1021 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1021 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Subclass of MipsDAGToDAGISel specialized for mips32/64.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "MipsSEISelDAGToDAG.h"
 | 
						|
#include "MCTargetDesc/MipsBaseInfo.h"
 | 
						|
#include "Mips.h"
 | 
						|
#include "MipsAnalyzeImmediate.h"
 | 
						|
#include "MipsMachineFunction.h"
 | 
						|
#include "MipsRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineConstantPool.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGNodes.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "mips-isel"
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
 | 
						|
  if (Subtarget->inMips16Mode())
 | 
						|
    return false;
 | 
						|
  return MipsDAGToDAGISel::runOnMachineFunction(MF);
 | 
						|
}
 | 
						|
 | 
						|
void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
 | 
						|
                                               MachineFunction &MF) {
 | 
						|
  MachineInstrBuilder MIB(MF, &MI);
 | 
						|
  unsigned Mask = MI.getOperand(1).getImm();
 | 
						|
  unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit;
 | 
						|
 | 
						|
  if (Mask & 1)
 | 
						|
    MIB.addReg(Mips::DSPPos, Flag);
 | 
						|
 | 
						|
  if (Mask & 2)
 | 
						|
    MIB.addReg(Mips::DSPSCount, Flag);
 | 
						|
 | 
						|
  if (Mask & 4)
 | 
						|
    MIB.addReg(Mips::DSPCarry, Flag);
 | 
						|
 | 
						|
  if (Mask & 8)
 | 
						|
    MIB.addReg(Mips::DSPOutFlag, Flag);
 | 
						|
 | 
						|
  if (Mask & 16)
 | 
						|
    MIB.addReg(Mips::DSPCCond, Flag);
 | 
						|
 | 
						|
  if (Mask & 32)
 | 
						|
    MIB.addReg(Mips::DSPEFI, Flag);
 | 
						|
}
 | 
						|
 | 
						|
unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
 | 
						|
  switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Could not map int to register");
 | 
						|
  case 0: return Mips::MSAIR;
 | 
						|
  case 1: return Mips::MSACSR;
 | 
						|
  case 2: return Mips::MSAAccess;
 | 
						|
  case 3: return Mips::MSASave;
 | 
						|
  case 4: return Mips::MSAModify;
 | 
						|
  case 5: return Mips::MSARequest;
 | 
						|
  case 6: return Mips::MSAMap;
 | 
						|
  case 7: return Mips::MSAUnmap;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
 | 
						|
                                                const MachineInstr& MI) {
 | 
						|
  unsigned DstReg = 0, ZeroReg = 0;
 | 
						|
 | 
						|
  // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
 | 
						|
  if ((MI.getOpcode() == Mips::ADDiu) &&
 | 
						|
      (MI.getOperand(1).getReg() == Mips::ZERO) &&
 | 
						|
      (MI.getOperand(2).getImm() == 0)) {
 | 
						|
    DstReg = MI.getOperand(0).getReg();
 | 
						|
    ZeroReg = Mips::ZERO;
 | 
						|
  } else if ((MI.getOpcode() == Mips::DADDiu) &&
 | 
						|
             (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
 | 
						|
             (MI.getOperand(2).getImm() == 0)) {
 | 
						|
    DstReg = MI.getOperand(0).getReg();
 | 
						|
    ZeroReg = Mips::ZERO_64;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!DstReg)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Replace uses with ZeroReg.
 | 
						|
  for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
 | 
						|
       E = MRI->use_end(); U != E;) {
 | 
						|
    MachineOperand &MO = *U;
 | 
						|
    unsigned OpNo = U.getOperandNo();
 | 
						|
    MachineInstr *MI = MO.getParent();
 | 
						|
    ++U;
 | 
						|
 | 
						|
    // Do not replace if it is a phi's operand or is tied to def operand.
 | 
						|
    if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Also, we have to check that the register class of the operand
 | 
						|
    // contains the zero register.
