1088 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1088 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass implements a simple loop unroller.  It works best when loops have
 | |
| // been canonicalized by the -indvars pass, allowing it to determine the trip
 | |
| // counts of loops easily.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/Analysis/GlobalsModRef.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/UnrollLoop.h"
 | |
| #include <climits>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "loop-unroll"
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
|     UnrollThreshold("unroll-threshold", cl::init(150), cl::Hidden,
 | |
|                     cl::desc("The baseline cost threshold for loop unrolling"));
 | |
| 
 | |
| static cl::opt<unsigned> UnrollPercentDynamicCostSavedThreshold(
 | |
|     "unroll-percent-dynamic-cost-saved-threshold", cl::init(20), cl::Hidden,
 | |
|     cl::desc("The percentage of estimated dynamic cost which must be saved by "
 | |
|              "unrolling to allow unrolling up to the max threshold."));
 | |
| 
 | |
| static cl::opt<unsigned> UnrollDynamicCostSavingsDiscount(
 | |
|     "unroll-dynamic-cost-savings-discount", cl::init(2000), cl::Hidden,
 | |
|     cl::desc("This is the amount discounted from the total unroll cost when "
 | |
|              "the unrolled form has a high dynamic cost savings (triggered by "
 | |
|              "the '-unroll-perecent-dynamic-cost-saved-threshold' flag)."));
 | |
| 
 | |
| static cl::opt<unsigned> UnrollMaxIterationsCountToAnalyze(
 | |
|     "unroll-max-iteration-count-to-analyze", cl::init(0), cl::Hidden,
 | |
|     cl::desc("Don't allow loop unrolling to simulate more than this number of"
 | |
|              "iterations when checking full unroll profitability"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| UnrollCount("unroll-count", cl::init(0), cl::Hidden,
 | |
|   cl::desc("Use this unroll count for all loops including those with "
 | |
|            "unroll_count pragma values, for testing purposes"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Allows loops to be partially unrolled until "
 | |
|            "-unroll-threshold loop size is reached."));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| UnrollRuntime("unroll-runtime", cl::ZeroOrMore, cl::init(false), cl::Hidden,
 | |
|   cl::desc("Unroll loops with run-time trip counts"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| PragmaUnrollThreshold("pragma-unroll-threshold", cl::init(16 * 1024), cl::Hidden,
 | |
|   cl::desc("Unrolled size limit for loops with an unroll(full) or "
 | |
|            "unroll_count pragma."));
 | |
| 
 | |
| namespace {
 | |
|   class LoopUnroll : public LoopPass {
 | |
|   public:
 | |
|     static char ID; // Pass ID, replacement for typeid
 | |
|     LoopUnroll(int T = -1, int C = -1, int P = -1, int R = -1) : LoopPass(ID) {
 | |
|       CurrentThreshold = (T == -1) ? UnrollThreshold : unsigned(T);
 | |
|       CurrentPercentDynamicCostSavedThreshold =
 | |
|           UnrollPercentDynamicCostSavedThreshold;
 | |
|       CurrentDynamicCostSavingsDiscount = UnrollDynamicCostSavingsDiscount;
 | |
|       CurrentCount = (C == -1) ? UnrollCount : unsigned(C);
 | |
|       CurrentAllowPartial = (P == -1) ? UnrollAllowPartial : (bool)P;
 | |
|       CurrentRuntime = (R == -1) ? UnrollRuntime : (bool)R;
 | |
| 
 | |
|       UserThreshold = (T != -1) || (UnrollThreshold.getNumOccurrences() > 0);
 | |
|       UserPercentDynamicCostSavedThreshold =
 | |
|           (UnrollPercentDynamicCostSavedThreshold.getNumOccurrences() > 0);
 | |
|       UserDynamicCostSavingsDiscount =
 | |
|           (UnrollDynamicCostSavingsDiscount.getNumOccurrences() > 0);
 | |
|       UserAllowPartial = (P != -1) ||
 | |
|                          (UnrollAllowPartial.getNumOccurrences() > 0);
 | |
|       UserRuntime = (R != -1) || (UnrollRuntime.getNumOccurrences() > 0);
 | |
|       UserCount = (C != -1) || (UnrollCount.getNumOccurrences() > 0);
 | |
| 
 | |
|       initializeLoopUnrollPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     /// A magic value for use with the Threshold parameter to indicate
 | |
|     /// that the loop unroll should be performed regardless of how much
 | |
|     /// code expansion would result.
 | |
|     static const unsigned NoThreshold = UINT_MAX;
 | |
| 
 | |
|     // Threshold to use when optsize is specified (and there is no
 | |
|     // explicit -unroll-threshold).
 | |
|     static const unsigned OptSizeUnrollThreshold = 50;
 | |
| 
 | |
|     // Default unroll count for loops with run-time trip count if
 | |
|     // -unroll-count is not set
 | |
|     static const unsigned UnrollRuntimeCount = 8;
 | |
| 
 | |
|     unsigned CurrentCount;
 | |
|     unsigned CurrentThreshold;
 | |
|     unsigned CurrentPercentDynamicCostSavedThreshold;
 | |
|     unsigned CurrentDynamicCostSavingsDiscount;
 | |
|     bool CurrentAllowPartial;
 | |
|     bool CurrentRuntime;
 | |
| 
 | |
|     // Flags for whether the 'current' settings are user-specified.
