650 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
			
		
		
	
	
			650 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
| //===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
 | |
| 
 | |
| TODO:
 | |
| * lmw/stmw pass a la arm load store optimizer for prolog/epilog
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| This code:
 | |
| 
 | |
| unsigned add32carry(unsigned sum, unsigned x) {
 | |
|  unsigned z = sum + x;
 | |
|  if (sum + x < x)
 | |
|      z++;
 | |
|  return z;
 | |
| }
 | |
| 
 | |
| Should compile to something like:
 | |
| 
 | |
| 	addc r3,r3,r4
 | |
| 	addze r3,r3
 | |
| 
 | |
| instead we get:
 | |
| 
 | |
| 	add r3, r4, r3
 | |
| 	cmplw cr7, r3, r4
 | |
| 	mfcr r4 ; 1
 | |
| 	rlwinm r4, r4, 29, 31, 31
 | |
| 	add r3, r3, r4
 | |
| 
 | |
| Ick.
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| We compile the hottest inner loop of viterbi to:
 | |
| 
 | |
|         li r6, 0
 | |
|         b LBB1_84       ;bb432.i
 | |
| LBB1_83:        ;bb420.i
 | |
|         lbzx r8, r5, r7
 | |
|         addi r6, r7, 1
 | |
|         stbx r8, r4, r7
 | |
| LBB1_84:        ;bb432.i
 | |
|         mr r7, r6
 | |
|         cmplwi cr0, r7, 143
 | |
|         bne cr0, LBB1_83        ;bb420.i
 | |
| 
 | |
| The CBE manages to produce:
 | |
| 
 | |
| 	li r0, 143
 | |
| 	mtctr r0
 | |
| loop:
 | |
| 	lbzx r2, r2, r11
 | |
| 	stbx r0, r2, r9
 | |
| 	addi r2, r2, 1
 | |
| 	bdz later
 | |
| 	b loop
 | |
| 
 | |
| This could be much better (bdnz instead of bdz) but it still beats us.  If we
 | |
| produced this with bdnz, the loop would be a single dispatch group.
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| Lump the constant pool for each function into ONE pic object, and reference
 | |
| pieces of it as offsets from the start.  For functions like this (contrived
 | |
| to have lots of constants obviously):
 | |
| 
 | |
| double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
 | |
| 
 | |
| We generate:
 | |
| 
 | |
| _X:
 | |
|         lis r2, ha16(.CPI_X_0)
 | |
|         lfd f0, lo16(.CPI_X_0)(r2)
 | |
|         lis r2, ha16(.CPI_X_1)
 | |
|         lfd f2, lo16(.CPI_X_1)(r2)
 | |
|         fmadd f0, f1, f0, f2
 | |
|         lis r2, ha16(.CPI_X_2)
 | |
|         lfd f1, lo16(.CPI_X_2)(r2)
 | |
|         lis r2, ha16(.CPI_X_3)
 | |
|         lfd f2, lo16(.CPI_X_3)(r2)
 | |
|         fmadd f1, f0, f1, f2
 | |
|         blr
 | |
| 
 | |
| It would be better to materialize .CPI_X into a register, then use immediates
 | |
| off of the register to avoid the lis's.  This is even more important in PIC 
 | |
| mode.
 | |
| 
 | |
| Note that this (and the static variable version) is discussed here for GCC:
 | |
| http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
 | |
| 
 | |
| Here's another example (the sgn function):
 | |
| double testf(double a) {
 | |
|        return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
 | |
| }
 | |
| 
 | |
| it produces a BB like this:
 | |
| LBB1_1: ; cond_true
 | |
|         lis r2, ha16(LCPI1_0)
 | |
|         lfs f0, lo16(LCPI1_0)(r2)
 | |
|         lis r2, ha16(LCPI1_1)
 | |
|         lis r3, ha16(LCPI1_2)
 | |
|         lfs f2, lo16(LCPI1_2)(r3)
 | |
|         lfs f3, lo16(LCPI1_1)(r2)
 | |
|         fsub f0, f0, f1
 | |
|         fsel f1, f0, f2, f3
 | |
|         blr 
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| PIC Code Gen IPO optimization:
 | |
| 
 | |
| Squish small scalar globals together into a single global struct, allowing the 
 | |
| address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
 | |
| of the GOT on targets with one).
 | |
| 
 | |
| Note that this is discussed here for GCC:
 | |
| http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| Darwin Stub removal:
 | |
| 
 | |
| We still generate calls to foo$stub, and stubs, on Darwin.  This is not
 | |
| necessary when building with the Leopard (10.5) or later linker, as stubs are
 | |
| generated by ld when necessary.  Parameterizing this based on the deployment
 | |
| target (-mmacosx-version-min) is probably enough.  x86-32 does this right, see
 | |
| its logic.