 | 
						|
    if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
 | 
						|
      continue;
 | 
						|
 | 
						|
    MO.setReg(ZeroReg);
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
 | 
						|
  MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
 | 
						|
 | 
						|
  if (!MipsFI->globalBaseRegSet())
 | 
						|
    return;
 | 
						|
 | 
						|
  MachineBasicBlock &MBB = MF.front();
 | 
						|
  MachineBasicBlock::iterator I = MBB.begin();
 | 
						|
  MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | 
						|
  const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
 | 
						|
  DebugLoc DL;
 | 
						|
  unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
 | 
						|
  const TargetRegisterClass *RC;
 | 
						|
  const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
 | 
						|
  RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
 | 
						|
 | 
						|
  V0 = RegInfo.createVirtualRegister(RC);
 | 
						|
  V1 = RegInfo.createVirtualRegister(RC);
 | 
						|
 | 
						|
  if (ABI.IsN64()) {
 | 
						|
    MF.getRegInfo().addLiveIn(Mips::T9_64);
 | 
						|
    MBB.addLiveIn(Mips::T9_64);
 | 
						|
 | 
						|
    // lui $v0, %hi(%neg(%gp_rel(fname)))
 | 
						|
    // daddu $v1, $v0, $t9
 | 
						|
    // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
 | 
						|
    const GlobalValue *FName = MF.getFunction();
 | 
						|
    BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
 | 
						|
      .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
 | 
						|
    BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
 | 
						|
      .addReg(Mips::T9_64);
 | 
						|
    BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
 | 
						|
      .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MF.getTarget().getRelocationModel() == Reloc::Static) {
 | 
						|
    // Set global register to __gnu_local_gp.
 | 
						|
    //
 | 
						|
    // lui   $v0, %hi(__gnu_local_gp)
 | 
						|
    // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
 | 
						|
    BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
 | 
						|
      .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
 | 
						|
    BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
 | 
						|
      .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  MF.getRegInfo().addLiveIn(Mips::T9);
 | 
						|
  MBB.addLiveIn(Mips::T9);
 | 
						|
 | 
						|
  if (ABI.IsN32()) {
 | 
						|
    // lui $v0, %hi(%neg(%gp_rel(fname)))
 | 
						|
    // addu $v1, $v0, $t9
 | 
						|
    // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
 | 
						|
    const GlobalValue *FName = MF.getFunction();
 | 
						|
    BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
 | 
						|
      .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
 | 
						|
    BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
 | 
						|
    BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
 | 
						|
      .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(ABI.IsO32());
 | 
						|
 | 
						|
  // For O32 ABI, the following instruction sequence is emitted to initialize
 | 
						|
  // the global base register:
 | 
						|
  //
 | 
						|
  //  0. lui   $2, %hi(_gp_disp)
 | 
						|
  //  1. addiu $2, $2, %lo(_gp_disp)
 | 
						|
  //  2. addu  $globalbasereg, $2, $t9
 | 
						|
  //
 | 
						|
  // We emit only the last instruction here.
 | 
						|
  //
 | 
						|
  // GNU linker requires that the first two instructions appear at the beginning
 | 
						|
  // of a function and no instructions be inserted before or between them.
 | 
						|
  // The two instructions are emitted during lowering to MC layer in order to
 | 
						|
  // avoid any reordering.
 | 
						|
  //
 | 
						|
  // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
 | 
						|
  // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
 | 
						|
  // reads it.
 | 
						|
  MF.getRegInfo().addLiveIn(Mips::V0);
 | 
						|
  MBB.addLiveIn(Mips::V0);
 | 
						|
  BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
 | 
						|
    .addReg(Mips::V0).addReg(Mips::T9);
 | 
						|
}
 | 
						|
 | 
						|
void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
 | 
						|
  initGlobalBaseReg(MF);
 | 
						|
 | 
						|
  MachineRegisterInfo *MRI = &MF.getRegInfo();
 | 
						|
 | 
						|
  for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE;
 | 
						|
       ++MFI)
 | 
						|
    for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
 | 
						|
      if (I->getOpcode() == Mips::RDDSP)
 | 
						|
        addDSPCtrlRegOperands(false, *I, MF);
 | 
						|
      else if (I->getOpcode() == Mips::WRDSP)
 | 
						|
        addDSPCtrlRegOperands(true, *I, MF);
 | 
						|
      else
 | 
						|
        replaceUsesWithZeroReg(MRI, *I);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
 | 
						|
                                           SDValue CmpLHS, SDLoc DL,
 | 
						|
                                           SDNode *Node) const {
 | 
						|
  unsigned Opc = InFlag.getOpcode(); (void)Opc;
 | 
						|
 | 
						|
  assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
 | 
						|
          (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
 | 
						|
         "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
 | 
						|
 | 
						|
  unsigned SLTuOp = Mips::SLTu, ADDuOp = Mips::ADDu;
 | 
						|
  if (Subtarget->isGP64bit()) {
 | 
						|
    SLTuOp = Mips::SLTu64;
 | 
						|
    ADDuOp = Mips::DADDu;
 | 
						|
  }
 | 
						|
 | 
						|
  SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
 | 
						|
  SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
 | 
						|
  EVT VT = LHS.getValueType();
 | 
						|
 | 
						|
  SDNode *Carry = CurDAG->getMachineNode(SLTuOp, DL, VT, Ops);
 | 
						|
 | 
						|
  if (Subtarget->isGP64bit()) {
 | 
						|
    // On 64-bit targets, sltu produces an i64 but our backend currently says
 | 
						|
    // that SLTu64 produces an i32. We need to fix this in the long run but for
 | 
						|
    // now, just make the DAG type-correct by asserting the upper bits are zero.
