542 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			542 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Float2Int pass, which aims to demote floating
 | |
| // point operations to work on integers, where that is losslessly possible.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "float2int"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/APSInt.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/EquivalenceClasses.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include <deque>
 | |
| #include <functional> // For std::function
 | |
| using namespace llvm;
 | |
| 
 | |
| // The algorithm is simple. Start at instructions that convert from the
 | |
| // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
 | |
| // graph, using an equivalence datastructure to unify graphs that interfere.
 | |
| //
 | |
| // Mappable instructions are those with an integer corrollary that, given
 | |
| // integer domain inputs, produce an integer output; fadd, for example.
 | |
| //
 | |
| // If a non-mappable instruction is seen, this entire def-use graph is marked
 | |
| // as non-transformable. If we see an instruction that converts from the
 | |
| // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
 | |
| 
 | |
| /// The largest integer type worth dealing with.
 | |
| static cl::opt<unsigned>
 | |
| MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
 | |
|              cl::desc("Max integer bitwidth to consider in float2int"
 | |
|                       "(default=64)"));
 | |
| 
 | |
| namespace {
 | |
|   struct Float2Int : public FunctionPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     Float2Int() : FunctionPass(ID) {
 | |
|       initializeFloat2IntPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override;
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|     }
 | |
| 
 | |
|     void findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots);
 | |
|     ConstantRange seen(Instruction *I, ConstantRange R);
 | |
|     ConstantRange badRange();
 | |
|     ConstantRange unknownRange();
 | |
|     ConstantRange validateRange(ConstantRange R);
 | |
|     void walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots);
 | |
|     void walkForwards();
 | |
|     bool validateAndTransform();
 | |
|     Value *convert(Instruction *I, Type *ToTy);
 | |
|     void cleanup();
 | |
| 
 | |
|     MapVector<Instruction*, ConstantRange > SeenInsts;
 | |
|     SmallPtrSet<Instruction*,8> Roots;
 | |
|     EquivalenceClasses<Instruction*> ECs;
 | |
|     MapVector<Instruction*, Value*> ConvertedInsts;
 | |
|     LLVMContext *Ctx;
 | |
|   };
 | |
| }
 | |
| 
 | |
| char Float2Int::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(Float2Int, "float2int", "Float to int", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
 | |
| INITIALIZE_PASS_END(Float2Int, "float2int", "Float to int", false, false)
 | |
| 
 | |
| // Given a FCmp predicate, return a matching ICmp predicate if one
 | |
| // exists, otherwise return BAD_ICMP_PREDICATE.
 | |
| static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
 | |
|   switch (P) {
 | |
|   case CmpInst::FCMP_OEQ:
 | |
|   case CmpInst::FCMP_UEQ:
 | |
|     return CmpInst::ICMP_EQ;
 | |
|   case CmpInst::FCMP_OGT:
 | |
|   case CmpInst::FCMP_UGT:
 | |
|     return CmpInst::ICMP_SGT;
 | |
|   case CmpInst::FCMP_OGE:
 | |
|   case CmpInst::FCMP_UGE:
 | |
|     return CmpInst::ICMP_SGE;
 | |
|   case CmpInst::FCMP_OLT:
 | |
|   case CmpInst::FCMP_ULT:
 | |
|     return CmpInst::ICMP_SLT;
 | |
|   case CmpInst::FCMP_OLE:
 | |
|   case CmpInst::FCMP_ULE:
 | |
|     return CmpInst::ICMP_SLE;
 | |
|   case CmpInst::FCMP_ONE:
 | |
|   case CmpInst::FCMP_UNE:
 | |
|     return CmpInst::ICMP_NE;
 | |
|   default:
 | |
|     return CmpInst::BAD_ICMP_PREDICATE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Given a floating point binary operator, return the matching
 | |
| // integer version.
 | |
| static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: llvm_unreachable("Unhandled opcode!");
 | |
|   case Instruction::FAdd: return Instruction::Add;
 | |
|   case Instruction::FSub: return Instruction::Sub;
 | |
|   case Instruction::FMul: return Instruction::Mul;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Find the roots - instructions that convert from the FP domain to
 | |
| // integer domain.
 | |
| void Float2Int::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
 | |
|   for (auto &I : instructions(F)) {
 | |
|     switch (I.getOpcode()) {
 | |
|     default: break;
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|       Roots.insert(&I);
 | |
|       break;
 | |
|     case Instruction::FCmp:
 | |
|       if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
 | |
|           CmpInst::BAD_ICMP_PREDICATE)
 | |
|         Roots.insert(&I);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Helper - mark I as having been traversed, having range R.
