | |
|   OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
 | |
| /// immediate" address.  This should only match when there is an offset that
 | |
| /// is not valid for a scaled immediate addressing mode.  The "Size" argument
 | |
| /// is the size in bytes of the memory reference, which is needed here to know
 | |
| /// what is valid for a scaled immediate.
 | |
| bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
 | |
|                                                  SDValue &Base,
 | |
|                                                  SDValue &OffImm) {
 | |
|   if (!CurDAG->isBaseWithConstantOffset(N))
 | |
|     return false;
 | |
|   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
 | |
|     int64_t RHSC = RHS->getSExtValue();
 | |
|     // If the offset is valid as a scaled immediate, don't match here.
 | |
|     if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
 | |
|         RHSC < (0x1000 << Log2_32(Size)))
 | |
|       return false;
 | |
|     if (RHSC >= -256 && RHSC < 256) {
 | |
|       Base = N.getOperand(0);
 | |
|       if (Base.getOpcode() == ISD::FrameIndex) {
 | |
|         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
 | |
|         const TargetLowering *TLI = getTargetLowering();
 | |
|         Base = CurDAG->getTargetFrameIndex(
 | |
|             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|       }
 | |
|       OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
 | |
|   SDLoc dl(N);
 | |
|   SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
 | |
|   SDValue ImpDef = SDValue(
 | |
|       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
 | |
|   MachineSDNode *Node = CurDAG->getMachineNode(
 | |
|       TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg);
 | |
|   return SDValue(Node, 0);
 | |
| }
 | |
| 
 | |
| /// \brief Check if the given SHL node (\p N), can be used to form an
 | |
| /// extended register for an addressing mode.
 | |
| bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
 | |
|                                             bool WantExtend, SDValue &Offset,
 | |
|                                             SDValue &SignExtend) {
 | |
|   assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
 | |
|   ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|   if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
 | |
|     return false;
 | |
| 
 | |
|   SDLoc dl(N);
 | |
|   if (WantExtend) {
 | |
|     AArch64_AM::ShiftExtendType Ext =
 | |
|         getExtendTypeForNode(N.getOperand(0), true);
 | |
|     if (Ext == AArch64_AM::InvalidShiftExtend)
 | |
|       return false;
 | |
| 
 | |
|     Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
 | |
|     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
 | |
|                                            MVT::i32);
 | |
|   } else {
 | |
|     Offset = N.getOperand(0);
 | |
|     SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
 | |
|   }
 | |
| 
 | |
|   unsigned LegalShiftVal = Log2_32(Size);
 | |
|   unsigned ShiftVal = CSD->getZExtValue();
 | |
| 
 | |
|   if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
 | |
|     return false;
 | |
| 
 | |
|   if (isWorthFolding(N))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
 | |
|                                             SDValue &Base, SDValue &Offset,
 | |
|                                             SDValue &SignExtend,
 | |
|                                             SDValue &DoShift) {
 | |
|   if (N.getOpcode() != ISD::ADD)
 | |
|     return false;
 | |
|   SDValue LHS = N.getOperand(0);
 | |
|   SDValue RHS = N.getOperand(1);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // We don't want to match immediate adds here, because they are better lowered
 | |
|   // to the register-immediate addressing modes.
 | |
|   if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
 | |
|     return false;
 | |
| 
 | |
|   // Check if this particular node is reused in any non-memory related
 | |
|   // operation.  If yes, do not try to fold this node into the address
 | |
|   // computation, since the computation will be kept.
 | |
|   const SDNode *Node = N.getNode();
 | |
|   for (SDNode *UI : Node->uses()) {
 | |
|     if (!isa<MemSDNode>(*UI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Remember if it is worth folding N when it produces extended register.
 | |
|   bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
 | |
| 
 | |
|   // Try to match a shifted extend on the RHS.
 | |
|   if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
 | |
|       SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
 | |
|     Base = LHS;
 | |
|     DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Try to match a shifted extend on the LHS.
 | |
|   if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
 | |
|       SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
 | |
|     Base = RHS;
 | |
|     DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // There was no shift, whatever else we find.
 | |
|   DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
 | |
| 
 | |
|   AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
 | |
|   // Try to match an unshifted extend on the LHS.
 | |
|   if (IsExtendedRegisterWorthFolding &&
 | |
|       (Ext = getExtendTypeForNode(LHS, true)) !=
 | |
|           AArch64_AM::InvalidShiftExtend) {
 | |
|     Base = RHS;
 | |
|     Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
 | |
|     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
 | |
|                                            MVT::i32);
 | |
|     if (isWorthFolding(LHS))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Try to match an unshifted extend on the RHS.
 | |
|   if (IsExtendedRegisterWorthFolding &&
 | |
|       (Ext = getExtendTypeForNode(RHS, true)) !=
 | |
|           AArch64_AM::InvalidShiftExtend) {
 | |
|     Base = LHS;
 | |
|     Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
 | |
|     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
 | |
|                                            MVT::i32);
 | |
|     if (isWorthFolding(RHS))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Check if the given immediate is preferred by ADD. If an immediate can be
 | |
| // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
 | |
| // encoded by one MOVZ, return true.
 | |
| static bool isPreferredADD(int64_t ImmOff) {
 | |
|   // Constant in [0x0, 0xfff] can be encoded in ADD.
 | |
|   if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
 | |
|     return true;
 | |
|   // Check if it can be encoded in an "ADD LSL #12".
 | |
|   if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
 | |
|     // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
 | |
|     return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
 | |
|            (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
 | |
|                                             SDValue &Base, SDValue &Offset,
 | |
|                                             SDValue &SignExtend,
 | |
|                                             SDValue &DoShift) {
 | |
|   if (N.getOpcode() != ISD::ADD)
 | |
|     return false;
 | |
|   SDValue LHS = N.getOperand(0);
 | |
|   SDValue RHS = N.getOperand(1);
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   // Check if this particular node is reused in any non-memory related
 | |
|   // operation.  If yes, do not try to fold this node into the address
 | |
|   // computation, since the computation will be kept.
 | |
|   const SDNode *Node = N.getNode();
 | |
|   for (SDNode *UI : Node->uses()) {
 | |
|     if (!isa<MemSDNode>(*UI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Watch out if RHS is a wide immediate, it can not be selected into
 | |
|   // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
 | |
|   // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
 | |
|   // instructions like:
 | |
|   //     MOV  X0, WideImmediate
 | |
|   //     ADD  X1, BaseReg, X0
 | |
|   //     LDR  X2, [X1, 0]
 | |
|   // For such situation, using [BaseReg, XReg] addressing mode can save one
 | |
|   // ADD/SUB:
 | |
|   //     MOV  X0, WideImmediate
 | |
|   //     LDR  X2, [BaseReg, X0]
 | |
|   if (isa<ConstantSDNode>(RHS)) {
 | |
|     int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue();
 | |
|     unsigned Scale = Log2_32(Size);
 | |
|     // Skip the immediate can be selected by load/store addressing mode.
 | |
|     // Also skip the immediate can be encoded by a single ADD (SUB is also
 | |
|     // checked by using -ImmOff).
 | |
|     if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
 | |
|         isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
 | |
|       return false;
 | |
| 
 | |
|     SDValue Ops[] = { RHS };
 | |
|     SDNode *MOVI =
 | |
|         CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
 | |
|     SDValue MOVIV = SDValue(MOVI, 0);
 | |
|     // This ADD of two X register will be selected into [Reg+Reg] mode.
 | |
|     N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
 | |
|   }
 | |
| 
 | |
|   // Remember if it is worth folding N when it produces extended register.
 | |
|   bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
 | |
| 
 | |
|   // Try to match a shifted extend on the RHS.
 | |
|   if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
 | |
|       SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
 | |
|     Base = LHS;
 | |
|     DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Try to match a shifted extend on the LHS.
 | |
|   if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
 | |
|       SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
 | |
|     Base = RHS;
 | |
|     DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Match any non-shifted, non-extend, non-immediate add expression.
 | |
|   Base = LHS;
 | |
|   Offset = RHS;
 | |
|   SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
 | |
|   DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
 | |
|   // Reg1 + Reg2 is free: no check needed.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
 | |
|   static const unsigned RegClassIDs[] = {
 | |
|       AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
 | |
|   static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
 | |
|                                      AArch64::dsub2, AArch64::dsub3};
 | |
| 
 | |
|   return createTuple(Regs, RegClassIDs, SubRegs);
 | |
| }
 | |
| 
 | |
| SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
 | |
|   static const unsigned RegClassIDs[] = {
 | |
|       AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
 | |
|   static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
 | |
|                                      AArch64::qsub2, AArch64::qsub3};
 | |
| 
 | |
|   return createTuple(Regs, RegClassIDs, SubRegs);
 | |
| }
 | |
| 
 | |
| SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
 | |
|                                          const unsigned RegClassIDs[],
 | |
|                                          const unsigned SubRegs[]) {
 | |
|   // There's no special register-class for a vector-list of 1 element: it's just
 | |
|   // a vector.
 | |
|   if (Regs.size() == 1)
 | |
|     return Regs[0];
 | |
| 
 | |
|   assert(Regs.size() >= 2 && Regs.size() <= 4);
 | |
| 
 | |
|   SDLoc DL(Regs[0]);
 | |
| 
 | |
|   SmallVector<SDValue, 4> Ops;
 | |
| 
 | |
|   // First operand of REG_SEQUENCE is the desired RegClass.
 | |
|   Ops.push_back(
 | |
|       CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
 | |
| 
 | |
|   // Then we get pairs of source & subregister-position for the components.
