1530 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			TableGen
		
	
	
	
			
		
		
	
	
			1530 lines
		
	
	
		
			68 KiB
		
	
	
	
		
			TableGen
		
	
	
	
| //===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Stack allocation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
 | |
|                               [(callseq_start timm:$amt)]>;
 | |
| def ADJCALLSTACKUP   : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
 | |
|                               [(callseq_end timm:$amt1, timm:$amt2)]>;
 | |
| 
 | |
| let hasSideEffects = 0 in {
 | |
|   // Takes as input the value of the stack pointer after a dynamic allocation
 | |
|   // has been made.  Sets the output to the address of the dynamically-
 | |
|   // allocated area itself, skipping the outgoing arguments.
 | |
|   //
 | |
|   // This expands to an LA or LAY instruction.  We restrict the offset
 | |
|   // to the range of LA and keep the LAY range in reserve for when
 | |
|   // the size of the outgoing arguments is added.
 | |
|   def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
 | |
|                            [(set GR64:$dst, dynalloc12only:$src)]>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Control flow instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // A return instruction (br %r14).
 | |
| let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
 | |
|   def Return : Alias<2, (outs), (ins), [(z_retflag)]>;
 | |
| 
 | |
| // Unconditional branches.  R1 is the condition-code mask (all 1s).
 | |
| let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
 | |
|   let isIndirectBranch = 1 in
 | |
|     def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
 | |
|                     "br\t$R2", [(brind ADDR64:$R2)]>;
 | |
| 
 | |
|   // An assembler extended mnemonic for BRC.
 | |
|   def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
 | |
|                  [(br bb:$I2)]>;
 | |
| 
 | |
|   // An assembler extended mnemonic for BRCL.  (The extension is "G"
 | |
|   // rather than "L" because "JL" is "Jump if Less".)
 | |
|   def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
 | |
| }
 | |
| 
 | |
| // Conditional branches.  It's easier for LLVM to handle these branches
 | |
| // in their raw BRC/BRCL form, with the 4-bit condition-code mask being
 | |
| // the first operand.  It seems friendlier to use mnemonic forms like
 | |
| // JE and JLH when writing out the assembly though.
 | |
| let isBranch = 1, isTerminator = 1, Uses = [CC] in {
 | |
|   let isCodeGenOnly = 1, CCMaskFirst = 1 in {
 | |
|     def BRC : InstRI<0xA74, (outs), (ins cond4:$valid, cond4:$R1,
 | |
|                                          brtarget16:$I2), "j$R1\t$I2",
 | |
|                      [(z_br_ccmask cond4:$valid, cond4:$R1, bb:$I2)]>;
 | |
|     def BRCL : InstRIL<0xC04, (outs), (ins cond4:$valid, cond4:$R1,
 | |
|                                            brtarget32:$I2), "jg$R1\t$I2", []>;
 | |
|   }
 | |
|   def AsmBRC : InstRI<0xA74, (outs), (ins imm32zx4:$R1, brtarget16:$I2),
 | |
|                       "brc\t$R1, $I2", []>;
 | |
|   def AsmBRCL : InstRIL<0xC04, (outs), (ins imm32zx4:$R1, brtarget32:$I2),
 | |
|                         "brcl\t$R1, $I2", []>;
 | |
|   def AsmBCR : InstRR<0x07, (outs), (ins imm32zx4:$R1, GR64:$R2),
 | |
|                       "bcr\t$R1, $R2", []>;
 | |
| }
 | |
| 
 | |
| // Fused compare-and-branch instructions.  As for normal branches,
 | |
| // we handle these instructions internally in their raw CRJ-like form,
 | |
| // but use assembly macros like CRJE when writing them out.
 | |
| //
 | |
| // These instructions do not use or clobber the condition codes.
 | |
| // We nevertheless pretend that they clobber CC, so that we can lower
 | |
| // them to separate comparisons and BRCLs if the branch ends up being
 | |
| // out of range.
 | |
| multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
 | |
|   let isBranch = 1, isTerminator = 1, Defs = [CC] in {
 | |
|     def RJ  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
 | |
|                                             brtarget16:$RI4),
 | |
|                        "crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
 | |
|     def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
 | |
|                                             brtarget16:$RI4),
 | |
|                        "cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
 | |
|     def IJ  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
 | |
|                                             brtarget16:$RI4),
 | |
|                        "cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
 | |
|     def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
 | |
|                                             brtarget16:$RI4),
 | |
|                        "cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
 | |
|     def LRJ  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
 | |
|                                              brtarget16:$RI4),
 | |
|                         "clrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
 | |
|     def LGRJ : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
 | |
|                                              brtarget16:$RI4),
 | |
|                         "clgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
 | |
|     def LIJ  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2, ccmask:$M3,
 | |
|                                              brtarget16:$RI4),
 | |
|                         "clij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
 | |
|     def LGIJ : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2, ccmask:$M3,
 | |
|                                              brtarget16:$RI4),
 | |
|                         "clgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
 | |
|   }
 | |
| }
 | |
| let isCodeGenOnly = 1 in
 | |
|   defm C : CompareBranches<cond4, "$M3", "">;
 | |
| defm AsmC : CompareBranches<imm32zx4, "", "$M3, ">;
 | |
| 
 | |
| // Define AsmParser mnemonics for each general condition-code mask
 | |
| // (integer or floating-point)
 | |
| multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
 | |
|   let R1 = ccmask in {
 | |
|     def J : InstRI<0xA74, (outs), (ins brtarget16:$I2),
 | |
|                    "j"##name##"\t$I2", []>;
 | |
|     def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
 | |
|                      "jg"##name##"\t$I2", []>;
 | |
|     def BR : InstRR<0x07, (outs), (ins ADDR64:$R2), "b"##name##"r\t$R2", []>;
 | |
|   }
 | |
|   def LOCR  : FixedCondUnaryRRF<"locr"##name,  0xB9F2, GR32, GR32, ccmask>;
 | |
|   def LOCGR : FixedCondUnaryRRF<"locgr"##name, 0xB9E2, GR64, GR64, ccmask>;
 | |
|   def LOC   : FixedCondUnaryRSY<"loc"##name,   0xEBF2, GR32, ccmask, 4>;
 | |
|   def LOCG  : FixedCondUnaryRSY<"locg"##name,  0xEBE2, GR64, ccmask, 8>;
 | |
|   def STOC  : FixedCondStoreRSY<"stoc"##name,  0xEBF3, GR32, ccmask, 4>;
 | |
|   def STOCG : FixedCondStoreRSY<"stocg"##name, 0xEBE3, GR64, ccmask, 8>;
 | |
| }
 | |
| defm AsmO   : CondExtendedMnemonic<1,  "o">;
 | |
| defm AsmH   : CondExtendedMnemonic<2,  "h">;
 | |
| defm AsmNLE : CondExtendedMnemonic<3,  "nle">;
 | |
| defm AsmL   : CondExtendedMnemonic<4,  "l">;
 | |
| defm AsmNHE : CondExtendedMnemonic<5,  "nhe">;
 | |
| defm AsmLH  : CondExtendedMnemonic<6,  "lh">;
 | |
| defm AsmNE  : CondExtendedMnemonic<7,  "ne">;
 | |
| defm AsmE   : CondExtendedMnemonic<8,  "e">;
 | |
| defm AsmNLH : CondExtendedMnemonic<9,  "nlh">;
 | |
| defm AsmHE  : CondExtendedMnemonic<10, "he">;
 | |
| defm AsmNL  : CondExtendedMnemonic<11, "nl">;
 | |
| defm AsmLE  : CondExtendedMnemonic<12, "le">;
 | |
| defm AsmNH  : CondExtendedMnemonic<13, "nh">;
 | |
| defm AsmNO  : CondExtendedMnemonic<14, "no">;
 | |
| 
 | |
| // Define AsmParser mnemonics for each integer condition-code mask.
 | |
| // This is like the list above, except that condition 3 is not possible
 | |
| // and that the low bit of the mask is therefore always 0.  This means
 | |
| // that each condition has two names.  Conditions "o" and "no" are not used.
 | |
| //
 | |
| // We don't make one of the two names an alias of the other because
 | |
| // we need the custom parsing routines to select the correct register class.