 | 
						|
    Carry = CurDAG->getMachineNode(Mips::SUBREG_TO_REG, DL, VT,
 | 
						|
                                   CurDAG->getTargetConstant(0, DL, VT),
 | 
						|
                                   SDValue(Carry, 0),
 | 
						|
                                   CurDAG->getTargetConstant(Mips::sub_32, DL,
 | 
						|
                                                             VT));
 | 
						|
  }
 | 
						|
 | 
						|
  // Generate a second addition only if we know that RHS is not a
 | 
						|
  // constant-zero node.
 | 
						|
  SDNode *AddCarry = Carry;
 | 
						|
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
 | 
						|
  if (!C || C->getZExtValue())
 | 
						|
    AddCarry = CurDAG->getMachineNode(ADDuOp, DL, VT, SDValue(Carry, 0), RHS);
 | 
						|
 | 
						|
  return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS,
 | 
						|
                              SDValue(AddCarry, 0));
 | 
						|
}
 | 
						|
 | 
						|
/// Match frameindex
 | 
						|
bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
 | 
						|
                                              SDValue &Offset) const {
 | 
						|
  if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
 | 
						|
    EVT ValTy = Addr.getValueType();
 | 
						|
 | 
						|
    Base   = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
 | 
						|
    Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Match frameindex+offset and frameindex|offset
 | 
						|
bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base,
 | 
						|
                                                    SDValue &Offset,
 | 
						|
                                                    unsigned OffsetBits) const {
 | 
						|
  if (CurDAG->isBaseWithConstantOffset(Addr)) {
 | 
						|
    ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
 | 
						|
    if (isIntN(OffsetBits, CN->getSExtValue())) {
 | 
						|
      EVT ValTy = Addr.getValueType();
 | 
						|
 | 
						|
      // If the first operand is a FI, get the TargetFI Node
 | 
						|
      if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
 | 
						|
                                  (Addr.getOperand(0)))
 | 
						|
        Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
 | 
						|
      else
 | 
						|
        Base = Addr.getOperand(0);
 | 
						|
 | 
						|
      Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
 | 
						|
                                         ValTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ComplexPattern used on MipsInstrInfo
 | 
						|
/// Used on Mips Load/Store instructions
 | 
						|
bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
 | 
						|
                                          SDValue &Offset) const {
 | 
						|
  // if Address is FI, get the TargetFrameIndex.
 | 
						|
  if (selectAddrFrameIndex(Addr, Base, Offset))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // on PIC code Load GA
 | 
						|
  if (Addr.getOpcode() == MipsISD::Wrapper) {
 | 
						|
    Base   = Addr.getOperand(0);
 | 
						|
    Offset = Addr.getOperand(1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TM.getRelocationModel() != Reloc::PIC_) {
 | 
						|
    if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
 | 
						|
        Addr.getOpcode() == ISD::TargetGlobalAddress))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Addresses of the form FI+const or FI|const
 | 
						|
  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Operand is a result from an ADD.
 | 
						|
  if (Addr.getOpcode() == ISD::ADD) {
 | 
						|
    // When loading from constant pools, load the lower address part in
 | 
						|
    // the instruction itself. Example, instead of:
 | 
						|
    //  lui $2, %hi($CPI1_0)
 | 
						|
    //  addiu $2, $2, %lo($CPI1_0)
 | 
						|
    //  lwc1 $f0, 0($2)
 | 
						|
    // Generate:
 | 
						|
    //  lui $2, %hi($CPI1_0)
 | 
						|
    //  lwc1 $f0, %lo($CPI1_0)($2)
 | 
						|
    if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
 | 
						|
        Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
 | 
						|
      SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
 | 
						|
      if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
 | 
						|
          isa<JumpTableSDNode>(Opnd0)) {
 | 
						|
        Base = Addr.getOperand(0);
 | 
						|
        Offset = Opnd0;
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ComplexPattern used on MipsInstrInfo
 | 
						|
/// Used on Mips Load/Store instructions
 | 
						|
bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base,
 | 
						|
                                          SDValue &Offset) const {
 | 
						|
  // Operand is a result from an ADD.