 | |
|     bool UserCount;
 | |
|     bool UserThreshold;
 | |
|     bool UserPercentDynamicCostSavedThreshold;
 | |
|     bool UserDynamicCostSavingsDiscount;
 | |
|     bool UserAllowPartial;
 | |
|     bool UserRuntime;
 | |
| 
 | |
|     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
 | |
| 
 | |
|     /// This transformation requires natural loop information & requires that
 | |
|     /// loop preheaders be inserted into the CFG...
 | |
|     ///
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<AssumptionCacheTracker>();
 | |
|       AU.addRequired<DominatorTreeWrapperPass>();
 | |
|       AU.addRequired<LoopInfoWrapperPass>();
 | |
|       AU.addPreserved<LoopInfoWrapperPass>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|       AU.addPreserved<ScalarEvolutionWrapperPass>();
 | |
|       AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|       // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
 | |
|       // If loop unroll does not preserve dom info then LCSSA pass on next
 | |
|       // loop will receive invalid dom info.
 | |
|       // For now, recreate dom info, if loop is unrolled.
 | |
|       AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|       AU.addPreserved<GlobalsAAWrapperPass>();
 | |
|     }
 | |
| 
 | |
|     // Fill in the UnrollingPreferences parameter with values from the
 | |
|     // TargetTransformationInfo.
 | |
|     void getUnrollingPreferences(Loop *L, const TargetTransformInfo &TTI,
 | |
|                                  TargetTransformInfo::UnrollingPreferences &UP) {
 | |
|       UP.Threshold = CurrentThreshold;
 | |
|       UP.PercentDynamicCostSavedThreshold =
 | |
|           CurrentPercentDynamicCostSavedThreshold;
 | |
|       UP.DynamicCostSavingsDiscount = CurrentDynamicCostSavingsDiscount;
 | |
|       UP.OptSizeThreshold = OptSizeUnrollThreshold;
 | |
|       UP.PartialThreshold = CurrentThreshold;
 | |
|       UP.PartialOptSizeThreshold = OptSizeUnrollThreshold;
 | |
|       UP.Count = CurrentCount;
 | |
|       UP.MaxCount = UINT_MAX;
 | |
|       UP.Partial = CurrentAllowPartial;
 | |
|       UP.Runtime = CurrentRuntime;
 | |
|       UP.AllowExpensiveTripCount = false;
 | |
|       TTI.getUnrollingPreferences(L, UP);
 | |
|     }
 | |
| 
 | |
|     // Select and return an unroll count based on parameters from
 | |
|     // user, unroll preferences, unroll pragmas, or a heuristic.
 | |
|     // SetExplicitly is set to true if the unroll count is is set by
 | |
|     // the user or a pragma rather than selected heuristically.
 | |
|     unsigned
 | |
|     selectUnrollCount(const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
 | |
|                       unsigned PragmaCount,
 | |
|                       const TargetTransformInfo::UnrollingPreferences &UP,
 | |
|                       bool &SetExplicitly);
 | |
| 
 | |
|     // Select threshold values used to limit unrolling based on a
 | |
|     // total unrolled size.  Parameters Threshold and PartialThreshold
 | |
|     // are set to the maximum unrolled size for fully and partially
 | |
|     // unrolled loops respectively.
 | |
|     void selectThresholds(const Loop *L, bool UsePragmaThreshold,
 | |
|                           const TargetTransformInfo::UnrollingPreferences &UP,
 | |
|                           unsigned &Threshold, unsigned &PartialThreshold,
 | |
|                           unsigned &PercentDynamicCostSavedThreshold,
 | |
|                           unsigned &DynamicCostSavingsDiscount) {
 | |
|       // Determine the current unrolling threshold.  While this is
 | |
|       // normally set from UnrollThreshold, it is overridden to a
 | |
|       // smaller value if the current function is marked as
 | |
|       // optimize-for-size, and the unroll threshold was not user
 | |
|       // specified.
 | |
|       Threshold = UserThreshold ? CurrentThreshold : UP.Threshold;
 | |
|       PartialThreshold = UserThreshold ? CurrentThreshold : UP.PartialThreshold;
 | |
|       PercentDynamicCostSavedThreshold =
 | |
|           UserPercentDynamicCostSavedThreshold
 | |
|               ? CurrentPercentDynamicCostSavedThreshold
 | |
|               : UP.PercentDynamicCostSavedThreshold;
 | |
|       DynamicCostSavingsDiscount = UserDynamicCostSavingsDiscount
 | |
|                                        ? CurrentDynamicCostSavingsDiscount
 | |
|                                        : UP.DynamicCostSavingsDiscount;
 | |
| 
 | |
|       if (!UserThreshold &&
 | |
|           // FIXME: Use Function::optForSize().