 | |
| multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
 | |
|   let M3 = ccmask in {
 | |
|     def CR  : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
 | |
|                                             brtarget16:$RI4),
 | |
|                        "crj"##name##"\t$R1, $R2, $RI4", []>;
 | |
|     def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
 | |
|                                             brtarget16:$RI4),
 | |
|                        "cgrj"##name##"\t$R1, $R2, $RI4", []>;
 | |
|     def CI  : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
 | |
|                                             brtarget16:$RI4),
 | |
|                        "cij"##name##"\t$R1, $I2, $RI4", []>;
 | |
|     def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
 | |
|                                             brtarget16:$RI4),
 | |
|                        "cgij"##name##"\t$R1, $I2, $RI4", []>;
 | |
|     def CLR  : InstRIEb<0xEC77, (outs), (ins GR32:$R1, GR32:$R2,
 | |
|                                             brtarget16:$RI4),
 | |
|                         "clrj"##name##"\t$R1, $R2, $RI4", []>;
 | |
|     def CLGR : InstRIEb<0xEC65, (outs), (ins GR64:$R1, GR64:$R2,
 | |
|                                              brtarget16:$RI4),
 | |
|                         "clgrj"##name##"\t$R1, $R2, $RI4", []>;
 | |
|     def CLI  : InstRIEc<0xEC7F, (outs), (ins GR32:$R1, imm32zx8:$I2,
 | |
|                                              brtarget16:$RI4),
 | |
|                         "clij"##name##"\t$R1, $I2, $RI4", []>;
 | |
|     def CLGI : InstRIEc<0xEC7D, (outs), (ins GR64:$R1, imm64zx8:$I2,
 | |
|                                              brtarget16:$RI4),
 | |
|                         "clgij"##name##"\t$R1, $I2, $RI4", []>;
 | |
|   }
 | |
| }
 | |
| multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
 | |
|   : IntCondExtendedMnemonicA<ccmask, name1> {
 | |
|   let isAsmParserOnly = 1 in
 | |
|     defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
 | |
| }
 | |
| defm AsmJH   : IntCondExtendedMnemonic<2,  "h",  "nle">;
 | |
| defm AsmJL   : IntCondExtendedMnemonic<4,  "l",  "nhe">;
 | |
| defm AsmJLH  : IntCondExtendedMnemonic<6,  "lh", "ne">;
 | |
| defm AsmJE   : IntCondExtendedMnemonic<8,  "e",  "nlh">;
 | |
| defm AsmJHE  : IntCondExtendedMnemonic<10, "he", "nl">;
 | |
| defm AsmJLE  : IntCondExtendedMnemonic<12, "le", "nh">;
 | |
| 
 | |
| // Decrement a register and branch if it is nonzero.  These don't clobber CC,
 | |
| // but we might need to split long branches into sequences that do.
 | |
| let Defs = [CC] in {
 | |
|   def BRCT  : BranchUnaryRI<"brct",  0xA76, GR32>;
 | |
|   def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Select instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| def Select32Mux : SelectWrapper<GRX32>, Requires<[FeatureHighWord]>;
 | |
| def Select32    : SelectWrapper<GR32>;
 | |
| def Select64    : SelectWrapper<GR64>;
 | |
| 
 | |
| // We don't define 32-bit Mux stores because the low-only STOC should
 | |
| // always be used if possible.
 | |
| defm CondStore8Mux  : CondStores<GRX32, nonvolatile_truncstorei8,
 | |
|                                  nonvolatile_anyextloadi8, bdxaddr20only>,
 | |
|                       Requires<[FeatureHighWord]>;
 | |
| defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
 | |
|                                  nonvolatile_anyextloadi16, bdxaddr20only>,
 | |
|                       Requires<[FeatureHighWord]>;
 | |
| defm CondStore8     : CondStores<GR32, nonvolatile_truncstorei8,
 | |
|                                  nonvolatile_anyextloadi8, bdxaddr20only>;
 | |
| defm CondStore16    : CondStores<GR32, nonvolatile_truncstorei16,
 | |
|                                  nonvolatile_anyextloadi16, bdxaddr20only>;
 | |
| defm CondStore32    : CondStores<GR32, nonvolatile_store,
 | |
|                                  nonvolatile_load, bdxaddr20only>;
 | |
| 
 | |
| defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
 | |
|                     nonvolatile_anyextloadi8, bdxaddr20only>;
 | |
| defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
 | |
|                     nonvolatile_anyextloadi16, bdxaddr20only>;
 | |
| defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
 | |
|                     nonvolatile_anyextloadi32, bdxaddr20only>;
 | |
| defm CondStore64 : CondStores<GR64, nonvolatile_store,
 | |
|                               nonvolatile_load, bdxaddr20only>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Call instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let isCall = 1, Defs = [R14D, CC] in {
 | |
|   def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
 | |
|                         [(z_call pcrel32:$I2)]>;
 | |
|   def CallBASR  : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
 | |
|                         [(z_call ADDR64:$R2)]>;
 | |
| }
 | |
| 
 | |
| // Sibling calls.  Indirect sibling calls must be via R1, since R2 upwards
 | |
| // are argument registers and since branching to R0 is a no-op.
 | |
| let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
 | |
|   def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
 | |
|                      [(z_sibcall pcrel32:$I2)]>;
 | |
|   let Uses = [R1D] in
 | |
|     def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>;
 | |
| }
 | |
| 
 | |
| // TLS calls.  These will be lowered into a call to __tls_get_offset,
 | |
| // with an extra relocation specifying the TLS symbol.
 | |
| let isCall = 1, Defs = [R14D, CC] in {
 | |
|   def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
 | |
|                          [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
 | |
|   def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
 | |
|                          [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
 | |
| }
 | |
| 
 | |
| // Define the general form of the call instructions for the asm parser.
 | |
| // These instructions don't hard-code %r14 as the return address register.
 | |
| // Allow an optional TLS marker symbol to generate TLS call relocations.
 | |
| def BRAS  : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16tls:$I2),
 | |
|                    "bras\t$R1, $I2", []>;
 | |
| def BRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32tls:$I2),
 | |
|                     "brasl\t$R1, $I2", []>;
 | |
| def BASR  : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
 | |
|                    "basr\t$R1, $R2", []>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Move instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Register moves.
 | |
| let hasSideEffects = 0 in {
 | |
|   // Expands to LR, RISBHG or RISBLG, depending on the choice of registers.
 | |
|   def LRMux : UnaryRRPseudo<"l", null_frag, GRX32, GRX32>,
 | |
|               Requires<[FeatureHighWord]>;
 | |
|   def LR  : UnaryRR <"l",  0x18,   null_frag, GR32, GR32>;
 | |
|   def LGR : UnaryRRE<"lg", 0xB904, null_frag, GR64, GR64>;
 | |
| }
 | |
| let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
 | |
|   def LTR  : UnaryRR <"lt",  0x12,   null_frag, GR32, GR32>;
 | |
|   def LTGR : UnaryRRE<"ltg", 0xB902, null_frag, GR64, GR64>;
 | |
| }
 | |
| 
 | |
| // Move on condition.
 | |
| let isCodeGenOnly = 1, Uses = [CC] in {
 | |
|   def LOCR  : CondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
 | |
|   def LOCGR : CondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
 | |
| }
 | |
| let Uses = [CC] in {
 | |
|   def AsmLOCR  : AsmCondUnaryRRF<"loc",  0xB9F2, GR32, GR32>;
 | |
|   def AsmLOCGR : AsmCondUnaryRRF<"locg", 0xB9E2, GR64, GR64>;
 | |
| }
 | |
| 
 | |
| // Immediate moves.
 | |
| let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
 | |
|     isReMaterializable = 1 in {
 | |
|   // 16-bit sign-extended immediates.  LHIMux expands to LHI or IIHF,
 | |
|   // deopending on the choice of register.
 | |
|   def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
 | |
|                Requires<[FeatureHighWord]>;
 | |
|   def LHI  : UnaryRI<"lhi",  0xA78, bitconvert, GR32, imm32sx16>;
 | |
|   def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
 | |
| 
 | |
|   // Other 16-bit immediates.
 | |
|   def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
 | |
|   def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
 | |
|   def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
 | |
|   def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
 | |
| 
 | |
|   // 32-bit immediates.
 | |
|   def LGFI  : UnaryRIL<"lgfi",  0xC01, bitconvert, GR64, imm64sx32>;
 | |
|   def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
 | |
|   def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
 | |
| }
 | |
| 
 | |
| // Register loads.
 | |
| let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
 | |
|   // Expands to L, LY or LFH, depending on the choice of register.
 | |
|   def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>,
 | |
|              Requires<[FeatureHighWord]>;
 | |
|   defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>;
 | |
|   def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>,
 | |
|             Requires<[FeatureHighWord]>;
 | |
|   def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>;
 | |
| 
 | |
|   // These instructions are split after register allocation, so we don't
 | |
|   // want a custom inserter.
 | |
|   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
 | |
|     def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
 | |
|                       [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
 | |
|   }
 | |
| }
 | |
| let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
 | |
|   def LT  : UnaryRXY<"lt",  0xE312, load, GR32, 4>;
 | |
|   def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>;
 | |
| }
 | |
| 
 | |
| let canFoldAsLoad = 1 in {
 | |
|   def LRL  : UnaryRILPC<"lrl",  0xC4D, aligned_load, GR32>;
 | |
|   def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
 | |
| }
 | |
| 
 | |
| // Load on condition.
 | |
| let isCodeGenOnly = 1, Uses = [CC] in {
 | |
|   def LOC  : CondUnaryRSY<"loc",  0xEBF2, nonvolatile_load, GR32, 4>;
 | |
|   def LOCG : CondUnaryRSY<"locg", 0xEBE2, nonvolatile_load, GR64, 8>;
 | |
| }
 | |
| let Uses = [CC] in {
 | |
|   def AsmLOC  : AsmCondUnaryRSY<"loc",  0xEBF2, GR32, 4>;
 | |
|   def AsmLOCG : AsmCondUnaryRSY<"locg", 0xEBE2, GR64, 8>;
 | |
| }
 | |
| 
 | |
| // Register stores.
