1211 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1211 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InstCombineSelect.cpp ----------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the visitSelect function.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "InstCombineInternal.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "instcombine"
 | |
| 
 | |
| static SelectPatternFlavor
 | |
| getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) {
 | |
|   switch (SPF) {
 | |
|   default:
 | |
|     llvm_unreachable("unhandled!");
 | |
| 
 | |
|   case SPF_SMIN:
 | |
|     return SPF_SMAX;
 | |
|   case SPF_UMIN:
 | |
|     return SPF_UMAX;
 | |
|   case SPF_SMAX:
 | |
|     return SPF_SMIN;
 | |
|   case SPF_UMAX:
 | |
|     return SPF_UMIN;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF,
 | |
|                                                    bool Ordered=false) {
 | |
|   switch (SPF) {
 | |
|   default:
 | |
|     llvm_unreachable("unhandled!");
 | |
| 
 | |
|   case SPF_SMIN:
 | |
|     return ICmpInst::ICMP_SLT;
 | |
|   case SPF_UMIN:
 | |
|     return ICmpInst::ICMP_ULT;
 | |
|   case SPF_SMAX:
 | |
|     return ICmpInst::ICMP_SGT;
 | |
|   case SPF_UMAX:
 | |
|     return ICmpInst::ICMP_UGT;
 | |
|   case SPF_FMINNUM:
 | |
|     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
 | |
|   case SPF_FMAXNUM:
 | |
|     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder,
 | |
|                                           SelectPatternFlavor SPF, Value *A,
 | |
|                                           Value *B) {
 | |
|   CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF);
 | |
|   assert(CmpInst::isIntPredicate(Pred));
 | |
|   return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
 | |
| }
 | |
| 
 | |
| /// We want to turn code that looks like this:
 | |
| ///   %C = or %A, %B
 | |
| ///   %D = select %cond, %C, %A
 | |
| /// into:
 | |
| ///   %C = select %cond, %B, 0
 | |
| ///   %D = or %A, %C
 | |
| ///
 | |
| /// Assuming that the specified instruction is an operand to the select, return
 | |
| /// a bitmask indicating which operands of this instruction are foldable if they
 | |
| /// equal the other incoming value of the select.
 | |
| ///
 | |
| static unsigned GetSelectFoldableOperands(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     return 3;              // Can fold through either operand.
 | |
|   case Instruction::Sub:   // Can only fold on the amount subtracted.
 | |
|   case Instruction::Shl:   // Can only fold on the shift amount.
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     return 1;
 | |
|   default:
 | |
|     return 0;              // Cannot fold
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// For the same transformation as the previous function, return the identity
 | |
| /// constant that goes into the select.
 | |
| static Constant *GetSelectFoldableConstant(Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   default: llvm_unreachable("This cannot happen!");
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     return Constant::getNullValue(I->getType());
 | |
|   case Instruction::And:
 | |
|     return Constant::getAllOnesValue(I->getType());
 | |
|   case Instruction::Mul:
 | |
|     return ConstantInt::get(I->getType(), 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Here we have (select c, TI, FI), and we know that TI and FI
 | |
| /// have the same opcode and only one use each.  Try to simplify this.
 | |
| Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
 | |
|                                           Instruction *FI) {
 | |
|   if (TI->getNumOperands() == 1) {
 | |
|     // If this is a non-volatile load or a cast from the same type,
 | |
|     // merge.
 | |
|     if (TI->isCast()) {
 | |
|       Type *FIOpndTy = FI->getOperand(0)->getType();
 | |
|       if (TI->getOperand(0)->getType() != FIOpndTy)
 | |
|         return nullptr;
 | |
|       // The select condition may be a vector. We may only change the operand
 | |
|       // type if the vector width remains the same (and matches the condition).
 | |
|       Type *CondTy = SI.getCondition()->getType();
 | |
|       if (CondTy->isVectorTy() && (!FIOpndTy->isVectorTy() ||
 | |
|           CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()))
 | |
|         return nullptr;
 | |
|     } else {
 | |
|       return nullptr;  // unknown unary op.
 | |
|     }
 | |
| 
 | |
|     // Fold this by inserting a select from the input values.
 | |
|     Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
 | |
|                                          FI->getOperand(0), SI.getName()+".v");
 | |
|     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
 | |
|                             TI->getType());
 | |
|   }
 | |
| 
 | |
|   // Only handle binary operators here.
 | |
|   if (!isa<BinaryOperator>(TI))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Figure out if the operations have any operands in common.
 | |
|   Value *MatchOp, *OtherOpT, *OtherOpF;
 | |
|   bool MatchIsOpZero;
 | |
|   if (TI->getOperand(0) == FI->getOperand(0)) {
 | |
|     MatchOp  = TI->getOperand(0);
 | |
|     OtherOpT = TI->getOperand(1);
 | |
|     OtherOpF = FI->getOperand(1);
 | |
|     MatchIsOpZero = true;
 | |
|   } else if (TI->getOperand(1) == FI->getOperand(1)) {
 | |
|     MatchOp  = TI->getOperand(1);
 | |
|     OtherOpT = TI->getOperand(0);
 | |
|     OtherOpF = FI->getOperand(0);
 | |
|     MatchIsOpZero = false;
 | |
|   } else if (!TI->isCommutative()) {
 | |
|     return nullptr;
 | |
|   } else if (TI->getOperand(0) == FI->getOperand(1)) {
 | |
|     MatchOp  = TI->getOperand(0);
 | |
|     OtherOpT = TI->getOperand(1);
 | |
|     OtherOpF = FI->getOperand(0);
 | |
|     MatchIsOpZero = true;
 | |
|   } else if (TI->getOperand(1) == FI->getOperand(0)) {
 | |
|     MatchOp  = TI->getOperand(1);
 | |
|     OtherOpT = TI->getOperand(0);
 | |
|     OtherOpF = FI->getOperand(1);
 | |
|     MatchIsOpZero = true;
 | |
|   } else {
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If we reach here, they do have operations in common.
