569 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			TableGen
		
	
	
	
			
		
		
	
	
			569 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			TableGen
		
	
	
	
| //===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Class definitions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| class ImmediateAsmOperand<string name>
 | |
|   : AsmOperandClass {
 | |
|   let Name = name;
 | |
|   let RenderMethod = "addImmOperands";
 | |
| }
 | |
| class ImmediateTLSAsmOperand<string name>
 | |
|   : AsmOperandClass {
 | |
|   let Name = name;
 | |
|   let RenderMethod = "addImmTLSOperands";
 | |
| }
 | |
| 
 | |
| // Constructs both a DAG pattern and instruction operand for an immediate
 | |
| // of type VT.  PRED returns true if a node is acceptable and XFORM returns
 | |
| // the operand value associated with the node.  ASMOP is the name of the
 | |
| // associated asm operand, and also forms the basis of the asm print method.
 | |
| class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
 | |
|   : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
 | |
|   let PrintMethod = "print"##asmop##"Operand";
 | |
|   let DecoderMethod = "decode"##asmop##"Operand";
 | |
|   let ParserMatchClass = !cast<AsmOperandClass>(asmop);
 | |
| }
 | |
| 
 | |
| // Constructs an asm operand for a PC-relative address.  SIZE says how
 | |
| // many bits there are.
 | |
| class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
 | |
|   let PredicateMethod = "isImm";
 | |
|   let ParserMethod = "parsePCRel"##size;
 | |
| }
 | |
| class PCRelTLSAsmOperand<string size>
 | |
|   : ImmediateTLSAsmOperand<"PCRelTLS"##size> {
 | |
|   let PredicateMethod = "isImmTLS";
 | |
|   let ParserMethod = "parsePCRelTLS"##size;
 | |
| }
 | |
| 
 | |
| // Constructs an operand for a PC-relative address with address type VT.
 | |
| // ASMOP is the associated asm operand.
 | |
| class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
 | |
|   let PrintMethod = "printPCRelOperand";
 | |
|   let ParserMatchClass = asmop;
 | |
| }
 | |
| class PCRelTLSOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
 | |
|   let PrintMethod = "printPCRelTLSOperand";
 | |
|   let ParserMatchClass = asmop;
 | |
| }
 | |
| 
 | |
| // Constructs both a DAG pattern and instruction operand for a PC-relative
 | |
| // address with address size VT.  SELF is the name of the operand and
 | |
| // ASMOP is the associated asm operand.
 | |
| class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
 | |
|   : ComplexPattern<vt, 1, "selectPCRelAddress",
 | |
|                    [z_pcrel_wrapper, z_pcrel_offset]>,
 | |
|     PCRelOperand<vt, asmop> {
 | |
|   let MIOperandInfo = (ops !cast<Operand>(self));
 | |
| }
 | |
| 
 | |
| // Constructs an AsmOperandClass for addressing mode FORMAT, treating the
 | |
| // registers as having BITSIZE bits and displacements as having DISPSIZE bits.
 | |
| // LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
 | |
| // is "".
 | |
| class AddressAsmOperand<string format, string bitsize, string dispsize,
 | |
|                         string length = "">
 | |
|   : AsmOperandClass {
 | |
|   let Name = format##bitsize##"Disp"##dispsize##length;
 | |
|   let ParserMethod = "parse"##format##bitsize;
 | |
|   let RenderMethod = "add"##format##"Operands";
 | |
| }
 | |
| 
 | |
| // Constructs an instruction operand for an addressing mode.  FORMAT,
 | |
| // BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
 | |
| // AddressAsmOperand.  OPERANDS is a list of individual operands
 | |
| // (base register, displacement, etc.).
 | |
| class AddressOperand<string bitsize, string dispsize, string length,
 | |
|                      string format, dag operands>
 | |
|   : Operand<!cast<ValueType>("i"##bitsize)> {
 | |
|   let PrintMethod = "print"##format##"Operand";
 | |
|   let EncoderMethod = "get"##format##dispsize##length##"Encoding";
 | |
|   let DecoderMethod =
 | |
|     "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
 | |
|   let MIOperandInfo = operands;
 | |
|   let ParserMatchClass =
 | |
|     !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
 | |
| }
 | |
| 
 | |
| // Constructs both a DAG pattern and instruction operand for an addressing mode.