 | |
| ConstantRange Float2Int::seen(Instruction *I, ConstantRange R) {
 | |
|   DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
 | |
|   if (SeenInsts.find(I) != SeenInsts.end())
 | |
|     SeenInsts.find(I)->second = R;
 | |
|   else
 | |
|     SeenInsts.insert(std::make_pair(I, R));
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| // Helper - get a range representing a poison value.
 | |
| ConstantRange Float2Int::badRange() {
 | |
|   return ConstantRange(MaxIntegerBW + 1, true);
 | |
| }
 | |
| ConstantRange Float2Int::unknownRange() {
 | |
|   return ConstantRange(MaxIntegerBW + 1, false);
 | |
| }
 | |
| ConstantRange Float2Int::validateRange(ConstantRange R) {
 | |
|   if (R.getBitWidth() > MaxIntegerBW + 1)
 | |
|     return badRange();
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| // The most obvious way to structure the search is a depth-first, eager
 | |
| // search from each root. However, that require direct recursion and so
 | |
| // can only handle small instruction sequences. Instead, we split the search
 | |
| // up into two phases:
 | |
| //   - walkBackwards:  A breadth-first walk of the use-def graph starting from
 | |
| //                     the roots. Populate "SeenInsts" with interesting
 | |
| //                     instructions and poison values if they're obvious and
 | |
| //                     cheap to compute. Calculate the equivalance set structure
 | |
| //                     while we're here too.
 | |
| //   - walkForwards:  Iterate over SeenInsts in reverse order, so we visit
 | |
| //                     defs before their uses. Calculate the real range info.
 | |
| 
 | |
| // Breadth-first walk of the use-def graph; determine the set of nodes
 | |
| // we care about and eagerly determine if some of them are poisonous.
 | |
| void Float2Int::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
 | |
|   std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     if (SeenInsts.find(I) != SeenInsts.end())
 | |
|       // Seen already.
 | |
|       continue;
 | |
| 
 | |
|     switch (I->getOpcode()) {
 | |
|       // FIXME: Handle select and phi nodes.
 | |
|     default:
 | |
|       // Path terminated uncleanly.
 | |
|       seen(I, badRange());
 | |
|       break;
 | |
| 
 | |
|     case Instruction::UIToFP: {
 | |
|       // Path terminated cleanly.
 | |
|       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
 | |
|       APInt Min = APInt::getMinValue(BW).zextOrSelf(MaxIntegerBW+1);
 | |
|       APInt Max = APInt::getMaxValue(BW).zextOrSelf(MaxIntegerBW+1);
 | |
|       seen(I, validateRange(ConstantRange(Min, Max)));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case Instruction::SIToFP: {
 | |
|       // Path terminated cleanly.
 | |
|       unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
 | |
|       APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(MaxIntegerBW+1);
 | |
|       APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(MaxIntegerBW+1);
 | |
|       seen(I, validateRange(ConstantRange(SMin, SMax)));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FCmp:
 | |
|       seen(I, unknownRange());
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     for (Value *O : I->operands()) {
 | |
|       if (Instruction *OI = dyn_cast<Instruction>(O)) {
 | |
|         // Unify def-use chains if they interfere.
 | |
|         ECs.unionSets(I, OI);
 | |
|         if (SeenInsts.find(I)->second != badRange())
 | |
|           Worklist.push_back(OI);
 | |
|       } else if (!isa<ConstantFP>(O)) {
 | |
|         // Not an instruction or ConstantFP? we can't do anything.
 | |
|         seen(I, badRange());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Walk forwards down the list of seen instructions, so we visit defs before
 | |
| // uses.
 | |
| void Float2Int::walkForwards() {
 | |
|   for (auto &It : make_range(SeenInsts.rbegin(), SeenInsts.rend())) {
 | |
|     if (It.second != unknownRange())
 | |
|       continue;
 | |
| 
 | |
|     Instruction *I = It.first;
 | |
|     std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
 | |
|     switch (I->getOpcode()) {
 | |
|       // FIXME: Handle select and phi nodes.
 | |
|     default:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|       llvm_unreachable("Should have been handled in walkForwards!");
 | |
| 
 | |
|     case Instruction::FAdd:
 | |
|       Op = [](ArrayRef<ConstantRange> Ops) {
 | |
|         assert(Ops.size() == 2 && "FAdd is a binary operator!");
 | |
|         return Ops[0].add(Ops[1]);
 | |
|       };
 | |
|       break;
 | |
| 
 | |
|     case Instruction::FSub:
 | |
|       Op = [](ArrayRef<ConstantRange> Ops) {
 | |
|         assert(Ops.size() == 2 && "FSub is a binary operator!");
 | |
|         return Ops[0].sub(Ops[1]);
 | |
|       };
 | |
|       break;
 | |
| 
 | |
|     case Instruction::FMul:
 | |
|       Op = [](ArrayRef<ConstantRange> Ops) {
 | |
|         assert(Ops.size() == 2 && "FMul is a binary operator!");
 | |
|         return Ops[0].multiply(Ops[1]);
 | |
|       };
 | |
|       break;
 | |
| 
 | |
|     //
 | |
|     // Root-only instructions - we'll only see these if they're the
 | |
|     //                          first node in a walk.