 | |
|   for (unsigned i = 0; i < Regs.size(); ++i) {
 | |
|     Ops.push_back(Regs[i]);
 | |
|     Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   SDNode *N =
 | |
|       CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
 | |
|   return SDValue(N, 0);
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs,
 | |
|                                          unsigned Opc, bool isExt) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   unsigned ExtOff = isExt;
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   unsigned Vec0Off = ExtOff + 1;
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
 | |
|                                N->op_begin() + Vec0Off + NumVecs);
 | |
|   SDValue RegSeq = createQTuple(Regs);
 | |
| 
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   if (isExt)
 | |
|     Ops.push_back(N->getOperand(1));
 | |
|   Ops.push_back(RegSeq);
 | |
|   Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
 | |
|   return CurDAG->getMachineNode(Opc, dl, VT, Ops);
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectIndexedLoad(SDNode *N, bool &Done) {
 | |
|   LoadSDNode *LD = cast<LoadSDNode>(N);
 | |
|   if (LD->isUnindexed())
 | |
|     return nullptr;
 | |
|   EVT VT = LD->getMemoryVT();
 | |
|   EVT DstVT = N->getValueType(0);
 | |
|   ISD::MemIndexedMode AM = LD->getAddressingMode();
 | |
|   bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
 | |
| 
 | |
|   // We're not doing validity checking here. That was done when checking
 | |
|   // if we should mark the load as indexed or not. We're just selecting
 | |
|   // the right instruction.
 | |
|   unsigned Opcode = 0;
 | |
| 
 | |
|   ISD::LoadExtType ExtType = LD->getExtensionType();
 | |
|   bool InsertTo64 = false;
 | |
|   if (VT == MVT::i64)
 | |
|     Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
 | |
|   else if (VT == MVT::i32) {
 | |
|     if (ExtType == ISD::NON_EXTLOAD)
 | |
|       Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
 | |
|     else if (ExtType == ISD::SEXTLOAD)
 | |
|       Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
 | |
|     else {
 | |
|       Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
 | |
|       InsertTo64 = true;
 | |
|       // The result of the load is only i32. It's the subreg_to_reg that makes
 | |
|       // it into an i64.
 | |
|       DstVT = MVT::i32;
 | |
|     }
 | |
|   } else if (VT == MVT::i16) {
 | |
|     if (ExtType == ISD::SEXTLOAD) {
 | |
|       if (DstVT == MVT::i64)
 | |
|         Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
 | |
|       else
 | |
|         Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
 | |
|     } else {
 | |
|       Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
 | |
|       InsertTo64 = DstVT == MVT::i64;
 | |
|       // The result of the load is only i32. It's the subreg_to_reg that makes
 | |
|       // it into an i64.
 | |
|       DstVT = MVT::i32;
 | |
|     }
 | |
|   } else if (VT == MVT::i8) {
 | |
|     if (ExtType == ISD::SEXTLOAD) {
 | |
|       if (DstVT == MVT::i64)
 | |
|         Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
 | |
|       else
 | |
|         Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
 | |
|     } else {
 | |
|       Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
 | |
|       InsertTo64 = DstVT == MVT::i64;
 | |
|       // The result of the load is only i32. It's the subreg_to_reg that makes
 | |
|       // it into an i64.
 | |
|       DstVT = MVT::i32;
 | |
|     }
 | |
|   } else if (VT == MVT::f16) {
 | |
|     Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
 | |
|   } else if (VT == MVT::f32) {
 | |
|     Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
 | |
|   } else if (VT == MVT::f64 || VT.is64BitVector()) {
 | |
|     Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
 | |
|   } else if (VT.is128BitVector()) {
 | |
|     Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
 | |
|   } else
 | |
|     return nullptr;
 | |
|   SDValue Chain = LD->getChain();
 | |
|   SDValue Base = LD->getBasePtr();
 | |
|   ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
 | |
|   int OffsetVal = (int)OffsetOp->getZExtValue();
 | |
|   SDLoc dl(N);
 | |
|   SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
 | |
|   SDValue Ops[] = { Base, Offset, Chain };
 | |
|   SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
 | |
|                                        MVT::Other, Ops);
 | |
|   // Either way, we're replacing the node, so tell the caller that.
 | |
|   Done = true;
 | |
|   SDValue LoadedVal = SDValue(Res, 1);
 | |
|   if (InsertTo64) {
 | |
|     SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
 | |
|     LoadedVal =
 | |
|         SDValue(CurDAG->getMachineNode(
 | |
|                     AArch64::SUBREG_TO_REG, dl, MVT::i64,
 | |
|                     CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
 | |
|                     SubReg),
 | |
|                 0);
 | |
|   }
 | |
| 
 | |
|   ReplaceUses(SDValue(N, 0), LoadedVal);
 | |
|   ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
 | |
|   ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs,
 | |
|                                         unsigned Opc, unsigned SubRegIdx) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDValue Chain = N->getOperand(0);
 | |
| 
 | |
|   SDValue Ops[] = {N->getOperand(2), // Mem operand;
 | |
|                    Chain};
 | |
| 
 | |
|   const EVT ResTys[] = {MVT::Untyped, MVT::Other};
 | |
| 
 | |
|   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
|   SDValue SuperReg = SDValue(Ld, 0);
 | |
|   for (unsigned i = 0; i < NumVecs; ++i)
 | |
|     ReplaceUses(SDValue(N, i),
 | |
|         CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
 | |
| 
 | |
|   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
 | |
|                                             unsigned Opc, unsigned SubRegIdx) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDValue Chain = N->getOperand(0);
 | |
| 
 | |
|   SDValue Ops[] = {N->getOperand(1), // Mem operand
 | |
|                    N->getOperand(2), // Incremental
 | |
|                    Chain};
 | |
| 
 | |
|   const EVT ResTys[] = {MVT::i64, // Type of the write back register
 | |
|                         MVT::Untyped, MVT::Other};
 | |
| 
 | |
|   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
| 
 | |
|   // Update uses of write back register
 | |
|   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
 | |
| 
 | |
|   // Update uses of vector list
 | |
|   SDValue SuperReg = SDValue(Ld, 1);
 | |
|   if (NumVecs == 1)
 | |
|     ReplaceUses(SDValue(N, 0), SuperReg);
 | |
|   else
 | |
|     for (unsigned i = 0; i < NumVecs; ++i)
 | |
|       ReplaceUses(SDValue(N, i),
 | |
|           CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
 | |
| 
 | |
|   // Update the chain
 | |
|   ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
 | |
|                                          unsigned Opc) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getOperand(2)->getValueType(0);
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   bool Is128Bit = VT.getSizeInBits() == 128;
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
 | |
|   SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
 | |
| 
 | |
|   SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
 | |
|   SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
 | |
| 
 | |
|   return St;
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
 | |
|                                              unsigned Opc) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getOperand(2)->getValueType(0);
 | |
|   const EVT ResTys[] = {MVT::i64,    // Type of the write back register
 | |
|                         MVT::Other}; // Type for the Chain
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   bool Is128Bit = VT.getSizeInBits() == 128;
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
 | |
|   SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
 | |
| 
 | |
|   SDValue Ops[] = {RegSeq,
 | |
|                    N->getOperand(NumVecs + 1), // base register
 | |
|                    N->getOperand(NumVecs + 2), // Incremental
 | |
|                    N->getOperand(0)};          // Chain
 | |
|   SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
| 
 | |
|   return St;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// WidenVector - Given a value in the V64 register class, produce the
 | |
| /// equivalent value in the V128 register class.
 | |
| class WidenVector {
 | |
|   SelectionDAG &DAG;
 | |
| 
 | |
| public:
 | |
|   WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
 | |
| 
 | |
|   SDValue operator()(SDValue V64Reg) {
 | |
|     EVT VT = V64Reg.getValueType();
 | |
|     unsigned NarrowSize = VT.getVectorNumElements();
 | |
|     MVT EltTy = VT.getVectorElementType().getSimpleVT();
 | |
|     MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
 | |
|     SDLoc DL(V64Reg);
 | |
| 
 | |
|     SDValue Undef =
 | |
|         SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
 | |
|     return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| /// NarrowVector - Given a value in the V128 register class, produce the
 | |
| /// equivalent value in the V64 register class.
