1063 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1063 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===--- HexagonEarlyIfConv.cpp -------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements a Hexagon-specific if-conversion pass that runs on the
 | |
| // SSA form.
 | |
| // In SSA it is not straightforward to represent instructions that condi-
 | |
| // tionally define registers, since a conditionally-defined register may
 | |
| // only be used under the same condition on which the definition was based.
 | |
| // To avoid complications of this nature, this patch will only generate
 | |
| // predicated stores, and speculate other instructions from the "if-conver-
 | |
| // ted" block.
 | |
| // The code will recognize CFG patterns where a block with a conditional
 | |
| // branch "splits" into a "true block" and a "false block". Either of these
 | |
| // could be omitted (in case of a triangle, for example).
 | |
| // If after conversion of the side block(s) the CFG allows it, the resul-
 | |
| // ting blocks may be merged. If the "join" block contained PHI nodes, they
 | |
| // will be replaced with MUX (or MUX-like) instructions to maintain the
 | |
| // semantics of the PHI.
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //         %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
 | |
| //         %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
 | |
| //         J2_jumpt %vreg41<kill>, <BB#5>, %PC<imp-def,dead>
 | |
| //         J2_jump <BB#4>, %PC<imp-def,dead>
 | |
| //     Successors according to CFG: BB#4(62) BB#5(62)
 | |
| //
 | |
| // BB#4: derived from LLVM BB %if.then
 | |
| //     Predecessors according to CFG: BB#3
 | |
| //         %vreg11<def> = A2_addp %vreg6, %vreg10
 | |
| //         S2_storerd_io %vreg32, 16, %vreg11
 | |
| //     Successors according to CFG: BB#5
 | |
| //
 | |
| // BB#5: derived from LLVM BB %if.end
 | |
| //     Predecessors according to CFG: BB#3 BB#4
 | |
| //         %vreg12<def> = PHI %vreg6, <BB#3>, %vreg11, <BB#4>
 | |
| //         %vreg13<def> = A2_addp %vreg7, %vreg12
 | |
| //         %vreg42<def> = C2_cmpeqi %vreg9, 10
 | |
| //         J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
 | |
| //         J2_jump <BB#6>, %PC<imp-def,dead>
 | |
| //     Successors according to CFG: BB#6(4) BB#3(124)
 | |
| //
 | |
| // would become:
 | |
| //
 | |
| //         %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1
 | |
| //         %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0
 | |
| // spec->  %vreg11<def> = A2_addp %vreg6, %vreg10
 | |
| // pred->  S2_pstorerdf_io %vreg41, %vreg32, 16, %vreg11
 | |
| //         %vreg46<def> = MUX64_rr %vreg41, %vreg6, %vreg11
 | |
| //         %vreg13<def> = A2_addp %vreg7, %vreg46
 | |
| //         %vreg42<def> = C2_cmpeqi %vreg9, 10
 | |
| //         J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead>
 | |
| //         J2_jump <BB#6>, %PC<imp-def,dead>
 | |
| //     Successors according to CFG: BB#6 BB#3
 | |
| 
 | |
| #define DEBUG_TYPE "hexagon-eif"
 | |
| 
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "HexagonTargetMachine.h"
 | |
| 
 | |
| #include <functional>
 | |
| #include <set>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
|   FunctionPass *createHexagonEarlyIfConversion();
 | |
|   void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
 | |
|     cl::init(false), cl::desc("Enable branch probability info"));
 | |
|   cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
 | |
|     cl::desc("Size limit in Hexagon early if-conversion"));
 | |
| 
 | |
|   struct PrintMB {
 | |
|     PrintMB(const MachineBasicBlock *B) : MB(B) {}
 | |
|     const MachineBasicBlock *MB;
 | |
|   };
 | |
|   raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
 | |
|     if (!P.MB)
 | |
|       return OS << "<none>";
 | |
|     return OS << '#' << P.MB->getNumber();
 | |
|   }
 | |
| 
 | |
|   struct FlowPattern {
 | |
|     FlowPattern() : SplitB(0), TrueB(0), FalseB(0), JoinB(0), PredR(0) {}
 | |
|     FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
 | |
|           MachineBasicBlock *FB, MachineBasicBlock *JB)
 | |
|       : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}
 | |
| 
 | |
|     MachineBasicBlock *SplitB;
 | |
|     MachineBasicBlock *TrueB, *FalseB, *JoinB;
 | |
|     unsigned PredR;
 | |
|   };
 | |
|   struct PrintFP {
 | |
|     PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
 | |
|       : FP(P), TRI(T) {}
 | |
|     const FlowPattern &FP;
 | |
|     const TargetRegisterInfo &TRI;
 | |
|     friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
 | |
|   };
 | |
|   raw_ostream &operator<<(raw_ostream &OS,
 | |
|                           const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
 | |
|   raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
 | |
|     OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
 | |
|        << ", PredR:" << PrintReg(P.FP.PredR, &P.TRI)
 | |
|        << ", TrueB:" << PrintMB(P.FP.TrueB) << ", FalseB:"
 | |
|        << PrintMB(P.FP.FalseB)
 | |
|        << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
 | |
|     return OS;
 | |
|   }
 | |
| 
 | |
|   class HexagonEarlyIfConversion : public MachineFunctionPass {
 | |
|   public:
 | |
|     static char ID;
 | |
|     HexagonEarlyIfConversion() : MachineFunctionPass(ID),
 | |
|         TII(0), TRI(0), MFN(0), MRI(0), MDT(0), MLI(0) {
 | |
|       initializeHexagonEarlyIfConversionPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