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| Darwin Stub LICM optimization:
 | |
| 
 | |
| Loops like this:
 | |
|   
 | |
|   for (...)  bar();
 | |
| 
 | |
| Have to go through an indirect stub if bar is external or linkonce.  It would 
 | |
| be better to compile it as:
 | |
| 
 | |
|      fp = &bar;
 | |
|      for (...)  fp();
 | |
| 
 | |
| which only computes the address of bar once (instead of each time through the 
 | |
| stub).  This is Darwin specific and would have to be done in the code generator.
 | |
| Probably not a win on x86.
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| Simple IPO for argument passing, change:
 | |
|   void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y)
 | |
| 
 | |
| the Darwin ABI specifies that any integer arguments in the first 32 bytes worth
 | |
| of arguments get assigned to r3 through r10. That is, if you have a function
 | |
| foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the
 | |
| argument bytes for r4 and r5. The trick then would be to shuffle the argument
 | |
| order for functions we can internalize so that the maximum number of 
 | |
| integers/pointers get passed in regs before you see any of the fp arguments.
 | |
| 
 | |
| Instead of implementing this, it would actually probably be easier to just 
 | |
| implement a PPC fastcc, where we could do whatever we wanted to the CC, 
 | |
| including having this work sanely.
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| Fix Darwin FP-In-Integer Registers ABI
 | |
| 
 | |
| Darwin passes doubles in structures in integer registers, which is very very 
 | |
| bad.  Add something like a BITCAST to LLVM, then do an i-p transformation that
 | |
| percolates these things out of functions.
 | |
| 
 | |
| Check out how horrible this is:
 | |
| http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html
 | |
| 
 | |
| This is an extension of "interprocedural CC unmunging" that can't be done with
 | |
| just fastcc.
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| Fold add and sub with constant into non-extern, non-weak addresses so this:
 | |
| 
 | |
| static int a;
 | |
| void bar(int b) { a = b; }
 | |
| void foo(unsigned char *c) {
 | |
|   *c = a;
 | |
| }
 | |
| 
 | |
| So that 
 | |
| 
 | |
| _foo:
 | |
|         lis r2, ha16(_a)
 | |
|         la r2, lo16(_a)(r2)
 | |
|         lbz r2, 3(r2)
 | |
|         stb r2, 0(r3)
 | |
|         blr
 | |
| 
 | |
| Becomes
 | |
| 
 | |
| _foo:
 | |
|         lis r2, ha16(_a+3)
 | |
|         lbz r2, lo16(_a+3)(r2)
 | |
|         stb r2, 0(r3)
 | |
|         blr
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| We should compile these two functions to the same thing:
 | |
| 
 | |
| #include <stdlib.h>
 | |
| void f(int a, int b, int *P) {
 | |
|   *P = (a-b)>=0?(a-b):(b-a);
 | |
| }
 | |
| void g(int a, int b, int *P) {
 | |
|   *P = abs(a-b);
 | |
| }
 | |
| 
 | |
| Further, they should compile to something better than:
 | |
| 
 | |
| _g:
 | |
|         subf r2, r4, r3
 | |
|         subfic r3, r2, 0
 | |
|         cmpwi cr0, r2, -1
 | |
|         bgt cr0, LBB2_2 ; entry
 | |
| LBB2_1: ; entry
 | |
|         mr r2, r3
 | |
| LBB2_2: ; entry
 | |
|         stw r2, 0(r5)
 | |
|         blr
 | |
| 
 | |
| GCC produces:
 | |
| 
 | |
| _g:
 | |
|         subf r4,r4,r3
 | |
|         srawi r2,r4,31
 | |
|         xor r0,r2,r4
 | |
|         subf r0,r2,r0
 | |
|         stw r0,0(r5)
 | |
|         blr
 | |
| 
 | |
| ... which is much nicer.
 | |
| 
 | |
| This theoretically may help improve twolf slightly (used in dimbox.c:142?).