 | |
| static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
 | |
|   EVT VT = V128Reg.getValueType();
 | |
|   unsigned WideSize = VT.getVectorNumElements();
 | |
|   MVT EltTy = VT.getVectorElementType().getSimpleVT();
 | |
|   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
 | |
| 
 | |
|   return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
 | |
|                                     V128Reg);
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
 | |
|                                             unsigned Opc) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   bool Narrow = VT.getSizeInBits() == 64;
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
 | |
| 
 | |
|   if (Narrow)
 | |
|     std::transform(Regs.begin(), Regs.end(), Regs.begin(),
 | |
|                    WidenVector(*CurDAG));
 | |
| 
 | |
|   SDValue RegSeq = createQTuple(Regs);
 | |
| 
 | |
|   const EVT ResTys[] = {MVT::Untyped, MVT::Other};
 | |
| 
 | |
|   unsigned LaneNo =
 | |
|       cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
 | |
| 
 | |
|   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
 | |
|                    N->getOperand(NumVecs + 3), N->getOperand(0)};
 | |
|   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
|   SDValue SuperReg = SDValue(Ld, 0);
 | |
| 
 | |
|   EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
 | |
|   static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
 | |
|                                     AArch64::qsub2, AArch64::qsub3 };
 | |
|   for (unsigned i = 0; i < NumVecs; ++i) {
 | |
|     SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
 | |
|     if (Narrow)
 | |
|       NV = NarrowVector(NV, *CurDAG);
 | |
|     ReplaceUses(SDValue(N, i), NV);
 | |
|   }
 | |
| 
 | |
|   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
 | |
| 
 | |
|   return Ld;
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
 | |
|                                                 unsigned Opc) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   bool Narrow = VT.getSizeInBits() == 64;
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
 | |
| 
 | |
|   if (Narrow)
 | |
|     std::transform(Regs.begin(), Regs.end(), Regs.begin(),
 | |
|                    WidenVector(*CurDAG));
 | |
| 
 | |
|   SDValue RegSeq = createQTuple(Regs);
 | |
| 
 | |
|   const EVT ResTys[] = {MVT::i64, // Type of the write back register
 | |
|                         RegSeq->getValueType(0), MVT::Other};
 | |
| 
 | |
|   unsigned LaneNo =
 | |
|       cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
 | |
| 
 | |
|   SDValue Ops[] = {RegSeq,
 | |
|                    CurDAG->getTargetConstant(LaneNo, dl,
 | |
|                                              MVT::i64),         // Lane Number
 | |
|                    N->getOperand(NumVecs + 2),                  // Base register
 | |
|                    N->getOperand(NumVecs + 3),                  // Incremental
 | |
|                    N->getOperand(0)};
 | |
|   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
| 
 | |
|   // Update uses of the write back register
 | |
|   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
 | |
| 
 | |
|   // Update uses of the vector list
 | |
|   SDValue SuperReg = SDValue(Ld, 1);
 | |
|   if (NumVecs == 1) {
 | |
|     ReplaceUses(SDValue(N, 0),
 | |
|                 Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
 | |
|   } else {
 | |
|     EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
 | |
|     static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
 | |
|                                       AArch64::qsub2, AArch64::qsub3 };
 | |
|     for (unsigned i = 0; i < NumVecs; ++i) {
 | |
|       SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
 | |
|                                                   SuperReg);
 | |
|       if (Narrow)
 | |
|         NV = NarrowVector(NV, *CurDAG);
 | |
|       ReplaceUses(SDValue(N, i), NV);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update the Chain
 | |
|   ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
 | |
| 
 | |
|   return Ld;
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
 | |
|                                              unsigned Opc) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getOperand(2)->getValueType(0);
 | |
|   bool Narrow = VT.getSizeInBits() == 64;
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
 | |
| 
 | |
|   if (Narrow)
 | |
|     std::transform(Regs.begin(), Regs.end(), Regs.begin(),
 | |
|                    WidenVector(*CurDAG));
 | |
| 
 | |
|   SDValue RegSeq = createQTuple(Regs);
 | |
| 
 | |
|   unsigned LaneNo =
 | |
|       cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
 | |
| 
 | |
|   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
 | |
|                    N->getOperand(NumVecs + 3), N->getOperand(0)};
 | |
|   SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
 | |
| 
 | |
|   // Transfer memoperands.
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | |
|   cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|   return St;
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
 | |
|                                                  unsigned Opc) {
 | |
|   SDLoc dl(N);
 | |
|   EVT VT = N->getOperand(2)->getValueType(0);
 | |
|   bool Narrow = VT.getSizeInBits() == 64;
 | |
| 
 | |
|   // Form a REG_SEQUENCE to force register allocation.
 | |
|   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
 | |
| 
 | |
|   if (Narrow)
 | |
|     std::transform(Regs.begin(), Regs.end(), Regs.begin(),
 | |
|                    WidenVector(*CurDAG));
 | |
| 
 | |
|   SDValue RegSeq = createQTuple(Regs);
 | |
| 
 | |
|   const EVT ResTys[] = {MVT::i64, // Type of the write back register
 | |
|                         MVT::Other};
 | |
| 
 | |
|   unsigned LaneNo =
 | |
|       cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
 | |
| 
 | |
|   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
 | |
|                    N->getOperand(NumVecs + 2), // Base Register
 | |
|                    N->getOperand(NumVecs + 3), // Incremental
 | |
|                    N->getOperand(0)};
 | |
|   SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
 | |
| 
 | |
|   // Transfer memoperands.
 | |
|   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|   MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand();
 | |
|   cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|   return St;
 | |
| }
 | |
| 
 | |
| static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
 | |
|                                        unsigned &Opc, SDValue &Opd0,
 | |
|                                        unsigned &LSB, unsigned &MSB,
 | |
|                                        unsigned NumberOfIgnoredLowBits,
 | |
|                                        bool BiggerPattern) {
 | |
|   assert(N->getOpcode() == ISD::AND &&
 | |
|          "N must be a AND operation to call this function");
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   // Here we can test the type of VT and return false when the type does not
 | |
|   // match, but since it is done prior to that call in the current context
 | |
|   // we turned that into an assert to avoid redundant code.
 | |
|   assert((VT == MVT::i32 || VT == MVT::i64) &&
 | |
|          "Type checking must have been done before calling this function");
 | |
| 
 | |
|   // FIXME: simplify-demanded-bits in DAGCombine will probably have
 | |
|   // changed the AND node to a 32-bit mask operation. We'll have to
 | |
|   // undo that as part of the transform here if we want to catch all
 | |
|   // the opportunities.
 | |
|   // Currently the NumberOfIgnoredLowBits argument helps to recover
 | |
|   // form these situations when matching bigger pattern (bitfield insert).
 | |
| 
 | |
|   // For unsigned extracts, check for a shift right and mask
 | |
|   uint64_t And_imm = 0;
 | |
|   if (!isOpcWithIntImmediate(N, ISD::AND, And_imm))
 | |
|     return false;
 | |
| 
 | |
|   const SDNode *Op0 = N->getOperand(0).getNode();
 | |
| 
 | |
|   // Because of simplify-demanded-bits in DAGCombine, the mask may have been
 | |
|   // simplified. Try to undo that
 | |
|   And_imm |= (1 << NumberOfIgnoredLowBits) - 1;
 | |
| 
 | |
|   // The immediate is a mask of the low bits iff imm & (imm+1) == 0
 | |
|   if (And_imm & (And_imm + 1))
 | |
|     return false;
 | |
| 
 | |
|   bool ClampMSB = false;
 | |
|   uint64_t Srl_imm = 0;
 | |
|   // Handle the SRL + ANY_EXTEND case.
 | |
|   if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
 | |
|       isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, Srl_imm)) {
 | |
|     // Extend the incoming operand of the SRL to 64-bit.
 | |
|     Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
 | |
|     // Make sure to clamp the MSB so that we preserve the semantics of the
 | |
|     // original operations.
 | |
|     ClampMSB = true;
 | |
|   } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
 | |
|              isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
 | |
|                                    Srl_imm)) {
 | |
|     // If the shift result was truncated, we can still combine them.
 | |
|     Opd0 = Op0->getOperand(0).getOperand(0);
 | |
| 
 | |
|     // Use the type of SRL node.
 | |
|     VT = Opd0->getValueType(0);
 | |
|   } else if (isOpcWithIntImmediate(Op0, ISD::SRL, Srl_imm)) {
 | |
|     Opd0 = Op0->getOperand(0);
 | |
|   } else if (BiggerPattern) {
 | |
|     // Let's pretend a 0 shift right has been performed.
 | |
|     // The resulting code will be at least as good as the original one
 | |
|     // plus it may expose more opportunities for bitfield insert pattern.
 | |
|     // FIXME: Currently we limit this to the bigger pattern, because
 | |
|     // some optimizations expect AND and not UBFM.
 | |
|     Opd0 = N->getOperand(0);
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Bail out on large immediates. This happens when no proper
 | |
|   // combining/constant folding was performed.
 | |
|   if (!BiggerPattern && (Srl_imm <= 0 || Srl_imm >= VT.getSizeInBits())) {
 | |
|     DEBUG((dbgs() << N
 | |
|            << ": Found large shift immediate, this should not happen\n"));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   LSB = Srl_imm;
 | |
|   MSB = Srl_imm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(And_imm)
 | |
|                                   : countTrailingOnes<uint64_t>(And_imm)) -
 | |
|         1;
 | |
|   if (ClampMSB)
 | |
|     // Since we're moving the extend before the right shift operation, we need
 | |
|     // to clamp the MSB to make sure we don't shift in undefined bits instead of
 | |
|     // the zeros which would get shifted in with the original right shift
 | |
|     // operation.
 | |
|     MSB = MSB > 31 ? 31 : MSB;
 | |
| 
 | |
|   Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
 | |
|                                           SDValue &Opd0, unsigned &LSB,
 | |
|                                           unsigned &MSB) {
 | |
|   // We are looking for the following pattern which basically extracts several
 | |
|   // continuous bits from the source value and places it from the LSB of the
 | |
|   // destination value, all other bits of the destination value or set to zero:
 | |
|   //
 | |
|   // Value2 = AND Value, MaskImm
 | |
|   // SRL Value2, ShiftImm
 | |
|   //
 | |
|   // with MaskImm >> ShiftImm to search for the bit width.
 | |
|   //
 | |
|   // This gets selected into a single UBFM:
 | |
|   //
 | |
|   // UBFM Value, ShiftImm, BitWide + Srl_imm -1
 | |
|   //
 | |
| 
 | |
|   if (N->getOpcode() != ISD::SRL)
 | |
|     return false;
 | |
| 
 | |
|   uint64_t And_mask = 0;
 | |
|   if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_mask))
 | |
|     return false;
 | |
| 
 | |
|   Opd0 = N->getOperand(0).getOperand(0);
 | |
| 
 | |
|   uint64_t Srl_imm = 0;
 | |
|   if (!isIntImmediate(N->getOperand(1), Srl_imm))
 | |
|     return false;
 | |
| 
 | |
|   // Check whether we really have several bits extract here.
 | |
|   unsigned BitWide = 64 - countLeadingOnes(~(And_mask >> Srl_imm));
 | |
|   if (BitWide && isMask_64(And_mask >> Srl_imm)) {
 | |
|     if (N->getValueType(0) == MVT::i32)
 | |
|       Opc = AArch64::UBFMWri;
 | |
|     else
 | |
|       Opc = AArch64::UBFMXri;
 | |
| 
 | |
|     LSB = Srl_imm;
 | |
|     MSB = BitWide + Srl_imm - 1;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
 | |
|                                        unsigned &Immr, unsigned &Imms,
 | |
|                                        bool BiggerPattern) {
 | |
|   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
 | |
|          "N must be a SHR/SRA operation to call this function");
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
| 
 | |
|   // Here we can test the type of VT and return false when the type does not
 | |
|   // match, but since it is done prior to that call in the current context
 | |
|   // we turned that into an assert to avoid redundant code.