 | |
| // FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
 | |
| // AddressAsmOperand.  OPERANDS is a list of NUMOPS individual operands
 | |
| // (base register, displacement, etc.).  SELTYPE is the type of the memory
 | |
| // operand for selection purposes; sometimes we want different selection
 | |
| // choices for the same underlying addressing mode.  SUFFIX is similarly
 | |
| // a suffix appended to the displacement for selection purposes;
 | |
| // e.g. we want to reject small 20-bit displacements if a 12-bit form
 | |
| // also exists, but we want to accept them otherwise.
 | |
| class AddressingMode<string seltype, string bitsize, string dispsize,
 | |
|                      string suffix, string length, int numops, string format,
 | |
|                      dag operands>
 | |
|   : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
 | |
|                    "select"##seltype##dispsize##suffix##length,
 | |
|                    [add, sub, or, frameindex, z_adjdynalloc]>,
 | |
|     AddressOperand<bitsize, dispsize, length, format, operands>;
 | |
| 
 | |
| // An addressing mode with a base and displacement but no index.
 | |
| class BDMode<string type, string bitsize, string dispsize, string suffix>
 | |
|   : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
 | |
|                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
 | |
|                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
 | |
| 
 | |
| // An addressing mode with a base, displacement and index.
 | |
| class BDXMode<string type, string bitsize, string dispsize, string suffix>
 | |
|   : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
 | |
|                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
 | |
|                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
 | |
|                         !cast<RegisterOperand>("ADDR"##bitsize))>;
 | |
| 
 | |
| // A BDMode paired with an immediate length operand of LENSIZE bits.
 | |
| class BDLMode<string type, string bitsize, string dispsize, string suffix,
 | |
|               string lensize>
 | |
|   : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
 | |
|                    "BDLAddr",
 | |
|                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
 | |
|                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
 | |
|                         !cast<Immediate>("imm"##bitsize))>;
 | |
| 
 | |
| // An addressing mode with a base, displacement and a vector index.
 | |
| class BDVMode<string bitsize, string dispsize>
 | |
|   : AddressOperand<bitsize, dispsize, "", "BDVAddr",
 | |
|                    (ops !cast<RegisterOperand>("ADDR"##bitsize),
 | |
|                         !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
 | |
|                         !cast<RegisterOperand>("VR128"))>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Extracting immediate operands from nodes
 | |
| // These all create MVT::i64 nodes to ensure the value is not sign-extended
 | |
| // when converted from an SDNode to a MachineOperand later on.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Bits 0-15 (counting from the lsb).
 | |
| def LL16 : SDNodeXForm<imm, [{
 | |
|   uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
 | |
|   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Bits 16-31 (counting from the lsb).
 | |
| def LH16 : SDNodeXForm<imm, [{
 | |
|   uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
 | |
|   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Bits 32-47 (counting from the lsb).
 | |
| def HL16 : SDNodeXForm<imm, [{
 | |
|   uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
 | |
|   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Bits 48-63 (counting from the lsb).
 | |
| def HH16 : SDNodeXForm<imm, [{
 | |
|   uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
 | |
|   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Low 32 bits.
 | |
| def LF32 : SDNodeXForm<imm, [{
 | |
|   uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
 | |
|   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // High 32 bits.
 | |
| def HF32 : SDNodeXForm<imm, [{
 | |
|   uint64_t Value = N->getZExtValue() >> 32;
 | |
|   return CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Truncate an immediate to a 8-bit signed quantity.
 | |
| def SIMM8 : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), SDLoc(N),
 | |
|                                    MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Truncate an immediate to a 8-bit unsigned quantity.
 | |
| def UIMM8 : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), SDLoc(N),
 | |
|                                    MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Truncate an immediate to a 8-bit unsigned quantity and mask off low bit.
 | |
| def UIMM8EVEN : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(N->getZExtValue() & 0xfe, SDLoc(N),
 | |
|                                    MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Truncate an immediate to a 12-bit unsigned quantity.
 | |
| def UIMM12 : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(N->getZExtValue() & 0xfff, SDLoc(N),
 | |
|                                    MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Truncate an immediate to a 16-bit signed quantity.
 | |
| def SIMM16 : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), SDLoc(N),
 | |
|                                    MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Truncate an immediate to a 16-bit unsigned quantity.