 | |
|     //
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|       Op = [](ArrayRef<ConstantRange> Ops) {
 | |
|         assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
 | |
|         return Ops[0];
 | |
|       };
 | |
|       break;
 | |
| 
 | |
|     case Instruction::FCmp:
 | |
|       Op = [](ArrayRef<ConstantRange> Ops) {
 | |
|         assert(Ops.size() == 2 && "FCmp is a binary operator!");
 | |
|         return Ops[0].unionWith(Ops[1]);
 | |
|       };
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     bool Abort = false;
 | |
|     SmallVector<ConstantRange,4> OpRanges;
 | |
|     for (Value *O : I->operands()) {
 | |
|       if (Instruction *OI = dyn_cast<Instruction>(O)) {
 | |
|         assert(SeenInsts.find(OI) != SeenInsts.end() &&
 | |
|                "def not seen before use!");
 | |
|         OpRanges.push_back(SeenInsts.find(OI)->second);
 | |
|       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
 | |
|         // Work out if the floating point number can be losslessly represented
 | |
|         // as an integer.
 | |
|         // APFloat::convertToInteger(&Exact) purports to do what we want, but
 | |
|         // the exactness can be too precise. For example, negative zero can
 | |
|         // never be exactly converted to an integer.
 | |
|         //
 | |
|         // Instead, we ask APFloat to round itself to an integral value - this
 | |
|         // preserves sign-of-zero - then compare the result with the original.
 | |
|         //
 | |
|         APFloat F = CF->getValueAPF();
 | |
| 
 | |
|         // First, weed out obviously incorrect values. Non-finite numbers
 | |
|         // can't be represented and neither can negative zero, unless
 | |
|         // we're in fast math mode.
 | |
|         if (!F.isFinite() ||
 | |
|             (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
 | |
|              !I->hasNoSignedZeros())) {
 | |
|           seen(I, badRange());
 | |
|           Abort = true;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         APFloat NewF = F;
 | |
|         auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
 | |
|         if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
 | |
|           seen(I, badRange());
 | |
|           Abort = true;
 | |
|           break;
 | |
|         }
 | |
|         // OK, it's representable. Now get it.
 | |
|         APSInt Int(MaxIntegerBW+1, false);
 | |
|         bool Exact;
 | |
|         CF->getValueAPF().convertToInteger(Int,
 | |
|                                            APFloat::rmNearestTiesToEven,
 | |
|                                            &Exact);
 | |
|         OpRanges.push_back(ConstantRange(Int));
 | |
|       } else {
 | |
|         llvm_unreachable("Should have already marked this as badRange!");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Reduce the operands' ranges to a single range and return.
 | |
|     if (!Abort)
 | |
|       seen(I, Op(OpRanges));
 | |
|   }
 | |
| }
 | |
| 
 | |
| // If there is a valid transform to be done, do it.
 | |
| bool Float2Int::validateAndTransform() {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Iterate over every disjoint partition of the def-use graph.
 | |
|   for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
 | |
|     ConstantRange R(MaxIntegerBW + 1, false);
 | |
|     bool Fail = false;
 | |
|     Type *ConvertedToTy = nullptr;
 | |
| 
 | |
|     // For every member of the partition, union all the ranges together.
 | |
|     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
 | |
|          MI != ME; ++MI) {
 | |
|       Instruction *I = *MI;
 | |
|       auto SeenI = SeenInsts.find(I);
 | |
|       if (SeenI == SeenInsts.end())
 | |
|         continue;
 | |
| 
 | |
|       R = R.unionWith(SeenI->second);
 | |
|       // We need to ensure I has no users that have not been seen.
 | |
|       // If it does, transformation would be illegal.
 | |
|       //
 | |
|       // Don't count the roots, as they terminate the graphs.
 | |
|       if (Roots.count(I) == 0) {
 | |
|         // Set the type of the conversion while we're here.
 | |
|         if (!ConvertedToTy)
 | |
|           ConvertedToTy = I->getType();
 | |
|         for (User *U : I->users()) {
 | |
|           Instruction *UI = dyn_cast<Instruction>(U);
 | |
|           if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
 | |
|             DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
 | |
|             Fail = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (Fail)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // If the set was empty, or we failed, or the range is poisonous,
 | |
|     // bail out.