|     const char *getPassName() const override {
 | |
|       return "Hexagon early if conversion";
 | |
|     }
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<MachineBranchProbabilityInfo>();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   private:
 | |
|     typedef DenseSet<MachineBasicBlock*> BlockSetType;
 | |
| 
 | |
|     bool isPreheader(const MachineBasicBlock *B) const;
 | |
|     bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
 | |
|           FlowPattern &FP);
 | |
|     bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
 | |
|     bool visitLoop(MachineLoop *L);
 | |
| 
 | |
|     bool hasEHLabel(const MachineBasicBlock *B) const;
 | |
|     bool hasUncondBranch(const MachineBasicBlock *B) const;
 | |
|     bool isValidCandidate(const MachineBasicBlock *B) const;
 | |
|     bool usesUndefVReg(const MachineInstr *MI) const;
 | |
|     bool isValid(const FlowPattern &FP) const;
 | |
|     unsigned countPredicateDefs(const MachineBasicBlock *B) const;
 | |
|     unsigned computePhiCost(MachineBasicBlock *B) const;
 | |
|     bool isProfitable(const FlowPattern &FP) const;
 | |
|     bool isPredicableStore(const MachineInstr *MI) const;
 | |
|     bool isSafeToSpeculate(const MachineInstr *MI) const;
 | |
| 
 | |
|     unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
 | |
|     void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
 | |
|           MachineInstr *MI, unsigned PredR, bool IfTrue);
 | |
|     void predicateBlockNB(MachineBasicBlock *ToB,
 | |
|           MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
 | |
|           unsigned PredR, bool IfTrue);
 | |
| 
 | |
|     void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
 | |
|     void convert(const FlowPattern &FP);
 | |
| 
 | |
|     void removeBlock(MachineBasicBlock *B);
 | |
|     void eliminatePhis(MachineBasicBlock *B);
 | |
|     void replacePhiEdges(MachineBasicBlock *OldB, MachineBasicBlock *NewB);
 | |
|     void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
 | |
|     void simplifyFlowGraph(const FlowPattern &FP);
 | |
| 
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     MachineFunction *MFN;
 | |
|     MachineRegisterInfo *MRI;
 | |
|     MachineDominatorTree *MDT;
 | |
|     MachineLoopInfo *MLI;
 | |
|     BlockSetType Deleted;
 | |
|     const MachineBranchProbabilityInfo *MBPI;
 | |
|   };
 | |
| 
 | |
|   char HexagonEarlyIfConversion::ID = 0;
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-eif",
 | |
|   "Hexagon early if conversion", false, false)
 | |
| 
 | |
| bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
 | |
|   if (B->succ_size() != 1)
 | |
|     return false;
 | |
|   MachineBasicBlock *SB = *B->succ_begin();
 | |
|   MachineLoop *L = MLI->getLoopFor(SB);
 | |
|   return L && SB == L->getHeader();
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
 | |
|     MachineLoop *L, FlowPattern &FP) {
 | |
|   DEBUG(dbgs() << "Checking flow pattern at BB#" << B->getNumber() << "\n");
 | |
| 
 | |
|   // Interested only in conditional branches, no .new, no new-value, etc.
 | |
|   // Check the terminators directly, it's easier than handling all responses
 | |
|   // from AnalyzeBranch.
 | |
|   MachineBasicBlock *TB = 0, *FB = 0;
 | |
|   MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
 | |
|   if (T1I == B->end())
 | |
|     return false;
 | |
|   unsigned Opc = T1I->getOpcode();
 | |
|   if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
 | |
|     return false;
 | |
|   unsigned PredR = T1I->getOperand(0).getReg();
 | |
| 
 | |
|   // Get the layout successor, or 0 if B does not have one.
 | |
|   MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
 | |
|   MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : 0;
 | |
| 
 | |
|   MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
 | |
|   MachineBasicBlock::const_iterator T2I = std::next(T1I);
 | |
|   // The second terminator should be an unconditional branch.
 | |
|   assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
 | |
|   MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
 | |
|                                              : T2I->getOperand(0).getMBB();
 | |
|   if (T1B == T2B) {
 | |
|     // XXX merge if T1B == NextB, or convert branch to unconditional.
 | |
|     // mark as diamond with both sides equal?
 | |
|     return false;
 | |
|   }
 | |
|   // Loop could be null for both.
 | |
|   if (MLI->getLoopFor(T1B) != L || MLI->getLoopFor(T2B) != L)
 | |
|     return false;
 | |
| 
 | |
|   // Record the true/false blocks in such a way that "true" means "if (PredR)",
 | |
|   // and "false" means "if (!PredR)".
 | |
|   if (Opc == Hexagon::J2_jumpt)
 | |
|     TB = T1B, FB = T2B;
 | |
|   else
 | |
|     TB = T2B, FB = T1B;
 | |
| 
 | |
|   if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
 | |
|     return false;
 | |
| 
 | |
|   // Detect triangle first. In case of a triangle, one of the blocks TB/FB
 | |
|   // can fall through into the other, in other words, it will be executed
 | |
|   // in both cases. We only want to predicate the block that is executed
 | |
|   // conditionally.
 | |
|   unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
 | |
|   unsigned TNS = TB->succ_size(), FNS = FB->succ_size();
 | |
| 
 | |
|   // A block is predicable if it has one predecessor (it must be B), and
 | |
|   // it has a single successor. In fact, the block has to end either with
 | |
|   // an unconditional branch (which can be predicated), or with a fall-
 | |
|   // through.