 | |
| let SimpleBDXStore = 1 in {
 | |
|   // Expands to ST, STY or STFH, depending on the choice of register.
 | |
|   def STMux : StoreRXYPseudo<store, GRX32, 4>,
 | |
|               Requires<[FeatureHighWord]>;
 | |
|   defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
 | |
|   def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
 | |
|              Requires<[FeatureHighWord]>;
 | |
|   def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
 | |
| 
 | |
|   // These instructions are split after register allocation, so we don't
 | |
|   // want a custom inserter.
 | |
|   let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
 | |
|     def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
 | |
|                        [(store GR128:$src, bdxaddr20only128:$dst)]>;
 | |
|   }
 | |
| }
 | |
| def STRL  : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
 | |
| def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
 | |
| 
 | |
| // Store on condition.
 | |
| let isCodeGenOnly = 1, Uses = [CC] in {
 | |
|   def STOC  : CondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
 | |
|   def STOCG : CondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
 | |
| }
 | |
| let Uses = [CC] in {
 | |
|   def AsmSTOC  : AsmCondStoreRSY<"stoc",  0xEBF3, GR32, 4>;
 | |
|   def AsmSTOCG : AsmCondStoreRSY<"stocg", 0xEBE3, GR64, 8>;
 | |
| }
 | |
| 
 | |
| // 8-bit immediate stores to 8-bit fields.
 | |
| defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
 | |
| 
 | |
| // 16-bit immediate stores to 16-, 32- or 64-bit fields.
 | |
| def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
 | |
| def MVHI  : StoreSIL<"mvhi",  0xE54C, store,         imm32sx16>;
 | |
| def MVGHI : StoreSIL<"mvghi", 0xE548, store,         imm64sx16>;
 | |
| 
 | |
| // Memory-to-memory moves.
 | |
| let mayLoad = 1, mayStore = 1 in
 | |
|   defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>;
 | |
| 
 | |
| // String moves.
 | |
| let mayLoad = 1, mayStore = 1, Defs = [CC] in
 | |
|   defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Sign extensions
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Note that putting these before zero extensions mean that we will prefer
 | |
| // them for anyextload*.  There's not really much to choose between the two
 | |
| // either way, but signed-extending loads have a short LH and a long LHY,
 | |
| // while zero-extending loads have only the long LLH.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // 32-bit extensions from registers.
 | |
| let hasSideEffects = 0 in {
 | |
|   def LBR : UnaryRRE<"lb", 0xB926, sext8,  GR32, GR32>;
 | |
|   def LHR : UnaryRRE<"lh", 0xB927, sext16, GR32, GR32>;
 | |
| }
 | |
| 
 | |
| // 64-bit extensions from registers.
 | |
| let hasSideEffects = 0 in {
 | |
|   def LGBR : UnaryRRE<"lgb", 0xB906, sext8,  GR64, GR64>;
 | |
|   def LGHR : UnaryRRE<"lgh", 0xB907, sext16, GR64, GR64>;
 | |
|   def LGFR : UnaryRRE<"lgf", 0xB914, sext32, GR64, GR32>;
 | |
| }
 | |
| let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
 | |
|   def LTGFR : UnaryRRE<"ltgf", 0xB912, null_frag, GR64, GR32>;
 | |
| 
 | |
| // Match 32-to-64-bit sign extensions in which the source is already
 | |
| // in a 64-bit register.
 | |
| def : Pat<(sext_inreg GR64:$src, i32),
 | |
|           (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
 | |
| 
 | |
| // 32-bit extensions from 8-bit memory.  LBMux expands to LB or LBH,
 | |
| // depending on the choice of register.
 | |
| def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>,
 | |
|             Requires<[FeatureHighWord]>;
 | |
| def LB  : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>;
 | |
| def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>,
 | |
|           Requires<[FeatureHighWord]>;
 | |
| 
 | |
| // 32-bit extensions from 16-bit memory.  LHMux expands to LH or LHH,
 | |
| // depending on the choice of register.
 | |
| def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>,
 | |
|             Requires<[FeatureHighWord]>;
 | |
| defm LH   : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>;
 | |
| def  LHH  : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>,
 | |
|             Requires<[FeatureHighWord]>;
 | |
| def  LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>;
 | |
| 
 | |
| // 64-bit extensions from memory.
 | |
| def LGB   : UnaryRXY<"lgb", 0xE377, asextloadi8,  GR64, 1>;
 | |
| def LGH   : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>;
 | |
| def LGF   : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>;
 | |
| def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>;
 | |
| def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>;
 | |
| let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
 | |
|   def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Zero extensions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // 32-bit extensions from registers.
 | |
| let hasSideEffects = 0 in {
 | |
|   // Expands to LLCR or RISB[LH]G, depending on the choice of registers.
 | |
|   def LLCRMux : UnaryRRPseudo<"llc", zext8, GRX32, GRX32>,
 | |
|                 Requires<[FeatureHighWord]>;
 | |
|   def LLCR    : UnaryRRE<"llc", 0xB994, zext8,  GR32, GR32>;
 | |
|   // Expands to LLHR or RISB[LH]G, depending on the choice of registers.
 | |
|   def LLHRMux : UnaryRRPseudo<"llh", zext16, GRX32, GRX32>,
 | |
|                 Requires<[FeatureHighWord]>;
 | |
|   def LLHR    : UnaryRRE<"llh", 0xB995, zext16, GR32, GR32>;
 | |
| }
 | |
| 
 | |
| // 64-bit extensions from registers.
 | |
| let hasSideEffects = 0 in {
 | |
|   def LLGCR : UnaryRRE<"llgc", 0xB984, zext8,  GR64, GR64>;
 | |
|   def LLGHR : UnaryRRE<"llgh", 0xB985, zext16, GR64, GR64>;
 | |
|   def LLGFR : UnaryRRE<"llgf", 0xB916, zext32, GR64, GR32>;
 | |
| }
 | |
| 
 | |
| // Match 32-to-64-bit zero extensions in which the source is already
 | |
| // in a 64-bit register.
 | |
| def : Pat<(and GR64:$src, 0xffffffff),
 | |
|           (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
 | |
| 
 | |
| // 32-bit extensions from 8-bit memory.  LLCMux expands to LLC or LLCH,
 | |
| // depending on the choice of register.
 | |
| def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>,
 | |
|              Requires<[FeatureHighWord]>;
 | |
| def LLC  : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>;
 | |
| def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>,
 | |
|            Requires<[FeatureHighWord]>;
 | |
| 
 | |
| // 32-bit extensions from 16-bit memory.  LLHMux expands to LLH or LLHH,
 | |
| // depending on the choice of register.
 | |
| def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>,
 | |
|              Requires<[FeatureHighWord]>;
 | |
| def LLH   : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>;
 | |
| def LLHH  : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>,
 | |
|             Requires<[FeatureHighWord]>;
 | |
| def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>;
 | |
| 
 | |
| // 64-bit extensions from memory.
 | |
| def LLGC   : UnaryRXY<"llgc", 0xE390, azextloadi8,  GR64, 1>;
 | |
| def LLGH   : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>;
 | |
| def LLGF   : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>;
 | |
| def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>;
 | |
| def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Truncations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Truncations of 64-bit registers to 32-bit registers.
 | |
| def : Pat<(i32 (trunc GR64:$src)),
 | |
|           (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
 | |
| 
 | |
| // Truncations of 32-bit registers to 8-bit memory.  STCMux expands to
 | |
| // STC, STCY or STCH, depending on the choice of register.
 | |
| def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
 | |
|              Requires<[FeatureHighWord]>;
 | |
| defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
 | |
| def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
 | |
|            Requires<[FeatureHighWord]>;
 | |
| 
 | |
| // Truncations of 32-bit registers to 16-bit memory.  STHMux expands to
 | |
| // STH, STHY or STHH, depending on the choice of register.
 | |
| def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
 | |
|              Requires<[FeatureHighWord]>;
 | |
| defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
 | |
| def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
 | |
|            Requires<[FeatureHighWord]>;
 | |
| def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
 | |
| 
 | |
| // Truncations of 64-bit registers to memory.
 | |
| defm : StoreGR64Pair<STC, STCY, truncstorei8>;
 | |
| defm : StoreGR64Pair<STH, STHY, truncstorei16>;
 | |
| def  : StoreGR64PC<STHRL, aligned_truncstorei16>;
 | |
| defm : StoreGR64Pair<ST, STY, truncstorei32>;
 | |
| def  : StoreGR64PC<STRL, aligned_truncstorei32>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Multi-register moves
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Multi-register loads.
 | |
| def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
 | |
| 
 | |
| // Multi-register stores.
 | |
| def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Byte swaps
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Byte-swapping register moves.
 | |
| let hasSideEffects = 0 in {
 | |
|   def LRVR  : UnaryRRE<"lrv",  0xB91F, bswap, GR32, GR32>;
 | |
|   def LRVGR : UnaryRRE<"lrvg", 0xB90F, bswap, GR64, GR64>;
 | |
| }
 | |
| 
 | |
| // Byte-swapping loads.  Unlike normal loads, these instructions are
 | |
| // allowed to access storage more than once.