 | |
| def UIMM16 : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), SDLoc(N),
 | |
|                                    MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Truncate an immediate to a 32-bit signed quantity.
 | |
| def SIMM32 : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), SDLoc(N),
 | |
|                                    MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Truncate an immediate to a 32-bit unsigned quantity.
 | |
| def UIMM32 : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), SDLoc(N),
 | |
|                                    MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| // Negate and then truncate an immediate to a 32-bit unsigned quantity.
 | |
| def NEGIMM32 : SDNodeXForm<imm, [{
 | |
|   return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), SDLoc(N),
 | |
|                                    MVT::i64);
 | |
| }]>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Immediate asm operands.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| def U1Imm  : ImmediateAsmOperand<"U1Imm">;
 | |
| def U2Imm  : ImmediateAsmOperand<"U2Imm">;
 | |
| def U3Imm  : ImmediateAsmOperand<"U3Imm">;
 | |
| def U4Imm  : ImmediateAsmOperand<"U4Imm">;
 | |
| def U6Imm  : ImmediateAsmOperand<"U6Imm">;
 | |
| def S8Imm  : ImmediateAsmOperand<"S8Imm">;
 | |
| def U8Imm  : ImmediateAsmOperand<"U8Imm">;
 | |
| def U12Imm : ImmediateAsmOperand<"U12Imm">;
 | |
| def S16Imm : ImmediateAsmOperand<"S16Imm">;
 | |
| def U16Imm : ImmediateAsmOperand<"U16Imm">;
 | |
| def S32Imm : ImmediateAsmOperand<"S32Imm">;
 | |
| def U32Imm : ImmediateAsmOperand<"U32Imm">;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // i32 immediates
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Immediates for the lower and upper 16 bits of an i32, with the other
 | |
| // bits of the i32 being zero.
 | |
| def imm32ll16 : Immediate<i32, [{
 | |
|   return SystemZ::isImmLL(N->getZExtValue());
 | |
| }], LL16, "U16Imm">;
 | |
| 
 | |
| def imm32lh16 : Immediate<i32, [{
 | |
|   return SystemZ::isImmLH(N->getZExtValue());
 | |
| }], LH16, "U16Imm">;
 | |
| 
 | |
| // Immediates for the lower and upper 16 bits of an i32, with the other
 | |
| // bits of the i32 being one.
 | |
| def imm32ll16c : Immediate<i32, [{
 | |
|   return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
 | |
| }], LL16, "U16Imm">;
 | |
| 
 | |
| def imm32lh16c : Immediate<i32, [{
 | |
|   return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
 | |
| }], LH16, "U16Imm">;
 | |
| 
 | |
| // Short immediates
 | |
| def imm32zx1 : Immediate<i32, [{
 | |
|   return isUInt<1>(N->getZExtValue());
 | |
| }], NOOP_SDNodeXForm, "U1Imm">;
 | |
| 
 | |
| def imm32zx2 : Immediate<i32, [{
 | |
|   return isUInt<2>(N->getZExtValue());
 | |
| }], NOOP_SDNodeXForm, "U2Imm">;
 | |
| 
 | |
| def imm32zx3 : Immediate<i32, [{
 | |
|   return isUInt<3>(N->getZExtValue());
 | |
| }], NOOP_SDNodeXForm, "U3Imm">;
 | |
| 
 | |
| def imm32zx4 : Immediate<i32, [{
 | |
|   return isUInt<4>(N->getZExtValue());
 | |
| }], NOOP_SDNodeXForm, "U4Imm">;
 | |
| 
 | |
| // Note: this enforces an even value during code generation only.
 | |
| // When used from the assembler, any 4-bit value is allowed.