 | |
|   assert((VT == MVT::i32 || VT == MVT::i64) &&
 | |
|          "Type checking must have been done before calling this function");
 | |
| 
 | |
|   // Check for AND + SRL doing several bits extract.
 | |
|   if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
 | |
|     return true;
 | |
| 
 | |
|   // we're looking for a shift of a shift
 | |
|   uint64_t Shl_imm = 0;
 | |
|   uint64_t Trunc_bits = 0;
 | |
|   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
 | |
|     Opd0 = N->getOperand(0).getOperand(0);
 | |
|   } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
 | |
|              N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
 | |
|     // We are looking for a shift of truncate. Truncate from i64 to i32 could
 | |
|     // be considered as setting high 32 bits as zero. Our strategy here is to
 | |
|     // always generate 64bit UBFM. This consistency will help the CSE pass
 | |
|     // later find more redundancy.
 | |
|     Opd0 = N->getOperand(0).getOperand(0);
 | |
|     Trunc_bits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
 | |
|     VT = Opd0->getValueType(0);
 | |
|     assert(VT == MVT::i64 && "the promoted type should be i64");
 | |
|   } else if (BiggerPattern) {
 | |
|     // Let's pretend a 0 shift left has been performed.
 | |
|     // FIXME: Currently we limit this to the bigger pattern case,
 | |
|     // because some optimizations expect AND and not UBFM
 | |
|     Opd0 = N->getOperand(0);
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // Missing combines/constant folding may have left us with strange
 | |
|   // constants.
 | |
|   if (Shl_imm >= VT.getSizeInBits()) {
 | |
|     DEBUG((dbgs() << N
 | |
|            << ": Found large shift immediate, this should not happen\n"));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   uint64_t Srl_imm = 0;
 | |
|   if (!isIntImmediate(N->getOperand(1), Srl_imm))
 | |
|     return false;
 | |
| 
 | |
|   assert(Srl_imm > 0 && Srl_imm < VT.getSizeInBits() &&
 | |
|          "bad amount in shift node!");
 | |
|   int immr = Srl_imm - Shl_imm;
 | |
|   Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
 | |
|   Imms = VT.getSizeInBits() - Shl_imm - Trunc_bits - 1;
 | |
|   // SRA requires a signed extraction
 | |
|   if (VT == MVT::i32)
 | |
|     Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
 | |
|   else
 | |
|     Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
 | |
|                                 SDValue &Opd0, unsigned &Immr, unsigned &Imms,
 | |
|                                 unsigned NumberOfIgnoredLowBits = 0,
 | |
|                                 bool BiggerPattern = false) {
 | |
|   if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
 | |
|     return false;
 | |
| 
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     if (!N->isMachineOpcode())
 | |
|       return false;
 | |
|     break;
 | |
|   case ISD::AND:
 | |
|     return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
 | |
|                                       NumberOfIgnoredLowBits, BiggerPattern);
 | |
|   case ISD::SRL:
 | |
|   case ISD::SRA:
 | |
|     return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
 | |
|   }
 | |
| 
 | |
|   unsigned NOpc = N->getMachineOpcode();
 | |
|   switch (NOpc) {
 | |
|   default:
 | |
|     return false;
 | |
|   case AArch64::SBFMWri:
 | |
|   case AArch64::UBFMWri:
 | |
|   case AArch64::SBFMXri:
 | |
|   case AArch64::UBFMXri:
 | |
|     Opc = NOpc;
 | |
|     Opd0 = N->getOperand(0);
 | |
|     Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
 | |
|     Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
 | |
|     return true;
 | |
|   }
 | |
|   // Unreachable
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectBitfieldExtractOp(SDNode *N) {
 | |
|   unsigned Opc, Immr, Imms;
 | |
|   SDValue Opd0;
 | |
|   if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
 | |
|     return nullptr;
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
| 
 | |
|   // If the bit extract operation is 64bit but the original type is 32bit, we
 | |
|   // need to add one EXTRACT_SUBREG.
 | |
|   if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
 | |
|     SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
 | |
|                        CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
 | |
| 
 | |
|     SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
 | |
|     SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
 | |
|     MachineSDNode *Node =
 | |
|         CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, MVT::i32,
 | |
|                                SDValue(BFM, 0), SubReg);
 | |
|     return Node;
 | |
|   }
 | |
| 
 | |
|   SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
 | |
|                    CurDAG->getTargetConstant(Imms, dl, VT)};
 | |
|   return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
 | |
| }
 | |
| 
 | |
| /// Does DstMask form a complementary pair with the mask provided by
 | |
| /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
 | |
| /// this asks whether DstMask zeroes precisely those bits that will be set by
 | |
| /// the other half.
 | |
| static bool isBitfieldDstMask(uint64_t DstMask, APInt BitsToBeInserted,
 | |
|                               unsigned NumberOfIgnoredHighBits, EVT VT) {
 | |
|   assert((VT == MVT::i32 || VT == MVT::i64) &&
 | |
|          "i32 or i64 mask type expected!");
 | |
|   unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
 | |
| 
 | |
|   APInt SignificantDstMask = APInt(BitWidth, DstMask);
 | |
|   APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
 | |
| 
 | |
|   return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
 | |
|          (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
 | |
| }
 | |
| 
 | |
| // Look for bits that will be useful for later uses.
 | |
| // A bit is consider useless as soon as it is dropped and never used
 | |
| // before it as been dropped.
 | |
| // E.g., looking for useful bit of x
 | |
| // 1. y = x & 0x7
 | |
| // 2. z = y >> 2
 | |
| // After #1, x useful bits are 0x7, then the useful bits of x, live through
 | |
| // y.
 | |
| // After #2, the useful bits of x are 0x4.
 | |
| // However, if x is used on an unpredicatable instruction, then all its bits
 | |
| // are useful.
 | |
| // E.g.
 | |
| // 1. y = x & 0x7
 | |
| // 2. z = y >> 2
 | |
| // 3. str x, [@x]
 | |
| static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
 | |
| 
 | |
| static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
 | |
|                                               unsigned Depth) {
 | |
|   uint64_t Imm =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
 | |
|   Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
 | |
|   UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
 | |
|   getUsefulBits(Op, UsefulBits, Depth + 1);
 | |
| }
 | |
| 
 | |
| static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
 | |
|                                              uint64_t Imm, uint64_t MSB,
 | |
|                                              unsigned Depth) {
 | |
|   // inherit the bitwidth value
 | |
|   APInt OpUsefulBits(UsefulBits);
 | |
|   OpUsefulBits = 1;
 | |
| 
 | |
|   if (MSB >= Imm) {
 | |
|     OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
 | |
|     --OpUsefulBits;
 | |
|     // The interesting part will be in the lower part of the result
 | |
|     getUsefulBits(Op, OpUsefulBits, Depth + 1);
 | |
|     // The interesting part was starting at Imm in the argument
 | |
|     OpUsefulBits = OpUsefulBits.shl(Imm);
 | |
|   } else {
 | |
|     OpUsefulBits = OpUsefulBits.shl(MSB + 1);
 | |
|     --OpUsefulBits;
 | |
|     // The interesting part will be shifted in the result
 | |
|     OpUsefulBits = OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm);
 | |
|     getUsefulBits(Op, OpUsefulBits, Depth + 1);
 | |
|     // The interesting part was at zero in the argument
 | |
|     OpUsefulBits = OpUsefulBits.lshr(OpUsefulBits.getBitWidth() - Imm);
 | |
|   }
 | |
| 
 | |
|   UsefulBits &= OpUsefulBits;
 | |
| }
 | |
| 
 | |
| static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
 | |
|                                   unsigned Depth) {
 | |
|   uint64_t Imm =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
 | |
|   uint64_t MSB =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
 | |
| 
 | |
|   getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
 | |
| }
 | |
| 
 | |
| static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
 | |
|                                               unsigned Depth) {
 | |
|   uint64_t ShiftTypeAndValue =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
 | |
|   APInt Mask(UsefulBits);
 | |
|   Mask.clearAllBits();
 | |
|   Mask.flipAllBits();
 | |
| 
 | |
|   if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
 | |
|     // Shift Left
 | |
|     uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
 | |
|     Mask = Mask.shl(ShiftAmt);
 | |
|     getUsefulBits(Op, Mask, Depth + 1);
 | |
|     Mask = Mask.lshr(ShiftAmt);
 | |
|   } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
 | |
|     // Shift Right
 | |
|     // We do not handle AArch64_AM::ASR, because the sign will change the
 | |
|     // number of useful bits
 | |
|     uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
 | |
|     Mask = Mask.lshr(ShiftAmt);
 | |
|     getUsefulBits(Op, Mask, Depth + 1);
 | |
|     Mask = Mask.shl(ShiftAmt);
 | |
|   } else
 | |
|     return;
 | |
| 
 | |
|   UsefulBits &= Mask;
 | |
| }
 | |
| 
 | |
| static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
 | |
|                                  unsigned Depth) {
 | |
|   uint64_t Imm =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
 | |
|   uint64_t MSB =
 | |
|       cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
 | |
| 
 | |
|   if (Op.getOperand(1) == Orig)
 | |
|     return getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
 | |
| 
 | |
|   APInt OpUsefulBits(UsefulBits);
 | |
|   OpUsefulBits = 1;
 | |
| 
 | |
|   if (MSB >= Imm) {
 | |
|     OpUsefulBits = OpUsefulBits.shl(MSB - Imm + 1);
 | |
|     --OpUsefulBits;
 | |
|     UsefulBits &= ~OpUsefulBits;
 | |
|     getUsefulBits(Op, UsefulBits, Depth + 1);
 | |
|   } else {
 | |
|     OpUsefulBits = OpUsefulBits.shl(MSB + 1);
 | |
|     --OpUsefulBits;
 | |
|     UsefulBits = ~(OpUsefulBits.shl(OpUsefulBits.getBitWidth() - Imm));
 | |
|     getUsefulBits(Op, UsefulBits, Depth + 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
 | |
|                                 SDValue Orig, unsigned Depth) {
 | |
| 
 | |
|   // Users of this node should have already been instruction selected
 | |
|   // FIXME: Can we turn that into an assert?