 | |
|   Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
 | |
|                                        OtherOpF, SI.getName()+".v");
 | |
| 
 | |
|   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
 | |
|     if (MatchIsOpZero)
 | |
|       return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
 | |
|     else
 | |
|       return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
 | |
|   }
 | |
|   llvm_unreachable("Shouldn't get here");
 | |
| }
 | |
| 
 | |
| static bool isSelect01(Constant *C1, Constant *C2) {
 | |
|   ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
 | |
|   if (!C1I)
 | |
|     return false;
 | |
|   ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
 | |
|   if (!C2I)
 | |
|     return false;
 | |
|   if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
 | |
|     return false;
 | |
|   return C1I->isOne() || C1I->isAllOnesValue() ||
 | |
|          C2I->isOne() || C2I->isAllOnesValue();
 | |
| }
 | |
| 
 | |
| /// Try to fold the select into one of the operands to allow further
 | |
| /// optimization.
 | |
| Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
 | |
|                                             Value *FalseVal) {
 | |
|   // See the comment above GetSelectFoldableOperands for a description of the
 | |
|   // transformation we are doing here.
 | |
|   if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
 | |
|     if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
 | |
|         !isa<Constant>(FalseVal)) {
 | |
|       if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
 | |
|         unsigned OpToFold = 0;
 | |
|         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
 | |
|           OpToFold = 1;
 | |
|         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
 | |
|           OpToFold = 2;
 | |
|         }
 | |
| 
 | |
|         if (OpToFold) {
 | |
|           Constant *C = GetSelectFoldableConstant(TVI);
 | |
|           Value *OOp = TVI->getOperand(2-OpToFold);
 | |
|           // Avoid creating select between 2 constants unless it's selecting
 | |
|           // between 0, 1 and -1.
 | |
|           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
 | |
|             Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
 | |
|             NewSel->takeName(TVI);
 | |
|             BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
 | |
|             BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
 | |
|                                                         FalseVal, NewSel);
 | |
|             if (isa<PossiblyExactOperator>(BO))
 | |
|               BO->setIsExact(TVI_BO->isExact());
 | |
|             if (isa<OverflowingBinaryOperator>(BO)) {
 | |
|               BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
 | |
|               BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
 | |
|             }
 | |
|             return BO;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
 | |
|     if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
 | |
|         !isa<Constant>(TrueVal)) {
 | |
|       if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
 | |
|         unsigned OpToFold = 0;
 | |
|         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
 | |
|           OpToFold = 1;
 | |
|         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
 | |
|           OpToFold = 2;
 | |
|         }
 | |
| 
 | |
|         if (OpToFold) {
 | |
|           Constant *C = GetSelectFoldableConstant(FVI);
 | |
|           Value *OOp = FVI->getOperand(2-OpToFold);
 | |
|           // Avoid creating select between 2 constants unless it's selecting
 | |
|           // between 0, 1 and -1.
 | |
|           if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
 | |
|             Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
 | |
|             NewSel->takeName(FVI);
 | |
|             BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
 | |
|             BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
 | |
|                                                         TrueVal, NewSel);
 | |
|             if (isa<PossiblyExactOperator>(BO))
 | |
|               BO->setIsExact(FVI_BO->isExact());
 | |
|             if (isa<OverflowingBinaryOperator>(BO)) {
 | |
|               BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
 | |
|               BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
 | |
|             }
 | |
|             return BO;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// We want to turn:
 | |
| ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
 | |
| /// into:
 | |
| ///   (or (shl (and X, C1), C3), y)
 | |
| /// iff:
 | |
| ///   C1 and C2 are both powers of 2
 | |
| /// where:
 | |
| ///   C3 = Log(C2) - Log(C1)
 | |
| ///
 | |
| /// This transform handles cases where:
 | |
| /// 1. The icmp predicate is inverted
 | |
| /// 2. The select operands are reversed
 | |
| /// 3. The magnitude of C2 and C1 are flipped
 | |
| static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal,
 | |
|                                   Value *FalseVal,
 | |
|                                   InstCombiner::BuilderTy *Builder) {
 | |
|   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
 | |
|   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *CmpLHS = IC->getOperand(0);
 | |
|   Value *CmpRHS = IC->getOperand(1);
 | |
| 
 | |
|   if (!match(CmpRHS, m_Zero()))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *X;
 | |
|   const APInt *C1;
 | |
|   if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1))))
 | |
|     return nullptr;
 | |
| 
 | |
|   const APInt *C2;
 | |
|   bool OrOnTrueVal = false;
 | |
|   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
 | |
|   if (!OrOnFalseVal)
 | |
|     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
 | |
| 
 | |
|   if (!OrOnFalseVal && !OrOnTrueVal)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *V = CmpLHS;
 | |
|   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
 | |
| 
 | |
|   unsigned C1Log = C1->logBase2();
 | |
|   unsigned C2Log = C2->logBase2();
 | |
|   if (C2Log > C1Log) {
 | |
|     V = Builder->CreateZExtOrTrunc(V, Y->getType());
 | |
|     V = Builder->CreateShl(V, C2Log - C1Log);
 | |
|   } else if (C1Log > C2Log) {
 | |
|     V = Builder->CreateLShr(V, C1Log - C2Log);
 | |
|     V = Builder->CreateZExtOrTrunc(V, Y->getType());
 | |
|   } else
 | |
|     V = Builder->CreateZExtOrTrunc(V, Y->getType());
 | |
| 
 | |
|   ICmpInst::Predicate Pred = IC->getPredicate();
 | |
|   if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) ||
 | |
|       (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal))
 | |
|     V = Builder->CreateXor(V, *C2);
 | |
| 
 | |
|   return Builder->CreateOr(V, Y);
 | |
| }
 | |
| 
 | |
| /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
 | |
| /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
 | |
| ///
 | |
| /// For example, we can fold the following code sequence:
 | |
| /// \code
 | |
| ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
 | |
| ///   %1 = icmp ne i32 %x, 0
 | |
| ///   %2 = select i1 %1, i32 %0, i32 32
 | |
| /// \code
 | |
| /// 
 | |
| /// into:
 | |
| ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
 | |
| static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
 | |
|                                   InstCombiner::BuilderTy *Builder) {
 | |
|   ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|   Value *CmpLHS = ICI->getOperand(0);
 | |
|   Value *CmpRHS = ICI->getOperand(1);
 | |
| 
 | |
|   // Check if the condition value compares a value for equality against zero.
