323 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Top-level implementation for the NVPTX target.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "NVPTXTargetMachine.h"
 | |
| #include "MCTargetDesc/NVPTXMCAsmInfo.h"
 | |
| #include "NVPTX.h"
 | |
| #include "NVPTXAllocaHoisting.h"
 | |
| #include "NVPTXLowerAggrCopies.h"
 | |
| #include "NVPTXTargetObjectFile.h"
 | |
| #include "NVPTXTargetTransformInfo.h"
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| #include "llvm/CodeGen/AsmPrinter.h"
 | |
| #include "llvm/CodeGen/MachineFunctionAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/IRPrintingPasses.h"
 | |
| #include "llvm/IR/LegacyPassManager.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCInstrInfo.h"
 | |
| #include "llvm/MC/MCStreamer.h"
 | |
| #include "llvm/MC/MCSubtargetInfo.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
| void initializeNVVMReflectPass(PassRegistry&);
 | |
| void initializeGenericToNVVMPass(PassRegistry&);
 | |
| void initializeNVPTXAllocaHoistingPass(PassRegistry &);
 | |
| void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
 | |
| void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
 | |
| void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
 | |
| void initializeNVPTXLowerKernelArgsPass(PassRegistry &);
 | |
| void initializeNVPTXLowerAllocaPass(PassRegistry &);
 | |
| }
 | |
| 
 | |
| extern "C" void LLVMInitializeNVPTXTarget() {
 | |
|   // Register the target.
 | |
|   RegisterTargetMachine<NVPTXTargetMachine32> X(TheNVPTXTarget32);
 | |
|   RegisterTargetMachine<NVPTXTargetMachine64> Y(TheNVPTXTarget64);
 | |
| 
 | |
|   // FIXME: This pass is really intended to be invoked during IR optimization,
 | |
|   // but it's very NVPTX-specific.
 | |
|   PassRegistry &PR = *PassRegistry::getPassRegistry();
 | |
|   initializeNVVMReflectPass(PR);
 | |
|   initializeGenericToNVVMPass(PR);
 | |
|   initializeNVPTXAllocaHoistingPass(PR);
 | |
|   initializeNVPTXAssignValidGlobalNamesPass(PR);
 | |
|   initializeNVPTXFavorNonGenericAddrSpacesPass(PR);
 | |
|   initializeNVPTXLowerKernelArgsPass(PR);
 | |
|   initializeNVPTXLowerAllocaPass(PR);
 | |
|   initializeNVPTXLowerAggrCopiesPass(PR);
 | |
| }
 | |
| 
 | |
| static std::string computeDataLayout(bool is64Bit) {
 | |
|   std::string Ret = "e";
 | |
| 
 | |
|   if (!is64Bit)
 | |
|     Ret += "-p:32:32";
 | |
| 
 | |
|   Ret += "-i64:64-v16:16-v32:32-n16:32:64";
 | |
| 
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
 | |
|                                        StringRef CPU, StringRef FS,
 | |
|                                        const TargetOptions &Options,
 | |
|                                        Reloc::Model RM, CodeModel::Model CM,
 | |
|                                        CodeGenOpt::Level OL, bool is64bit)
 | |
|     : LLVMTargetMachine(T, computeDataLayout(is64bit), TT, CPU, FS, Options, RM,
 | |
|                         CM, OL),
 | |
|       is64bit(is64bit), TLOF(make_unique<NVPTXTargetObjectFile>()),
 | |
|       Subtarget(TT, CPU, FS, *this) {
 | |
|   if (TT.getOS() == Triple::NVCL)
 | |
|     drvInterface = NVPTX::NVCL;
 | |
|   else
 | |
|     drvInterface = NVPTX::CUDA;
 | |
|   initAsmInfo();
 | |
| }
 | |
| 
 | |
| NVPTXTargetMachine::~NVPTXTargetMachine() {}
 | |
| 
 | |
| void NVPTXTargetMachine32::anchor() {}
 | |
| 
 | |
| NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
 | |
|                                            StringRef CPU, StringRef FS,
 | |
|                                            const TargetOptions &Options,
 | |
|                                            Reloc::Model RM, CodeModel::Model CM,
 | |
|                                            CodeGenOpt::Level OL)
 | |
|     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
 | |
| 
 | |
| void NVPTXTargetMachine64::anchor() {}
 | |
| 
 | |
| NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
 | |
|                                            StringRef CPU, StringRef FS,
 | |
|                                            const TargetOptions &Options,
 | |
|                                            Reloc::Model RM, CodeModel::Model CM,
 | |
|                                            CodeGenOpt::Level OL)
 | |
|     : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
 | |
| 
 | |
| namespace {
 | |
| class NVPTXPassConfig : public TargetPassConfig {
 | |
| public:
 | |
|   NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM)
 | |
|       : TargetPassConfig(TM, PM) {}
 | |
| 
 | |
|   NVPTXTargetMachine &getNVPTXTargetMachine() const {
 | |
|     return getTM<NVPTXTargetMachine>();
 | |
|   }
 | |
| 
 | |
|   void addIRPasses() override;
 | |
|   bool addInstSelector() override;
 | |
|   void addPostRegAlloc() override;
 | |
|   void addMachineSSAOptimization() override;
 | |
| 
 | |
|   FunctionPass *createTargetRegisterAllocator(bool) override;
 | |
|   void addFastRegAlloc(FunctionPass *RegAllocPass) override;
 | |
|   void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
 | |
| 
 | |
| private:
 | |
|   // if the opt level is aggressive, add GVN; otherwise, add EarlyCSE.