 | |
|           L->getHeader()->getParent()->hasFnAttribute(
 | |
|               Attribute::OptimizeForSize)) {
 | |
|         Threshold = UP.OptSizeThreshold;
 | |
|         PartialThreshold = UP.PartialOptSizeThreshold;
 | |
|       }
 | |
|       if (UsePragmaThreshold) {
 | |
|         // If the loop has an unrolling pragma, we want to be more
 | |
|         // aggressive with unrolling limits.  Set thresholds to at
 | |
|         // least the PragmaTheshold value which is larger than the
 | |
|         // default limits.
 | |
|         if (Threshold != NoThreshold)
 | |
|           Threshold = std::max<unsigned>(Threshold, PragmaUnrollThreshold);
 | |
|         if (PartialThreshold != NoThreshold)
 | |
|           PartialThreshold =
 | |
|               std::max<unsigned>(PartialThreshold, PragmaUnrollThreshold);
 | |
|       }
 | |
|     }
 | |
|     bool canUnrollCompletely(Loop *L, unsigned Threshold,
 | |
|                              unsigned PercentDynamicCostSavedThreshold,
 | |
|                              unsigned DynamicCostSavingsDiscount,
 | |
|                              uint64_t UnrolledCost, uint64_t RolledDynamicCost);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LoopUnroll::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| INITIALIZE_PASS_END(LoopUnroll, "loop-unroll", "Unroll loops", false, false)
 | |
| 
 | |
| Pass *llvm::createLoopUnrollPass(int Threshold, int Count, int AllowPartial,
 | |
|                                  int Runtime) {
 | |
|   return new LoopUnroll(Threshold, Count, AllowPartial, Runtime);
 | |
| }
 | |
| 
 | |
| Pass *llvm::createSimpleLoopUnrollPass() {
 | |
|   return llvm::createLoopUnrollPass(-1, -1, 0, 0);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // This class is used to get an estimate of the optimization effects that we
 | |
| // could get from complete loop unrolling. It comes from the fact that some
 | |
| // loads might be replaced with concrete constant values and that could trigger
 | |
| // a chain of instruction simplifications.
 | |
| //
 | |
| // E.g. we might have:
 | |
| //   int a[] = {0, 1, 0};
 | |
| //   v = 0;
 | |
| //   for (i = 0; i < 3; i ++)
 | |
| //     v += b[i]*a[i];
 | |
| // If we completely unroll the loop, we would get:
 | |
| //   v = b[0]*a[0] + b[1]*a[1] + b[2]*a[2]
 | |
| // Which then will be simplified to:
 | |
| //   v = b[0]* 0 + b[1]* 1 + b[2]* 0
 | |
| // And finally:
 | |
| //   v = b[1]
 | |
| class UnrolledInstAnalyzer : private InstVisitor<UnrolledInstAnalyzer, bool> {
 | |
|   typedef InstVisitor<UnrolledInstAnalyzer, bool> Base;
 | |
|   friend class InstVisitor<UnrolledInstAnalyzer, bool>;
 | |
|   struct SimplifiedAddress {
 | |
|     Value *Base = nullptr;
 | |
|     ConstantInt *Offset = nullptr;
 | |
|   };
 | |
| 
 | |
| public:
 | |
|   UnrolledInstAnalyzer(unsigned Iteration,
 | |
|                        DenseMap<Value *, Constant *> &SimplifiedValues,
 | |
|                        ScalarEvolution &SE)
 | |
|       : SimplifiedValues(SimplifiedValues), SE(SE) {
 | |
|       IterationNumber = SE.getConstant(APInt(64, Iteration));
 | |
|   }
 | |
| 
 | |
|   // Allow access to the initial visit method.
 | |
|   using Base::visit;
 | |
| 
 | |
| private:
 | |
|   /// \brief A cache of pointer bases and constant-folded offsets corresponding
 | |
|   /// to GEP (or derived from GEP) instructions.
 | |
|   ///
 | |
|   /// In order to find the base pointer one needs to perform non-trivial
 | |
|   /// traversal of the corresponding SCEV expression, so it's good to have the
 | |
|   /// results saved.
 | |
|   DenseMap<Value *, SimplifiedAddress> SimplifiedAddresses;
 | |
| 
 | |
|   /// \brief SCEV expression corresponding to number of currently simulated
 | |
|   /// iteration.
 | |
|   const SCEV *IterationNumber;
 | |
| 
 | |
|   /// \brief A Value->Constant map for keeping values that we managed to
 | |
|   /// constant-fold on the given iteration.
 | |
|   ///
 | |
|   /// While we walk the loop instructions, we build up and maintain a mapping
 | |
|   /// of simplified values specific to this iteration.  The idea is to propagate
 | |
|   /// any special information we have about loads that can be replaced with
 | |
|   /// constants after complete unrolling, and account for likely simplifications
 | |
|   /// post-unrolling.
 | |
|   DenseMap<Value *, Constant *> &SimplifiedValues;
 | |
| 
 | |
|   ScalarEvolution &SE;
 | |
| 
 | |
|   /// \brief Try to simplify instruction \param I using its SCEV expression.
 | |
|   ///
 | |
|   /// The idea is that some AddRec expressions become constants, which then
 | |
|   /// could trigger folding of other instructions. However, that only happens
 | |
|   /// for expressions whose start value is also constant, which isn't always the
 | |
|   /// case. In another common and important case the start value is just some
 | |
|   /// address (i.e. SCEVUnknown) - in this case we compute the offset and save
 | |
|   /// it along with the base address instead.