 | |
|   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Count = FalseVal;
 | |
|   Value *ValueOnZero = TrueVal;
 | |
|   if (Pred == ICmpInst::ICMP_NE)
 | |
|     std::swap(Count, ValueOnZero);
 | |
| 
 | |
|   // Skip zero extend/truncate.
 | |
|   Value *V = nullptr;
 | |
|   if (match(Count, m_ZExt(m_Value(V))) ||
 | |
|       match(Count, m_Trunc(m_Value(V))))
 | |
|     Count = V;
 | |
| 
 | |
|   // Check if the value propagated on zero is a constant number equal to the
 | |
|   // sizeof in bits of 'Count'.
 | |
|   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
 | |
|   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
 | |
|   // input to the cttz/ctlz is used as LHS for the compare instruction.
 | |
|   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
 | |
|       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
 | |
|     IntrinsicInst *II = cast<IntrinsicInst>(Count);
 | |
|     IRBuilder<> Builder(II);
 | |
|     // Explicitly clear the 'undef_on_zero' flag.
 | |
|     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
 | |
|     Type *Ty = NewI->getArgOperand(1)->getType();
 | |
|     NewI->setArgOperand(1, Constant::getNullValue(Ty));
 | |
|     Builder.Insert(NewI);
 | |
|     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Visit a SelectInst that has an ICmpInst as its first operand.
 | |
| Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
 | |
|                                                    ICmpInst *ICI) {
 | |
|   bool Changed = false;
 | |
|   ICmpInst::Predicate Pred = ICI->getPredicate();
 | |
|   Value *CmpLHS = ICI->getOperand(0);
 | |
|   Value *CmpRHS = ICI->getOperand(1);
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
| 
 | |
|   // Check cases where the comparison is with a constant that
 | |
|   // can be adjusted to fit the min/max idiom. We may move or edit ICI
 | |
|   // here, so make sure the select is the only user.
 | |
|   if (ICI->hasOneUse())
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
 | |
|       switch (Pred) {
 | |
|       default: break;
 | |
|       case ICmpInst::ICMP_ULT:
 | |
|       case ICmpInst::ICMP_SLT:
 | |
|       case ICmpInst::ICMP_UGT:
 | |
|       case ICmpInst::ICMP_SGT: {
 | |
|         // These transformations only work for selects over integers.
 | |
|         IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
 | |
|         if (!SelectTy)
 | |
|           break;
 | |
| 
 | |
|         Constant *AdjustedRHS;
 | |
|         if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
 | |
|           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
 | |
|         else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
 | |
|           AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
 | |
| 
 | |
|         // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
 | |
|         // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
 | |
|         if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
 | |
|             (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
 | |
|           ; // Nothing to do here. Values match without any sign/zero extension.
 | |
| 
 | |
|         // Types do not match. Instead of calculating this with mixed types
 | |
|         // promote all to the larger type. This enables scalar evolution to
 | |
|         // analyze this expression.
 | |
|         else if (CmpRHS->getType()->getScalarSizeInBits()
 | |
|                  < SelectTy->getBitWidth()) {
 | |
|           Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
 | |
| 
 | |
|           // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
 | |
|           // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
 | |
|           // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
 | |
|           // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
 | |
|           if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
 | |
|                 sextRHS == FalseVal) {
 | |
|             CmpLHS = TrueVal;
 | |
|             AdjustedRHS = sextRHS;
 | |
|           } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
 | |
|                      sextRHS == TrueVal) {
 | |
|             CmpLHS = FalseVal;
 | |
|             AdjustedRHS = sextRHS;
 | |
|           } else if (ICI->isUnsigned()) {
 | |
|             Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
 | |
|             // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
 | |
|             // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
 | |
|             // zext + signed compare cannot be changed:
 | |
|             //    0xff <s 0x00, but 0x00ff >s 0x0000
 | |
|             if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
 | |
|                 zextRHS == FalseVal) {
 | |
|               CmpLHS = TrueVal;
 | |
|               AdjustedRHS = zextRHS;
 | |
|             } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
 | |
|                        zextRHS == TrueVal) {
 | |
|               CmpLHS = FalseVal;
 | |
|               AdjustedRHS = zextRHS;
 | |
|             } else
 | |
|               break;
 | |
|           } else
 | |
|             break;
 | |
|         } else
 | |
|           break;
 | |
| 
 | |
|         Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|         CmpRHS = AdjustedRHS;
 | |
|         std::swap(FalseVal, TrueVal);
 | |
|         ICI->setPredicate(Pred);
 | |
|         ICI->setOperand(0, CmpLHS);
 | |
|         ICI->setOperand(1, CmpRHS);
 | |
|         SI.setOperand(1, TrueVal);
 | |
|         SI.setOperand(2, FalseVal);
 | |
| 
 | |
|         // Move ICI instruction right before the select instruction. Otherwise
 | |
|         // the sext/zext value may be defined after the ICI instruction uses it.