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| PR5945: This: 
 | |
| define i32 @clamp0g(i32 %a) {
 | |
| entry:
 | |
|         %cmp = icmp slt i32 %a, 0
 | |
|         %sel = select i1 %cmp, i32 0, i32 %a
 | |
|         ret i32 %sel
 | |
| }
 | |
| 
 | |
| Is compile to this with the PowerPC (32-bit) backend:
 | |
| 
 | |
| _clamp0g:
 | |
|         cmpwi cr0, r3, 0
 | |
|         li r2, 0
 | |
|         blt cr0, LBB1_2
 | |
| ; BB#1:                                                     ; %entry
 | |
|         mr r2, r3
 | |
| LBB1_2:                                                     ; %entry
 | |
|         mr r3, r2
 | |
|         blr
 | |
| 
 | |
| This could be reduced to the much simpler:
 | |
| 
 | |
| _clamp0g:
 | |
|         srawi r2, r3, 31
 | |
|         andc r3, r3, r2
 | |
|         blr
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| int foo(int N, int ***W, int **TK, int X) {
 | |
|   int t, i;
 | |
|   
 | |
|   for (t = 0; t < N; ++t)
 | |
|     for (i = 0; i < 4; ++i)
 | |
|       W[t / X][i][t % X] = TK[i][t];
 | |
|       
 | |
|   return 5;
 | |
| }
 | |
| 
 | |
| We generate relatively atrocious code for this loop compared to gcc.
 | |
| 
 | |
| We could also strength reduce the rem and the div:
 | |
| http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| We generate ugly code for this:
 | |
| 
 | |
| void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
 | |
|   unsigned code = 0;
 | |
|   if(dx < -dw) code |= 1;
 | |
|   if(dx > dw)  code |= 2;
 | |
|   if(dy < -dw) code |= 4;
 | |
|   if(dy > dw)  code |= 8;
 | |
|   if(dz < -dw) code |= 16;
 | |
|   if(dz > dw)  code |= 32;
 | |
|   *ret = code;
 | |
| }
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| %struct.B = type { i8, [3 x i8] }
 | |
| 
 | |
| define void @bar(%struct.B* %b) {
 | |
| entry:
 | |
|         %tmp = bitcast %struct.B* %b to i32*              ; <uint*> [#uses=1]
 | |
|         %tmp = load i32* %tmp          ; <uint> [#uses=1]
 | |
|         %tmp3 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=1]
 | |
|         %tmp4 = load i32* %tmp3                ; <uint> [#uses=1]
 | |
|         %tmp8 = bitcast %struct.B* %b to i32*             ; <uint*> [#uses=2]
 | |
|         %tmp9 = load i32* %tmp8                ; <uint> [#uses=1]
 | |
|         %tmp4.mask17 = shl i32 %tmp4, i8 1          ; <uint> [#uses=1]
 | |
|         %tmp1415 = and i32 %tmp4.mask17, 2147483648            ; <uint> [#uses=1]
 | |
|         %tmp.masked = and i32 %tmp, 2147483648         ; <uint> [#uses=1]
 | |
|         %tmp11 = or i32 %tmp1415, %tmp.masked          ; <uint> [#uses=1]
 | |
|         %tmp12 = and i32 %tmp9, 2147483647             ; <uint> [#uses=1]
 | |
|         %tmp13 = or i32 %tmp12, %tmp11         ; <uint> [#uses=1]
 | |
|         store i32 %tmp13, i32* %tmp8
 | |
|         ret void
 | |
| }
 | |
| 
 | |
| We emit:
 | |
| 
 | |
| _foo:
 | |
|         lwz r2, 0(r3)
 | |
|         slwi r4, r2, 1
 | |
|         or r4, r4, r2
 | |
|         rlwimi r2, r4, 0, 0, 0
 | |
|         stw r2, 0(r3)
 | |
|         blr
 | |
| 
 | |
| We could collapse a bunch of those ORs and ANDs and generate the following
 | |
| equivalent code:
 | |
| 
 | |
| _foo:
 | |
|         lwz r2, 0(r3)
 | |
|         rlwinm r4, r2, 1, 0, 0
 | |
|         or r2, r2, r4
 | |
|         stw r2, 0(r3)
 | |
|         blr
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| Consider a function like this:
 | |
| 
 | |
| float foo(float X) { return X + 1234.4123f; }
 | |
| 
 | |
| The FP constant ends up in the constant pool, so we need to get the LR register.