 | |
|   bool TOk = (TNP == 1) && (TNS == 1);
 | |
|   bool FOk = (FNP == 1) && (FNS == 1);
 | |
| 
 | |
|   // If neither is predicable, there is nothing interesting.
 | |
|   if (!TOk && !FOk)
 | |
|     return false;
 | |
| 
 | |
|   MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : 0;
 | |
|   MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : 0;
 | |
|   MachineBasicBlock *JB = 0;
 | |
| 
 | |
|   if (TOk) {
 | |
|     if (FOk) {
 | |
|       if (TSB == FSB)
 | |
|         JB = TSB;
 | |
|       // Diamond: "if (P) then TB; else FB;".
 | |
|     } else {
 | |
|       // TOk && !FOk
 | |
|       if (TSB == FB) {
 | |
|         JB = FB;
 | |
|         FB = 0;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // !TOk && FOk  (at least one must be true by now).
 | |
|     if (FSB == TB) {
 | |
|       JB = TB;
 | |
|       TB = 0;
 | |
|     }
 | |
|   }
 | |
|   // Don't try to predicate loop preheaders.
 | |
|   if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
 | |
|     DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
 | |
|                  << " is a loop preheader. Skipping.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   FP = FlowPattern(B, PredR, TB, FB, JB);
 | |
|   DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| // KLUDGE: HexagonInstrInfo::AnalyzeBranch won't work on a block that
 | |
| // contains EH_LABEL.
 | |
| bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
 | |
|   for (auto &I : *B)
 | |
|     if (I.isEHLabel())
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // KLUDGE: HexagonInstrInfo::AnalyzeBranch may be unable to recognize
 | |
| // that a block can never fall-through.
 | |
| bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
 | |
|       const {
 | |
|   MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
 | |
|   while (I != E) {
 | |
|     if (I->isBarrier())
 | |
|       return true;
 | |
|     ++I;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
 | |
|       const {
 | |
|   if (!B)
 | |
|     return true;
 | |
|   if (B->isEHPad() || B->hasAddressTaken())
 | |
|     return false;
 | |
|   if (B->succ_size() == 0)
 | |
|     return false;
 | |
| 
 | |
|   for (auto &MI : *B) {
 | |
|     if (MI.isDebugValue())
 | |
|       continue;
 | |
|     if (MI.isConditionalBranch())
 | |
|       return false;
 | |
|     unsigned Opc = MI.getOpcode();
 | |
|     bool IsJMP = (Opc == Hexagon::J2_jump);
 | |
|     if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
 | |
|       return false;
 | |
|     // Look for predicate registers defined by this instruction. It's ok
 | |
|     // to speculate such an instruction, but the predicate register cannot
 | |
|     // be used outside of this block (or else it won't be possible to
 | |
|     // update the use of it after predication). PHI uses will be updated
 | |
|     // to use a result of a MUX, and a MUX cannot be created for predicate
 | |
|     // registers.
 | |
|     for (ConstMIOperands MO(&MI); MO.isValid(); ++MO) {
 | |
|       if (!MO->isReg() || !MO->isDef())
 | |
|         continue;
 | |
|       unsigned R = MO->getReg();
 | |
|       if (!TargetRegisterInfo::isVirtualRegister(R))
 | |
|         continue;
 | |
|       if (MRI->getRegClass(R) != &Hexagon::PredRegsRegClass)
 | |
|         continue;
 | |
|       for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
 | |
|         if (U->getParent()->isPHI())
 | |
|           return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
 | |
|   for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
 | |
|     if (!MO->isReg() || !MO->isUse())
 | |
|       continue;
 | |
|     unsigned R = MO->getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(R))
 | |
|       continue;
 | |
|     const MachineInstr *DefI = MRI->getVRegDef(R);
 | |
|     // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
 | |
|     assert(DefI && "Expecting a reaching def in MRI");
 | |
|     if (DefI->isImplicitDef())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
 | |
|   if (hasEHLabel(FP.SplitB))  // KLUDGE: see function definition
 | |
|     return false;
 | |
|   if (FP.TrueB && !isValidCandidate(FP.TrueB))
 | |
|     return false;
 | |
|   if (FP.FalseB && !isValidCandidate(FP.FalseB))
 | |
|     return false;
 | |
|   // Check the PHIs in the join block. If any of them use a register
 | |
|   // that is defined as IMPLICIT_DEF, do not convert this. This can
 | |
|   // legitimately happen if one side of the split never executes, but
 | |
|   // the compiler is unable to prove it. That side may then seem to
 | |
|   // provide an "undef" value to the join block, however it will never
 | |
|   // execute at run-time. If we convert this case, the "undef" will
 | |
|   // be used in a MUX instruction, and that may seem like actually
 | |
|   // using an undefined value to other optimizations. This could lead
 | |
|   // to trouble further down the optimization stream, cause assertions
 | |
|   // to fail, etc.