 | |
|         ICI->moveBefore(&SI);
 | |
| 
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
 | |
|   // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
 | |
|   // FIXME: Type and constness constraints could be lifted, but we have to
 | |
|   //        watch code size carefully. We should consider xor instead of
 | |
|   //        sub/add when we decide to do that.
 | |
|   if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
 | |
|     if (TrueVal->getType() == Ty) {
 | |
|       if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
 | |
|         ConstantInt *C1 = nullptr, *C2 = nullptr;
 | |
|         if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
 | |
|           C1 = dyn_cast<ConstantInt>(TrueVal);
 | |
|           C2 = dyn_cast<ConstantInt>(FalseVal);
 | |
|         } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
 | |
|           C1 = dyn_cast<ConstantInt>(FalseVal);
 | |
|           C2 = dyn_cast<ConstantInt>(TrueVal);
 | |
|         }
 | |
|         if (C1 && C2) {
 | |
|           // This shift results in either -1 or 0.
 | |
|           Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
 | |
| 
 | |
|           // Check if we can express the operation with a single or.
 | |
|           if (C2->isAllOnesValue())
 | |
|             return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
 | |
| 
 | |
|           Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
 | |
|           return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
 | |
| 
 | |
|   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
 | |
|     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
 | |
|       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
 | |
|       SI.setOperand(1, CmpRHS);
 | |
|       Changed = true;
 | |
|     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
 | |
|       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
 | |
|       SI.setOperand(2, CmpRHS);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     unsigned BitWidth = DL.getTypeSizeInBits(TrueVal->getType());
 | |
|     APInt MinSignedValue = APInt::getSignBit(BitWidth);
 | |
|     Value *X;
 | |
|     const APInt *Y, *C;
 | |
|     bool TrueWhenUnset;
 | |
|     bool IsBitTest = false;
 | |
|     if (ICmpInst::isEquality(Pred) &&
 | |
|         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
 | |
|         match(CmpRHS, m_Zero())) {
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
 | |
|     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
 | |
|       X = CmpLHS;
 | |
|       Y = &MinSignedValue;
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = false;
 | |
|     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
 | |
|       X = CmpLHS;
 | |
|       Y = &MinSignedValue;
 | |
|       IsBitTest = true;
 | |
|       TrueWhenUnset = true;
 | |
|     }
 | |
|     if (IsBitTest) {
 | |
|       Value *V = nullptr;
 | |
|       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
 | |
|       if (TrueWhenUnset && TrueVal == X &&
 | |
|           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder->CreateAnd(X, ~(*Y));
 | |
|       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
 | |
|       else if (!TrueWhenUnset && FalseVal == X &&
 | |
|                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder->CreateAnd(X, ~(*Y));
 | |
|       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
 | |
|       else if (TrueWhenUnset && FalseVal == X &&
 | |
|                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder->CreateOr(X, *Y);
 | |
|       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
 | |
|       else if (!TrueWhenUnset && TrueVal == X &&
 | |
|                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
 | |
|         V = Builder->CreateOr(X, *Y);
 | |
| 
 | |
|       if (V)
 | |
|         return ReplaceInstUsesWith(SI, V);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder))
 | |
|     return ReplaceInstUsesWith(SI, V);
 | |
| 
 | |
|   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
 | |
|     return ReplaceInstUsesWith(SI, V);
 | |
| 
 | |
|   return Changed ? &SI : nullptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SI is a select whose condition is a PHI node (but the two may be in
 | |
| /// different blocks). See if the true/false values (V) are live in all of the
 | |
| /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
 | |
| ///
 | |
| ///   X = phi [ C1, BB1], [C2, BB2]
 | |
| ///   Y = add
 | |
| ///   Z = select X, Y, 0
 | |
| ///
 | |
| /// because Y is not live in BB1/BB2.
 | |
| ///
 | |
| static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
 | |
|                                                    const SelectInst &SI) {
 | |
|   // If the value is a non-instruction value like a constant or argument, it
 | |
|   // can always be mapped.
 | |
|   const Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return true;
 | |
| 
 | |
|   // If V is a PHI node defined in the same block as the condition PHI, we can
 | |
|   // map the arguments.
 | |
|   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
 | |
| 
 | |
|   if (const PHINode *VP = dyn_cast<PHINode>(I))
 | |
|     if (VP->getParent() == CondPHI->getParent())
 | |
|       return true;
 | |
| 
 | |
|   // Otherwise, if the PHI and select are defined in the same block and if V is
 | |
|   // defined in a different block, then we can transform it.