 | |
| def imm32zx4even : Immediate<i32, [{
 | |
|   return isUInt<4>(N->getZExtValue());
 | |
| }], UIMM8EVEN, "U4Imm">;
 | |
| 
 | |
| def imm32zx6 : Immediate<i32, [{
 | |
|   return isUInt<6>(N->getZExtValue());
 | |
| }], NOOP_SDNodeXForm, "U6Imm">;
 | |
| 
 | |
| def imm32sx8 : Immediate<i32, [{
 | |
|   return isInt<8>(N->getSExtValue());
 | |
| }], SIMM8, "S8Imm">;
 | |
| 
 | |
| def imm32zx8 : Immediate<i32, [{
 | |
|   return isUInt<8>(N->getZExtValue());
 | |
| }], UIMM8, "U8Imm">;
 | |
| 
 | |
| def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
 | |
| 
 | |
| def imm32zx12 : Immediate<i32, [{
 | |
|   return isUInt<12>(N->getZExtValue());
 | |
| }], UIMM12, "U12Imm">;
 | |
| 
 | |
| def imm32sx16 : Immediate<i32, [{
 | |
|   return isInt<16>(N->getSExtValue());
 | |
| }], SIMM16, "S16Imm">;
 | |
| 
 | |
| def imm32zx16 : Immediate<i32, [{
 | |
|   return isUInt<16>(N->getZExtValue());
 | |
| }], UIMM16, "U16Imm">;
 | |
| 
 | |
| def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
 | |
| 
 | |
| // Full 32-bit immediates.  we need both signed and unsigned versions
 | |
| // because the assembler is picky.  E.g. AFI requires signed operands
 | |
| // while NILF requires unsigned ones.
 | |
| def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
 | |
| def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
 | |
| 
 | |
| def imm32 : ImmLeaf<i32, [{}]>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // 64-bit immediates
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Immediates for 16-bit chunks of an i64, with the other bits of the
 | |
| // i32 being zero.
 | |
| def imm64ll16 : Immediate<i64, [{
 | |
|   return SystemZ::isImmLL(N->getZExtValue());
 | |
| }], LL16, "U16Imm">;
 | |
| 
 | |
| def imm64lh16 : Immediate<i64, [{
 | |
|   return SystemZ::isImmLH(N->getZExtValue());
 | |
| }], LH16, "U16Imm">;
 | |
| 
 | |
| def imm64hl16 : Immediate<i64, [{
 | |
|   return SystemZ::isImmHL(N->getZExtValue());
 | |
| }], HL16, "U16Imm">;
 | |
| 
 | |
| def imm64hh16 : Immediate<i64, [{
 | |
|   return SystemZ::isImmHH(N->getZExtValue());
 | |
| }], HH16, "U16Imm">;
 | |
| 
 | |
| // Immediates for 16-bit chunks of an i64, with the other bits of the
 | |
| // i32 being one.
 | |
| def imm64ll16c : Immediate<i64, [{
 | |
|   return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
 | |
| }], LL16, "U16Imm">;
 | |
| 
 | |
| def imm64lh16c : Immediate<i64, [{
 | |
|   return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
 | |
| }], LH16, "U16Imm">;
 | |
| 
 | |
| def imm64hl16c : Immediate<i64, [{
 | |
|   return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
 | |
| }], HL16, "U16Imm">;
 | |
| 
 | |
| def imm64hh16c : Immediate<i64, [{
 | |
|   return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
 | |
| }], HH16, "U16Imm">;
 | |
| 
 | |
| // Immediates for the lower and upper 32 bits of an i64, with the other
 | |
| // bits of the i32 being zero.
 | |
| def imm64lf32 : Immediate<i64, [{
 | |
|   return SystemZ::isImmLF(N->getZExtValue());
 | |
| }], LF32, "U32Imm">;
 | |
| 
 | |
| def imm64hf32 : Immediate<i64, [{
 | |
|   return SystemZ::isImmHF(N->getZExtValue());
 | |
| }], HF32, "U32Imm">;
 | |
| 
 | |
| // Immediates for the lower and upper 32 bits of an i64, with the other
 | |
| // bits of the i32 being one.
 | |
| def imm64lf32c : Immediate<i64, [{
 | |
|   return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
 | |
| }], LF32, "U32Imm">;
 | |
| 
 | |
| def imm64hf32c : Immediate<i64, [{
 | |
|   return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
 | |
| }], HF32, "U32Imm">;
 | |
| 
 | |
| // Short immediates.