 | |
|   if (FP.JoinB) {
 | |
|     const MachineBasicBlock &B = *FP.JoinB;
 | |
|     for (auto &MI : B) {
 | |
|       if (!MI.isPHI())
 | |
|         break;
 | |
|       if (usesUndefVReg(&MI))
 | |
|         return false;
 | |
|       unsigned DefR = MI.getOperand(0).getReg();
 | |
|       const TargetRegisterClass *RC = MRI->getRegClass(DefR);
 | |
|       if (RC == &Hexagon::PredRegsRegClass)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned HexagonEarlyIfConversion::computePhiCost(MachineBasicBlock *B) const {
 | |
|   assert(B->pred_size() <= 2);
 | |
|   if (B->pred_size() < 2)
 | |
|     return 0;
 | |
| 
 | |
|   unsigned Cost = 0;
 | |
|   MachineBasicBlock::const_iterator I, E = B->getFirstNonPHI();
 | |
|   for (I = B->begin(); I != E; ++I) {
 | |
|     const MachineOperand &RO1 = I->getOperand(1);
 | |
|     const MachineOperand &RO3 = I->getOperand(3);
 | |
|     assert(RO1.isReg() && RO3.isReg());
 | |
|     // Must have a MUX if the phi uses a subregister.
 | |
|     if (RO1.getSubReg() != 0 || RO3.getSubReg() != 0) {
 | |
|       Cost++;
 | |
|       continue;
 | |
|     }
 | |
|     MachineInstr *Def1 = MRI->getVRegDef(RO1.getReg());
 | |
|     MachineInstr *Def3 = MRI->getVRegDef(RO3.getReg());
 | |
|     if (!TII->isPredicable(Def1) || !TII->isPredicable(Def3))
 | |
|       Cost++;
 | |
|   }
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned HexagonEarlyIfConversion::countPredicateDefs(
 | |
|       const MachineBasicBlock *B) const {
 | |
|   unsigned PredDefs = 0;
 | |
|   for (auto &MI : *B) {
 | |
|     for (ConstMIOperands MO(&MI); MO.isValid(); ++MO) {
 | |
|       if (!MO->isReg() || !MO->isDef())
 | |
|         continue;
 | |
|       unsigned R = MO->getReg();
 | |
|       if (!TargetRegisterInfo::isVirtualRegister(R))
 | |
|         continue;
 | |
|       if (MRI->getRegClass(R) == &Hexagon::PredRegsRegClass)
 | |
|         PredDefs++;
 | |
|     }
 | |
|   }
 | |
|   return PredDefs;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
 | |
|   if (FP.TrueB && FP.FalseB) {
 | |
| 
 | |
|     // Do not IfCovert if the branch is one sided.
 | |
|     if (MBPI) {
 | |
|       BranchProbability Prob(9, 10);
 | |
|       if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
 | |
|         return false;
 | |
|       if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If both sides are predicable, convert them if they join, and the
 | |
|     // join block has no other predecessors.
 | |
|     MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
 | |
|     MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
 | |
|     if (TSB != FSB)
 | |
|       return false;
 | |
|     if (TSB->pred_size() != 2)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Calculate the total size of the predicated blocks.
 | |
|   // Assume instruction counts without branches to be the approximation of
 | |
|   // the code size. If the predicated blocks are smaller than a packet size,
 | |
|   // approximate the spare room in the packet that could be filled with the
 | |
|   // predicated/speculated instructions.
 | |
|   unsigned TS = 0, FS = 0, Spare = 0;
 | |
|   if (FP.TrueB) {
 | |
|     TS = std::distance(FP.TrueB->begin(), FP.TrueB->getFirstTerminator());
 | |
|     if (TS < HEXAGON_PACKET_SIZE)
 | |
|       Spare += HEXAGON_PACKET_SIZE-TS;
 | |
|   }
 | |
|   if (FP.FalseB) {
 | |
|     FS = std::distance(FP.FalseB->begin(), FP.FalseB->getFirstTerminator());
 | |
|     if (FS < HEXAGON_PACKET_SIZE)
 | |
|       Spare += HEXAGON_PACKET_SIZE-TS;
 | |
|   }
 | |
|   unsigned TotalIn = TS+FS;
 | |
|   DEBUG(dbgs() << "Total number of instructions to be predicated/speculated: "
 | |
|                << TotalIn << ", spare room: " << Spare << "\n");
 | |
|   if (TotalIn >= SizeLimit+Spare)
 | |
|     return false;
 | |
| 
 | |
|   // Count the number of PHI nodes that will need to be updated (converted
 | |
|   // to MUX). Those can be later converted to predicated instructions, so
 | |
|   // they aren't always adding extra cost.
 | |
|   // KLUDGE: Also, count the number of predicate register definitions in
 | |
|   // each block. The scheduler may increase the pressure of these and cause
 | |
|   // expensive spills (e.g. bitmnp01).
 | |
|   unsigned TotalPh = 0;
 | |
|   unsigned PredDefs = countPredicateDefs(FP.SplitB);
 | |
|   if (FP.JoinB) {
 | |
|     TotalPh = computePhiCost(FP.JoinB);
 | |
|     PredDefs += countPredicateDefs(FP.JoinB);
 | |
|   } else {
 | |
|     if (FP.TrueB && FP.TrueB->succ_size() > 0) {
 | |
|       MachineBasicBlock *SB = *FP.TrueB->succ_begin();
 | |
|       TotalPh += computePhiCost(SB);
 | |
|       PredDefs += countPredicateDefs(SB);
 | |
|     }
 | |
|     if (FP.FalseB && FP.FalseB->succ_size() > 0) {
 | |
|       MachineBasicBlock *SB = *FP.FalseB->succ_begin();
 | |
|       TotalPh += computePhiCost(SB);
 | |
|       PredDefs += countPredicateDefs(SB);
 | |
|     }
 | |
|   }
 | |
|   DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
 | |
|                << TotalPh << "\n");
 | |
|   if (TotalIn+TotalPh >= SizeLimit+Spare)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs << "\n");
 | |
|   if (PredDefs > 4)
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
 | |
|       MachineLoop *L) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Visit all dominated blocks from the same loop first, then process B.