 | 
						|
  if (Addr.getOpcode() == ISD::ADD) {
 | 
						|
    Base = Addr.getOperand(0);
 | 
						|
    Offset = Addr.getOperand(1);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
 | 
						|
                                           SDValue &Offset) const {
 | 
						|
  Base = Addr;
 | 
						|
  Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
 | 
						|
                                       SDValue &Offset) const {
 | 
						|
  return selectAddrRegImm(Addr, Base, Offset) ||
 | 
						|
    selectAddrDefault(Addr, Base, Offset);
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
 | 
						|
                                           SDValue &Offset) const {
 | 
						|
  if (selectAddrFrameIndex(Addr, Base, Offset))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base,
 | 
						|
                                            SDValue &Offset) const {
 | 
						|
  if (selectAddrFrameIndex(Addr, Base, Offset))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
 | 
						|
bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
 | 
						|
                                            SDValue &Offset) const {
 | 
						|
  if (selectAddrFrameIndex(Addr, Base, Offset))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
 | 
						|
                                            SDValue &Offset) const {
 | 
						|
  if (selectAddrFrameIndex(Addr, Base, Offset))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base,
 | 
						|
                                         SDValue &Offset) const {
 | 
						|
  return selectAddrRegImm12(Addr, Base, Offset) ||
 | 
						|
    selectAddrDefault(Addr, Base, Offset);
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
 | 
						|
                                             SDValue &Offset) const {
 | 
						|
  if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
 | 
						|
    if (isa<FrameIndexSDNode>(Base))
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
 | 
						|
      unsigned CnstOff = CN->getZExtValue();
 | 
						|
      return (CnstOff == (CnstOff & 0x3c));
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // For all other cases where "lw" would be selected, don't select "lw16"
 | 
						|
  // because it would result in additional instructions to prepare operands.
 | 
						|
  if (selectAddrRegImm(Addr, Base, Offset))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return selectAddrDefault(Addr, Base, Offset);
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base,
 | 
						|
                                          SDValue &Offset) const {
 | 
						|
  if (selectAddrRegImm10(Addr, Base, Offset))
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (selectAddrDefault(Addr, Base, Offset))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats.
 | 
						|
//
 | 
						|
// Returns true and sets Imm if:
 | 
						|
// * MSA is enabled
 | 
						|
// * N is a ISD::BUILD_VECTOR representing a constant splat
 | 
						|
bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
 | 
						|
                                      unsigned MinSizeInBits) const {
 | 
						|
  if (!Subtarget->hasMSA())
 | 
						|
    return false;
 | 
						|
 | 
						|
  BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
 | 
						|
 | 
						|
  if (!Node)
 | 
						|
    return false;
 | 
						|
 | 
						|
  APInt SplatValue, SplatUndef;
 | 
						|
  unsigned SplatBitSize;
 | 
						|
  bool HasAnyUndefs;
 | 
						|
 | 
						|
  if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
 | 
						|
                             MinSizeInBits, !Subtarget->isLittle()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Imm = SplatValue;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats.
 | 
						|
//
 | 
						|
// In addition to the requirements of selectVSplat(), this function returns
 | 
						|
// true and sets Imm if:
 | 
						|
// * The splat value is the same width as the elements of the vector
 | 
						|
// * The splat value fits in an integer with the specified signed-ness and
 | 
						|
//   width.
 | 
						|
//
 | 
						|
// This function looks through ISD::BITCAST nodes.
 | 
						|
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
 | 
						|
//       sometimes a shuffle in big-endian mode.
 | 
						|
//
 | 
						|
// It's worth noting that this function is not used as part of the selection
 | 
						|
// of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
 | 
						|
// instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
 | 
						|
// MipsSEDAGToDAGISel::selectNode.
 | 
						|
bool MipsSEDAGToDAGISel::
 | 
						|
selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
 | 
						|
                   unsigned ImmBitSize) const {
 | 
						|
  APInt ImmValue;
 | 
						|
  EVT EltTy = N->getValueType(0).getVectorElementType();
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::BITCAST)
 | 
						|
    N = N->getOperand(0);
 | 
						|
 | 
						|
  if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
 | 
						|
      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
 | 
						|
 | 
						|
    if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
 | 
						|
        (!Signed && ImmValue.isIntN(ImmBitSize))) {
 | 
						|
      Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats.