 | |
| def imm64sx8 : Immediate<i64, [{
 | |
|   return isInt<8>(N->getSExtValue());
 | |
| }], SIMM8, "S8Imm">;
 | |
| 
 | |
| def imm64zx8 : Immediate<i64, [{
 | |
|   return isUInt<8>(N->getSExtValue());
 | |
| }], UIMM8, "U8Imm">;
 | |
| 
 | |
| def imm64sx16 : Immediate<i64, [{
 | |
|   return isInt<16>(N->getSExtValue());
 | |
| }], SIMM16, "S16Imm">;
 | |
| 
 | |
| def imm64zx16 : Immediate<i64, [{
 | |
|   return isUInt<16>(N->getZExtValue());
 | |
| }], UIMM16, "U16Imm">;
 | |
| 
 | |
| def imm64sx32 : Immediate<i64, [{
 | |
|   return isInt<32>(N->getSExtValue());
 | |
| }], SIMM32, "S32Imm">;
 | |
| 
 | |
| def imm64zx32 : Immediate<i64, [{
 | |
|   return isUInt<32>(N->getZExtValue());
 | |
| }], UIMM32, "U32Imm">;
 | |
| 
 | |
| def imm64zx32n : Immediate<i64, [{
 | |
|   return isUInt<32>(-N->getSExtValue());
 | |
| }], NEGIMM32, "U32Imm">;
 | |
| 
 | |
| def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Floating-point immediates
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Floating-point zero.
 | |
| def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
 | |
| 
 | |
| // Floating point negative zero.
 | |
| def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Symbolic address operands
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // PC-relative asm operands.
 | |
| def PCRel16 : PCRelAsmOperand<"16">;
 | |
| def PCRel32 : PCRelAsmOperand<"32">;
 | |
| def PCRelTLS16 : PCRelTLSAsmOperand<"16">;
 | |
| def PCRelTLS32 : PCRelTLSAsmOperand<"32">;
 | |
| 
 | |
| // PC-relative offsets of a basic block.  The offset is sign-extended
 | |
| // and multiplied by 2.
 | |
| def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
 | |
|   let EncoderMethod = "getPC16DBLEncoding";
 | |
|   let DecoderMethod = "decodePC16DBLOperand";
 | |
| }
 | |
| def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
 | |
|   let EncoderMethod = "getPC32DBLEncoding";
 | |
|   let DecoderMethod = "decodePC32DBLOperand";
 | |
| }
 | |
| 
 | |
| // Variants of brtarget16/32 with an optional additional TLS symbol.
 | |
| // These are used to annotate calls to __tls_get_offset.
 | |
| def tlssym : Operand<i64> { }
 | |
| def brtarget16tls : PCRelTLSOperand<OtherVT, PCRelTLS16> {
 | |
|   let MIOperandInfo = (ops brtarget16:$func, tlssym:$sym);
 | |
|   let EncoderMethod = "getPC16DBLTLSEncoding";
 | |
|   let DecoderMethod = "decodePC16DBLOperand";
 | |
| }
 | |
| def brtarget32tls : PCRelTLSOperand<OtherVT, PCRelTLS32> {
 | |
|   let MIOperandInfo = (ops brtarget32:$func, tlssym:$sym);
 | |
|   let EncoderMethod = "getPC32DBLTLSEncoding";
 | |
|   let DecoderMethod = "decodePC32DBLOperand";
 | |
| }
 | |
| 
 | |
| // A PC-relative offset of a global value.  The offset is sign-extended
 | |
| // and multiplied by 2.
 | |
| def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
 | |
|   let EncoderMethod = "getPC32DBLEncoding";
 | |
|   let DecoderMethod = "decodePC32DBLOperand";
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Addressing modes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // 12-bit displacement operands.
 | |
| def disp12imm32 : Operand<i32>;
 | |
| def disp12imm64 : Operand<i64>;
 | |
| 
 | |
| // 20-bit displacement operands.