 | |
|   MachineDomTreeNode *N = MDT->getNode(B);
 | |
|   typedef GraphTraits<MachineDomTreeNode*> GTN;
 | |
|   // We will change CFG/DT during this traversal, so take precautions to
 | |
|   // avoid problems related to invalidated iterators. In fact, processing
 | |
|   // a child C of B cannot cause another child to be removed, but it can
 | |
|   // cause a new child to be added (which was a child of C before C itself
 | |
|   // was removed. This new child C, however, would have been processed
 | |
|   // prior to processing B, so there is no need to process it again.
 | |
|   // Simply keep a list of children of B, and traverse that list.
 | |
|   typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
 | |
|   DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
 | |
|   for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
 | |
|     MachineBasicBlock *SB = (*I)->getBlock();
 | |
|     if (!Deleted.count(SB))
 | |
|       Changed |= visitBlock(SB, L);
 | |
|   }
 | |
|   // When walking down the dominator tree, we want to traverse through
 | |
|   // blocks from nested (other) loops, because they can dominate blocks
 | |
|   // that are in L. Skip the non-L blocks only after the tree traversal.
 | |
|   if (MLI->getLoopFor(B) != L)
 | |
|     return Changed;
 | |
| 
 | |
|   FlowPattern FP;
 | |
|   if (!matchFlowPattern(B, L, FP))
 | |
|     return Changed;
 | |
| 
 | |
|   if (!isValid(FP)) {
 | |
|     DEBUG(dbgs() << "Conversion is not valid\n");
 | |
|     return Changed;
 | |
|   }
 | |
|   if (!isProfitable(FP)) {
 | |
|     DEBUG(dbgs() << "Conversion is not profitable\n");
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   convert(FP);
 | |
|   simplifyFlowGraph(FP);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
 | |
|   MachineBasicBlock *HB = L ? L->getHeader() : 0;
 | |
|   DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
 | |
|            : dbgs() << "Visiting function") << "\n");
 | |
|   bool Changed = false;
 | |
|   if (L) {
 | |
|     for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
 | |
|       Changed |= visitLoop(*I);
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
 | |
|   Changed |= visitBlock(L ? HB : EntryB, L);
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
 | |
|       const {
 | |
|   // Exclude post-increment stores. Those return a value, so we cannot
 | |
|   // predicate them.
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   using namespace Hexagon;
 | |
|   switch (Opc) {
 | |
|     // Store byte:
 | |
|     case S2_storerb_io: case S4_storerb_rr:
 | |
|     case S2_storerbabs: case S4_storeirb_io:  case S2_storerbgp:
 | |
|     // Store halfword:
 | |
|     case S2_storerh_io: case S4_storerh_rr:
 | |
|     case S2_storerhabs: case S4_storeirh_io:  case S2_storerhgp:
 | |
|     // Store upper halfword:
 | |
|     case S2_storerf_io: case S4_storerf_rr:
 | |
|     case S2_storerfabs: case S2_storerfgp:
 | |
|     // Store word:
 | |
|     case S2_storeri_io: case S4_storeri_rr:
 | |
|     case S2_storeriabs: case S4_storeiri_io:  case S2_storerigp:
 | |
|     // Store doubleword:
 | |
|     case S2_storerd_io: case S4_storerd_rr:
 | |
|     case S2_storerdabs: case S2_storerdgp:
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
 | |
|       const {
 | |
|   if (MI->mayLoad() || MI->mayStore())
 | |
|     return false;
 | |
|   if (MI->isCall() || MI->isBarrier() || MI->isBranch())
 | |
|     return false;
 | |
|   if (MI->hasUnmodeledSideEffects())
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
 | |
|       bool IfTrue) const {
 | |
|   // Exclude post-increment stores.