 | |
|   if (!UserNode->isMachineOpcode())
 | |
|     return;
 | |
| 
 | |
|   switch (UserNode->getMachineOpcode()) {
 | |
|   default:
 | |
|     return;
 | |
|   case AArch64::ANDSWri:
 | |
|   case AArch64::ANDSXri:
 | |
|   case AArch64::ANDWri:
 | |
|   case AArch64::ANDXri:
 | |
|     // We increment Depth only when we call the getUsefulBits
 | |
|     return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
 | |
|                                              Depth);
 | |
|   case AArch64::UBFMWri:
 | |
|   case AArch64::UBFMXri:
 | |
|     return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
 | |
| 
 | |
|   case AArch64::ORRWrs:
 | |
|   case AArch64::ORRXrs:
 | |
|     if (UserNode->getOperand(1) != Orig)
 | |
|       return;
 | |
|     return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
 | |
|                                              Depth);
 | |
|   case AArch64::BFMWri:
 | |
|   case AArch64::BFMXri:
 | |
|     return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
 | |
|   if (Depth >= 6)
 | |
|     return;
 | |
|   // Initialize UsefulBits
 | |
|   if (!Depth) {
 | |
|     unsigned Bitwidth = Op.getValueType().getScalarType().getSizeInBits();
 | |
|     // At the beginning, assume every produced bits is useful
 | |
|     UsefulBits = APInt(Bitwidth, 0);
 | |
|     UsefulBits.flipAllBits();
 | |
|   }
 | |
|   APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
 | |
| 
 | |
|   for (SDNode *Node : Op.getNode()->uses()) {
 | |
|     // A use cannot produce useful bits
 | |
|     APInt UsefulBitsForUse = APInt(UsefulBits);
 | |
|     getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
 | |
|     UsersUsefulBits |= UsefulBitsForUse;
 | |
|   }
 | |
|   // UsefulBits contains the produced bits that are meaningful for the
 | |
|   // current definition, thus a user cannot make a bit meaningful at
 | |
|   // this point
 | |
|   UsefulBits &= UsersUsefulBits;
 | |
| }
 | |
| 
 | |
| /// Create a machine node performing a notional SHL of Op by ShlAmount. If
 | |
| /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
 | |
| /// 0, return Op unchanged.
 | |
| static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
 | |
|   if (ShlAmount == 0)
 | |
|     return Op;
 | |
| 
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc dl(Op);
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
 | |
| 
 | |
|   SDNode *ShiftNode;
 | |
|   if (ShlAmount > 0) {
 | |
|     // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
 | |
|     ShiftNode = CurDAG->getMachineNode(
 | |
|         UBFMOpc, dl, VT, Op,
 | |
|         CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
 | |
|         CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
 | |
|   } else {
 | |
|     // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
 | |
|     assert(ShlAmount < 0 && "expected right shift");
 | |
|     int ShrAmount = -ShlAmount;
 | |
|     ShiftNode = CurDAG->getMachineNode(
 | |
|         UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
 | |
|         CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
 | |
|   }
 | |
| 
 | |
|   return SDValue(ShiftNode, 0);
 | |
| }
 | |
| 
 | |
| /// Does this tree qualify as an attempt to move a bitfield into position,
 | |
| /// essentially "(and (shl VAL, N), Mask)".
 | |
| static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
 | |
|                                     bool BiggerPattern,
 | |
|                                     SDValue &Src, int &ShiftAmount,
 | |
|                                     int &MaskWidth) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   (void)BitWidth;
 | |
|   assert(BitWidth == 32 || BitWidth == 64);
 | |
| 
 | |
|   APInt KnownZero, KnownOne;
 | |
|   CurDAG->computeKnownBits(Op, KnownZero, KnownOne);
 | |
| 
 | |
|   // Non-zero in the sense that they're not provably zero, which is the key
 | |
|   // point if we want to use this value
 | |
|   uint64_t NonZeroBits = (~KnownZero).getZExtValue();
 | |
| 
 | |
|   // Discard a constant AND mask if present. It's safe because the node will
 | |
|   // already have been factored into the computeKnownBits calculation above.
 | |
|   uint64_t AndImm;
 | |
|   if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
 | |
|     assert((~APInt(BitWidth, AndImm) & ~KnownZero) == 0);
 | |
|     Op = Op.getOperand(0);
 | |
|   }
 | |
| 
 | |
|   // Don't match if the SHL has more than one use, since then we'll end up
 | |
|   // generating SHL+UBFIZ instead of just keeping SHL+AND.
 | |
|   if (!BiggerPattern && !Op.hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   uint64_t ShlImm;
 | |
|   if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
 | |
|     return false;
 | |
|   Op = Op.getOperand(0);
 | |
| 
 | |
|   if (!isShiftedMask_64(NonZeroBits))
 | |
|     return false;
 | |
| 
 | |
|   ShiftAmount = countTrailingZeros(NonZeroBits);
 | |
|   MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);
 | |
| 
 | |
|   // BFI encompasses sufficiently many nodes that it's worth inserting an extra
 | |
|   // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
 | |
|   // amount.  BiggerPattern is true when this pattern is being matched for BFI,
 | |
|   // BiggerPattern is false when this pattern is being matched for UBFIZ, in
 | |
|   // which case it is not profitable to insert an extra shift.
 | |
|   if (ShlImm - ShiftAmount != 0 && !BiggerPattern)
 | |
|     return false;
 | |
|   Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Given a OR operation, check if we have the following pattern
 | |
| // ubfm c, b, imm, imm2 (or something that does the same jobs, see
 | |
| //                       isBitfieldExtractOp)
 | |
| // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
 | |
| //                 countTrailingZeros(mask2) == imm2 - imm + 1
 | |
| // f = d | c
 | |
| // if yes, given reference arguments will be update so that one can replace
 | |
| // the OR instruction with:
 | |
| // f = Opc Opd0, Opd1, LSB, MSB ; where Opc is a BFM, LSB = imm, and MSB = imm2
 | |
| static bool isBitfieldInsertOpFromOr(SDNode *N, unsigned &Opc, SDValue &Dst,
 | |
|                                      SDValue &Src, unsigned &ImmR,
 | |
|                                      unsigned &ImmS, SelectionDAG *CurDAG) {
 | |
|   assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
 | |
| 
 | |
|   // Set Opc
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (VT == MVT::i32)
 | |
|     Opc = AArch64::BFMWri;
 | |
|   else if (VT == MVT::i64)
 | |
|     Opc = AArch64::BFMXri;
 | |
|   else
 | |
|     return false;
 | |
| 
 | |
|   // Because of simplify-demanded-bits in DAGCombine, involved masks may not
 | |
|   // have the expected shape. Try to undo that.
 | |
|   APInt UsefulBits;
 | |
|   getUsefulBits(SDValue(N, 0), UsefulBits);
 | |
| 
 | |
|   unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
 | |
|   unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
 | |
| 
 | |
|   // OR is commutative, check all combinations of operand order and values of
 | |
|   // BiggerPattern, i.e.
 | |
|   //     Opd0, Opd1, BiggerPattern=false
 | |
|   //     Opd1, Opd0, BiggerPattern=false
 | |
|   //     Opd0, Opd1, BiggerPattern=true
 | |
|   //     Opd1, Opd0, BiggerPattern=true
 | |
|   // Several of these combinations may match, so check with BiggerPattern=false
 | |
|   // first since that will produce better results by matching more instructions
 | |
|   // and/or inserting fewer extra instructions.
 | |
|   for (int I = 0; I < 4; ++I) {
 | |
| 
 | |
|     bool BiggerPattern = I / 2;
 | |
|     SDNode *OrOpd0 = N->getOperand(I % 2).getNode();
 | |
|     SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
 | |
|     SDNode *OrOpd1 = OrOpd1Val.getNode();
 | |
| 
 | |
|     unsigned BFXOpc;
 | |
|     int DstLSB, Width;
 | |
|     if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
 | |
|                             NumberOfIgnoredLowBits, BiggerPattern)) {
 | |
|       // Check that the returned opcode is compatible with the pattern,
 | |
|       // i.e., same type and zero extended (U and not S)
 | |
|       if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
 | |
|           (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
 | |
|         continue;
 | |
| 
 | |
|       // Compute the width of the bitfield insertion
 | |
|       DstLSB = 0;
 | |
|       Width = ImmS - ImmR + 1;
 | |
|       // FIXME: This constraint is to catch bitfield insertion we may
 | |
|       // want to widen the pattern if we want to grab general bitfied
 | |
|       // move case
 | |
|       if (Width <= 0)
 | |
|         continue;
 | |
| 
 | |
|       // If the mask on the insertee is correct, we have a BFXIL operation. We
 | |
|       // can share the ImmR and ImmS values from the already-computed UBFM.