 | |
|   bool simplifyInstWithSCEV(Instruction *I) {
 | |
|     if (!SE.isSCEVable(I->getType()))
 | |
|       return false;
 | |
| 
 | |
|     const SCEV *S = SE.getSCEV(I);
 | |
|     if (auto *SC = dyn_cast<SCEVConstant>(S)) {
 | |
|       SimplifiedValues[I] = SC->getValue();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     auto *AR = dyn_cast<SCEVAddRecExpr>(S);
 | |
|     if (!AR)
 | |
|       return false;
 | |
| 
 | |
|     const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE);
 | |
|     // Check if the AddRec expression becomes a constant.
 | |
|     if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) {
 | |
|       SimplifiedValues[I] = SC->getValue();
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Check if the offset from the base address becomes a constant.
 | |
|     auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S));
 | |
|     if (!Base)
 | |
|       return false;
 | |
|     auto *Offset =
 | |
|         dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base));
 | |
|     if (!Offset)
 | |
|       return false;
 | |
|     SimplifiedAddress Address;
 | |
|     Address.Base = Base->getValue();
 | |
|     Address.Offset = Offset->getValue();
 | |
|     SimplifiedAddresses[I] = Address;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Base case for the instruction visitor.
 | |
|   bool visitInstruction(Instruction &I) {
 | |
|     return simplifyInstWithSCEV(&I);
 | |
|   }
 | |
| 
 | |
|   /// Try to simplify binary operator I.
 | |
|   ///
 | |
|   /// TODO: Probably it's worth to hoist the code for estimating the
 | |
|   /// simplifications effects to a separate class, since we have a very similar
 | |
|   /// code in InlineCost already.
 | |
|   bool visitBinaryOperator(BinaryOperator &I) {
 | |
|     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
|     if (!isa<Constant>(LHS))
 | |
|       if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
 | |
|         LHS = SimpleLHS;
 | |
|     if (!isa<Constant>(RHS))
 | |
|       if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
 | |
|         RHS = SimpleRHS;
 | |
| 
 | |
|     Value *SimpleV = nullptr;
 | |
|     const DataLayout &DL = I.getModule()->getDataLayout();
 | |
|     if (auto FI = dyn_cast<FPMathOperator>(&I))
 | |
|       SimpleV =
 | |
|           SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL);
 | |
|     else
 | |
|       SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL);
 | |
| 
 | |
|     if (Constant *C = dyn_cast_or_null<Constant>(SimpleV))
 | |
|       SimplifiedValues[&I] = C;
 | |
| 
 | |
|     if (SimpleV)
 | |
|       return true;
 | |
|     return Base::visitBinaryOperator(I);
 | |
|   }
 | |
| 
 | |
|   /// Try to fold load I.
 | |
|   bool visitLoad(LoadInst &I) {
 | |
|     Value *AddrOp = I.getPointerOperand();
 | |
| 
 | |
|     auto AddressIt = SimplifiedAddresses.find(AddrOp);
 | |
|     if (AddressIt == SimplifiedAddresses.end())
 | |
|       return false;
 | |
|     ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset;
 | |
| 
 | |
|     auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base);
 | |
|     // We're only interested in loads that can be completely folded to a
 | |
|     // constant.
 | |
|     if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant())
 | |
|       return false;
 | |
| 
 | |
|     ConstantDataSequential *CDS =
 | |
|         dyn_cast<ConstantDataSequential>(GV->getInitializer());
 | |
|     if (!CDS)
 | |
|       return false;
 | |
| 
 | |
|     // We might have a vector load from an array. FIXME: for now we just bail
 | |
|     // out in this case, but we should be able to resolve and simplify such
 | |
|     // loads.
 | |
|     if(!CDS->isElementTypeCompatible(I.getType()))
 | |
|       return false;
 | |
| 
 | |
|     int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U;
 | |
|     assert(SimplifiedAddrOp->getValue().getActiveBits() < 64 &&
 | |
|            "Unexpectedly large index value.");
 | |
|     int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize;
 | |
|     if (Index >= CDS->getNumElements()) {
 | |
|       // FIXME: For now we conservatively ignore out of bound accesses, but
 | |
|       // we're allowed to perform the optimization in this case.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Constant *CV = CDS->getElementAsConstant(Index);
 | |
|     assert(CV && "Constant expected.");
 | |
|     SimplifiedValues[&I] = CV;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool visitCastInst(CastInst &I) {
 | |
|     // Propagate constants through casts.
 | |
|     Constant *COp = dyn_cast<Constant>(I.getOperand(0));
 | |
|     if (!COp)
 | |
|       COp = SimplifiedValues.lookup(I.getOperand(0));
 | |
|     if (COp)
 | |
|       if (Constant *C =
 | |
|               ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) {
 | |
|         SimplifiedValues[&I] = C;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|     return Base::visitCastInst(I);
 | |
|   }
 | |
| 
 | |
|   bool visitCmpInst(CmpInst &I) {
 | |
|     Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
 | |
| 
 | |
|     // First try to handle simplified comparisons.