 | |
|   if (SI.getParent() == CondPHI->getParent() &&
 | |
|       I->getParent() != CondPHI->getParent())
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise we have a 'hard' case and we can't tell without doing more
 | |
|   // detailed dominator based analysis, punt.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// We have an SPF (e.g. a min or max) of an SPF of the form:
 | |
| ///   SPF2(SPF1(A, B), C)
 | |
| Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
 | |
|                                         SelectPatternFlavor SPF1,
 | |
|                                         Value *A, Value *B,
 | |
|                                         Instruction &Outer,
 | |
|                                         SelectPatternFlavor SPF2, Value *C) {
 | |
|   if (C == A || C == B) {
 | |
|     // MAX(MAX(A, B), B) -> MAX(A, B)
 | |
|     // MIN(MIN(a, b), a) -> MIN(a, b)
 | |
|     if (SPF1 == SPF2)
 | |
|       return ReplaceInstUsesWith(Outer, Inner);
 | |
| 
 | |
|     // MAX(MIN(a, b), a) -> a
 | |
|     // MIN(MAX(a, b), a) -> a
 | |
|     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
 | |
|         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
 | |
|         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
 | |
|         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
 | |
|       return ReplaceInstUsesWith(Outer, C);
 | |
|   }
 | |
| 
 | |
|   if (SPF1 == SPF2) {
 | |
|     if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) {
 | |
|       if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) {
 | |
|         APInt ACB = CB->getValue();
 | |
|         APInt ACC = CC->getValue();
 | |
| 
 | |
|         // MIN(MIN(A, 23), 97) -> MIN(A, 23)
 | |
|         // MAX(MAX(A, 97), 23) -> MAX(A, 97)
 | |
|         if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) ||
 | |
|             (SPF1 == SPF_SMIN && ACB.sle(ACC)) ||
 | |
|             (SPF1 == SPF_UMAX && ACB.uge(ACC)) ||
 | |
|             (SPF1 == SPF_SMAX && ACB.sge(ACC)))
 | |
|           return ReplaceInstUsesWith(Outer, Inner);
 | |
| 
 | |
|         // MIN(MIN(A, 97), 23) -> MIN(A, 23)
 | |
|         // MAX(MAX(A, 23), 97) -> MAX(A, 97)
 | |
|         if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) ||
 | |
|             (SPF1 == SPF_SMIN && ACB.sgt(ACC)) ||
 | |
|             (SPF1 == SPF_UMAX && ACB.ult(ACC)) ||
 | |
|             (SPF1 == SPF_SMAX && ACB.slt(ACC))) {
 | |
|           Outer.replaceUsesOfWith(Inner, A);
 | |
|           return &Outer;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // ABS(ABS(X)) -> ABS(X)
 | |
|   // NABS(NABS(X)) -> NABS(X)
 | |
|   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
 | |
|     return ReplaceInstUsesWith(Outer, Inner);
 | |
|   }
 | |
| 
 | |
|   // ABS(NABS(X)) -> ABS(X)
 | |
|   // NABS(ABS(X)) -> NABS(X)
 | |
|   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
 | |
|       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
 | |
|     SelectInst *SI = cast<SelectInst>(Inner);
 | |
|     Value *NewSI = Builder->CreateSelect(
 | |
|         SI->getCondition(), SI->getFalseValue(), SI->getTrueValue());
 | |
|     return ReplaceInstUsesWith(Outer, NewSI);
 | |
|   }
 | |
| 
 | |
|   auto IsFreeOrProfitableToInvert =
 | |
|       [&](Value *V, Value *&NotV, bool &ElidesXor) {
 | |
|     if (match(V, m_Not(m_Value(NotV)))) {
 | |
|       // If V has at most 2 uses then we can get rid of the xor operation
 | |
|       // entirely.
 | |
|       ElidesXor |= !V->hasNUsesOrMore(3);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
 | |
|       NotV = nullptr;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   Value *NotA, *NotB, *NotC;
 | |
|   bool ElidesXor = false;
 | |
| 
 | |
|   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
 | |
|   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
 | |
|   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
 | |
|   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
 | |
|   //
 | |
|   // This transform is performance neutral if we can elide at least one xor from
 | |
|   // the set of three operands, since we'll be tacking on an xor at the very
 | |
|   // end.
 | |
|   if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
 | |
|       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
 | |
|       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
 | |
|     if (!NotA)
 | |
|       NotA = Builder->CreateNot(A);
 | |
|     if (!NotB)
 | |
|       NotB = Builder->CreateNot(B);
 | |
|     if (!NotC)
 | |
|       NotC = Builder->CreateNot(C);
 | |
| 
 | |
|     Value *NewInner = generateMinMaxSelectPattern(
 | |
|         Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB);
 | |
|     Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern(
 | |
|         Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC));
 | |
|     return ReplaceInstUsesWith(Outer, NewOuter);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// If one of the constants is zero (we know they can't both be) and we have an
 | |
| /// icmp instruction with zero, and we have an 'and' with the non-constant value
 | |
| /// and a power of two we can turn the select into a shift on the result of the
 | |
| /// 'and'.
 | |
| static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
 | |
|                                 ConstantInt *FalseVal,
 | |
|                                 InstCombiner::BuilderTy *Builder) {
 | |
|   const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
 | |
|   if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy())
 | |
|     return nullptr;
 | |
| 
 | |
|   if (!match(IC->getOperand(1), m_Zero()))
 | |
|     return nullptr;
 | |
| 
 | |
|   ConstantInt *AndRHS;
 | |
|   Value *LHS = IC->getOperand(0);
 | |
|   if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If both select arms are non-zero see if we have a select of the form
 | |
|   // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
 | |
|   // for 'x ? 2^n : 0' and fix the thing up at the end.
 | |
|   ConstantInt *Offset = nullptr;
 | |
|   if (!TrueVal->isZero() && !FalseVal->isZero()) {
 | |
|     if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
 | |
|       Offset = FalseVal;
 | |
|     else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
 | |
|       Offset = TrueVal;
 | |
|     else
 | |
|       return nullptr;
 | |
| 
 | |
|     // Adjust TrueVal and FalseVal to the offset.
 | |
|     TrueVal = ConstantInt::get(Builder->getContext(),
 | |
|                                TrueVal->getValue() - Offset->getValue());
 | |
|     FalseVal = ConstantInt::get(Builder->getContext(),
 | |
|                                 FalseVal->getValue() - Offset->getValue());
 | |
|   }
 | |
| 
 | |
|   // Make sure the mask in the 'and' and one of the select arms is a power of 2.
 | |
|   if (!AndRHS->getValue().isPowerOf2() ||
 | |
|       (!TrueVal->getValue().isPowerOf2() &&
 | |
|        !FalseVal->getValue().isPowerOf2()))
 | |
|     return nullptr;
 | |
| 
 | |
|   // Determine which shift is needed to transform result of the 'and' into the
 | |
|   // desired result.
 | |
|   ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
 | |
|   unsigned ValZeros = ValC->getValue().logBase2();
 | |
|   unsigned AndZeros = AndRHS->getValue().logBase2();
 | |
| 
 | |
|   // If types don't match we can still convert the select by introducing a zext
 | |
|   // or a trunc of the 'and'. The trunc case requires that all of the truncated
 | |
|   // bits are zero, we can figure that out by looking at the 'and' mask.