 | |
|   using namespace Hexagon;
 | |
|   switch (Opc) {
 | |
|     case S2_storerb_io:
 | |
|       return IfTrue ? S2_pstorerbt_io : S2_pstorerbf_io;
 | |
|     case S4_storerb_rr:
 | |
|       return IfTrue ? S4_pstorerbt_rr : S4_pstorerbf_rr;
 | |
|     case S2_storerbabs:
 | |
|     case S2_storerbgp:
 | |
|       return IfTrue ? S4_pstorerbt_abs : S4_pstorerbf_abs;
 | |
|     case S4_storeirb_io:
 | |
|       return IfTrue ? S4_storeirbt_io : S4_storeirbf_io;
 | |
|     case S2_storerh_io:
 | |
|       return IfTrue ? S2_pstorerht_io : S2_pstorerhf_io;
 | |
|     case S4_storerh_rr:
 | |
|       return IfTrue ? S4_pstorerht_rr : S4_pstorerhf_rr;
 | |
|     case S2_storerhabs:
 | |
|     case S2_storerhgp:
 | |
|       return IfTrue ? S4_pstorerht_abs : S4_pstorerhf_abs;
 | |
|     case S2_storerf_io:
 | |
|       return IfTrue ? S2_pstorerft_io : S2_pstorerff_io;
 | |
|     case S4_storerf_rr:
 | |
|       return IfTrue ? S4_pstorerft_rr : S4_pstorerff_rr;
 | |
|     case S2_storerfabs:
 | |
|     case S2_storerfgp:
 | |
|       return IfTrue ? S4_pstorerft_abs : S4_pstorerff_abs;
 | |
|     case S4_storeirh_io:
 | |
|       return IfTrue ? S4_storeirht_io : S4_storeirhf_io;
 | |
|     case S2_storeri_io:
 | |
|       return IfTrue ? S2_pstorerit_io : S2_pstorerif_io;
 | |
|     case S4_storeri_rr:
 | |
|       return IfTrue ? S4_pstorerit_rr : S4_pstorerif_rr;
 | |
|     case S2_storeriabs:
 | |
|     case S2_storerigp:
 | |
|       return IfTrue ? S4_pstorerit_abs : S4_pstorerif_abs;
 | |
|     case S4_storeiri_io:
 | |
|       return IfTrue ? S4_storeirit_io : S4_storeirif_io;
 | |
|     case S2_storerd_io:
 | |
|       return IfTrue ? S2_pstorerdt_io : S2_pstorerdf_io;
 | |
|     case S4_storerd_rr:
 | |
|       return IfTrue ? S4_pstorerdt_rr : S4_pstorerdf_rr;
 | |
|     case S2_storerdabs:
 | |
|     case S2_storerdgp:
 | |
|       return IfTrue ? S4_pstorerdt_abs : S4_pstorerdf_abs;
 | |
|   }
 | |
|   llvm_unreachable("Unexpected opcode");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
 | |
|       MachineBasicBlock::iterator At, MachineInstr *MI,
 | |
|       unsigned PredR, bool IfTrue) {
 | |
|   DebugLoc DL;
 | |
|   if (At != ToB->end())
 | |
|     DL = At->getDebugLoc();
 | |
|   else if (!ToB->empty())
 | |
|     DL = ToB->back().getDebugLoc();
 | |
| 
 | |
|   unsigned Opc = MI->getOpcode();
 | |
| 
 | |
|   if (isPredicableStore(MI)) {
 | |
|     unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
 | |
|     assert(COpc);
 | |
|     MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, TII->get(COpc))
 | |
|       .addReg(PredR);
 | |
|     for (MIOperands MO(MI); MO.isValid(); ++MO)
 | |
|       MIB.addOperand(*MO);
 | |
| 
 | |
|     // Set memory references.
 | |
|     MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
 | |
|     MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
 | |
|     MIB.setMemRefs(MMOBegin, MMOEnd);
 | |
| 
 | |
|     MI->eraseFromParent();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (Opc == Hexagon::J2_jump) {
 | |
|     MachineBasicBlock *TB = MI->getOperand(0).getMBB();
 | |
|     const MCInstrDesc &D = TII->get(IfTrue ? Hexagon::J2_jumpt
 | |
|                                            : Hexagon::J2_jumpf);
 | |
|     BuildMI(*ToB, At, DL, D)
 | |
|       .addReg(PredR)
 | |
|       .addMBB(TB);
 | |
|     MI->eraseFromParent();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Print the offending instruction unconditionally as we are about to
 | |
|   // abort.
 | |
|   dbgs() << *MI;
 | |
|   llvm_unreachable("Unexpected instruction");
 | |
| }
 | |
| 
 | |
| 
 | |
| // Predicate/speculate non-branch instructions from FromB into block ToB.
 | |
| // Leave the branches alone, they will be handled later. Btw, at this point
 | |
| // FromB should have at most one branch, and it should be unconditional.
 | |
| void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
 | |
|       MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
 | |
|       unsigned PredR, bool IfTrue) {
 | |
|   DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
 | |
|   MachineBasicBlock::iterator End = FromB->getFirstTerminator();
 | |
|   MachineBasicBlock::iterator I, NextI;
 | |
| 
 | |
|   for (I = FromB->begin(); I != End; I = NextI) {
 | |
|     assert(!I->isPHI());
 | |
|     NextI = std::next(I);
 | |
|     if (isSafeToSpeculate(&*I))
 | |
|       ToB->splice(At, FromB, I);
 | |
|     else
 | |
|       predicateInstr(ToB, At, &*I, PredR, IfTrue);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
 | |
|       const FlowPattern &FP) {
 | |
|   // Visit all PHI nodes in the WhereB block and generate MUX instructions
 | |
|   // in the split block. Update the PHI nodes with the values of the MUX.