 | |
|     if (!isa<Constant>(LHS))
 | |
|       if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS))
 | |
|         LHS = SimpleLHS;
 | |
|     if (!isa<Constant>(RHS))
 | |
|       if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS))
 | |
|         RHS = SimpleRHS;
 | |
| 
 | |
|     if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) {
 | |
|       auto SimplifiedLHS = SimplifiedAddresses.find(LHS);
 | |
|       if (SimplifiedLHS != SimplifiedAddresses.end()) {
 | |
|         auto SimplifiedRHS = SimplifiedAddresses.find(RHS);
 | |
|         if (SimplifiedRHS != SimplifiedAddresses.end()) {
 | |
|           SimplifiedAddress &LHSAddr = SimplifiedLHS->second;
 | |
|           SimplifiedAddress &RHSAddr = SimplifiedRHS->second;
 | |
|           if (LHSAddr.Base == RHSAddr.Base) {
 | |
|             LHS = LHSAddr.Offset;
 | |
|             RHS = RHSAddr.Offset;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
 | |
|         if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) {
 | |
|           SimplifiedValues[&I] = C;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return Base::visitCmpInst(I);
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| struct EstimatedUnrollCost {
 | |
|   /// \brief The estimated cost after unrolling.
 | |
|   int UnrolledCost;
 | |
| 
 | |
|   /// \brief The estimated dynamic cost of executing the instructions in the
 | |
|   /// rolled form.
 | |
|   int RolledDynamicCost;
 | |
| };
 | |
| }
 | |
| 
 | |
| /// \brief Figure out if the loop is worth full unrolling.
 | |
| ///
 | |
| /// Complete loop unrolling can make some loads constant, and we need to know
 | |
| /// if that would expose any further optimization opportunities.  This routine
 | |
| /// estimates this optimization.  It computes cost of unrolled loop
 | |
| /// (UnrolledCost) and dynamic cost of the original loop (RolledDynamicCost). By
 | |
| /// dynamic cost we mean that we won't count costs of blocks that are known not
 | |
| /// to be executed (i.e. if we have a branch in the loop and we know that at the
 | |
| /// given iteration its condition would be resolved to true, we won't add up the
 | |
| /// cost of the 'false'-block).
 | |
| /// \returns Optional value, holding the RolledDynamicCost and UnrolledCost. If
 | |
| /// the analysis failed (no benefits expected from the unrolling, or the loop is
 | |
| /// too big to analyze), the returned value is None.
 | |
| static Optional<EstimatedUnrollCost>
 | |
| analyzeLoopUnrollCost(const Loop *L, unsigned TripCount, DominatorTree &DT,
 | |
|                       ScalarEvolution &SE, const TargetTransformInfo &TTI,
 | |
|                       int MaxUnrolledLoopSize) {
 | |
|   // We want to be able to scale offsets by the trip count and add more offsets
 | |
|   // to them without checking for overflows, and we already don't want to
 | |
|   // analyze *massive* trip counts, so we force the max to be reasonably small.
 | |
|   assert(UnrollMaxIterationsCountToAnalyze < (INT_MAX / 2) &&
 | |
|          "The unroll iterations max is too large!");
 | |
| 
 | |
|   // Don't simulate loops with a big or unknown tripcount
 | |
|   if (!UnrollMaxIterationsCountToAnalyze || !TripCount ||
 | |
|       TripCount > UnrollMaxIterationsCountToAnalyze)
 | |
|     return None;
 | |
| 
 | |
|   SmallSetVector<BasicBlock *, 16> BBWorklist;
 | |
|   DenseMap<Value *, Constant *> SimplifiedValues;
 | |
|   SmallVector<std::pair<Value *, Constant *>, 4> SimplifiedInputValues;
 | |
| 
 | |
|   // The estimated cost of the unrolled form of the loop. We try to estimate
 | |
|   // this by simplifying as much as we can while computing the estimate.
 | |
|   int UnrolledCost = 0;
 | |
|   // We also track the estimated dynamic (that is, actually executed) cost in
 | |
|   // the rolled form. This helps identify cases when the savings from unrolling
 | |
|   // aren't just exposing dead control flows, but actual reduced dynamic
 | |
|   // instructions due to the simplifications which we expect to occur after
 | |
|   // unrolling.
 | |
|   int RolledDynamicCost = 0;
 | |
| 
 | |
|   // Ensure that we don't violate the loop structure invariants relied on by
 | |
|   // this analysis.
 | |
|   assert(L->isLoopSimplifyForm() && "Must put loop into normal form first.");
 | |
|   assert(L->isLCSSAForm(DT) &&
 | |
|          "Must have loops in LCSSA form to track live-out values.");
 | |
| 
 | |
|   DEBUG(dbgs() << "Starting LoopUnroll profitability analysis...\n");
 | |
| 
 | |
|   // Simulate execution of each iteration of the loop counting instructions,
 | |
|   // which would be simplified.
 | |
|   // Since the same load will take different values on different iterations,
 | |
|   // we literally have to go through all loop's iterations.