 | |
|   if (AndZeros >= ValC->getBitWidth())
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType());
 | |
|   if (ValZeros > AndZeros)
 | |
|     V = Builder->CreateShl(V, ValZeros - AndZeros);
 | |
|   else if (ValZeros < AndZeros)
 | |
|     V = Builder->CreateLShr(V, AndZeros - ValZeros);
 | |
| 
 | |
|   // Okay, now we know that everything is set up, we just don't know whether we
 | |
|   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
 | |
|   bool ShouldNotVal = !TrueVal->isZero();
 | |
|   ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
 | |
|   if (ShouldNotVal)
 | |
|     V = Builder->CreateXor(V, ValC);
 | |
| 
 | |
|   // Apply an offset if needed.
 | |
|   if (Offset)
 | |
|     V = Builder->CreateAdd(V, Offset);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
 | |
|   Value *CondVal = SI.getCondition();
 | |
|   Value *TrueVal = SI.getTrueValue();
 | |
|   Value *FalseVal = SI.getFalseValue();
 | |
| 
 | |
|   if (Value *V =
 | |
|           SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC))
 | |
|     return ReplaceInstUsesWith(SI, V);
 | |
| 
 | |
|   if (SI.getType()->isIntegerTy(1)) {
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
 | |
|       if (C->getZExtValue()) {
 | |
|         // Change: A = select B, true, C --> A = or B, C
 | |
|         return BinaryOperator::CreateOr(CondVal, FalseVal);
 | |
|       }
 | |
|       // Change: A = select B, false, C --> A = and !B, C
 | |
|       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
 | |
|       return BinaryOperator::CreateAnd(NotCond, FalseVal);
 | |
|     }
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
 | |
|       if (!C->getZExtValue()) {
 | |
|         // Change: A = select B, C, false --> A = and B, C
 | |
|         return BinaryOperator::CreateAnd(CondVal, TrueVal);
 | |
|       }
 | |
|       // Change: A = select B, C, true --> A = or !B, C
 | |
|       Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
 | |
|       return BinaryOperator::CreateOr(NotCond, TrueVal);
 | |
|     }
 | |
| 
 | |
|     // select a, b, a  -> a&b
 | |
|     // select a, a, b  -> a|b
 | |
|     if (CondVal == TrueVal)
 | |
|       return BinaryOperator::CreateOr(CondVal, FalseVal);
 | |
|     if (CondVal == FalseVal)
 | |
|       return BinaryOperator::CreateAnd(CondVal, TrueVal);
 | |
| 
 | |
|     // select a, ~a, b -> (~a)&b
 | |
|     // select a, b, ~a -> (~a)|b
 | |
|     if (match(TrueVal, m_Not(m_Specific(CondVal))))
 | |
|       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
 | |
|     if (match(FalseVal, m_Not(m_Specific(CondVal))))
 | |
|       return BinaryOperator::CreateOr(TrueVal, FalseVal);
 | |
|   }
 | |
| 
 | |
|   // Selecting between two integer constants?
 | |
|   if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
 | |
|     if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
 | |
|       // select C, 1, 0 -> zext C to int
 | |
|       if (FalseValC->isZero() && TrueValC->getValue() == 1)
 | |
|         return new ZExtInst(CondVal, SI.getType());
 | |
| 
 | |
|       // select C, -1, 0 -> sext C to int
 | |
|       if (FalseValC->isZero() && TrueValC->isAllOnesValue())
 | |
|         return new SExtInst(CondVal, SI.getType());
 | |
| 
 | |
|       // select C, 0, 1 -> zext !C to int
 | |
|       if (TrueValC->isZero() && FalseValC->getValue() == 1) {
 | |
|         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
 | |
|         return new ZExtInst(NotCond, SI.getType());
 | |
|       }
 | |
| 
 | |
|       // select C, 0, -1 -> sext !C to int
 | |
|       if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
 | |
|         Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
 | |
|         return new SExtInst(NotCond, SI.getType());
 | |
|       }
 | |
| 
 | |
|       if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
 | |
|         return ReplaceInstUsesWith(SI, V);
 | |
|     }
 | |
| 
 | |
|   // See if we are selecting two values based on a comparison of the two values.
 | |
|   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
 | |
|     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
 | |
|       // Transform (X == Y) ? X : Y  -> Y
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
 | |
|         // This is not safe in general for floating point:
 | |
|         // consider X== -0, Y== +0.
 | |
|         // It becomes safe if either operand is a nonzero constant.
 | |
|         ConstantFP *CFPt, *CFPf;
 | |
|         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
 | |
|               !CFPt->getValueAPF().isZero()) ||
 | |
|             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
 | |
|              !CFPf->getValueAPF().isZero()))
 | |
|         return ReplaceInstUsesWith(SI, FalseVal);
 | |
|       }
 | |
|       // Transform (X une Y) ? X : Y  -> X
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
 | |
|         // This is not safe in general for floating point:
 | |
|         // consider X== -0, Y== +0.
 | |
|         // It becomes safe if either operand is a nonzero constant.
 | |
|         ConstantFP *CFPt, *CFPf;
 | |
|         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
 | |
|               !CFPt->getValueAPF().isZero()) ||
 | |
|             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
 | |
|              !CFPf->getValueAPF().isZero()))
 | |
|         return ReplaceInstUsesWith(SI, TrueVal);
 | |
|       }
 | |
| 
 | |
|       // Canonicalize to use ordered comparisons by swapping the select
 | |
|       // operands.
 | |
|       //
 | |
|       // e.g.