 | |
|     } else if (isBitfieldPositioningOp(CurDAG, SDValue(OrOpd0, 0),
 | |
|                                        BiggerPattern,
 | |
|                                        Src, DstLSB, Width)) {
 | |
|       ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
 | |
|       ImmS = Width - 1;
 | |
|     } else
 | |
|       continue;
 | |
| 
 | |
|     // Check the second part of the pattern
 | |
|     EVT VT = OrOpd1->getValueType(0);
 | |
|     assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
 | |
| 
 | |
|     // Compute the Known Zero for the candidate of the first operand.
 | |
|     // This allows to catch more general case than just looking for
 | |
|     // AND with imm. Indeed, simplify-demanded-bits may have removed
 | |
|     // the AND instruction because it proves it was useless.
 | |
|     APInt KnownZero, KnownOne;
 | |
|     CurDAG->computeKnownBits(OrOpd1Val, KnownZero, KnownOne);
 | |
| 
 | |
|     // Check if there is enough room for the second operand to appear
 | |
|     // in the first one
 | |
|     APInt BitsToBeInserted =
 | |
|         APInt::getBitsSet(KnownZero.getBitWidth(), DstLSB, DstLSB + Width);
 | |
| 
 | |
|     if ((BitsToBeInserted & ~KnownZero) != 0)
 | |
|       continue;
 | |
| 
 | |
|     // Set the first operand
 | |
|     uint64_t Imm;
 | |
|     if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
 | |
|         isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
 | |
|       // In that case, we can eliminate the AND
 | |
|       Dst = OrOpd1->getOperand(0);
 | |
|     else
 | |
|       // Maybe the AND has been removed by simplify-demanded-bits
 | |
|       // or is useful because it discards more bits
 | |
|       Dst = OrOpd1Val;
 | |
| 
 | |
|     // both parts match
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::SelectBitfieldInsertOp(SDNode *N) {
 | |
|   if (N->getOpcode() != ISD::OR)
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned Opc;
 | |
|   unsigned LSB, MSB;
 | |
|   SDValue Opd0, Opd1;
 | |
| 
 | |
|   if (!isBitfieldInsertOpFromOr(N, Opc, Opd0, Opd1, LSB, MSB, CurDAG))
 | |
|     return nullptr;
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   SDLoc dl(N);
 | |
|   SDValue Ops[] = { Opd0,
 | |
|                     Opd1,
 | |
|                     CurDAG->getTargetConstant(LSB, dl, VT),
 | |
|                     CurDAG->getTargetConstant(MSB, dl, VT) };
 | |
|   return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
 | |
| }
 | |
| 
 | |
| /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
 | |
| /// equivalent of a left shift by a constant amount followed by an and masking
 | |
| /// out a contiguous set of bits.
 | |
| SDNode *AArch64DAGToDAGISel::SelectBitfieldInsertInZeroOp(SDNode *N) {
 | |
|   if (N->getOpcode() != ISD::AND)
 | |
|     return nullptr;
 | |
| 
 | |
|   EVT VT = N->getValueType(0);
 | |
|   unsigned Opc;
 | |
|   if (VT == MVT::i32)
 | |
|     Opc = AArch64::UBFMWri;
 | |
|   else if (VT == MVT::i64)
 | |
|     Opc = AArch64::UBFMXri;
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   SDValue Op0;
 | |
|   int DstLSB, Width;
 | |
|   if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
 | |
|                                Op0, DstLSB, Width))
 | |
|     return nullptr;
 | |
| 
 | |
|   // ImmR is the rotate right amount.
 | |
|   unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
 | |
|   // ImmS is the most significant bit of the source to be moved.
 | |
|   unsigned ImmS = Width - 1;
 | |
| 
 | |
|   SDLoc DL(N);
 | |
|   SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
 | |
|                    CurDAG->getTargetConstant(ImmS, DL, VT)};
 | |
|   return CurDAG->SelectNodeTo(N, Opc, VT, Ops);
 | |
| }
 | |
| 
 | |
| bool
 | |
| AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
 | |
|                                               unsigned RegWidth) {
 | |
|   APFloat FVal(0.0);
 | |
|   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
 | |
|     FVal = CN->getValueAPF();
 | |
|   else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
 | |
|     // Some otherwise illegal constants are allowed in this case.
 | |
|     if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
 | |
|         !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
 | |
|       return false;
 | |
| 
 | |
|     ConstantPoolSDNode *CN =
 | |
|         dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
 | |
|     FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
 | |
|   // is between 1 and 32 for a destination w-register, or 1 and 64 for an
 | |
|   // x-register.
 | |
|   //
 | |
|   // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
 | |
|   // want THIS_NODE to be 2^fbits. This is much easier to deal with using
 | |
|   // integers.
 | |
|   bool IsExact;
 | |
| 
 | |
|   // fbits is between 1 and 64 in the worst-case, which means the fmul
 | |
|   // could have 2^64 as an actual operand. Need 65 bits of precision.
 | |
|   APSInt IntVal(65, true);
 | |
|   FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
 | |
| 
 | |
|   // N.b. isPowerOf2 also checks for > 0.
 | |
|   if (!IsExact || !IntVal.isPowerOf2()) return false;
 | |
|   unsigned FBits = IntVal.logBase2();
 | |
| 
 | |
|   // Checks above should have guaranteed that we haven't lost information in
 | |
|   // finding FBits, but it must still be in range.
 | |
|   if (FBits == 0 || FBits > RegWidth) return false;
 | |
| 
 | |
|   FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
 | |
| // of the string and obtains the integer values from them and combines these
 | |
| // into a single value to be used in the MRS/MSR instruction.
 | |
| static int getIntOperandFromRegisterString(StringRef RegString) {
 | |
|   SmallVector<StringRef, 5> Fields;
 | |
|   RegString.split(Fields, ':');
 | |
| 
 | |
|   if (Fields.size() == 1)
 | |
|     return -1;
 | |
| 
 | |
|   assert(Fields.size() == 5
 | |
|             && "Invalid number of fields in read register string");
 | |
| 
 | |
|   SmallVector<int, 5> Ops;
 | |
|   bool AllIntFields = true;
 | |
| 
 | |
|   for (StringRef Field : Fields) {
 | |
|     unsigned IntField;
 | |
|     AllIntFields &= !Field.getAsInteger(10, IntField);
 | |
|     Ops.push_back(IntField);
 | |
|   }
 | |
| 
 | |
|   assert(AllIntFields &&
 | |
|           "Unexpected non-integer value in special register string.");
 | |
| 
 | |
|   // Need to combine the integer fields of the string into a single value
 | |
|   // based on the bit encoding of MRS/MSR instruction.
 | |
|   return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
 | |
|          (Ops[3] << 3) | (Ops[4]);
 | |
| }
 | |
| 
 | |
| // Lower the read_register intrinsic to an MRS instruction node if the special
 | |
| // register string argument is either of the form detailed in the ALCE (the
 | |
| // form described in getIntOperandsFromRegsterString) or is a named register
 | |
| // known by the MRS SysReg mapper.
 | |
| SDNode *AArch64DAGToDAGISel::SelectReadRegister(SDNode *N) {
 | |
|   const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
 | |
|   const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   int Reg = getIntOperandFromRegisterString(RegString->getString());
 | |
|   if (Reg != -1)
 | |
|     return CurDAG->getMachineNode(AArch64::MRS, DL, N->getSimpleValueType(0),
 | |
|                                   MVT::Other,
 | |
|                                   CurDAG->getTargetConstant(Reg, DL, MVT::i32),
 | |
|                                   N->getOperand(0));
 | |
| 
 | |
|   // Use the sysreg mapper to map the remaining possible strings to the
 | |
|   // value for the register to be used for the instruction operand.
 | |
|   AArch64SysReg::MRSMapper mapper;
 | |
|   bool IsValidSpecialReg;
 | |
|   Reg = mapper.fromString(RegString->getString(),
 | |
|                           Subtarget->getFeatureBits(),
 | |
|                           IsValidSpecialReg);
 | |
|   if (IsValidSpecialReg)
 | |
|     return CurDAG->getMachineNode(AArch64::MRS, DL, N->getSimpleValueType(0),
 | |
|                                   MVT::Other,
 | |
|                                   CurDAG->getTargetConstant(Reg, DL, MVT::i32),
 | |
|                                   N->getOperand(0));
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Lower the write_register intrinsic to an MSR instruction node if the special
 | |
| // register string argument is either of the form detailed in the ALCE (the
 | |
| // form described in getIntOperandsFromRegsterString) or is a named register
 | |
| // known by the MSR SysReg mapper.
 | |
| SDNode *AArch64DAGToDAGISel::SelectWriteRegister(SDNode *N) {
 | |
|   const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
 | |
|   const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
 | |
|   SDLoc DL(N);
 | |
| 
 | |
|   int Reg = getIntOperandFromRegisterString(RegString->getString());
 | |
|   if (Reg != -1)
 | |
|     return CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
 | |
|                                   CurDAG->getTargetConstant(Reg, DL, MVT::i32),
 | |
|                                   N->getOperand(2), N->getOperand(0));
 | |
| 
 | |
|   // Check if the register was one of those allowed as the pstatefield value in
 | |
|   // the MSR (immediate) instruction. To accept the values allowed in the
 | |
|   // pstatefield for the MSR (immediate) instruction, we also require that an
 | |
|   // immediate value has been provided as an argument, we know that this is
 | |
|   // the case as it has been ensured by semantic checking.