 | |
|   for (unsigned Iteration = 0; Iteration < TripCount; ++Iteration) {
 | |
|     DEBUG(dbgs() << " Analyzing iteration " << Iteration << "\n");
 | |
| 
 | |
|     // Prepare for the iteration by collecting any simplified entry or backedge
 | |
|     // inputs.
 | |
|     for (Instruction &I : *L->getHeader()) {
 | |
|       auto *PHI = dyn_cast<PHINode>(&I);
 | |
|       if (!PHI)
 | |
|         break;
 | |
| 
 | |
|       // The loop header PHI nodes must have exactly two input: one from the
 | |
|       // loop preheader and one from the loop latch.
 | |
|       assert(
 | |
|           PHI->getNumIncomingValues() == 2 &&
 | |
|           "Must have an incoming value only for the preheader and the latch.");
 | |
| 
 | |
|       Value *V = PHI->getIncomingValueForBlock(
 | |
|           Iteration == 0 ? L->getLoopPreheader() : L->getLoopLatch());
 | |
|       Constant *C = dyn_cast<Constant>(V);
 | |
|       if (Iteration != 0 && !C)
 | |
|         C = SimplifiedValues.lookup(V);
 | |
|       if (C)
 | |
|         SimplifiedInputValues.push_back({PHI, C});
 | |
|     }
 | |
| 
 | |
|     // Now clear and re-populate the map for the next iteration.
 | |
|     SimplifiedValues.clear();
 | |
|     while (!SimplifiedInputValues.empty())
 | |
|       SimplifiedValues.insert(SimplifiedInputValues.pop_back_val());
 | |
| 
 | |
|     UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, SE);
 | |
| 
 | |
|     BBWorklist.clear();
 | |
|     BBWorklist.insert(L->getHeader());
 | |
|     // Note that we *must not* cache the size, this loop grows the worklist.
 | |
|     for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) {
 | |
|       BasicBlock *BB = BBWorklist[Idx];
 | |
| 
 | |
|       // Visit all instructions in the given basic block and try to simplify
 | |
|       // it.  We don't change the actual IR, just count optimization
 | |
|       // opportunities.
 | |
|       for (Instruction &I : *BB) {
 | |
|         int InstCost = TTI.getUserCost(&I);
 | |
| 
 | |
|         // Visit the instruction to analyze its loop cost after unrolling,
 | |
|         // and if the visitor returns false, include this instruction in the
 | |
|         // unrolled cost.
 | |
|         if (!Analyzer.visit(I))
 | |
|           UnrolledCost += InstCost;
 | |
|         else {
 | |
|           DEBUG(dbgs() << "  " << I
 | |
|                        << " would be simplified if loop is unrolled.\n");
 | |
|           (void)0;
 | |
|         }
 | |
| 
 | |
|         // Also track this instructions expected cost when executing the rolled
 | |
|         // loop form.
 | |
|         RolledDynamicCost += InstCost;
 | |
| 
 | |
|         // If unrolled body turns out to be too big, bail out.
 | |
|         if (UnrolledCost > MaxUnrolledLoopSize) {
 | |
|           DEBUG(dbgs() << "  Exceeded threshold.. exiting.\n"
 | |
|                        << "  UnrolledCost: " << UnrolledCost
 | |
|                        << ", MaxUnrolledLoopSize: " << MaxUnrolledLoopSize
 | |
|                        << "\n");
 | |
|           return None;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       TerminatorInst *TI = BB->getTerminator();
 | |
| 
 | |
|       // Add in the live successors by first checking whether we have terminator
 | |
|       // that may be simplified based on the values simplified by this call.
 | |
|       if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|         if (BI->isConditional()) {
 | |
|           if (Constant *SimpleCond =
 | |
|                   SimplifiedValues.lookup(BI->getCondition())) {
 | |
|             BasicBlock *Succ = nullptr;
 | |
|             // Just take the first successor if condition is undef
 | |
|             if (isa<UndefValue>(SimpleCond))
 | |
|               Succ = BI->getSuccessor(0);
 | |
|             else
 | |
|               Succ = BI->getSuccessor(
 | |
|                   cast<ConstantInt>(SimpleCond)->isZero() ? 1 : 0);
 | |
|             if (L->contains(Succ))
 | |
|               BBWorklist.insert(Succ);
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
|       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | |
|         if (Constant *SimpleCond =
 | |
|                 SimplifiedValues.lookup(SI->getCondition())) {
 | |
|           BasicBlock *Succ = nullptr;
 | |
|           // Just take the first successor if condition is undef
 | |
|           if (isa<UndefValue>(SimpleCond))
 | |
|             Succ = SI->getSuccessor(0);
 | |
|           else
 | |
|             Succ = SI->findCaseValue(cast<ConstantInt>(SimpleCond))
 | |
|                        .getCaseSuccessor();
 | |
|           if (L->contains(Succ))
 | |
|             BBWorklist.insert(Succ);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Add BB's successors to the worklist.
 | |
|       for (BasicBlock *Succ : successors(BB))
 | |
|         if (L->contains(Succ))
 | |
|           BBWorklist.insert(Succ);
 | |
|     }
 | |
| 
 | |
|     // If we found no optimization opportunities on the first iteration, we
 | |
|     // won't find them on later ones too.