 | |
|  This ends up producing code like this:
 | |
| 
 | |
| _foo:
 | |
| .LBB_foo_0:     ; entry
 | |
|         mflr r11
 | |
| ***     stw r11, 8(r1)
 | |
|         bl "L00000$pb"
 | |
| "L00000$pb":
 | |
|         mflr r2
 | |
|         addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
 | |
|         lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
 | |
|         fadds f1, f1, f0
 | |
| ***     lwz r11, 8(r1)
 | |
|         mtlr r11
 | |
|         blr
 | |
| 
 | |
| This is functional, but there is no reason to spill the LR register all the way
 | |
| to the stack (the two marked instrs): spilling it to a GPR is quite enough.
 | |
| 
 | |
| Implementing this will require some codegen improvements.  Nate writes:
 | |
| 
 | |
| "So basically what we need to support the "no stack frame save and restore" is a
 | |
| generalization of the LR optimization to "callee-save regs".
 | |
| 
 | |
| Currently, we have LR marked as a callee-save reg.  The register allocator sees
 | |
| that it's callee save, and spills it directly to the stack.
 | |
| 
 | |
| Ideally, something like this would happen:
 | |
| 
 | |
| LR would be in a separate register class from the GPRs. The class of LR would be
 | |
| marked "unspillable".  When the register allocator came across an unspillable
 | |
| reg, it would ask "what is the best class to copy this into that I *can* spill"
 | |
| If it gets a class back, which it will in this case (the gprs), it grabs a free
 | |
| register of that class.  If it is then later necessary to spill that reg, so be
 | |
| it.
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| We compile this:
 | |
| int test(_Bool X) {
 | |
|   return X ? 524288 : 0;
 | |
| }
 | |
| 
 | |
| to: 
 | |
| _test:
 | |
|         cmplwi cr0, r3, 0
 | |
|         lis r2, 8
 | |
|         li r3, 0
 | |
|         beq cr0, LBB1_2 ;entry
 | |
| LBB1_1: ;entry
 | |
|         mr r3, r2
 | |
| LBB1_2: ;entry
 | |
|         blr 
 | |
| 
 | |
| instead of:
 | |
| _test:
 | |
|         addic r2,r3,-1
 | |
|         subfe r0,r2,r3
 | |
|         slwi r3,r0,19
 | |
|         blr
 | |
| 
 | |
| This sort of thing occurs a lot due to globalopt.
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| We compile:
 | |
| 
 | |
| define i32 @bar(i32 %x) nounwind readnone ssp {
 | |
| entry:
 | |
|   %0 = icmp eq i32 %x, 0                          ; <i1> [#uses=1]
 | |
|   %neg = sext i1 %0 to i32              ; <i32> [#uses=1]
 | |
|   ret i32 %neg
 | |
| }
 | |
| 
 | |
| to:
 | |
| 
 | |
| _bar:
 | |
| 	cntlzw r2, r3
 | |
| 	slwi r2, r2, 26
 | |
| 	srawi r3, r2, 31
 | |
| 	blr 
 | |
| 
 | |
| it would be better to produce:
 | |
| 
 | |
| _bar: 
 | |
|         addic r3,r3,-1
 | |
|         subfe r3,r3,r3
 | |
|         blr
 | |
| 
 | |
| ===-------------------------------------------------------------------------===
 | |
| 
 | |
| We generate horrible ppc code for this:
 | |
| 
 | |
| #define N  2000000
 | |
| double   a[N],c[N];
 | |
| void simpleloop() {
 | |
|    int j;
 | |
|    for (j=0; j<N; j++)
 | |
|      c[j] = a[j];
 | |
| }
 | |
| 
 | |
| LBB1_1: ;bb
 | |
|         lfdx f0, r3, r4
 | |
|         addi r5, r5, 1                 ;; Extra IV for the exit value compare.