 | |
|       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
 | |
|       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
 | |
|         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
 | |
|         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
 | |
|         Builder->SetFastMathFlags(FCI->getFastMathFlags());
 | |
|         Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal,
 | |
|                                              FCI->getName() + ".inv");
 | |
| 
 | |
|         return SelectInst::Create(NewCond, FalseVal, TrueVal,
 | |
|                                   SI.getName() + ".p");
 | |
|       }
 | |
| 
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX
 | |
|     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
 | |
|       // Transform (X == Y) ? Y : X  -> X
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
 | |
|         // This is not safe in general for floating point:
 | |
|         // consider X== -0, Y== +0.
 | |
|         // It becomes safe if either operand is a nonzero constant.
 | |
|         ConstantFP *CFPt, *CFPf;
 | |
|         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
 | |
|               !CFPt->getValueAPF().isZero()) ||
 | |
|             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
 | |
|              !CFPf->getValueAPF().isZero()))
 | |
|           return ReplaceInstUsesWith(SI, FalseVal);
 | |
|       }
 | |
|       // Transform (X une Y) ? Y : X  -> Y
 | |
|       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
 | |
|         // This is not safe in general for floating point:
 | |
|         // consider X== -0, Y== +0.
 | |
|         // It becomes safe if either operand is a nonzero constant.
 | |
|         ConstantFP *CFPt, *CFPf;
 | |
|         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
 | |
|               !CFPt->getValueAPF().isZero()) ||
 | |
|             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
 | |
|              !CFPf->getValueAPF().isZero()))
 | |
|           return ReplaceInstUsesWith(SI, TrueVal);
 | |
|       }
 | |
| 
 | |
|       // Canonicalize to use ordered comparisons by swapping the select
 | |
|       // operands.
 | |
|       //
 | |
|       // e.g.
 | |
|       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
 | |
|       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
 | |
|         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
 | |
|         IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
 | |
|         Builder->SetFastMathFlags(FCI->getFastMathFlags());
 | |
|         Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal,
 | |
|                                              FCI->getName() + ".inv");
 | |
| 
 | |
|         return SelectInst::Create(NewCond, FalseVal, TrueVal,
 | |
|                                   SI.getName() + ".p");
 | |
|       }
 | |
| 
 | |
|       // NOTE: if we wanted to, this is where to detect MIN/MAX
 | |
|     }
 | |
|     // NOTE: if we wanted to, this is where to detect ABS
 | |
|   }
 | |
| 
 | |
|   // See if we are selecting two values based on a comparison of the two values.
 | |
|   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
 | |
|     if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
 | |
|       return Result;
 | |
| 
 | |
|   if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
 | |
|     if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
 | |
|       if (TI->hasOneUse() && FI->hasOneUse()) {
 | |
|         Instruction *AddOp = nullptr, *SubOp = nullptr;
 | |
| 
 | |
|         // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
 | |
|         if (TI->getOpcode() == FI->getOpcode())
 | |
|           if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
 | |
|             return IV;
 | |
| 
 | |
|         // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
 | |
|         // even legal for FP.
 | |
|         if ((TI->getOpcode() == Instruction::Sub &&
 | |
|              FI->getOpcode() == Instruction::Add) ||
 | |
|             (TI->getOpcode() == Instruction::FSub &&
 | |
|              FI->getOpcode() == Instruction::FAdd)) {
 | |
|           AddOp = FI; SubOp = TI;
 | |
|         } else if ((FI->getOpcode() == Instruction::Sub &&
 | |
|                     TI->getOpcode() == Instruction::Add) ||
 | |
|                    (FI->getOpcode() == Instruction::FSub &&
 | |
|                     TI->getOpcode() == Instruction::FAdd)) {
 | |
|           AddOp = TI; SubOp = FI;
 | |
|         }
 | |
| 
 | |
|         if (AddOp) {
 | |
|           Value *OtherAddOp = nullptr;
 | |
|           if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
 | |
|             OtherAddOp = AddOp->getOperand(1);
 | |
|           } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
 | |
|             OtherAddOp = AddOp->getOperand(0);
 | |
|           }
 | |
| 
 | |
|           if (OtherAddOp) {
 | |
|             // So at this point we know we have (Y -> OtherAddOp):
 | |
|             //        select C, (add X, Y), (sub X, Z)
 | |
|             Value *NegVal;  // Compute -Z
 | |
|             if (SI.getType()->isFPOrFPVectorTy()) {
 | |
|               NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
 | |
|               if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
 | |
|                 FastMathFlags Flags = AddOp->getFastMathFlags();
 | |
|                 Flags &= SubOp->getFastMathFlags();
 | |
|                 NegInst->setFastMathFlags(Flags);
 | |
|               }
 | |
|             } else {
 | |
|               NegVal = Builder->CreateNeg(SubOp->getOperand(1));
 | |
|             }
 | |
| 
 | |
|             Value *NewTrueOp = OtherAddOp;
 | |
|             Value *NewFalseOp = NegVal;
 | |
|             if (AddOp != TI)
 | |
|               std::swap(NewTrueOp, NewFalseOp);
 | |
|             Value *NewSel =
 | |
|               Builder->CreateSelect(CondVal, NewTrueOp,
 | |
|                                     NewFalseOp, SI.getName() + ".p");
 | |
| 
 | |
|             if (SI.getType()->isFPOrFPVectorTy()) {
 | |
|               Instruction *RI =
 | |
|                 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
 | |
| 
 | |
|               FastMathFlags Flags = AddOp->getFastMathFlags();
 | |
|               Flags &= SubOp->getFastMathFlags();
 | |
|               RI->setFastMathFlags(Flags);
 | |
|               return RI;
 | |
|             } else
 | |
|               return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   // See if we can fold the select into one of our operands.