 | |
|   AArch64PState::PStateMapper PMapper;
 | |
|   bool IsValidSpecialReg;
 | |
|   Reg = PMapper.fromString(RegString->getString(),
 | |
|                            Subtarget->getFeatureBits(),
 | |
|                            IsValidSpecialReg);
 | |
|   if (IsValidSpecialReg) {
 | |
|     assert (isa<ConstantSDNode>(N->getOperand(2))
 | |
|               && "Expected a constant integer expression.");
 | |
|     uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
 | |
|     unsigned State;
 | |
|     if (Reg == AArch64PState::PAN) {
 | |
|       assert(Immed < 2 && "Bad imm");
 | |
|       State = AArch64::MSRpstateImm1;
 | |
|     } else {
 | |
|       assert(Immed < 16 && "Bad imm");
 | |
|       State = AArch64::MSRpstateImm4;
 | |
|     }
 | |
|     return CurDAG->getMachineNode(State, DL, MVT::Other,
 | |
|                                   CurDAG->getTargetConstant(Reg, DL, MVT::i32),
 | |
|                                   CurDAG->getTargetConstant(Immed, DL, MVT::i16),
 | |
|                                   N->getOperand(0));
 | |
|   }
 | |
| 
 | |
|   // Use the sysreg mapper to attempt to map the remaining possible strings
 | |
|   // to the value for the register to be used for the MSR (register)
 | |
|   // instruction operand.
 | |
|   AArch64SysReg::MSRMapper Mapper;
 | |
|   Reg = Mapper.fromString(RegString->getString(),
 | |
|                           Subtarget->getFeatureBits(),
 | |
|                           IsValidSpecialReg);
 | |
| 
 | |
|   if (IsValidSpecialReg)
 | |
|     return CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
 | |
|                                   CurDAG->getTargetConstant(Reg, DL, MVT::i32),
 | |
|                                   N->getOperand(2), N->getOperand(0));
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| SDNode *AArch64DAGToDAGISel::Select(SDNode *Node) {
 | |
|   // Dump information about the Node being selected
 | |
|   DEBUG(errs() << "Selecting: ");
 | |
|   DEBUG(Node->dump(CurDAG));
 | |
|   DEBUG(errs() << "\n");
 | |
| 
 | |
|   // If we have a custom node, we already have selected!
 | |
|   if (Node->isMachineOpcode()) {
 | |
|     DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
 | |
|     Node->setNodeId(-1);
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // Few custom selection stuff.
 | |
|   SDNode *ResNode = nullptr;
 | |
|   EVT VT = Node->getValueType(0);
 | |
| 
 | |
|   switch (Node->getOpcode()) {
 | |
|   default:
 | |
|     break;
 | |
| 
 | |
|   case ISD::READ_REGISTER:
 | |
|     if (SDNode *Res = SelectReadRegister(Node))
 | |
|       return Res;
 | |
|     break;
 | |
| 
 | |
|   case ISD::WRITE_REGISTER:
 | |
|     if (SDNode *Res = SelectWriteRegister(Node))
 | |
|       return Res;
 | |
|     break;
 | |
| 
 | |
|   case ISD::ADD:
 | |
|     if (SDNode *I = SelectMLAV64LaneV128(Node))
 | |
|       return I;
 | |
|     break;
 | |
| 
 | |
|   case ISD::LOAD: {
 | |
|     // Try to select as an indexed load. Fall through to normal processing
 | |
|     // if we can't.
 | |
|     bool Done = false;
 | |
|     SDNode *I = SelectIndexedLoad(Node, Done);
 | |
|     if (Done)
 | |
|       return I;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::SRL:
 | |
|   case ISD::AND:
 | |
|   case ISD::SRA:
 | |
|     if (SDNode *I = SelectBitfieldExtractOp(Node))
 | |
|       return I;
 | |
|     if (SDNode *I = SelectBitfieldInsertInZeroOp(Node))
 | |
|       return I;
 | |
|     break;
 | |
| 
 | |
|   case ISD::OR:
 | |
|     if (SDNode *I = SelectBitfieldInsertOp(Node))
 | |
|       return I;
 | |
|     break;
 | |
| 
 | |
|   case ISD::EXTRACT_VECTOR_ELT: {
 | |
|     // Extracting lane zero is a special case where we can just use a plain
 | |
|     // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
 | |
|     // the rest of the compiler, especially the register allocator and copyi
 | |
|     // propagation, to reason about, so is preferred when it's possible to
 | |
|     // use it.
 | |
|     ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
 | |
|     // Bail and use the default Select() for non-zero lanes.
 | |
|     if (LaneNode->getZExtValue() != 0)
 | |
|       break;
 | |
|     // If the element type is not the same as the result type, likewise
 | |
|     // bail and use the default Select(), as there's more to do than just
 | |
|     // a cross-class COPY. This catches extracts of i8 and i16 elements
 | |
|     // since they will need an explicit zext.
 | |
|     if (VT != Node->getOperand(0).getValueType().getVectorElementType())
 | |
|       break;
 | |
|     unsigned SubReg;
 | |
|     switch (Node->getOperand(0)
 | |
|                 .getValueType()
 | |
|                 .getVectorElementType()
 | |
|                 .getSizeInBits()) {
 | |
|     default:
 | |
|       llvm_unreachable("Unexpected vector element type!");
 | |
|     case 64:
 | |
|       SubReg = AArch64::dsub;
 | |
|       break;
 | |
|     case 32:
 | |
|       SubReg = AArch64::ssub;
 | |
|       break;
 | |
|     case 16:
 | |
|       SubReg = AArch64::hsub;
 | |
|       break;
 | |
|     case 8:
 | |
|       llvm_unreachable("unexpected zext-requiring extract element!");
 | |
|     }
 | |
|     SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
 | |
|                                                      Node->getOperand(0));
 | |
|     DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
 | |
|     DEBUG(Extract->dumpr(CurDAG));
 | |
|     DEBUG(dbgs() << "\n");
 | |
|     return Extract.getNode();
 | |
|   }
 | |
|   case ISD::Constant: {
 | |
|     // Materialize zero constants as copies from WZR/XZR.  This allows
 | |
|     // the coalescer to propagate these into other instructions.
 | |
|     ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
 | |
|     if (ConstNode->isNullValue()) {
 | |
|       if (VT == MVT::i32)
 | |
|         return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
 | |
|                                       AArch64::WZR, MVT::i32).getNode();
 | |
|       else if (VT == MVT::i64)
 | |
|         return CurDAG->getCopyFromReg(CurDAG->getEntryNode(), SDLoc(Node),
 | |
|                                       AArch64::XZR, MVT::i64).getNode();
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case ISD::FrameIndex: {
 | |
|     // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
 | |
|     int FI = cast<FrameIndexSDNode>(Node)->getIndex();
 | |
|     unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
 | |
|     const TargetLowering *TLI = getTargetLowering();
 | |
|     SDValue TFI = CurDAG->getTargetFrameIndex(
 | |
|         FI, TLI->getPointerTy(CurDAG->getDataLayout()));
 | |
|     SDLoc DL(Node);
 | |
|     SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
 | |
|                       CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
 | |
|     return CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
 | |
|   }
 | |
|   case ISD::INTRINSIC_W_CHAIN: {
 | |
|     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
 | |
|     switch (IntNo) {
 | |
|     default:
 | |
|       break;
 | |
|     case Intrinsic::aarch64_ldaxp:
 | |
|     case Intrinsic::aarch64_ldxp: {
 | |
|       unsigned Op =
 | |
|           IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
 | |
|       SDValue MemAddr = Node->getOperand(2);
 | |
|       SDLoc DL(Node);
 | |
|       SDValue Chain = Node->getOperand(0);
 | |
| 
 | |
|       SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
 | |
|                                           MVT::Other, MemAddr, Chain);
 | |
| 
 | |
|       // Transfer memoperands.
 | |
|       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|       MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
 | |
|       cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1);
 | |
|       return Ld;
 | |
|     }
 | |
|     case Intrinsic::aarch64_stlxp:
 | |
|     case Intrinsic::aarch64_stxp: {
 | |
|       unsigned Op =
 | |
|           IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
 | |
|       SDLoc DL(Node);
 | |
|       SDValue Chain = Node->getOperand(0);
 | |
|       SDValue ValLo = Node->getOperand(2);
 | |
|       SDValue ValHi = Node->getOperand(3);
 | |
|       SDValue MemAddr = Node->getOperand(4);
 | |
| 
 | |
|       // Place arguments in the right order.
 | |
|       SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
 | |
| 
 | |
|       SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
 | |
|       // Transfer memoperands.