 | |
| def LRV  : UnaryRXY<"lrv",  0xE31E, loadu<bswap, nonvolatile_load>, GR32, 4>;
 | |
| def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64, 8>;
 | |
| 
 | |
| // Likewise byte-swapping stores.
 | |
| def STRV  : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32, 4>;
 | |
| def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>,
 | |
|                      GR64, 8>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Load address instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Load BDX-style addresses.
 | |
| let hasSideEffects = 0, isAsCheapAsAMove = 1, isReMaterializable = 1,
 | |
|     DispKey = "la" in {
 | |
|   let DispSize = "12" in
 | |
|     def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
 | |
|                     "la\t$R1, $XBD2",
 | |
|                     [(set GR64:$R1, laaddr12pair:$XBD2)]>;
 | |
|   let DispSize = "20" in
 | |
|     def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
 | |
|                       "lay\t$R1, $XBD2",
 | |
|                       [(set GR64:$R1, laaddr20pair:$XBD2)]>;
 | |
| }
 | |
| 
 | |
| // Load a PC-relative address.  There's no version of this instruction
 | |
| // with a 16-bit offset, so there's no relaxation.
 | |
| let hasSideEffects = 0, isAsCheapAsAMove = 1, isMoveImm = 1,
 | |
|     isReMaterializable = 1 in {
 | |
|   def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
 | |
|                      "larl\t$R1, $I2",
 | |
|                      [(set GR64:$R1, pcrel32:$I2)]>;
 | |
| }
 | |
| 
 | |
| // Load the Global Offset Table address.  This will be lowered into a
 | |
| //     larl $R1, _GLOBAL_OFFSET_TABLE_
 | |
| // instruction.
 | |
| def GOT : Alias<6, (outs GR64:$R1), (ins),
 | |
|                 [(set GR64:$R1, (global_offset_table))]>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Absolute and Negation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Defs = [CC] in {
 | |
|   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
 | |
|     def LPR  : UnaryRR <"lp",  0x10,   z_iabs, GR32, GR32>;
 | |
|     def LPGR : UnaryRRE<"lpg", 0xB900, z_iabs, GR64, GR64>;
 | |
|   }
 | |
|   let CCValues = 0xE, CompareZeroCCMask = 0xE in
 | |
|     def LPGFR : UnaryRRE<"lpgf", 0xB910, null_frag, GR64, GR32>;
 | |
| }
 | |
| def : Pat<(z_iabs32 GR32:$src), (LPR  GR32:$src)>;
 | |
| def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>;
 | |
| defm : SXU<z_iabs,   LPGFR>;
 | |
| defm : SXU<z_iabs64, LPGFR>;
 | |
| 
 | |
| let Defs = [CC] in {
 | |
|   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
 | |
|     def LNR  : UnaryRR <"ln",  0x11,   z_inegabs, GR32, GR32>;
 | |
|     def LNGR : UnaryRRE<"lng", 0xB901, z_inegabs, GR64, GR64>;
 | |
|   }
 | |
|   let CCValues = 0xE, CompareZeroCCMask = 0xE in
 | |
|     def LNGFR : UnaryRRE<"lngf", 0xB911, null_frag, GR64, GR32>;
 | |
| }
 | |
| def : Pat<(z_inegabs32 GR32:$src), (LNR  GR32:$src)>;
 | |
| def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>;
 | |
| defm : SXU<z_inegabs,   LNGFR>;
 | |
| defm : SXU<z_inegabs64, LNGFR>;
 | |
| 
 | |
| let Defs = [CC] in {
 | |
|   let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
 | |
|     def LCR  : UnaryRR <"lc",  0x13,   ineg, GR32, GR32>;
 | |
|     def LCGR : UnaryRRE<"lcg", 0xB903, ineg, GR64, GR64>;
 | |
|   }
 | |
|   let CCValues = 0xE, CompareZeroCCMask = 0xE in
 | |
|     def LCGFR : UnaryRRE<"lcgf", 0xB913, null_frag, GR64, GR32>;
 | |
| }
 | |
| defm : SXU<ineg, LCGFR>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Insertion
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let isCodeGenOnly = 1 in
 | |
|   defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>;
 | |
| defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>;
 | |
| 
 | |
| defm : InsertMem<"inserti8", IC32,  GR32, azextloadi8, bdxaddr12pair>;
 | |
| defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>;
 | |
| 
 | |
| defm : InsertMem<"inserti8", IC,  GR64, azextloadi8, bdxaddr12pair>;
 | |
| defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>;
 | |
| 
 | |
| // Insertions of a 16-bit immediate, leaving other bits unaffected.
 | |
| // We don't have or_as_insert equivalents of these operations because
 | |
| // OI is available instead.
 | |
| //
 | |
| // IIxMux expands to II[LH]x, depending on the choice of register.
 | |
| def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
 | |
|              Requires<[FeatureHighWord]>;
 | |
| def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
 | |
|              Requires<[FeatureHighWord]>;
 | |
| def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
 | |
| def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
 | |
| def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
 | |
| def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
 | |
| def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>;
 | |
| def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>;
 | |
| def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>;
 | |
| def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>;
 | |
| 
 | |
| // ...likewise for 32-bit immediates.  For GR32s this is a general
 | |
| // full-width move.  (We use IILF rather than something like LLILF
 | |
| // for 32-bit moves because IILF leaves the upper 32 bits of the
 | |
| // GR64 unchanged.)
 | |
| let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
 | |
|   def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
 | |
|                Requires<[FeatureHighWord]>;
 | |
|   def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
 | |
|   def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
 | |
| }
 | |
| def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
 | |
| def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
 | |
| 
 | |
| // An alternative model of inserthf, with the first operand being
 | |
| // a zero-extended value.
 | |
| def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
 | |
|           (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
 | |
|                   imm64hf32:$imm)>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Addition
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Plain addition.
 | |
| let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
 | |
|   // Addition of a register.
 | |
|   let isCommutable = 1 in {
 | |
|     defm AR : BinaryRRAndK<"a", 0x1A, 0xB9F8, add, GR32, GR32>;
 | |
|     defm AGR : BinaryRREAndK<"ag", 0xB908, 0xB9E8, add, GR64, GR64>;
 | |
|   }
 | |
|   def AGFR : BinaryRRE<"agf", 0xB918, null_frag, GR64, GR32>;
 | |
| 
 | |
|   // Addition of signed 16-bit immediates.
 | |
|   defm AHIMux : BinaryRIAndKPseudo<"ahimux", add, GRX32, imm32sx16>;
 | |
|   defm AHI  : BinaryRIAndK<"ahi",  0xA7A, 0xECD8, add, GR32, imm32sx16>;
 | |
|   defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, add, GR64, imm64sx16>;
 | |
| 
 | |
|   // Addition of signed 32-bit immediates.
 | |
|   def AFIMux : BinaryRIPseudo<add, GRX32, simm32>,
 | |
|                Requires<[FeatureHighWord]>;
 | |
|   def AFI  : BinaryRIL<"afi",  0xC29, add, GR32, simm32>;
 | |
|   def AIH  : BinaryRIL<"aih",  0xCC8, add, GRH32, simm32>,
 | |
|              Requires<[FeatureHighWord]>;
 | |
|   def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
 | |
| 
 | |
|   // Addition of memory.
 | |
|   defm AH  : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, asextloadi16, 2>;
 | |
|   defm A   : BinaryRXPair<"a",  0x5A, 0xE35A, add, GR32, load, 4>;
 | |
|   def  AGF : BinaryRXY<"agf", 0xE318, add, GR64, asextloadi32, 4>;
 | |
|   def  AG  : BinaryRXY<"ag",  0xE308, add, GR64, load, 8>;
 | |
| 
 | |
|   // Addition to memory.
 | |
|   def ASI  : BinarySIY<"asi",  0xEB6A, add, imm32sx8>;
 | |
|   def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
 | |
| }
 | |
| defm : SXB<add, GR64, AGFR>;
 | |
| 
 | |
| // Addition producing a carry.
 | |
| let Defs = [CC] in {
 | |
|   // Addition of a register.
 | |
|   let isCommutable = 1 in {
 | |
|     defm ALR : BinaryRRAndK<"al", 0x1E, 0xB9FA, addc, GR32, GR32>;
 | |
|     defm ALGR : BinaryRREAndK<"alg", 0xB90A, 0xB9EA, addc, GR64, GR64>;
 | |
|   }
 | |
|   def ALGFR : BinaryRRE<"algf", 0xB91A, null_frag, GR64, GR32>;
 | |
| 
 | |
|   // Addition of signed 16-bit immediates.
 | |
|   def ALHSIK  : BinaryRIE<"alhsik",  0xECDA, addc, GR32, imm32sx16>,
 | |
|                 Requires<[FeatureDistinctOps]>;
 | |
|   def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, addc, GR64, imm64sx16>,
 | |
|                 Requires<[FeatureDistinctOps]>;
 | |
| 
 | |
|   // Addition of unsigned 32-bit immediates.
 | |
|   def ALFI  : BinaryRIL<"alfi",  0xC2B, addc, GR32, uimm32>;
 | |
|   def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
 | |
| 
 | |
|   // Addition of memory.