 | |
|   if (SI.getType()->isIntOrIntVectorTy() || SI.getType()->isFPOrFPVectorTy()) {
 | |
|     if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
 | |
|       return FoldI;
 | |
| 
 | |
|     Value *LHS, *RHS, *LHS2, *RHS2;
 | |
|     Instruction::CastOps CastOp;
 | |
|     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
 | |
|     auto SPF = SPR.Flavor;
 | |
| 
 | |
|     if (SPF) {
 | |
|       // Canonicalize so that type casts are outside select patterns.
 | |
|       if (LHS->getType()->getPrimitiveSizeInBits() !=
 | |
|           SI.getType()->getPrimitiveSizeInBits()) {
 | |
|         CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered);
 | |
| 
 | |
|         Value *Cmp;
 | |
|         if (CmpInst::isIntPredicate(Pred)) {
 | |
|           Cmp = Builder->CreateICmp(Pred, LHS, RHS);
 | |
|         } else {
 | |
|           IRBuilder<>::FastMathFlagGuard FMFG(*Builder);
 | |
|           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
 | |
|           Builder->SetFastMathFlags(FMF);
 | |
|           Cmp = Builder->CreateFCmp(Pred, LHS, RHS);
 | |
|         }
 | |
| 
 | |
|         Value *NewSI = Builder->CreateCast(CastOp,
 | |
|                                            Builder->CreateSelect(Cmp, LHS, RHS),
 | |
|                                            SI.getType());
 | |
|         return ReplaceInstUsesWith(SI, NewSI);
 | |
|       }
 | |
| 
 | |
|       // MAX(MAX(a, b), a) -> MAX(a, b)
 | |
|       // MIN(MIN(a, b), a) -> MIN(a, b)
 | |
|       // MAX(MIN(a, b), a) -> a
 | |
|       // MIN(MAX(a, b), a) -> a
 | |
|       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
 | |
|         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
 | |
|                                           SI, SPF, RHS))
 | |
|           return R;
 | |
|       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
 | |
|         if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
 | |
|                                           SI, SPF, LHS))
 | |
|           return R;
 | |
|     }
 | |
| 
 | |
|     // MAX(~a, ~b) -> ~MIN(a, b)
 | |
|     if (SPF == SPF_SMAX || SPF == SPF_UMAX) {
 | |
|       if (IsFreeToInvert(LHS, LHS->hasNUses(2)) &&
 | |
|           IsFreeToInvert(RHS, RHS->hasNUses(2))) {
 | |
| 
 | |
|         // This transform adds a xor operation and that extra cost needs to be
 | |
|         // justified.  We look for simplifications that will result from
 | |
|         // applying this rule:
 | |
| 
 | |
|         bool Profitable =
 | |
|             (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) ||
 | |
|             (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) ||
 | |
|             (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value())));
 | |
| 
 | |
|         if (Profitable) {
 | |
|           Value *NewLHS = Builder->CreateNot(LHS);
 | |
|           Value *NewRHS = Builder->CreateNot(RHS);
 | |
|           Value *NewCmp = SPF == SPF_SMAX
 | |
|                               ? Builder->CreateICmpSLT(NewLHS, NewRHS)
 | |
|                               : Builder->CreateICmpULT(NewLHS, NewRHS);
 | |
|           Value *NewSI =
 | |
|               Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS));
 | |
|           return ReplaceInstUsesWith(SI, NewSI);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // TODO.
 | |
|     // ABS(-X) -> ABS(X)
 | |
|   }
 | |
| 
 | |
|   // See if we can fold the select into a phi node if the condition is a select.
 | |
|   if (isa<PHINode>(SI.getCondition()))
 | |
|     // The true/false values have to be live in the PHI predecessor's blocks.
 | |
|     if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
 | |
|         CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
 | |
|       if (Instruction *NV = FoldOpIntoPhi(SI))
 | |
|         return NV;
 | |
| 
 | |
|   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
 | |
|     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
 | |
|       // select(C, select(C, a, b), c) -> select(C, a, c)
 | |
|       if (TrueSI->getCondition() == CondVal) {
 | |
|         if (SI.getTrueValue() == TrueSI->getTrueValue())
 | |
|           return nullptr;
 | |
|         SI.setOperand(1, TrueSI->getTrueValue());
 | |
|         return &SI;
 | |
|       }
 | |
|       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
 | |
|       // We choose this as normal form to enable folding on the And and shortening
 | |
|       // paths for the values (this helps GetUnderlyingObjects() for example).
 | |
|       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
 | |
|         Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition());
 | |
|         SI.setOperand(0, And);
 | |
|         SI.setOperand(1, TrueSI->getTrueValue());
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
 | |
|     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
 | |
|       // select(C, a, select(C, b, c)) -> select(C, a, c)
 | |
|       if (FalseSI->getCondition() == CondVal) {
 | |
|         if (SI.getFalseValue() == FalseSI->getFalseValue())
 | |
|           return nullptr;
 | |
|         SI.setOperand(2, FalseSI->getFalseValue());
 | |
|         return &SI;
 | |
|       }
 | |
|       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
 | |
|       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
 | |
|         Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition());
 | |
|         SI.setOperand(0, Or);
 | |
|         SI.setOperand(2, FalseSI->getFalseValue());
 | |
|         return &SI;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BinaryOperator::isNot(CondVal)) {
 | |
|     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
 | |
|     SI.setOperand(1, FalseVal);
 | |
|     SI.setOperand(2, TrueVal);
 | |
|     return &SI;
 | |
|   }
 | |
| 
 | |
|   if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) {
 | |
|     unsigned VWidth = VecTy->getNumElements();
 | |
|     APInt UndefElts(VWidth, 0);
 | |
|     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
 | |
|     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
 | |
|       if (V != &SI)
 | |
|         return ReplaceInstUsesWith(SI, V);
 | |
|       return &SI;
 | |
|     }
 | |
| 
 | |
|     if (isa<ConstantAggregateZero>(CondVal)) {
 | |
|       return ReplaceInstUsesWith(SI, FalseVal);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 |