 | |
|   void addEarlyCSEOrGVNPass();
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
 | |
|   NVPTXPassConfig *PassConfig = new NVPTXPassConfig(this, PM);
 | |
|   return PassConfig;
 | |
| }
 | |
| 
 | |
| TargetIRAnalysis NVPTXTargetMachine::getTargetIRAnalysis() {
 | |
|   return TargetIRAnalysis([this](const Function &F) {
 | |
|     return TargetTransformInfo(NVPTXTTIImpl(this, F));
 | |
|   });
 | |
| }
 | |
| 
 | |
| void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
 | |
|   if (getOptLevel() == CodeGenOpt::Aggressive)
 | |
|     addPass(createGVNPass());
 | |
|   else
 | |
|     addPass(createEarlyCSEPass());
 | |
| }
 | |
| 
 | |
| void NVPTXPassConfig::addIRPasses() {
 | |
|   // The following passes are known to not play well with virtual regs hanging
 | |
|   // around after register allocation (which in our case, is *all* registers).
 | |
|   // We explicitly disable them here.  We do, however, need some functionality
 | |
|   // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
 | |
|   // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
 | |
|   disablePass(&PrologEpilogCodeInserterID);
 | |
|   disablePass(&MachineCopyPropagationID);
 | |
|   disablePass(&TailDuplicateID);
 | |
| 
 | |
|   addPass(createNVVMReflectPass());
 | |
|   addPass(createNVPTXImageOptimizerPass());
 | |
|   addPass(createNVPTXAssignValidGlobalNamesPass());
 | |
|   addPass(createGenericToNVVMPass());
 | |
| 
 | |
|   // === Propagate special address spaces ===
 | |
|   addPass(createNVPTXLowerKernelArgsPass(&getNVPTXTargetMachine()));
 | |
|   // NVPTXLowerKernelArgs emits alloca for byval parameters which can often
 | |
|   // be eliminated by SROA.
 | |
|   addPass(createSROAPass());
 | |
|   addPass(createNVPTXLowerAllocaPass());
 | |
|   addPass(createNVPTXFavorNonGenericAddrSpacesPass());
 | |
|   // FavorNonGenericAddrSpaces shortcuts unnecessary addrspacecasts, and leave
 | |
|   // them unused. We could remove dead code in an ad-hoc manner, but that
 | |
|   // requires manual work and might be error-prone.
 | |
|   addPass(createDeadCodeEliminationPass());
 | |
| 
 | |
|   // === Straight-line scalar optimizations ===
 | |
|   addPass(createSeparateConstOffsetFromGEPPass());
 | |
|   addPass(createSpeculativeExecutionPass());
 | |
|   // ReassociateGEPs exposes more opportunites for SLSR. See
 | |
|   // the example in reassociate-geps-and-slsr.ll.
 | |
|   addPass(createStraightLineStrengthReducePass());
 | |
|   // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
 | |
|   // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
 | |
|   // for some of our benchmarks.
 | |
|   addEarlyCSEOrGVNPass();
 | |
|   // Run NaryReassociate after EarlyCSE/GVN to be more effective.
 | |
|   addPass(createNaryReassociatePass());
 | |
|   // NaryReassociate on GEPs creates redundant common expressions, so run
 | |
|   // EarlyCSE after it.
 | |
|   addPass(createEarlyCSEPass());
 | |
| 
 | |
|   // === LSR and other generic IR passes ===
 | |
|   TargetPassConfig::addIRPasses();
 | |
|   // EarlyCSE is not always strong enough to clean up what LSR produces. For
 | |
|   // example, GVN can combine
 | |
|   //
 | |
|   //   %0 = add %a, %b
 | |
|   //   %1 = add %b, %a
 | |
|   //
 | |
|   // and
 | |
|   //
 | |
|   //   %0 = shl nsw %a, 2
 | |
|   //   %1 = shl %a, 2
 | |
|   //
 | |
|   // but EarlyCSE can do neither of them.