 | |
|   defm AL   : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load, 4>;
 | |
|   def  ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, azextloadi32, 4>;
 | |
|   def  ALG  : BinaryRXY<"alg",  0xE30A, addc, GR64, load, 8>;
 | |
| }
 | |
| defm : ZXB<addc, GR64, ALGFR>;
 | |
| 
 | |
| // Addition producing and using a carry.
 | |
| let Defs = [CC], Uses = [CC] in {
 | |
|   // Addition of a register.
 | |
|   def ALCR  : BinaryRRE<"alc",  0xB998, adde, GR32, GR32>;
 | |
|   def ALCGR : BinaryRRE<"alcg", 0xB988, adde, GR64, GR64>;
 | |
| 
 | |
|   // Addition of memory.
 | |
|   def ALC  : BinaryRXY<"alc",  0xE398, adde, GR32, load, 4>;
 | |
|   def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load, 8>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Subtraction
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Plain subtraction.  Although immediate forms exist, we use the
 | |
| // add-immediate instruction instead.
 | |
| let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in {
 | |
|   // Subtraction of a register.
 | |
|   defm SR : BinaryRRAndK<"s", 0x1B, 0xB9F9, sub, GR32, GR32>;
 | |
|   def SGFR : BinaryRRE<"sgf", 0xB919, null_frag, GR64, GR32>;
 | |
|   defm SGR : BinaryRREAndK<"sg", 0xB909, 0xB9E9, sub, GR64, GR64>;
 | |
| 
 | |
|   // Subtraction of memory.
 | |
|   defm SH  : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, asextloadi16, 2>;
 | |
|   defm S   : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load, 4>;
 | |
|   def  SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, asextloadi32, 4>;
 | |
|   def  SG  : BinaryRXY<"sg",  0xE309, sub, GR64, load, 8>;
 | |
| }
 | |
| defm : SXB<sub, GR64, SGFR>;
 | |
| 
 | |
| // Subtraction producing a carry.
 | |
| let Defs = [CC] in {
 | |
|   // Subtraction of a register.
 | |
|   defm SLR : BinaryRRAndK<"sl", 0x1F, 0xB9FB, subc, GR32, GR32>;
 | |
|   def SLGFR : BinaryRRE<"slgf", 0xB91B, null_frag, GR64, GR32>;
 | |
|   defm SLGR : BinaryRREAndK<"slg", 0xB90B, 0xB9EB, subc, GR64, GR64>;
 | |
| 
 | |
|   // Subtraction of unsigned 32-bit immediates.  These don't match
 | |
|   // subc because we prefer addc for constants.
 | |
|   def SLFI  : BinaryRIL<"slfi",  0xC25, null_frag, GR32, uimm32>;
 | |
|   def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
 | |
| 
 | |
|   // Subtraction of memory.
 | |
|   defm SL   : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load, 4>;
 | |
|   def  SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, azextloadi32, 4>;
 | |
|   def  SLG  : BinaryRXY<"slg",  0xE30B, subc, GR64, load, 8>;
 | |
| }
 | |
| defm : ZXB<subc, GR64, SLGFR>;
 | |
| 
 | |
| // Subtraction producing and using a carry.
 | |
| let Defs = [CC], Uses = [CC] in {
 | |
|   // Subtraction of a register.
 | |
|   def SLBR  : BinaryRRE<"slb",  0xB999, sube, GR32, GR32>;
 | |
|   def SLGBR : BinaryRRE<"slbg", 0xB989, sube, GR64, GR64>;
 | |
| 
 | |
|   // Subtraction of memory.
 | |
|   def SLB  : BinaryRXY<"slb",  0xE399, sube, GR32, load, 4>;
 | |
|   def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load, 8>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // AND
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Defs = [CC] in {
 | |
|   // ANDs of a register.
 | |
|   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
 | |
|     defm NR : BinaryRRAndK<"n", 0x14, 0xB9F4, and, GR32, GR32>;
 | |
|     defm NGR : BinaryRREAndK<"ng", 0xB980, 0xB9E4, and, GR64, GR64>;
 | |
|   }
 | |
| 
 | |
|   let isConvertibleToThreeAddress = 1 in {
 | |
|     // ANDs of a 16-bit immediate, leaving other bits unaffected.
 | |
|     // The CC result only reflects the 16-bit field, not the full register.
 | |
|     //
 | |
|     // NIxMux expands to NI[LH]x, depending on the choice of register.
 | |
|     def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
 | |
|                  Requires<[FeatureHighWord]>;
 | |
|     def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
 | |
|                  Requires<[FeatureHighWord]>;
 | |
|     def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
 | |
|     def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
 | |
|     def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
 | |
|     def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
 | |
|     def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
 | |
|     def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
 | |
|     def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
 | |
|     def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
 | |
| 
 | |
|     // ANDs of a 32-bit immediate, leaving other bits unaffected.
 | |
|     // The CC result only reflects the 32-bit field, which means we can
 | |
|     // use it as a zero indicator for i32 operations but not otherwise.
 | |
|     let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
 | |
|       // Expands to NILF or NIHF, depending on the choice of register.
 | |
|       def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
 | |
|                    Requires<[FeatureHighWord]>;
 | |
|       def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
 | |
|       def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
 | |
|     }
 | |
|     def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
 | |
|     def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
 | |
|   }
 | |
| 
 | |
|   // ANDs of memory.
 | |
|   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
 | |
|     defm N  : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>;
 | |
|     def  NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; 
 | |
|   }
 | |
| 
 | |
|   // AND to memory
 | |
|   defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
 | |
| 
 | |
|   // Block AND.
 | |
|   let mayLoad = 1, mayStore = 1 in
 | |
|     defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>;
 | |
| }
 | |
| defm : RMWIByte<and, bdaddr12pair, NI>;
 | |
| defm : RMWIByte<and, bdaddr20pair, NIY>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // OR
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Defs = [CC] in {
 | |
|   // ORs of a register.
 | |
|   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
 | |
|     defm OR : BinaryRRAndK<"o", 0x16, 0xB9F6, or, GR32, GR32>;
 | |
|     defm OGR : BinaryRREAndK<"og", 0xB981, 0xB9E6, or, GR64, GR64>;
 | |
|   }
 | |
| 
 | |
|   // ORs of a 16-bit immediate, leaving other bits unaffected.
 | |
|   // The CC result only reflects the 16-bit field, not the full register.
 | |
|   //
 | |
|   // OIxMux expands to OI[LH]x, depending on the choice of register.
 | |
|   def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
 | |
|                Requires<[FeatureHighWord]>;
 | |
|   def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
 | |
|                Requires<[FeatureHighWord]>;
 | |
|   def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
 | |
|   def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
 | |
|   def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
 | |
|   def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
 | |
|   def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
 | |
|   def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
 | |
|   def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
 | |
|   def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
 | |
| 
 | |
|   // ORs of a 32-bit immediate, leaving other bits unaffected.
 | |
|   // The CC result only reflects the 32-bit field, which means we can
 | |
|   // use it as a zero indicator for i32 operations but not otherwise.
 | |
|   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
 | |
|     // Expands to OILF or OIHF, depending on the choice of register.
 | |
|     def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
 | |
|                  Requires<[FeatureHighWord]>;
 | |
|     def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
 | |
|     def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
 | |
|   }
 | |
|   def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
 | |
|   def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
 | |
| 
 | |
|   // ORs of memory.
 | |
|   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
 | |
|     defm O  : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>;
 | |
|     def  OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>;
 | |
|   }
 | |
| 
 | |
|   // OR to memory
 | |
|   defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
 | |
| 
 | |
|   // Block OR.
 | |
|   let mayLoad = 1, mayStore = 1 in
 | |
|     defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>;
 | |
| }
 | |
| defm : RMWIByte<or, bdaddr12pair, OI>;
 | |
| defm : RMWIByte<or, bdaddr20pair, OIY>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // XOR
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Defs = [CC] in {
 | |
|   // XORs of a register.
 | |
|   let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
 | |
|     defm XR : BinaryRRAndK<"x", 0x17, 0xB9F7, xor, GR32, GR32>;
 | |
|     defm XGR : BinaryRREAndK<"xg", 0xB982, 0xB9E7, xor, GR64, GR64>;
 | |
|   }
 | |
| 
 | |
|   // XORs of a 32-bit immediate, leaving other bits unaffected.
 | |
|   // The CC result only reflects the 32-bit field, which means we can
 | |
|   // use it as a zero indicator for i32 operations but not otherwise.
 | |
|   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
 | |
|     // Expands to XILF or XIHF, depending on the choice of register.
 | |
|     def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
 | |
|                  Requires<[FeatureHighWord]>;
 | |
|     def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
 | |
|     def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
 | |
|   }
 | |
|   def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
 | |
|   def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
 | |
| 
 | |
|   // XORs of memory.
 | |
|   let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
 | |
|     defm X  : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>;
 | |
|     def  XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>;
 | |
|   }
 | |
| 
 | |
|   // XOR to memory
 | |
|   defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
 | |
| 
 | |
|   // Block XOR.
 | |
|   let mayLoad = 1, mayStore = 1 in
 | |
|     defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>;
 | |
| }
 | |
| defm : RMWIByte<xor, bdaddr12pair, XI>;
 | |
| defm : RMWIByte<xor, bdaddr20pair, XIY>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Multiplication
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Multiplication of a register.