 | |
| def disp20imm32 : Operand<i32>;
 | |
| def disp20imm64 : Operand<i64>;
 | |
| 
 | |
| def BDAddr32Disp12      : AddressAsmOperand<"BDAddr",   "32", "12">;
 | |
| def BDAddr32Disp20      : AddressAsmOperand<"BDAddr",   "32", "20">;
 | |
| def BDAddr64Disp12      : AddressAsmOperand<"BDAddr",   "64", "12">;
 | |
| def BDAddr64Disp20      : AddressAsmOperand<"BDAddr",   "64", "20">;
 | |
| def BDXAddr64Disp12     : AddressAsmOperand<"BDXAddr",  "64", "12">;
 | |
| def BDXAddr64Disp20     : AddressAsmOperand<"BDXAddr",  "64", "20">;
 | |
| def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr",  "64", "12", "Len8">;
 | |
| def BDVAddr64Disp12     : AddressAsmOperand<"BDVAddr",  "64", "12">;
 | |
| 
 | |
| // DAG patterns and operands for addressing modes.  Each mode has
 | |
| // the form <type><range><group>[<len>] where:
 | |
| //
 | |
| // <type> is one of:
 | |
| //   shift    : base + displacement (32-bit)
 | |
| //   bdaddr   : base + displacement
 | |
| //   mviaddr  : like bdaddr, but reject cases with a natural index
 | |
| //   bdxaddr  : base + displacement + index
 | |
| //   laaddr   : like bdxaddr, but used for Load Address operations
 | |
| //   dynalloc : base + displacement + index + ADJDYNALLOC
 | |
| //   bdladdr  : base + displacement with a length field
 | |
| //   bdvaddr  : base + displacement with a vector index
 | |
| //
 | |
| // <range> is one of:
 | |
| //   12       : the displacement is an unsigned 12-bit value
 | |
| //   20       : the displacement is a signed 20-bit value
 | |
| //
 | |
| // <group> is one of:
 | |
| //   pair     : used when there is an equivalent instruction with the opposite
 | |
| //              range value (12 or 20)
 | |
| //   only     : used when there is no equivalent instruction with the opposite
 | |
| //              range value
 | |
| //
 | |
| // <len> is one of:
 | |
| //
 | |
| //   <empty>  : there is no length field
 | |
| //   len8     : the length field is 8 bits, with a range of [1, 0x100].
 | |
| def shift12only       : BDMode <"BDAddr",   "32", "12", "Only">;
 | |
| def shift20only       : BDMode <"BDAddr",   "32", "20", "Only">;
 | |
| def bdaddr12only      : BDMode <"BDAddr",   "64", "12", "Only">;
 | |
| def bdaddr12pair      : BDMode <"BDAddr",   "64", "12", "Pair">;
 | |
| def bdaddr20only      : BDMode <"BDAddr",   "64", "20", "Only">;
 | |
| def bdaddr20pair      : BDMode <"BDAddr",   "64", "20", "Pair">;
 | |
| def mviaddr12pair     : BDMode <"MVIAddr",  "64", "12", "Pair">;
 | |
| def mviaddr20pair     : BDMode <"MVIAddr",  "64", "20", "Pair">;
 | |
| def bdxaddr12only     : BDXMode<"BDXAddr",  "64", "12", "Only">;
 | |
| def bdxaddr12pair     : BDXMode<"BDXAddr",  "64", "12", "Pair">;
 | |
| def bdxaddr20only     : BDXMode<"BDXAddr",  "64", "20", "Only">;
 | |
| def bdxaddr20only128  : BDXMode<"BDXAddr",  "64", "20", "Only128">;
 | |
| def bdxaddr20pair     : BDXMode<"BDXAddr",  "64", "20", "Pair">;
 | |
| def dynalloc12only    : BDXMode<"DynAlloc", "64", "12", "Only">;
 | |
| def laaddr12pair      : BDXMode<"LAAddr",   "64", "12", "Pair">;
 | |
| def laaddr20pair      : BDXMode<"LAAddr",   "64", "20", "Pair">;
 | |
| def bdladdr12onlylen8 : BDLMode<"BDLAddr",  "64", "12", "Only", "8">;
 | |
| def bdvaddr12only     : BDVMode<            "64", "12">;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Miscellaneous
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Access registers.  At present we just use them for accessing the thread
 | |
| // pointer, so we don't expose them as register to LLVM.
 | |
| def AccessReg : AsmOperandClass {
 | |
|   let Name = "AccessReg";
 | |
|   let ParserMethod = "parseAccessReg";
 | |
| }
 | |
| def access_reg : Immediate<i32, [{ return N->getZExtValue() < 16; }],
 | |
|                            NOOP_SDNodeXForm, "AccessReg"> {
 | |
|   let ParserMatchClass = AccessReg;
 | |
| }
 | |
| 
 | |
| // A 4-bit condition-code mask.
 | |
| def cond4 : PatLeaf<(i32 imm), [{ return (N->getZExtValue() < 16); }]>,
 | |
|             Operand<i32> {
 | |
|   let PrintMethod = "printCond4Operand";
 | |
| }
 |