 | |
|   addEarlyCSEOrGVNPass();
 | |
| }
 | |
| 
 | |
| bool NVPTXPassConfig::addInstSelector() {
 | |
|   const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
 | |
| 
 | |
|   addPass(createLowerAggrCopies());
 | |
|   addPass(createAllocaHoisting());
 | |
|   addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
 | |
| 
 | |
|   if (!ST.hasImageHandles())
 | |
|     addPass(createNVPTXReplaceImageHandlesPass());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void NVPTXPassConfig::addPostRegAlloc() {
 | |
|   addPass(createNVPTXPrologEpilogPass(), false);
 | |
|   // NVPTXPrologEpilogPass calculates frame object offset and replace frame
 | |
|   // index with VRFrame register. NVPTXPeephole need to be run after that and
 | |
|   // will replace VRFrame with VRFrameLocal when possible.
 | |
|   addPass(createNVPTXPeephole());
 | |
| }
 | |
| 
 | |
| FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
 | |
|   return nullptr; // No reg alloc
 | |
| }
 | |
| 
 | |
| void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
 | |
|   assert(!RegAllocPass && "NVPTX uses no regalloc!");
 | |
|   addPass(&PHIEliminationID);
 | |
|   addPass(&TwoAddressInstructionPassID);
 | |
| }
 | |
| 
 | |
| void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
 | |
|   assert(!RegAllocPass && "NVPTX uses no regalloc!");
 | |
| 
 | |
|   addPass(&ProcessImplicitDefsID);
 | |
|   addPass(&LiveVariablesID);
 | |
|   addPass(&MachineLoopInfoID);
 | |
|   addPass(&PHIEliminationID);
 | |
| 
 | |
|   addPass(&TwoAddressInstructionPassID);
 | |
|   addPass(&RegisterCoalescerID);
 | |
| 
 | |
|   // PreRA instruction scheduling.
 | |
|   if (addPass(&MachineSchedulerID))
 | |
|     printAndVerify("After Machine Scheduling");
 | |
| 
 | |
| 
 | |
|   addPass(&StackSlotColoringID);
 | |
| 
 | |
|   // FIXME: Needs physical registers
 | |
|   //addPass(&PostRAMachineLICMID);
 | |
| 
 | |
|   printAndVerify("After StackSlotColoring");
 | |
| }
 | |
| 
 | |
| void NVPTXPassConfig::addMachineSSAOptimization() {
 | |
|   // Pre-ra tail duplication.
 | |
|   if (addPass(&EarlyTailDuplicateID))
 | |
|     printAndVerify("After Pre-RegAlloc TailDuplicate");
 | |
| 
 | |
|   // Optimize PHIs before DCE: removing dead PHI cycles may make more
 | |
|   // instructions dead.
 | |
|   addPass(&OptimizePHIsID);
 | |
| 
 | |
|   // This pass merges large allocas. StackSlotColoring is a different pass
 | |
|   // which merges spill slots.
 | |
|   addPass(&StackColoringID);
 | |
| 
 | |
|   // If the target requests it, assign local variables to stack slots relative
 | |
|   // to one another and simplify frame index references where possible.
 | |
|   addPass(&LocalStackSlotAllocationID);
 | |
| 
 | |
|   // With optimization, dead code should already be eliminated. However
 | |
|   // there is one known exception: lowered code for arguments that are only
 | |
|   // used by tail calls, where the tail calls reuse the incoming stack
 | |
|   // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
 | |
|   addPass(&DeadMachineInstructionElimID);
 | |
|   printAndVerify("After codegen DCE pass");
 | |
| 
 | |
|   // Allow targets to insert passes that improve instruction level parallelism,
 | |
|   // like if-conversion. Such passes will typically need dominator trees and
 | |
|   // loop info, just like LICM and CSE below.
 | |
|   if (addILPOpts())
 | |
|     printAndVerify("After ILP optimizations");
 | |
| 
 | |
|   addPass(&MachineLICMID);
 | |
|   addPass(&MachineCSEID);
 | |
| 
 | |
|   addPass(&MachineSinkingID);
 | |
|   printAndVerify("After Machine LICM, CSE and Sinking passes");
 | |
| 
 | |
|   addPass(&PeepholeOptimizerID);
 | |
|   printAndVerify("After codegen peephole optimization pass");
 | |
| }
 |