 | |
|     if (UnrolledCost == RolledDynamicCost) {
 | |
|       DEBUG(dbgs() << "  No opportunities found.. exiting.\n"
 | |
|                    << "  UnrolledCost: " << UnrolledCost << "\n");
 | |
|       return None;
 | |
|     }
 | |
|   }
 | |
|   DEBUG(dbgs() << "Analysis finished:\n"
 | |
|                << "UnrolledCost: " << UnrolledCost << ", "
 | |
|                << "RolledDynamicCost: " << RolledDynamicCost << "\n");
 | |
|   return {{UnrolledCost, RolledDynamicCost}};
 | |
| }
 | |
| 
 | |
| /// ApproximateLoopSize - Approximate the size of the loop.
 | |
| static unsigned ApproximateLoopSize(const Loop *L, unsigned &NumCalls,
 | |
|                                     bool &NotDuplicatable,
 | |
|                                     const TargetTransformInfo &TTI,
 | |
|                                     AssumptionCache *AC) {
 | |
|   SmallPtrSet<const Value *, 32> EphValues;
 | |
|   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
 | |
| 
 | |
|   CodeMetrics Metrics;
 | |
|   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
 | |
|        I != E; ++I)
 | |
|     Metrics.analyzeBasicBlock(*I, TTI, EphValues);
 | |
|   NumCalls = Metrics.NumInlineCandidates;
 | |
|   NotDuplicatable = Metrics.notDuplicatable;
 | |
| 
 | |
|   unsigned LoopSize = Metrics.NumInsts;
 | |
| 
 | |
|   // Don't allow an estimate of size zero.  This would allows unrolling of loops
 | |
|   // with huge iteration counts, which is a compile time problem even if it's
 | |
|   // not a problem for code quality. Also, the code using this size may assume
 | |
|   // that each loop has at least three instructions (likely a conditional
 | |
|   // branch, a comparison feeding that branch, and some kind of loop increment
 | |
|   // feeding that comparison instruction).
 | |
|   LoopSize = std::max(LoopSize, 3u);
 | |
| 
 | |
|   return LoopSize;
 | |
| }
 | |
| 
 | |
| // Returns the loop hint metadata node with the given name (for example,
 | |
| // "llvm.loop.unroll.count").  If no such metadata node exists, then nullptr is
 | |
| // returned.
 | |
| static MDNode *GetUnrollMetadataForLoop(const Loop *L, StringRef Name) {
 | |
|   if (MDNode *LoopID = L->getLoopID())
 | |
|     return GetUnrollMetadata(LoopID, Name);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Returns true if the loop has an unroll(full) pragma.
 | |
| static bool HasUnrollFullPragma(const Loop *L) {
 | |
|   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.full");
 | |
| }
 | |
| 
 | |
| // Returns true if the loop has an unroll(enable) pragma. This metadata is used
 | |
| // for both "#pragma unroll" and "#pragma clang loop unroll(enable)" directives.
 | |
| static bool HasUnrollEnablePragma(const Loop *L) {
 | |
|   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.enable");
 | |
| }
 | |
| 
 | |
| // Returns true if the loop has an unroll(disable) pragma.
 | |
| static bool HasUnrollDisablePragma(const Loop *L) {
 | |
|   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.disable");
 | |
| }
 | |
| 
 | |
| // Returns true if the loop has an runtime unroll(disable) pragma.
 | |
| static bool HasRuntimeUnrollDisablePragma(const Loop *L) {
 | |
|   return GetUnrollMetadataForLoop(L, "llvm.loop.unroll.runtime.disable");
 | |
| }
 | |
| 
 | |
| // If loop has an unroll_count pragma return the (necessarily
 | |
| // positive) value from the pragma.  Otherwise return 0.
 | |
| static unsigned UnrollCountPragmaValue(const Loop *L) {
 | |
|   MDNode *MD = GetUnrollMetadataForLoop(L, "llvm.loop.unroll.count");
 | |
|   if (MD) {
 | |
|     assert(MD->getNumOperands() == 2 &&
 | |
|            "Unroll count hint metadata should have two operands.");
 | |
|     unsigned Count =
 | |
|         mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
 | |
|     assert(Count >= 1 && "Unroll count must be positive.");
 | |
|     return Count;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Remove existing unroll metadata and add unroll disable metadata to
 | |
| // indicate the loop has already been unrolled.  This prevents a loop
 | |
| // from being unrolled more than is directed by a pragma if the loop
 | |
| // unrolling pass is run more than once (which it generally is).
 | |
| static void SetLoopAlreadyUnrolled(Loop *L) {
 | |
|   MDNode *LoopID = L->getLoopID();
 | |
|   if (!LoopID) return;
 | |
| 
 | |
|   // First remove any existing loop unrolling metadata.
 | |
|   SmallVector<Metadata *, 4> MDs;
 | |
|   // Reserve first location for self reference to the LoopID metadata node.
 | |
|   MDs.push_back(nullptr);
 | |
|   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | |
|     bool IsUnrollMetadata = false;
 | |
|     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
 | |
|     if (MD) {
 | |
|       const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
 | |
|       IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
 | |
|     }
 | |
|     if (!IsUnrollMetadata)
 | |
|       MDs.push_back(LoopID->getOperand(i));
 | |
|   }
 | |
| 
 | |
|   // Add unroll(disable) metadata to disable future unrolling.