 | 
						|
bool MipsSEDAGToDAGISel::
 | 
						|
selectVSplatUimm1(SDValue N, SDValue &Imm) const {
 | 
						|
  return selectVSplatCommon(N, Imm, false, 1);
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::
 | 
						|
selectVSplatUimm2(SDValue N, SDValue &Imm) const {
 | 
						|
  return selectVSplatCommon(N, Imm, false, 2);
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::
 | 
						|
selectVSplatUimm3(SDValue N, SDValue &Imm) const {
 | 
						|
  return selectVSplatCommon(N, Imm, false, 3);
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats.
 | 
						|
bool MipsSEDAGToDAGISel::
 | 
						|
selectVSplatUimm4(SDValue N, SDValue &Imm) const {
 | 
						|
  return selectVSplatCommon(N, Imm, false, 4);
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats.
 | 
						|
bool MipsSEDAGToDAGISel::
 | 
						|
selectVSplatUimm5(SDValue N, SDValue &Imm) const {
 | 
						|
  return selectVSplatCommon(N, Imm, false, 5);
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats.
 | 
						|
bool MipsSEDAGToDAGISel::
 | 
						|
selectVSplatUimm6(SDValue N, SDValue &Imm) const {
 | 
						|
  return selectVSplatCommon(N, Imm, false, 6);
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats.
 | 
						|
bool MipsSEDAGToDAGISel::
 | 
						|
selectVSplatUimm8(SDValue N, SDValue &Imm) const {
 | 
						|
  return selectVSplatCommon(N, Imm, false, 8);
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats.
 | 
						|
bool MipsSEDAGToDAGISel::
 | 
						|
selectVSplatSimm5(SDValue N, SDValue &Imm) const {
 | 
						|
  return selectVSplatCommon(N, Imm, true, 5);
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats whose value is a power of 2.
 | 
						|
//
 | 
						|
// In addition to the requirements of selectVSplat(), this function returns
 | 
						|
// true and sets Imm if:
 | 
						|
// * The splat value is the same width as the elements of the vector
 | 
						|
// * The splat value is a power of two.
 | 
						|
//
 | 
						|
// This function looks through ISD::BITCAST nodes.
 | 
						|
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
 | 
						|
//       sometimes a shuffle in big-endian mode.
 | 
						|
bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
 | 
						|
  APInt ImmValue;
 | 
						|
  EVT EltTy = N->getValueType(0).getVectorElementType();
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::BITCAST)
 | 
						|
    N = N->getOperand(0);
 | 
						|
 | 
						|
  if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
 | 
						|
      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
 | 
						|
    int32_t Log2 = ImmValue.exactLogBase2();
 | 
						|
 | 
						|
    if (Log2 != -1) {
 | 
						|
      Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats whose value only has a consecutive sequence
 | 
						|
// of left-most bits set (e.g. 0b11...1100...00).
 | 
						|
//
 | 
						|
// In addition to the requirements of selectVSplat(), this function returns
 | 
						|
// true and sets Imm if:
 | 
						|
// * The splat value is the same width as the elements of the vector
 | 
						|
// * The splat value is a consecutive sequence of left-most bits.
 | 
						|
//
 | 
						|
// This function looks through ISD::BITCAST nodes.
 | 
						|
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
 | 
						|
//       sometimes a shuffle in big-endian mode.
 | 
						|
bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
 | 
						|
  APInt ImmValue;
 | 
						|
  EVT EltTy = N->getValueType(0).getVectorElementType();
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::BITCAST)
 | 
						|
    N = N->getOperand(0);
 | 
						|
 | 
						|
  if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
 | 
						|
      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
 | 
						|
    // Extract the run of set bits starting with bit zero from the bitwise
 | 
						|
    // inverse of ImmValue, and test that the inverse of this is the same
 | 
						|
    // as the original value.
 | 
						|
    if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
 | 
						|
 | 
						|
      Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N),
 | 
						|
                                      EltTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Select constant vector splats whose value only has a consecutive sequence
 | 
						|
// of right-most bits set (e.g. 0b00...0011...11).
 | 
						|
//
 | 
						|
// In addition to the requirements of selectVSplat(), this function returns
 | 
						|
// true and sets Imm if:
 | 
						|
// * The splat value is the same width as the elements of the vector
 | 
						|
// * The splat value is a consecutive sequence of right-most bits.
 | 
						|
//
 | 
						|
// This function looks through ISD::BITCAST nodes.
 | 
						|
// TODO: This might not be appropriate for big-endian MSA since BITCAST is
 | 
						|
//       sometimes a shuffle in big-endian mode.