 | |
|   auto NonPHI = WhereB->getFirstNonPHI();
 | |
|   for (auto I = WhereB->begin(); I != NonPHI; ++I) {
 | |
|     MachineInstr *PN = &*I;
 | |
|     // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
 | |
|     unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
 | |
|     for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
 | |
|       const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
 | |
|       if (BO.getMBB() == FP.SplitB)
 | |
|         SR = RO.getReg(), SSR = RO.getSubReg();
 | |
|       else if (BO.getMBB() == FP.TrueB)
 | |
|         TR = RO.getReg(), TSR = RO.getSubReg();
 | |
|       else if (BO.getMBB() == FP.FalseB)
 | |
|         FR = RO.getReg(), FSR = RO.getSubReg();
 | |
|       else
 | |
|         continue;
 | |
|       PN->RemoveOperand(i+1);
 | |
|       PN->RemoveOperand(i);
 | |
|     }
 | |
|     if (TR == 0)
 | |
|       TR = SR, TSR = SSR;
 | |
|     else if (FR == 0)
 | |
|       FR = SR, FSR = SSR;
 | |
|     assert(TR && FR);
 | |
| 
 | |
|     using namespace Hexagon;
 | |
|     unsigned DR = PN->getOperand(0).getReg();
 | |
|     const TargetRegisterClass *RC = MRI->getRegClass(DR);
 | |
|     const MCInstrDesc &D = RC == &IntRegsRegClass ? TII->get(C2_mux)
 | |
|                                                   : TII->get(MUX64_rr);
 | |
| 
 | |
|     MachineBasicBlock::iterator MuxAt = FP.SplitB->getFirstTerminator();
 | |
|     DebugLoc DL;
 | |
|     if (MuxAt != FP.SplitB->end())
 | |
|       DL = MuxAt->getDebugLoc();
 | |
|     unsigned MuxR = MRI->createVirtualRegister(RC);
 | |
|     BuildMI(*FP.SplitB, MuxAt, DL, D, MuxR)
 | |
|       .addReg(FP.PredR)
 | |
|       .addReg(TR, 0, TSR)
 | |
|       .addReg(FR, 0, FSR);
 | |
| 
 | |
|     PN->addOperand(MachineOperand::CreateReg(MuxR, false));
 | |
|     PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
 | |
|   MachineBasicBlock *TSB = 0, *FSB = 0;
 | |
|   MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
 | |
|   assert(OldTI != FP.SplitB->end());
 | |
|   DebugLoc DL = OldTI->getDebugLoc();
 | |
| 
 | |
|   if (FP.TrueB) {
 | |
|     TSB = *FP.TrueB->succ_begin();
 | |
|     predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
 | |
|   }
 | |
|   if (FP.FalseB) {
 | |
|     FSB = *FP.FalseB->succ_begin();
 | |
|     MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
 | |
|     predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
 | |
|   }
 | |
| 
 | |
|   // Regenerate new terminators in the split block and update the successors.
 | |
|   // First, remember any information that may be needed later and remove the
 | |
|   // existing terminators/successors from the split block.
 | |
|   MachineBasicBlock *SSB = 0;
 | |
|   FP.SplitB->erase(OldTI, FP.SplitB->end());
 | |
|   while (FP.SplitB->succ_size() > 0) {
 | |
|     MachineBasicBlock *T = *FP.SplitB->succ_begin();
 | |
|     // It's possible that the split block had a successor that is not a pre-
 | |
|     // dicated block. This could only happen if there was only one block to
 | |
|     // be predicated. Example:
 | |
|     //   split_b:
 | |
|     //     if (p) jump true_b
 | |
|     //     jump unrelated2_b
 | |
|     //   unrelated1_b:
 | |
|     //     ...
 | |
|     //   unrelated2_b:  ; can have other predecessors, so it's not "false_b"
 | |
|     //     jump other_b
 | |
|     //   true_b:        ; only reachable from split_b, can be predicated
 | |
|     //     ...
 | |
|     //
 | |
|     // Find this successor (SSB) if it exists.
 | |
|     if (T != FP.TrueB && T != FP.FalseB) {
 | |
|       assert(!SSB);
 | |
|       SSB = T;
 | |
|     }
 | |
|     FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
 | |
|   }
 | |
| 
 | |
|   // Insert new branches and update the successors of the split block. This
 | |
|   // may create unconditional branches to the layout successor, etc., but
 | |
|   // that will be cleaned up later. For now, make sure that correct code is
 | |
|   // generated.
 | |
|   if (FP.JoinB) {
 | |
|     assert(!SSB || SSB == FP.JoinB);
 | |
|     BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump))
 | |
|       .addMBB(FP.JoinB);
 | |
|     FP.SplitB->addSuccessor(FP.JoinB);
 | |
|   } else {
 | |
|     bool HasBranch = false;
 | |
|     if (TSB) {
 | |
|       BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jumpt))
 | |
|         .addReg(FP.PredR)
 | |
|         .addMBB(TSB);
 | |
|       FP.SplitB->addSuccessor(TSB);
 | |
|       HasBranch = true;
 | |
|     }
 | |
|     if (FSB) {
 | |
|       const MCInstrDesc &D = HasBranch ? TII->get(Hexagon::J2_jump)
 | |
|                                        : TII->get(Hexagon::J2_jumpf);
 | |
|       MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
 | |
|       if (!HasBranch)
 | |
|         MIB.addReg(FP.PredR);
 | |
|       MIB.addMBB(FSB);
 | |
|       FP.SplitB->addSuccessor(FSB);
 | |
|     }
 | |
|     if (SSB) {
 | |
|       // This cannot happen if both TSB and FSB are set. [TF]SB are the
 | |
|       // successor blocks of the TrueB and FalseB (or null of the TrueB
 | |
|       // or FalseB block is null). SSB is the potential successor block
 | |
|       // of the SplitB that is neither TrueB nor FalseB.
 | |
|       BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump))
 | |
|         .addMBB(SSB);
 | |
|       FP.SplitB->addSuccessor(SSB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // What is left to do is to update the PHI nodes that could have entries
 | |
|   // referring to predicated blocks.
 | |
|   if (FP.JoinB) {
 | |
|     updatePhiNodes(FP.JoinB, FP);
 | |
|   } else {
 | |
|     if (TSB)
 | |
|       updatePhiNodes(TSB, FP);
 | |
|     if (FSB)
 | |
|       updatePhiNodes(FSB, FP);
 | |
|     // Nothing to update in SSB, since SSB's predecessors haven't changed.