 | |
|         stfdx f0, r2, r4
 | |
|         addi r4, r4, 8
 | |
| 
 | |
|         xoris r6, r5, 30               ;; This is due to a large immediate.
 | |
|         cmplwi cr0, r6, 33920
 | |
|         bne cr0, LBB1_1
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| 
 | |
| This:
 | |
|         #include <algorithm>
 | |
|         inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
 | |
|         { return std::make_pair(a + b, a + b < a); }
 | |
|         bool no_overflow(unsigned a, unsigned b)
 | |
|         { return !full_add(a, b).second; }
 | |
| 
 | |
| Should compile to:
 | |
| 
 | |
| __Z11no_overflowjj:
 | |
|         add r4,r3,r4
 | |
|         subfc r3,r3,r4
 | |
|         li r3,0
 | |
|         adde r3,r3,r3
 | |
|         blr
 | |
| 
 | |
| (or better) not:
 | |
| 
 | |
| __Z11no_overflowjj:
 | |
|         add r2, r4, r3
 | |
|         cmplw cr7, r2, r3
 | |
|         mfcr r2
 | |
|         rlwinm r2, r2, 29, 31, 31
 | |
|         xori r3, r2, 1
 | |
|         blr 
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| 
 | |
| We compile some FP comparisons into an mfcr with two rlwinms and an or.  For
 | |
| example:
 | |
| #include <math.h>
 | |
| int test(double x, double y) { return islessequal(x, y);}
 | |
| int test2(double x, double y) {  return islessgreater(x, y);}
 | |
| int test3(double x, double y) {  return !islessequal(x, y);}
 | |
| 
 | |
| Compiles into (all three are similar, but the bits differ):
 | |
| 
 | |
| _test:
 | |
| 	fcmpu cr7, f1, f2
 | |
| 	mfcr r2
 | |
| 	rlwinm r3, r2, 29, 31, 31
 | |
| 	rlwinm r2, r2, 31, 31, 31
 | |
| 	or r3, r2, r3
 | |
| 	blr 
 | |
| 
 | |
| GCC compiles this into:
 | |
| 
 | |
|  _test:
 | |
| 	fcmpu cr7,f1,f2
 | |
| 	cror 30,28,30
 | |
| 	mfcr r3
 | |
| 	rlwinm r3,r3,31,1
 | |
| 	blr
 | |
|         
 | |
| which is more efficient and can use mfocr.  See PR642 for some more context.
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| 
 | |
| void foo(float *data, float d) {
 | |
|    long i;
 | |
|    for (i = 0; i < 8000; i++)
 | |
|       data[i] = d;
 | |
| }
 | |
| void foo2(float *data, float d) {
 | |
|    long i;
 | |
|    data--;
 | |
|    for (i = 0; i < 8000; i++) {
 | |
|       data[1] = d;
 | |
|       data++;
 | |
|    }
 | |
| }
 | |
| 
 | |
| These compile to:
 | |
| 
 | |
| _foo:
 | |
| 	li r2, 0
 | |
| LBB1_1:	; bb
 | |
| 	addi r4, r2, 4
 | |
| 	stfsx f1, r3, r2
 | |
| 	cmplwi cr0, r4, 32000
 | |
| 	mr r2, r4
 | |
| 	bne cr0, LBB1_1	; bb
 | |
| 	blr 
 | |
| _foo2:
 | |
| 	li r2, 0
 | |
| LBB2_1:	; bb
 | |
| 	addi r4, r2, 4
 | |
| 	stfsx f1, r3, r2
 | |
| 	cmplwi cr0, r4, 32000
 | |
| 	mr r2, r4
 | |
| 	bne cr0, LBB2_1	; bb
 | |
| 	blr 
 | |
| 
 | |
| The 'mr' could be eliminated to folding the add into the cmp better.
 | |
| 
 | |
| //===---------------------------------------------------------------------===//
 | |
| Codegen for the following (low-probability) case deteriorated considerably 
 | |
| when the correctness fixes for unordered comparisons went in (PR 642, 58871).