 | |
|       MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
 | |
|       MemOp[0] = cast<MemIntrinsicSDNode>(Node)->getMemOperand();
 | |
|       cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1);
 | |
| 
 | |
|       return St;
 | |
|     }
 | |
|     case Intrinsic::aarch64_neon_ld1x2:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld1x3:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld1x4:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld2:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld3:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld4:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
 | |
|       else if (VT == MVT::v8i16  || VT == MVT::v8f16)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld2r:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld3r:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld4r:
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld2lane:
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectLoadLane(Node, 2, AArch64::LD2i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|                VT == MVT::v8f16)
 | |
|         return SelectLoadLane(Node, 2, AArch64::LD2i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectLoadLane(Node, 2, AArch64::LD2i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectLoadLane(Node, 2, AArch64::LD2i64);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld3lane:
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectLoadLane(Node, 3, AArch64::LD3i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|                VT == MVT::v8f16)
 | |
|         return SelectLoadLane(Node, 3, AArch64::LD3i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectLoadLane(Node, 3, AArch64::LD3i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectLoadLane(Node, 3, AArch64::LD3i64);
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_ld4lane:
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectLoadLane(Node, 4, AArch64::LD4i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|                VT == MVT::v8f16)
 | |
|         return SelectLoadLane(Node, 4, AArch64::LD4i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectLoadLane(Node, 4, AArch64::LD4i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectLoadLane(Node, 4, AArch64::LD4i64);
 | |
|       break;
 | |
|     }
 | |
|   } break;
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
 | |
|     switch (IntNo) {
 | |
|     default:
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_tbl2:
 | |
|       return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBLv8i8Two
 | |
|                                                   : AArch64::TBLv16i8Two,
 | |
|                          false);
 | |
|     case Intrinsic::aarch64_neon_tbl3:
 | |
|       return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
 | |
|                                                   : AArch64::TBLv16i8Three,
 | |
|                          false);
 | |
|     case Intrinsic::aarch64_neon_tbl4:
 | |
|       return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
 | |
|                                                   : AArch64::TBLv16i8Four,
 | |
|                          false);
 | |
|     case Intrinsic::aarch64_neon_tbx2:
 | |
|       return SelectTable(Node, 2, VT == MVT::v8i8 ? AArch64::TBXv8i8Two
 | |
|                                                   : AArch64::TBXv16i8Two,
 | |
|                          true);
 | |
|     case Intrinsic::aarch64_neon_tbx3:
 | |
|       return SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
 | |
|                                                   : AArch64::TBXv16i8Three,
 | |
|                          true);
 | |
|     case Intrinsic::aarch64_neon_tbx4:
 | |
|       return SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
 | |
|                                                   : AArch64::TBXv16i8Four,
 | |
|                          true);
 | |
|     case Intrinsic::aarch64_neon_smull:
 | |
|     case Intrinsic::aarch64_neon_umull:
 | |
|       if (SDNode *N = SelectMULLV64LaneV128(IntNo, Node))
 | |
|         return N;
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_VOID: {
 | |
|     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
 | |
|     if (Node->getNumOperands() >= 3)
 | |
|       VT = Node->getOperand(2)->getValueType(0);
 | |
|     switch (IntNo) {
 | |
|     default:
 | |
|       break;
 | |
|     case Intrinsic::aarch64_neon_st1x2: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 2, AArch64::ST1Twov8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 2, AArch64::ST1Twov16b);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectStore(Node, 2, AArch64::ST1Twov4h);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectStore(Node, 2, AArch64::ST1Twov8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 2, AArch64::ST1Twov2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 2, AArch64::ST1Twov4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 2, AArch64::ST1Twov2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 2, AArch64::ST1Twov1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::aarch64_neon_st1x3: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 3, AArch64::ST1Threev8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 3, AArch64::ST1Threev16b);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectStore(Node, 3, AArch64::ST1Threev4h);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectStore(Node, 3, AArch64::ST1Threev8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 3, AArch64::ST1Threev2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 3, AArch64::ST1Threev4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 3, AArch64::ST1Threev2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 3, AArch64::ST1Threev1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::aarch64_neon_st1x4: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 4, AArch64::ST1Fourv8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 4, AArch64::ST1Fourv16b);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectStore(Node, 4, AArch64::ST1Fourv4h);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectStore(Node, 4, AArch64::ST1Fourv8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 4, AArch64::ST1Fourv2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 4, AArch64::ST1Fourv4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 4, AArch64::ST1Fourv2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 4, AArch64::ST1Fourv1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::aarch64_neon_st2: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 2, AArch64::ST2Twov8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 2, AArch64::ST2Twov16b);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectStore(Node, 2, AArch64::ST2Twov4h);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectStore(Node, 2, AArch64::ST2Twov8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 2, AArch64::ST2Twov2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 2, AArch64::ST2Twov4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 2, AArch64::ST2Twov2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 2, AArch64::ST1Twov1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::aarch64_neon_st3: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 3, AArch64::ST3Threev8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 3, AArch64::ST3Threev16b);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectStore(Node, 3, AArch64::ST3Threev4h);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectStore(Node, 3, AArch64::ST3Threev8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 3, AArch64::ST3Threev2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 3, AArch64::ST3Threev4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 3, AArch64::ST3Threev2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 3, AArch64::ST1Threev1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::aarch64_neon_st4: {
 | |
|       if (VT == MVT::v8i8)
 | |
|         return SelectStore(Node, 4, AArch64::ST4Fourv8b);
 | |
|       else if (VT == MVT::v16i8)
 | |
|         return SelectStore(Node, 4, AArch64::ST4Fourv16b);
 | |
|       else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|         return SelectStore(Node, 4, AArch64::ST4Fourv4h);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|         return SelectStore(Node, 4, AArch64::ST4Fourv8h);
 | |
|       else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|         return SelectStore(Node, 4, AArch64::ST4Fourv2s);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|         return SelectStore(Node, 4, AArch64::ST4Fourv4s);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|         return SelectStore(Node, 4, AArch64::ST4Fourv2d);
 | |
|       else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|         return SelectStore(Node, 4, AArch64::ST1Fourv1d);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::aarch64_neon_st2lane: {
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectStoreLane(Node, 2, AArch64::ST2i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|                VT == MVT::v8f16)
 | |
|         return SelectStoreLane(Node, 2, AArch64::ST2i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectStoreLane(Node, 2, AArch64::ST2i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectStoreLane(Node, 2, AArch64::ST2i64);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::aarch64_neon_st3lane: {
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectStoreLane(Node, 3, AArch64::ST3i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|                VT == MVT::v8f16)
 | |
|         return SelectStoreLane(Node, 3, AArch64::ST3i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectStoreLane(Node, 3, AArch64::ST3i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectStoreLane(Node, 3, AArch64::ST3i64);
 | |
|       break;
 | |
|     }
 | |
|     case Intrinsic::aarch64_neon_st4lane: {
 | |
|       if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|         return SelectStoreLane(Node, 4, AArch64::ST4i8);
 | |
|       else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|                VT == MVT::v8f16)
 | |
|         return SelectStoreLane(Node, 4, AArch64::ST4i16);
 | |
|       else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|                VT == MVT::v2f32)
 | |
|         return SelectStoreLane(Node, 4, AArch64::ST4i32);
 | |
|       else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|                VT == MVT::v1f64)
 | |
|         return SelectStoreLane(Node, 4, AArch64::ST4i64);
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD2post: {
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD3post: {
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD4post: {
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD1x2post: {
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD1x3post: {
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD1x4post: {
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD1DUPpost: {
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD2DUPpost: {
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD3DUPpost: {
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD4DUPpost: {
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD1LANEpost: {
 | |
|     if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|       return SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|              VT == MVT::v8f16)
 | |
|       return SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|              VT == MVT::v2f32)
 | |
|       return SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|              VT == MVT::v1f64)
 | |
|       return SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD2LANEpost: {
 | |
|     if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|       return SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|              VT == MVT::v8f16)
 | |
|       return SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|              VT == MVT::v2f32)
 | |
|       return SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|              VT == MVT::v1f64)
 | |
|       return SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD3LANEpost: {
 | |
|     if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|       return SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|              VT == MVT::v8f16)
 | |
|       return SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|              VT == MVT::v2f32)
 | |
|       return SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|              VT == MVT::v1f64)
 | |
|       return SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::LD4LANEpost: {
 | |
|     if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|       return SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|              VT == MVT::v8f16)
 | |
|       return SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|              VT == MVT::v2f32)
 | |
|       return SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|              VT == MVT::v1f64)
 | |
|       return SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::ST2post: {
 | |
|     VT = Node->getOperand(1).getValueType();
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::ST3post: {
 | |
|     VT = Node->getOperand(1).getValueType();
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::ST4post: {
 | |
|     VT = Node->getOperand(1).getValueType();
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::ST1x2post: {
 | |
|     VT = Node->getOperand(1).getValueType();
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::ST1x3post: {
 | |
|     VT = Node->getOperand(1).getValueType();
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::ST1x4post: {
 | |
|     VT = Node->getOperand(1).getValueType();
 | |
|     if (VT == MVT::v8i8)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
 | |
|     else if (VT == MVT::v16i8)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
 | |
|     else if (VT == MVT::v4i16 || VT == MVT::v4f16)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v8f16)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
 | |
|     else if (VT == MVT::v2i32 || VT == MVT::v2f32)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v4f32)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
 | |
|     else if (VT == MVT::v1i64 || VT == MVT::v1f64)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v2f64)
 | |
|       return SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::ST2LANEpost: {
 | |
|     VT = Node->getOperand(1).getValueType();
 | |
|     if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|       return SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|              VT == MVT::v8f16)
 | |
|       return SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|              VT == MVT::v2f32)
 | |
|       return SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|              VT == MVT::v1f64)
 | |
|       return SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::ST3LANEpost: {
 | |
|     VT = Node->getOperand(1).getValueType();
 | |
|     if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|       return SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|              VT == MVT::v8f16)
 | |
|       return SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|              VT == MVT::v2f32)
 | |
|       return SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|              VT == MVT::v1f64)
 | |
|       return SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
 | |
|     break;
 | |
|   }
 | |
|   case AArch64ISD::ST4LANEpost: {
 | |
|     VT = Node->getOperand(1).getValueType();
 | |
|     if (VT == MVT::v16i8 || VT == MVT::v8i8)
 | |
|       return SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
 | |
|     else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
 | |
|              VT == MVT::v8f16)
 | |
|       return SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
 | |
|     else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
 | |
|              VT == MVT::v2f32)
 | |
|       return SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
 | |
|     else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
 | |
|              VT == MVT::v1f64)
 | |
|       return SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // Select the default instruction
 | |
|   ResNode = SelectCode(Node);
 | |
| 
 | |
|   DEBUG(errs() << "=> ");
 | |
|   if (ResNode == nullptr || ResNode == Node)
 | |
|     DEBUG(Node->dump(CurDAG));
 | |
|   else
 | |
|     DEBUG(ResNode->dump(CurDAG));
 | |
|   DEBUG(errs() << "\n");
 | |
| 
 | |
|   return ResNode;
 | |
| }
 | |
| 
 | |
| /// createAArch64ISelDag - This pass converts a legalized DAG into a
 | |
| /// AArch64-specific DAG, ready for instruction scheduling.
 | |
| FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
 | |
|                                          CodeGenOpt::Level OptLevel) {
 | |
|   return new AArch64DAGToDAGISel(TM, OptLevel);
 | |
| }
 |