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
 | |
|   DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");
 | |
| 
 | |
|   // Transfer the immediate dominator information from B to its descendants.
 | |
|   MachineDomTreeNode *N = MDT->getNode(B);
 | |
|   MachineDomTreeNode *IDN = N->getIDom();
 | |
|   if (IDN) {
 | |
|     MachineBasicBlock *IDB = IDN->getBlock();
 | |
|     typedef GraphTraits<MachineDomTreeNode*> GTN;
 | |
|     typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType;
 | |
|     DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
 | |
|     for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
 | |
|       MachineBasicBlock *SB = (*I)->getBlock();
 | |
|       MDT->changeImmediateDominator(SB, IDB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while (B->succ_size() > 0)
 | |
|     B->removeSuccessor(B->succ_begin());
 | |
| 
 | |
|   for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
 | |
|     (*I)->removeSuccessor(B);
 | |
| 
 | |
|   Deleted.insert(B);
 | |
|   MDT->eraseNode(B);
 | |
|   MFN->erase(B->getIterator());
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
 | |
|   DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
 | |
|   MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
 | |
|   for (I = B->begin(); I != NonPHI; I = NextI) {
 | |
|     NextI = std::next(I);
 | |
|     MachineInstr *PN = &*I;
 | |
|     assert(PN->getNumOperands() == 3 && "Invalid phi node");
 | |
|     MachineOperand &UO = PN->getOperand(1);
 | |
|     unsigned UseR = UO.getReg(), UseSR = UO.getSubReg();
 | |
|     unsigned DefR = PN->getOperand(0).getReg();
 | |
|     unsigned NewR = UseR;
 | |
|     if (UseSR) {
 | |
|       // MRI.replaceVregUsesWith does not allow to update the subregister,
 | |
|       // so instead of doing the use-iteration here, create a copy into a
 | |
|       // "non-subregistered" register.
 | |
|       DebugLoc DL = PN->getDebugLoc();
 | |
|       const TargetRegisterClass *RC = MRI->getRegClass(DefR);
 | |
|       NewR = MRI->createVirtualRegister(RC);
 | |
|       NonPHI = BuildMI(*B, NonPHI, DL, TII->get(TargetOpcode::COPY), NewR)
 | |
|         .addReg(UseR, 0, UseSR);
 | |
|     }
 | |
|     MRI->replaceRegWith(DefR, NewR);
 | |
|     B->erase(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB,
 | |
|       MachineBasicBlock *NewB) {
 | |
|   for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) {
 | |
|     MachineBasicBlock *SB = *I;
 | |
|     MachineBasicBlock::iterator P, N = SB->getFirstNonPHI();
 | |
|     for (P = SB->begin(); P != N; ++P) {
 | |
|       MachineInstr *PN = &*P;
 | |
|       for (MIOperands MO(PN); MO.isValid(); ++MO)
 | |
|         if (MO->isMBB() && MO->getMBB() == OldB)
 | |
|           MO->setMBB(NewB);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
 | |
|       MachineBasicBlock *SuccB) {
 | |
|   DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
 | |
|                << PrintMB(SuccB) << "\n");
 | |
|   bool TermOk = hasUncondBranch(SuccB);
 | |
|   eliminatePhis(SuccB);
 | |
|   TII->RemoveBranch(*PredB);
 | |
|   PredB->removeSuccessor(SuccB);
 | |
|   PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
 | |
|   MachineBasicBlock::succ_iterator I, E = SuccB->succ_end();
 | |
|   for (I = SuccB->succ_begin(); I != E; ++I)
 | |
|     PredB->addSuccessor(*I);
 | |
|   replacePhiEdges(SuccB, PredB);
 | |
|   removeBlock(SuccB);
 | |
|   if (!TermOk)
 | |
|     PredB->updateTerminator();
 | |
| }
 | |
| 
 | |
| 
 | |
| void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
 | |
|   if (FP.TrueB)
 | |
|     removeBlock(FP.TrueB);
 | |
|   if (FP.FalseB)
 | |
|     removeBlock(FP.FalseB);
 | |
| 
 | |
|   FP.SplitB->updateTerminator();
 | |
|   if (FP.SplitB->succ_size() != 1)
 | |
|     return;
 | |
| 
 | |
|   MachineBasicBlock *SB = *FP.SplitB->succ_begin();
 | |
|   if (SB->pred_size() != 1)
 | |
|     return;
 | |
| 
 | |
|   // By now, the split block has only one successor (SB), and SB has only
 | |
|   // one predecessor. We can try to merge them. We will need to update ter-
 | |
|   // minators in FP.Split+SB, and that requires working AnalyzeBranch, which
 | |
|   // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
 | |
|   // with an unconditional branch, we won't need to touch the terminators.
 | |
|   if (!hasEHLabel(SB) || hasUncondBranch(SB))
 | |
|     mergeBlocks(FP.SplitB, SB);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
 | |
|   auto &ST = MF.getSubtarget();
 | |
|   TII = ST.getInstrInfo();
 | |
|   TRI = ST.getRegisterInfo();
 | |
|   MFN = &MF;
 | |
|   MRI = &MF.getRegInfo();
 | |
|   MDT = &getAnalysis<MachineDominatorTree>();
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
 | |
|     nullptr;
 | |
| 
 | |
|   Deleted.clear();
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
 | |
|     Changed |= visitLoop(*I);
 | |
|   Changed |= visitLoop(0);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| FunctionPass *llvm::createHexagonEarlyIfConversion() {
 | |
|   return new HexagonEarlyIfConversion();
 | |
| }
 | |
| 
 |