 | 
						|
bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
 | 
						|
  APInt ImmValue;
 | 
						|
  EVT EltTy = N->getValueType(0).getVectorElementType();
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::BITCAST)
 | 
						|
    N = N->getOperand(0);
 | 
						|
 | 
						|
  if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
 | 
						|
      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
 | 
						|
    // Extract the run of set bits starting with bit zero, and test that the
 | 
						|
    // result is the same as the original value
 | 
						|
    if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
 | 
						|
      Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N),
 | 
						|
                                      EltTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
 | 
						|
                                                 SDValue &Imm) const {
 | 
						|
  APInt ImmValue;
 | 
						|
  EVT EltTy = N->getValueType(0).getVectorElementType();
 | 
						|
 | 
						|
  if (N->getOpcode() == ISD::BITCAST)
 | 
						|
    N = N->getOperand(0);
 | 
						|
 | 
						|
  if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
 | 
						|
      ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
 | 
						|
    int32_t Log2 = (~ImmValue).exactLogBase2();
 | 
						|
 | 
						|
    if (Log2 != -1) {
 | 
						|
      Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
 | 
						|
  unsigned Opcode = Node->getOpcode();
 | 
						|
  SDLoc DL(Node);
 | 
						|
 | 
						|
  ///
 | 
						|
  // Instruction Selection not handled by the auto-generated
 | 
						|
  // tablegen selection should be handled here.
 | 
						|
  ///
 | 
						|
  SDNode *Result;
 | 
						|
 | 
						|
  switch(Opcode) {
 | 
						|
  default: break;
 | 
						|
 | 
						|
  case ISD::SUBE: {
 | 
						|
    SDValue InFlag = Node->getOperand(2);
 | 
						|
    unsigned Opc = Subtarget->isGP64bit() ? Mips::DSUBu : Mips::SUBu;
 | 
						|
    Result = selectAddESubE(Opc, InFlag, InFlag.getOperand(0), DL, Node);
 | 
						|
    return std::make_pair(true, Result);
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::ADDE: {
 | 
						|
    if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
 | 
						|
      break;
 | 
						|
    SDValue InFlag = Node->getOperand(2);
 | 
						|
    unsigned Opc = Subtarget->isGP64bit() ? Mips::DADDu : Mips::ADDu;
 | 
						|
    Result = selectAddESubE(Opc, InFlag, InFlag.getValue(0), DL, Node);
 | 
						|
    return std::make_pair(true, Result);
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::ConstantFP: {
 | 
						|
    ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
 | 
						|
    if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
 | 
						|
      if (Subtarget->isGP64bit()) {
 | 
						|
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
 | 
						|
                                              Mips::ZERO_64, MVT::i64);
 | 
						|
        Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
 | 
						|
      } else if (Subtarget->isFP64bit()) {
 | 
						|
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
 | 
						|
                                              Mips::ZERO, MVT::i32);
 | 
						|
        Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64,
 | 
						|
                                        Zero, Zero);
 | 
						|
      } else {
 | 
						|
        SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
 | 
						|
                                              Mips::ZERO, MVT::i32);
 | 
						|
        Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
 | 
						|
                                        Zero);
 | 
						|
      }
 | 
						|
 | 
						|
      return std::make_pair(true, Result);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::Constant: {
 | 
						|
    const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
 | 
						|
    unsigned Size = CN->getValueSizeInBits(0);
 | 
						|
 | 
						|
    if (Size == 32)
 | 
						|
      break;
 | 
						|
 | 
						|
    MipsAnalyzeImmediate AnalyzeImm;
 | 
						|
    int64_t Imm = CN->getSExtValue();
 | 
						|
 | 
						|
    const MipsAnalyzeImmediate::InstSeq &Seq =
 | 
						|
      AnalyzeImm.Analyze(Imm, Size, false);
 | 
						|
 | 
						|
    MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
 | 
						|
    SDLoc DL(CN);
 | 
						|
    SDNode *RegOpnd;
 | 
						|
    SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
 | 
						|
                                                DL, MVT::i64);
 | 
						|
 | 
						|
    // The first instruction can be a LUi which is different from other
 | 
						|
    // instructions (ADDiu, ORI and SLL) in that it does not have a register
 | 
						|
    // operand.
 | 
						|
    if (Inst->Opc == Mips::LUi64)
 | 
						|
      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
 | 
						|
    else
 | 
						|
      RegOpnd =
 | 
						|
        CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
 | 
						|
                               CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
 | 
						|
                               ImmOpnd);
 | 
						|
 | 
						|
    // The remaining instructions in the sequence are handled here.