 | |
| let isCommutable = 1 in {
 | |
|   def MSR  : BinaryRRE<"ms",  0xB252, mul, GR32, GR32>;
 | |
|   def MSGR : BinaryRRE<"msg", 0xB90C, mul, GR64, GR64>;
 | |
| }
 | |
| def MSGFR : BinaryRRE<"msgf", 0xB91C, null_frag, GR64, GR32>;
 | |
| defm : SXB<mul, GR64, MSGFR>;
 | |
| 
 | |
| // Multiplication of a signed 16-bit immediate.
 | |
| def MHI  : BinaryRI<"mhi",  0xA7C, mul, GR32, imm32sx16>;
 | |
| def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
 | |
| 
 | |
| // Multiplication of a signed 32-bit immediate.
 | |
| def MSFI  : BinaryRIL<"msfi",  0xC21, mul, GR32, simm32>;
 | |
| def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
 | |
| 
 | |
| // Multiplication of memory.
 | |
| defm MH   : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>;
 | |
| defm MS   : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>;
 | |
| def  MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>;
 | |
| def  MSG  : BinaryRXY<"msg",  0xE30C, mul, GR64, load, 8>;
 | |
| 
 | |
| // Multiplication of a register, producing two results.
 | |
| def MLGR : BinaryRRE<"mlg", 0xB986, z_umul_lohi64, GR128, GR64>;
 | |
| 
 | |
| // Multiplication of memory, producing two results.
 | |
| def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load, 8>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Division and remainder
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Division and remainder, from registers.
 | |
| def DSGFR : BinaryRRE<"dsgf", 0xB91D, z_sdivrem32, GR128, GR32>;
 | |
| def DSGR  : BinaryRRE<"dsg",  0xB90D, z_sdivrem64, GR128, GR64>;
 | |
| def DLR   : BinaryRRE<"dl",   0xB997, z_udivrem32, GR128, GR32>;
 | |
| def DLGR  : BinaryRRE<"dlg",  0xB987, z_udivrem64, GR128, GR64>;
 | |
| 
 | |
| // Division and remainder, from memory.
 | |
| def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem32, GR128, load, 4>;
 | |
| def DSG  : BinaryRXY<"dsg",  0xE30D, z_sdivrem64, GR128, load, 8>;
 | |
| def DL   : BinaryRXY<"dl",   0xE397, z_udivrem32, GR128, load, 4>;
 | |
| def DLG  : BinaryRXY<"dlg",  0xE387, z_udivrem64, GR128, load, 8>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Shifts
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Shift left.
 | |
| let hasSideEffects = 0 in {
 | |
|   defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shl, GR32>;
 | |
|   def SLLG : BinaryRSY<"sllg", 0xEB0D, shl, GR64>;
 | |
| }
 | |
| 
 | |
| // Logical shift right.
 | |
| let hasSideEffects = 0 in {
 | |
|   defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, srl, GR32>;
 | |
|   def SRLG : BinaryRSY<"srlg", 0xEB0C, srl, GR64>;
 | |
| }
 | |
| 
 | |
| // Arithmetic shift right.
 | |
| let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
 | |
|   defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, sra, GR32>;
 | |
|   def SRAG : BinaryRSY<"srag", 0xEB0A, sra, GR64>;
 | |
| }
 | |
| 
 | |
| // Rotate left.
 | |
| let hasSideEffects = 0 in {
 | |
|   def RLL  : BinaryRSY<"rll",  0xEB1D, rotl, GR32>;
 | |
|   def RLLG : BinaryRSY<"rllg", 0xEB1C, rotl, GR64>;
 | |
| }
 | |
| 
 | |
| // Rotate second operand left and inserted selected bits into first operand.
 | |
| // These can act like 32-bit operands provided that the constant start and
 | |
| // end bits (operands 2 and 3) are in the range [32, 64).
 | |
| let Defs = [CC] in {
 | |
|   let isCodeGenOnly = 1 in
 | |
|     def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
 | |
|   let CCValues = 0xE, CompareZeroCCMask = 0xE in
 | |
|     def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
 | |
| }
 | |
| 
 | |
| // On zEC12 we have a variant of RISBG that does not set CC.
 | |
| let Predicates = [FeatureMiscellaneousExtensions] in
 | |
|   def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
 | |
| 
 | |
| // Forms of RISBG that only affect one word of the destination register.
 | |
| // They do not set CC.
 | |
| let Predicates = [FeatureHighWord] in {
 | |
|   def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
 | |
|   def RISBLL  : RotateSelectAliasRIEf<GR32,  GR32>;
 | |
|   def RISBLH  : RotateSelectAliasRIEf<GR32,  GRH32>;
 | |
|   def RISBHL  : RotateSelectAliasRIEf<GRH32, GR32>;
 | |
|   def RISBHH  : RotateSelectAliasRIEf<GRH32, GRH32>;
 | |
|   def RISBLG  : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
 | |
|   def RISBHG  : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
 | |
| }
 | |
| 
 | |
| // Rotate second operand left and perform a logical operation with selected
 | |
| // bits of the first operand.  The CC result only describes the selected bits,
 | |
| // so isn't useful for a full comparison against zero.
 | |
| let Defs = [CC] in {
 | |
|   def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
 | |
|   def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
 | |
|   def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Comparison
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Signed comparisons.  We put these before the unsigned comparisons because
 | |
| // some of the signed forms have COMPARE AND BRANCH equivalents whereas none
 | |
| // of the unsigned forms do.
 | |
| let Defs = [CC], CCValues = 0xE in {
 | |
|   // Comparison with a register.
 | |
|   def CR   : CompareRR <"c",   0x19,   z_scmp,    GR32, GR32>;
 | |
|   def CGFR : CompareRRE<"cgf", 0xB930, null_frag, GR64, GR32>;
 | |
|   def CGR  : CompareRRE<"cg",  0xB920, z_scmp,    GR64, GR64>;
 | |
| 
 | |
|   // Comparison with a signed 16-bit immediate.
 | |
|   def CHI  : CompareRI<"chi",  0xA7E, z_scmp, GR32, imm32sx16>;
 | |
|   def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
 | |
| 
 | |
|   // Comparison with a signed 32-bit immediate.  CFIMux expands to CFI or CIH,
 | |
|   // depending on the choice of register.
 | |
|   def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
 | |
|                Requires<[FeatureHighWord]>;
 | |
|   def CFI  : CompareRIL<"cfi",  0xC2D, z_scmp, GR32, simm32>;
 | |
|   def CIH  : CompareRIL<"cih",  0xCCD, z_scmp, GRH32, simm32>,
 | |
|              Requires<[FeatureHighWord]>;
 | |
|   def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
 | |
| 
 | |
|   // Comparison with memory.
 | |
|   defm CH    : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>;
 | |
|   def  CMux  : CompareRXYPseudo<z_scmp, GRX32, load, 4>,
 | |
|                Requires<[FeatureHighWord]>;
 | |
|   defm C     : CompareRXPair<"c",  0x59, 0xE359, z_scmp, GR32, load, 4>;
 | |
|   def  CHF   : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>,
 | |
|                Requires<[FeatureHighWord]>;
 | |
|   def  CGH   : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>;
 | |
|   def  CGF   : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>;
 | |
|   def  CG    : CompareRXY<"cg",  0xE320, z_scmp, GR64, load, 8>;
 | |
|   def  CHRL  : CompareRILPC<"chrl",  0xC65, z_scmp, GR32, aligned_asextloadi16>;
 | |
|   def  CRL   : CompareRILPC<"crl",   0xC6D, z_scmp, GR32, aligned_load>;
 | |
|   def  CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>;
 | |
|   def  CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>;
 | |
|   def  CGRL  : CompareRILPC<"cgrl",  0xC68, z_scmp, GR64, aligned_load>;
 | |
| 
 | |
|   // Comparison between memory and a signed 16-bit immediate.
 | |
|   def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>;
 | |
|   def CHSI  : CompareSIL<"chsi",  0xE55C, z_scmp, load, imm32sx16>;
 | |
|   def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>;
 | |
| }
 | |
| defm : SXB<z_scmp, GR64, CGFR>;
 | |
| 
 | |
| // Unsigned comparisons.
 | |
| let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
 | |
|   // Comparison with a register.
 | |
|   def CLR   : CompareRR <"cl",   0x15,   z_ucmp,    GR32, GR32>;
 | |
|   def CLGFR : CompareRRE<"clgf", 0xB931, null_frag, GR64, GR32>;
 | |
|   def CLGR  : CompareRRE<"clg",  0xB921, z_ucmp,    GR64, GR64>;
 | |
| 
 | |
|   // Comparison with an unsigned 32-bit immediate.  CLFIMux expands to CLFI
 | |
|   // or CLIH, depending on the choice of register.
 | |
|   def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
 | |
|                 Requires<[FeatureHighWord]>;
 | |
|   def CLFI  : CompareRIL<"clfi",  0xC2F, z_ucmp, GR32, uimm32>;
 | |
|   def CLIH  : CompareRIL<"clih",  0xCCF, z_ucmp, GRH32, uimm32>,
 | |
|               Requires<[FeatureHighWord]>;
 | |
|   def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
 | |
| 
 | |
|   // Comparison with memory.