 | |
|     if (ECs.member_begin(It) == ECs.member_end() || Fail ||
 | |
|         R.isFullSet() || R.isSignWrappedSet())
 | |
|       continue;
 | |
|     assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
 | |
| 
 | |
|     // The number of bits required is the maximum of the upper and
 | |
|     // lower limits, plus one so it can be signed.
 | |
|     unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
 | |
|                               R.getUpper().getMinSignedBits()) + 1;
 | |
|     DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
 | |
| 
 | |
|     // If we've run off the realms of the exactly representable integers,
 | |
|     // the floating point result will differ from an integer approximation.
 | |
| 
 | |
|     // Do we need more bits than are in the mantissa of the type we converted
 | |
|     // to? semanticsPrecision returns the number of mantissa bits plus one
 | |
|     // for the sign bit.
 | |
|     unsigned MaxRepresentableBits
 | |
|       = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
 | |
|     if (MinBW > MaxRepresentableBits) {
 | |
|       DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
 | |
|       continue;
 | |
|     }
 | |
|     if (MinBW > 64) {
 | |
|       DEBUG(dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // OK, R is known to be representable. Now pick a type for it.
 | |
|     // FIXME: Pick the smallest legal type that will fit.
 | |
|     Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
 | |
| 
 | |
|     for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
 | |
|          MI != ME; ++MI)
 | |
|       convert(*MI, Ty);
 | |
|     MadeChange = true;
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| Value *Float2Int::convert(Instruction *I, Type *ToTy) {
 | |
|   if (ConvertedInsts.find(I) != ConvertedInsts.end())
 | |
|     // Already converted this instruction.
 | |
|     return ConvertedInsts[I];
 | |
| 
 | |
|   SmallVector<Value*,4> NewOperands;
 | |
|   for (Value *V : I->operands()) {
 | |
|     // Don't recurse if we're an instruction that terminates the path.
 | |
|     if (I->getOpcode() == Instruction::UIToFP ||
 | |
|         I->getOpcode() == Instruction::SIToFP) {
 | |
|       NewOperands.push_back(V);
 | |
|     } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
 | |
|       NewOperands.push_back(convert(VI, ToTy));
 | |
|     } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
 | |
|       APSInt Val(ToTy->getPrimitiveSizeInBits(), /*IsUnsigned=*/false);
 | |
|       bool Exact;
 | |
|       CF->getValueAPF().convertToInteger(Val,
 | |
|                                          APFloat::rmNearestTiesToEven,
 | |
|                                          &Exact);
 | |
|       NewOperands.push_back(ConstantInt::get(ToTy, Val));
 | |
|     } else {
 | |
|       llvm_unreachable("Unhandled operand type?");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now create a new instruction.
 | |
|   IRBuilder<> IRB(I);
 | |
|   Value *NewV = nullptr;
 | |
|   switch (I->getOpcode()) {
 | |
|   default: llvm_unreachable("Unhandled instruction!");
 | |
| 
 | |
|   case Instruction::FPToUI:
 | |
|     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
 | |
|     break;
 | |
| 
 | |
|   case Instruction::FPToSI:
 | |
|     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
 | |
|     break;
 | |
| 
 | |
|   case Instruction::FCmp: {
 | |
|     CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
 | |
|     assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
 | |
|     NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::UIToFP:
 | |
|     NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::SIToFP:
 | |
|     NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::FMul:
 | |
|     NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
 | |
|                            NewOperands[0], NewOperands[1],
 | |
|                            I->getName());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If we're a root instruction, RAUW.
 | |
|   if (Roots.count(I))
 | |
|     I->replaceAllUsesWith(NewV);
 | |
| 
 | |
|   ConvertedInsts[I] = NewV;
 | |
|   return NewV;
 | |
| }
 | |
| 
 | |
| // Perform dead code elimination on the instructions we just modified.
 | |
| void Float2Int::cleanup() {
 | |
|   for (auto &I : make_range(ConvertedInsts.rbegin(), ConvertedInsts.rend()))
 | |
|     I.first->eraseFromParent();
 | |
| }
 | |
| 
 | |
| bool Float2Int::runOnFunction(Function &F) {
 | |
|   if (skipOptnoneFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
 | |
|   // Clear out all state.
 | |
|   ECs = EquivalenceClasses<Instruction*>();
 | |
|   SeenInsts.clear();
 | |
|   ConvertedInsts.clear();
 | |
|   Roots.clear();
 | |
| 
 | |
|   Ctx = &F.getParent()->getContext();
 | |
| 
 | |
|   findRoots(F, Roots);
 | |
| 
 | |
|   walkBackwards(Roots);
 | |
|   walkForwards();
 | |
| 
 | |
|   bool Modified = validateAndTransform();
 | |
|   if (Modified)
 | |
|     cleanup();
 | |
|   return Modified;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createFloat2IntPass() { return new Float2Int(); }
 |