 | 
						|
    for (++Inst; Inst != Seq.end(); ++Inst) {
 | 
						|
      ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
 | 
						|
                                          MVT::i64);
 | 
						|
      RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
 | 
						|
                                       SDValue(RegOpnd, 0), ImmOpnd);
 | 
						|
    }
 | 
						|
 | 
						|
    return std::make_pair(true, RegOpnd);
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::INTRINSIC_W_CHAIN: {
 | 
						|
    switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
 | 
						|
    case Intrinsic::mips_cfcmsa: {
 | 
						|
      SDValue ChainIn = Node->getOperand(0);
 | 
						|
      SDValue RegIdx = Node->getOperand(2);
 | 
						|
      SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
 | 
						|
                                           getMSACtrlReg(RegIdx), MVT::i32);
 | 
						|
      return std::make_pair(true, Reg.getNode());
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::INTRINSIC_WO_CHAIN: {
 | 
						|
    switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
 | 
						|
    case Intrinsic::mips_move_v:
 | 
						|
      // Like an assignment but will always produce a move.v even if
 | 
						|
      // unnecessary.
 | 
						|
      return std::make_pair(true,
 | 
						|
                            CurDAG->getMachineNode(Mips::MOVE_V, DL,
 | 
						|
                                                   Node->getValueType(0),
 | 
						|
                                                   Node->getOperand(1)));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::INTRINSIC_VOID: {
 | 
						|
    switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
 | 
						|
    case Intrinsic::mips_ctcmsa: {
 | 
						|
      SDValue ChainIn = Node->getOperand(0);
 | 
						|
      SDValue RegIdx  = Node->getOperand(2);
 | 
						|
      SDValue Value   = Node->getOperand(3);
 | 
						|
      SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
 | 
						|
                                              getMSACtrlReg(RegIdx), Value);
 | 
						|
      return std::make_pair(true, ChainOut.getNode());
 | 
						|
    }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case MipsISD::ThreadPointer: {
 | 
						|
    EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
 | 
						|
    unsigned RdhwrOpc, DestReg;
 | 
						|
 | 
						|
    if (PtrVT == MVT::i32) {
 | 
						|
      RdhwrOpc = Mips::RDHWR;
 | 
						|
      DestReg = Mips::V1;
 | 
						|
    } else {
 | 
						|
      RdhwrOpc = Mips::RDHWR64;
 | 
						|
      DestReg = Mips::V1_64;
 | 
						|
    }
 | 
						|
 | 
						|
    SDNode *Rdhwr =
 | 
						|
      CurDAG->getMachineNode(RdhwrOpc, DL,
 | 
						|
                             Node->getValueType(0),
 | 
						|
                             CurDAG->getRegister(Mips::HWR29, MVT::i32));
 | 
						|
    SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
 | 
						|
                                         SDValue(Rdhwr, 0));
 | 
						|
    SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
 | 
						|
    ReplaceUses(SDValue(Node, 0), ResNode);
 | 
						|
    return std::make_pair(true, ResNode.getNode());
 | 
						|
  }
 | 
						|
 | 
						|
  case ISD::BUILD_VECTOR: {
 | 
						|
    // Select appropriate ldi.[bhwd] instructions for constant splats of
 | 
						|
    // 128-bit when MSA is enabled. Fixup any register class mismatches that
 | 
						|
    // occur as a result.
 | 
						|
    //
 | 
						|
    // This allows the compiler to use a wider range of immediates than would
 | 
						|
    // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
 | 
						|
    // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
 | 
						|
    // 0x01010101 } without using a constant pool. This would be sub-optimal
 | 
						|
    // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
 | 
						|
    // same set/ of registers. Similarly, ldi.h isn't capable of producing {
 | 
						|
    // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
 | 
						|
 | 
						|
    BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
 | 
						|
    APInt SplatValue, SplatUndef;
 | 
						|
    unsigned SplatBitSize;
 | 
						|
    bool HasAnyUndefs;
 | 
						|
    unsigned LdiOp;
 | 
						|
    EVT ResVecTy = BVN->getValueType(0);
 | 
						|
    EVT ViaVecTy;
 | 
						|
 | 
						|
    if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
 | 
						|
      return std::make_pair(false, nullptr);
 | 
						|
 | 
						|
    if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
 | 
						|
                              HasAnyUndefs, 8,
 | 
						|
                              !Subtarget->isLittle()))
 | 
						|
      return std::make_pair(false, nullptr);
 | 
						|
 | 
						|
    switch (SplatBitSize) {
 | 
						|
    default:
 | 
						|
      return std::make_pair(false, nullptr);
 | 
						|
    case 8:
 | 
						|
      LdiOp = Mips::LDI_B;
 | 
						|
      ViaVecTy = MVT::v16i8;
 | 
						|
      break;
 | 
						|
    case 16:
 | 
						|
      LdiOp = Mips::LDI_H;
 | 
						|
      ViaVecTy = MVT::v8i16;
 | 
						|
      break;
 | 
						|
    case 32:
 | 
						|
      LdiOp = Mips::LDI_W;
 | 
						|
      ViaVecTy = MVT::v4i32;
 | 
						|
      break;
 | 
						|
    case 64:
 | 
						|
      LdiOp = Mips::LDI_D;
 | 
						|
      ViaVecTy = MVT::v2i64;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!SplatValue.isSignedIntN(10))
 | 
						|
      return std::make_pair(false, nullptr);
 | 
						|
 | 
						|
    SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
 | 
						|
                                            ViaVecTy.getVectorElementType());
 | 
						|
 | 
						|
    SDNode *Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
 | 
						|
 | 
						|
    if (ResVecTy != ViaVecTy) {
 | 
						|
      // If LdiOp is writing to a different register class to ResVecTy, then
 | 
						|
      // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
 | 
						|
      // since the source and destination register sets contain the same
 | 
						|
      // registers.