 | |
|   def  CLMux  : CompareRXYPseudo<z_ucmp, GRX32, load, 4>,
 | |
|                 Requires<[FeatureHighWord]>;
 | |
|   defm CL     : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>;
 | |
|   def  CLHF   : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>,
 | |
|                 Requires<[FeatureHighWord]>;
 | |
|   def  CLGF   : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>;
 | |
|   def  CLG    : CompareRXY<"clg",  0xE321, z_ucmp, GR64, load, 8>;
 | |
|   def  CLHRL  : CompareRILPC<"clhrl",  0xC67, z_ucmp, GR32,
 | |
|                              aligned_azextloadi16>;
 | |
|   def  CLRL   : CompareRILPC<"clrl",   0xC6F, z_ucmp, GR32,
 | |
|                              aligned_load>;
 | |
|   def  CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
 | |
|                              aligned_azextloadi16>;
 | |
|   def  CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
 | |
|                              aligned_azextloadi32>;
 | |
|   def  CLGRL  : CompareRILPC<"clgrl",  0xC6A, z_ucmp, GR64,
 | |
|                              aligned_load>;
 | |
| 
 | |
|   // Comparison between memory and an unsigned 8-bit immediate.
 | |
|   defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>;
 | |
| 
 | |
|   // Comparison between memory and an unsigned 16-bit immediate.
 | |
|   def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>;
 | |
|   def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
 | |
|   def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
 | |
| }
 | |
| defm : ZXB<z_ucmp, GR64, CLGFR>;
 | |
| 
 | |
| // Memory-to-memory comparison.
 | |
| let mayLoad = 1, Defs = [CC] in
 | |
|   defm CLC : MemorySS<"clc", 0xD5, z_clc, z_clc_loop>;
 | |
| 
 | |
| // String comparison.
 | |
| let mayLoad = 1, Defs = [CC] in
 | |
|   defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
 | |
| 
 | |
| // Test under mask.
 | |
| let Defs = [CC] in {
 | |
|   // TMxMux expands to TM[LH]x, depending on the choice of register.
 | |
|   def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
 | |
|                Requires<[FeatureHighWord]>;
 | |
|   def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
 | |
|                Requires<[FeatureHighWord]>;
 | |
|   def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
 | |
|   def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
 | |
|   def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
 | |
|   def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
 | |
| 
 | |
|   def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
 | |
|   def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
 | |
|   def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
 | |
|   def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
 | |
| 
 | |
|   defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Prefetch
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
 | |
| def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Atomic operations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| def Serialize : Alias<2, (outs), (ins), [(z_serialize)]>;
 | |
| 
 | |
| let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
 | |
|   def LAA   : LoadAndOpRSY<"laa",   0xEBF8, atomic_load_add_32, GR32>;
 | |
|   def LAAG  : LoadAndOpRSY<"laag",  0xEBE8, atomic_load_add_64, GR64>;
 | |
|   def LAAL  : LoadAndOpRSY<"laal",  0xEBFA, null_frag, GR32>;
 | |
|   def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
 | |
|   def LAN   : LoadAndOpRSY<"lan",   0xEBF4, atomic_load_and_32, GR32>;
 | |
|   def LANG  : LoadAndOpRSY<"lang",  0xEBE4, atomic_load_and_64, GR64>;
 | |
|   def LAO   : LoadAndOpRSY<"lao",   0xEBF6, atomic_load_or_32, GR32>;
 | |
|   def LAOG  : LoadAndOpRSY<"laog",  0xEBE6, atomic_load_or_64, GR64>;
 | |
|   def LAX   : LoadAndOpRSY<"lax",   0xEBF7, atomic_load_xor_32, GR32>;
 | |
|   def LAXG  : LoadAndOpRSY<"laxg",  0xEBE7, atomic_load_xor_64, GR64>;
 | |
| }
 | |
| 
 | |
| def ATOMIC_SWAPW   : AtomicLoadWBinaryReg<z_atomic_swapw>;
 | |
| def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
 | |
| def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
 | |
| 
 | |
| def ATOMIC_LOADW_AR  : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
 | |
| def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
 | |
| let Predicates = [FeatureNoInterlockedAccess1] in {
 | |
|   def ATOMIC_LOAD_AR   : AtomicLoadBinaryReg32<atomic_load_add_32>;
 | |
|   def ATOMIC_LOAD_AHI  : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
 | |
|   def ATOMIC_LOAD_AFI  : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
 | |
|   def ATOMIC_LOAD_AGR  : AtomicLoadBinaryReg64<atomic_load_add_64>;
 | |
|   def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
 | |
|   def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
 | |
| }
 | |
| 
 | |
| def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
 | |
| def ATOMIC_LOAD_SR  : AtomicLoadBinaryReg32<atomic_load_sub_32>;
 | |
| def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
 | |
| 
 | |
| def ATOMIC_LOADW_NR   : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
 | |
| def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
 | |
| let Predicates = [FeatureNoInterlockedAccess1] in {
 | |
|   def ATOMIC_LOAD_NR     : AtomicLoadBinaryReg32<atomic_load_and_32>;
 | |
|   def ATOMIC_LOAD_NILL   : AtomicLoadBinaryImm32<atomic_load_and_32,
 | |
|                                                  imm32ll16c>;
 | |
|   def ATOMIC_LOAD_NILH   : AtomicLoadBinaryImm32<atomic_load_and_32,
 | |
|                                                  imm32lh16c>;
 | |
|   def ATOMIC_LOAD_NILF   : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
 | |
|   def ATOMIC_LOAD_NGR    : AtomicLoadBinaryReg64<atomic_load_and_64>;
 | |
|   def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
 | |
|                                                  imm64ll16c>;
 | |
|   def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
 | |
|                                                  imm64lh16c>;
 | |
|   def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64,
 | |
|                                                  imm64hl16c>;
 | |
|   def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64,
 | |
|                                                  imm64hh16c>;
 | |
|   def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
 | |
|                                                  imm64lf32c>;
 | |
|   def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64,
 | |
|                                                  imm64hf32c>;
 | |
| }
 | |
| 
 | |
| def ATOMIC_LOADW_OR     : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
 | |
| def ATOMIC_LOADW_OILH   : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
 | |
| let Predicates = [FeatureNoInterlockedAccess1] in {
 | |
|   def ATOMIC_LOAD_OR     : AtomicLoadBinaryReg32<atomic_load_or_32>;
 | |
|   def ATOMIC_LOAD_OILL   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
 | |
|   def ATOMIC_LOAD_OILH   : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
 | |
|   def ATOMIC_LOAD_OILF   : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
 | |
|   def ATOMIC_LOAD_OGR    : AtomicLoadBinaryReg64<atomic_load_or_64>;
 | |
|   def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
 | |
|   def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
 | |
|   def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
 | |
|   def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
 | |
|   def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
 | |
|   def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
 | |
| }
 | |
| 
 | |
| def ATOMIC_LOADW_XR     : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
 | |
| def ATOMIC_LOADW_XILF   : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
 | |
| let Predicates = [FeatureNoInterlockedAccess1] in {
 | |
|   def ATOMIC_LOAD_XR     : AtomicLoadBinaryReg32<atomic_load_xor_32>;
 | |
|   def ATOMIC_LOAD_XILF   : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
 | |
|   def ATOMIC_LOAD_XGR    : AtomicLoadBinaryReg64<atomic_load_xor_64>;
 | |
|   def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
 | |
|   def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
 | |
| }
 | |
| 
 | |
| def ATOMIC_LOADW_NRi    : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
 | |
| def ATOMIC_LOADW_NILHi  : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
 | |
|                                                imm32lh16c>;
 | |
| def ATOMIC_LOAD_NRi     : AtomicLoadBinaryReg32<atomic_load_nand_32>;
 | |
| def ATOMIC_LOAD_NILLi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
 | |
|                                                 imm32ll16c>;
 | |
| def ATOMIC_LOAD_NILHi   : AtomicLoadBinaryImm32<atomic_load_nand_32,
 | |
|                                                 imm32lh16c>;
 | |
| def ATOMIC_LOAD_NILFi   : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
 | |
| def ATOMIC_LOAD_NGRi    : AtomicLoadBinaryReg64<atomic_load_nand_64>;
 | |
| def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
 | |
|                                                 imm64ll16c>;
 | |
| def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
 | |
|                                                 imm64lh16c>;
 | |
| def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
 | |
|                                                 imm64hl16c>;
 | |
| def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
 | |
|                                                 imm64hh16c>;
 | |
| def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
 | |
|                                                 imm64lf32c>;