 | |
| It should be possible to recover the code quality described in the comments.
 | |
| 
 | |
| ; RUN: llvm-as < %s | llc -march=ppc32  | grep or | count 3
 | |
| ; This should produce one 'or' or 'cror' instruction per function.
 | |
| 
 | |
| ; RUN: llvm-as < %s | llc -march=ppc32  | grep mfcr | count 3
 | |
| ; PR2964
 | |
| 
 | |
| define i32 @test(double %x, double %y) nounwind  {
 | |
| entry:
 | |
| 	%tmp3 = fcmp ole double %x, %y		; <i1> [#uses=1]
 | |
| 	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
 | |
| 	ret i32 %tmp345
 | |
| }
 | |
| 
 | |
| define i32 @test2(double %x, double %y) nounwind  {
 | |
| entry:
 | |
| 	%tmp3 = fcmp one double %x, %y		; <i1> [#uses=1]
 | |
| 	%tmp345 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
 | |
| 	ret i32 %tmp345
 | |
| }
 | |
| 
 | |
| define i32 @test3(double %x, double %y) nounwind  {
 | |
| entry:
 | |
| 	%tmp3 = fcmp ugt double %x, %y		; <i1> [#uses=1]
 | |
| 	%tmp34 = zext i1 %tmp3 to i32		; <i32> [#uses=1]
 | |
| 	ret i32 %tmp34
 | |
| }
 | |
| //===----------------------------------------------------------------------===//
 | |
| ; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
 | |
| 
 | |
| ; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and 
 | |
| ; should not be generated except with -enable-finite-only-fp-math or the like).
 | |
| ; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
 | |
| ; recognize a more elaborate tree than a simple SETxx.
 | |
| 
 | |
| define double @test_FNEG_sel(double %A, double %B, double %C) {
 | |
|         %D = fsub double -0.000000e+00, %A               ; <double> [#uses=1]
 | |
|         %Cond = fcmp ugt double %D, -0.000000e+00               ; <i1> [#uses=1]
 | |
|         %E = select i1 %Cond, double %B, double %C              ; <double> [#uses=1]
 | |
|         ret double %E
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| The save/restore sequence for CR in prolog/epilog is terrible:
 | |
| - Each CR subreg is saved individually, rather than doing one save as a unit.
 | |
| - On Darwin, the save is done after the decrement of SP, which means the offset
 | |
| from SP of the save slot can be too big for a store instruction, which means we
 | |
| need an additional register (currently hacked in 96015+96020; the solution there
 | |
| is correct, but poor).
 | |
| - On SVR4 the same thing can happen, and I don't think saving before the SP
 | |
| decrement is safe on that target, as there is no red zone.  This is currently
 | |
| broken AFAIK, although it's not a target I can exercise.
 | |
| The following demonstrates the problem:
 | |
| extern void bar(char *p);
 | |
| void foo() {
 | |
|   char x[100000];
 | |
|   bar(x);
 | |
|   __asm__("" ::: "cr2");
 | |
| }
 | |
| 
 | |
| //===-------------------------------------------------------------------------===
 | |
| Naming convention for instruction formats is very haphazard.
 | |
| We have agreed on a naming scheme as follows:
 | |
| 
 | |
| <INST_form>{_<OP_type><OP_len>}+
 | |
| 
 | |
| Where:
 | |
| INST_form is the instruction format (X-form, etc.)
 | |
| OP_type is the operand type - one of OPC (opcode), RD (register destination),
 | |
|                               RS (register source),
 | |
|                               RDp (destination register pair),
 | |
|                               RSp (source register pair), IM (immediate),
 | |
|                               XO (extended opcode)
 | |
| OP_len is the length of the operand in bits
 | |
| 
 | |
| VSX register operands would be of length 6 (split across two fields),
 | |
| condition register fields of length 3.
 | |
| We would not need denote reserved fields in names of instruction formats.
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Instruction fusion was introduced in ISA 2.06 and more opportunities added in
 | |
| ISA 2.07.  LLVM needs to add infrastructure to recognize fusion opportunities
 | |
| and force instruction pairs to be scheduled together.
 | |
| 
 |