 | 
						|
      const TargetLowering *TLI = getTargetLowering();
 | 
						|
      MVT ResVecTySimple = ResVecTy.getSimpleVT();
 | 
						|
      const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
 | 
						|
      Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
 | 
						|
                                   ResVecTy, SDValue(Res, 0),
 | 
						|
                                   CurDAG->getTargetConstant(RC->getID(), DL,
 | 
						|
                                                             MVT::i32));
 | 
						|
    }
 | 
						|
 | 
						|
    return std::make_pair(true, Res);
 | 
						|
  }
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  return std::make_pair(false, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
bool MipsSEDAGToDAGISel::
 | 
						|
SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
 | 
						|
                             std::vector<SDValue> &OutOps) {
 | 
						|
  SDValue Base, Offset;
 | 
						|
 | 
						|
  switch(ConstraintID) {
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Unexpected asm memory constraint");
 | 
						|
  // All memory constraints can at least accept raw pointers.
 | 
						|
  case InlineAsm::Constraint_i:
 | 
						|
    OutOps.push_back(Op);
 | 
						|
    OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
 | 
						|
    return false;
 | 
						|
  case InlineAsm::Constraint_m:
 | 
						|
    if (selectAddrRegImm16(Op, Base, Offset)) {
 | 
						|
      OutOps.push_back(Base);
 | 
						|
      OutOps.push_back(Offset);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    OutOps.push_back(Op);
 | 
						|
    OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
 | 
						|
    return false;
 | 
						|
  case InlineAsm::Constraint_R:
 | 
						|
    // The 'R' constraint is supposed to be much more complicated than this.
 | 
						|
    // However, it's becoming less useful due to architectural changes and
 | 
						|
    // ought to be replaced by other constraints such as 'ZC'.
 | 
						|
    // For now, support 9-bit signed offsets which is supportable by all
 | 
						|
    // subtargets for all instructions.
 | 
						|
    if (selectAddrRegImm9(Op, Base, Offset)) {
 | 
						|
      OutOps.push_back(Base);
 | 
						|
      OutOps.push_back(Offset);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    OutOps.push_back(Op);
 | 
						|
    OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
 | 
						|
    return false;
 | 
						|
  case InlineAsm::Constraint_ZC:
 | 
						|
    // ZC matches whatever the pref, ll, and sc instructions can handle for the
 | 
						|
    // given subtarget.
 | 
						|
    if (Subtarget->inMicroMipsMode()) {
 | 
						|
      // On microMIPS, they can handle 12-bit offsets.
 | 
						|
      if (selectAddrRegImm12(Op, Base, Offset)) {
 | 
						|
        OutOps.push_back(Base);
 | 
						|
        OutOps.push_back(Offset);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    } else if (Subtarget->hasMips32r6()) {
 | 
						|
      // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
 | 
						|
      if (selectAddrRegImm9(Op, Base, Offset)) {
 | 
						|
        OutOps.push_back(Base);
 | 
						|
        OutOps.push_back(Offset);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    } else if (selectAddrRegImm16(Op, Base, Offset)) {
 | 
						|
      // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
 | 
						|
      OutOps.push_back(Base);
 | 
						|
      OutOps.push_back(Offset);
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    // In all cases, 0-bit offsets are acceptable.
 | 
						|
    OutOps.push_back(Op);
 | 
						|
    OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM) {
 | 
						|
  return new MipsSEDAGToDAGISel(TM);
 | 
						|
}
 |