 | |
| def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64,
 | |
|                                                 imm64hf32c>;
 | |
| 
 | |
| def ATOMIC_LOADW_MIN    : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
 | |
| def ATOMIC_LOAD_MIN_32  : AtomicLoadBinaryReg32<atomic_load_min_32>;
 | |
| def ATOMIC_LOAD_MIN_64  : AtomicLoadBinaryReg64<atomic_load_min_64>;
 | |
| 
 | |
| def ATOMIC_LOADW_MAX    : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
 | |
| def ATOMIC_LOAD_MAX_32  : AtomicLoadBinaryReg32<atomic_load_max_32>;
 | |
| def ATOMIC_LOAD_MAX_64  : AtomicLoadBinaryReg64<atomic_load_max_64>;
 | |
| 
 | |
| def ATOMIC_LOADW_UMIN   : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
 | |
| def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
 | |
| def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
 | |
| 
 | |
| def ATOMIC_LOADW_UMAX   : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
 | |
| def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
 | |
| def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
 | |
| 
 | |
| def ATOMIC_CMP_SWAPW
 | |
|   : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
 | |
|                                   ADDR32:$bitshift, ADDR32:$negbitshift,
 | |
|                                   uimm32:$bitsize),
 | |
|            [(set GR32:$dst,
 | |
|                  (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
 | |
|                                      ADDR32:$bitshift, ADDR32:$negbitshift,
 | |
|                                      uimm32:$bitsize))]> {
 | |
|   let Defs = [CC];
 | |
|   let mayLoad = 1;
 | |
|   let mayStore = 1;
 | |
|   let usesCustomInserter = 1;
 | |
| }
 | |
| 
 | |
| let Defs = [CC] in {
 | |
|   defm CS  : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
 | |
|   def  CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Transactional execution
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureTransactionalExecution] in {
 | |
|   // Transaction Begin
 | |
|   let hasSideEffects = 1, mayStore = 1,
 | |
|       usesCustomInserter = 1, Defs = [CC] in {
 | |
|     def TBEGIN : InstSIL<0xE560,
 | |
|                          (outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
 | |
|                          "tbegin\t$BD1, $I2",
 | |
|                          [(z_tbegin bdaddr12only:$BD1, imm32zx16:$I2)]>;
 | |
|     def TBEGIN_nofloat : Pseudo<(outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
 | |
|                                 [(z_tbegin_nofloat bdaddr12only:$BD1,
 | |
|                                                    imm32zx16:$I2)]>;
 | |
|     def TBEGINC : InstSIL<0xE561,
 | |
|                           (outs), (ins bdaddr12only:$BD1, imm32zx16:$I2),
 | |
|                           "tbeginc\t$BD1, $I2",
 | |
|                           [(int_s390_tbeginc bdaddr12only:$BD1,
 | |
|                                              imm32zx16:$I2)]>;
 | |
|   }
 | |
| 
 | |
|   // Transaction End
 | |
|   let hasSideEffects = 1, Defs = [CC], BD2 = 0 in
 | |
|     def TEND : InstS<0xB2F8, (outs), (ins), "tend", [(z_tend)]>;
 | |
| 
 | |
|   // Transaction Abort
 | |
|   let hasSideEffects = 1, isTerminator = 1, isBarrier = 1 in
 | |
|     def TABORT : InstS<0xB2FC, (outs), (ins bdaddr12only:$BD2),
 | |
|                        "tabort\t$BD2",
 | |
|                        [(int_s390_tabort bdaddr12only:$BD2)]>;
 | |
| 
 | |
|   // Nontransactional Store
 | |
|   let hasSideEffects = 1 in
 | |
|     def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
 | |
| 
 | |
|   // Extract Transaction Nesting Depth
 | |
|   let hasSideEffects = 1 in
 | |
|     def ETND : InherentRRE<"etnd", 0xB2EC, GR32, (int_s390_etnd)>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Processor assist
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| let Predicates = [FeatureProcessorAssist] in {
 | |
|   let hasSideEffects = 1, R4 = 0 in
 | |
|     def PPA : InstRRF<0xB2E8, (outs), (ins GR64:$R1, GR64:$R2, imm32zx4:$R3),
 | |
|                       "ppa\t$R1, $R2, $R3", []>;
 | |
|   def : Pat<(int_s390_ppa_txassist GR32:$src),
 | |
|             (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
 | |
|                  0, 1)>;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Miscellaneous Instructions.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Extract CC into bits 29 and 28 of a register.
 | |
| let Uses = [CC] in
 | |
|   def IPM : InherentRRE<"ipm", 0xB222, GR32, (z_ipm)>;
 | |
| 
 | |
| // Read a 32-bit access register into a GR32.  As with all GR32 operations,
 | |
| // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
 | |
| // when a 64-bit address is stored in a pair of access registers.
 | |
| def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
 | |
|                   "ear\t$R1, $R2",
 | |
|                   [(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
 | |
| 
 | |
| // Find leftmost one, AKA count leading zeros.  The instruction actually
 | |
| // returns a pair of GR64s, the first giving the number of leading zeros
 | |
| // and the second giving a copy of the source with the leftmost one bit
 | |
| // cleared.  We only use the first result here.
 | |
| let Defs = [CC] in {
 | |
|   def FLOGR : UnaryRRE<"flog", 0xB983, null_frag, GR128, GR64>;
 | |
| }
 | |
| def : Pat<(ctlz GR64:$src),
 | |
|           (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
 | |
| 
 | |
| // Population count.  Counts bits set per byte.
 | |
| let Predicates = [FeaturePopulationCount], Defs = [CC] in {
 | |
|   def POPCNT : InstRRE<0xB9E1, (outs GR64:$R1), (ins GR64:$R2),
 | |
|                        "popcnt\t$R1, $R2",
 | |
|                        [(set GR64:$R1, (z_popcnt GR64:$R2))]>;
 | |
| }
 | |
| 
 | |
| // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
 | |
| def : Pat<(i64 (anyext GR32:$src)),
 | |
|           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
 | |
| 
 | |
| // Extend GR32s and GR64s to GR128s.
 | |
| let usesCustomInserter = 1 in {
 | |
|   def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
 | |
|   def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
 | |
|   def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
 | |
| }
 | |
| 
 | |
| // Search a block of memory for a character.
 | |
| let mayLoad = 1, Defs = [CC] in
 | |
|   defm SRST : StringRRE<"srst", 0xb25e, z_search_string>;
 | |
| 
 | |
| // Other instructions for inline assembly
 | |
| let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
 | |
|   def STCK : InstS<0xB205, (outs), (ins bdaddr12only:$BD2),
 | |
|                        "stck\t$BD2",
 | |
|                        []>;
 | |
| let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
 | |
|   def STCKF : InstS<0xB27C, (outs), (ins bdaddr12only:$BD2),
 | |
|                        "stckf\t$BD2",
 | |
|                        []>;
 | |
| let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
 | |
|   def STCKE : InstS<0xB278, (outs), (ins bdaddr12only:$BD2),
 | |
|                        "stcke\t$BD2",
 | |
|                        []>;
 | |
| let hasSideEffects = 1, Defs = [CC], mayStore = 1 in
 | |
|   def STFLE : InstS<0xB2B0, (outs), (ins bdaddr12only:$BD2),
 | |
|                        "stfle\t$BD2",
 | |
|                        []>;
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Peepholes.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Use AL* for GR64 additions of unsigned 32-bit values.
 | |
| defm : ZXB<add, GR64, ALGFR>;
 | |
| def  : Pat<(add GR64:$src1, imm64zx32:$src2),
 | |
|            (ALGFI GR64:$src1, imm64zx32:$src2)>;
 | |
| def  : Pat<(add GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
 | |
|            (ALGF GR64:$src1, bdxaddr20only:$addr)>;
 | |
| 
 | |
| // Use SL* for GR64 subtractions of unsigned 32-bit values.
 | |
| defm : ZXB<sub, GR64, SLGFR>;
 | |
| def  : Pat<(add GR64:$src1, imm64zx32n:$src2),
 | |
|            (SLGFI GR64:$src1, imm64zx32n:$src2)>;
 | |
| def  : Pat<(sub GR64:$src1, (azextloadi32 bdxaddr20only:$addr)),
 | |
|            (SLGF GR64:$src1, bdxaddr20only:$addr)>;
 | |
| 
 | |
| // Optimize sign-extended 1/0 selects to -1/0 selects.  This is important
 | |
| // for vector legalization.
 | |
| def : Pat<(sra (shl (i32 (z_select_ccmask 1, 0, imm32zx4:$valid, imm32zx4:$cc)),
 | |
|                          (i32 31)),
 | |
|                     (i32 31)),
 | |
|           (Select32 (LHI -1), (LHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
 | |
| def : Pat<(sra (shl (i64 (anyext (i32 (z_select_ccmask 1, 0, imm32zx4:$valid,
 | |
|                                                        imm32zx4:$cc)))),
 | |
|                     (i32 63)),
 | |
|                (i32 63)),
 | |
|           (Select64 (LGHI -1), (LGHI 0), imm32zx4:$valid, imm32zx4:$cc)>;
 | |
| 
 | |
| // Peepholes for turning scalar operations into block operations.
 | |
| defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence,
 | |
|                       XCSequence, 1>;
 | |
| defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence,
 | |
|                       XCSequence, 2>;
 | |
| defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence,
 | |
|                       XCSequence, 4>;
 | |
| defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence,
 | |
|                       OCSequence, XCSequence, 1>;
 | |
| defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence,
 | |
|                       XCSequence, 2>;
 | |
| defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence,
 | |
|                       XCSequence, 4>;
 | |
| defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence,
 | |
|                       XCSequence, 8>;
 |