 | |
|   LLVMContext &Context = L->getHeader()->getContext();
 | |
|   SmallVector<Metadata *, 1> DisableOperands;
 | |
|   DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
 | |
|   MDNode *DisableNode = MDNode::get(Context, DisableOperands);
 | |
|   MDs.push_back(DisableNode);
 | |
| 
 | |
|   MDNode *NewLoopID = MDNode::get(Context, MDs);
 | |
|   // Set operand 0 to refer to the loop id itself.
 | |
|   NewLoopID->replaceOperandWith(0, NewLoopID);
 | |
|   L->setLoopID(NewLoopID);
 | |
| }
 | |
| 
 | |
| bool LoopUnroll::canUnrollCompletely(Loop *L, unsigned Threshold,
 | |
|                                      unsigned PercentDynamicCostSavedThreshold,
 | |
|                                      unsigned DynamicCostSavingsDiscount,
 | |
|                                      uint64_t UnrolledCost,
 | |
|                                      uint64_t RolledDynamicCost) {
 | |
| 
 | |
|   if (Threshold == NoThreshold) {
 | |
|     DEBUG(dbgs() << "  Can fully unroll, because no threshold is set.\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (UnrolledCost <= Threshold) {
 | |
|     DEBUG(dbgs() << "  Can fully unroll, because unrolled cost: "
 | |
|                  << UnrolledCost << "<" << Threshold << "\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(UnrolledCost && "UnrolledCost can't be 0 at this point.");
 | |
|   assert(RolledDynamicCost >= UnrolledCost &&
 | |
|          "Cannot have a higher unrolled cost than a rolled cost!");
 | |
| 
 | |
|   // Compute the percentage of the dynamic cost in the rolled form that is
 | |
|   // saved when unrolled. If unrolling dramatically reduces the estimated
 | |
|   // dynamic cost of the loop, we use a higher threshold to allow more
 | |
|   // unrolling.
 | |
|   unsigned PercentDynamicCostSaved =
 | |
|       (uint64_t)(RolledDynamicCost - UnrolledCost) * 100ull / RolledDynamicCost;
 | |
| 
 | |
|   if (PercentDynamicCostSaved >= PercentDynamicCostSavedThreshold &&
 | |
|       (int64_t)UnrolledCost - (int64_t)DynamicCostSavingsDiscount <=
 | |
|           (int64_t)Threshold) {
 | |
|     DEBUG(dbgs() << "  Can fully unroll, because unrolling will reduce the "
 | |
|                     "expected dynamic cost by " << PercentDynamicCostSaved
 | |
|                  << "% (threshold: " << PercentDynamicCostSavedThreshold
 | |
|                  << "%)\n"
 | |
|                  << "  and the unrolled cost (" << UnrolledCost
 | |
|                  << ") is less than the max threshold ("
 | |
|                  << DynamicCostSavingsDiscount << ").\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "  Too large to fully unroll:\n");
 | |
|   DEBUG(dbgs() << "    Threshold: " << Threshold << "\n");
 | |
|   DEBUG(dbgs() << "    Max threshold: " << DynamicCostSavingsDiscount << "\n");
 | |
|   DEBUG(dbgs() << "    Percent cost saved threshold: "
 | |
|                << PercentDynamicCostSavedThreshold << "%\n");
 | |
|   DEBUG(dbgs() << "    Unrolled cost: " << UnrolledCost << "\n");
 | |
|   DEBUG(dbgs() << "    Rolled dynamic cost: " << RolledDynamicCost << "\n");
 | |
|   DEBUG(dbgs() << "    Percent cost saved: " << PercentDynamicCostSaved
 | |
|                << "\n");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned LoopUnroll::selectUnrollCount(
 | |
|     const Loop *L, unsigned TripCount, bool PragmaFullUnroll,
 | |
|     unsigned PragmaCount, const TargetTransformInfo::UnrollingPreferences &UP,
 | |
|     bool &SetExplicitly) {
 | |
|   SetExplicitly = true;
 | |
| 
 | |
|   // User-specified count (either as a command-line option or
 | |
|   // constructor parameter) has highest precedence.
 | |
|   unsigned Count = UserCount ? CurrentCount : 0;
 | |
| 
 | |
|   // If there is no user-specified count, unroll pragmas have the next
 | |
|   // highest precedence.
 | |
|   if (Count == 0) {
 | |
|     if (PragmaCount) {
 | |
|       Count = PragmaCount;
 | |
|     } else if (PragmaFullUnroll) {
 | |
|       Count = TripCount;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Count == 0)
 | |
|     Count = UP.Count;
 | |
| 
 | |
|   if (Count == 0) {
 | |
|     SetExplicitly = false;
 | |
|     if (TripCount == 0)
 | |
|       // Runtime trip count.
 | |
|       Count = UnrollRuntimeCount;
 | |
|     else
 | |
|       // Conservative heuristic: if we know the trip count, see if we can
 | |
|       // completely unroll (subject to the threshold, checked below); otherwise
 | |
|       // try to find greatest modulo of the trip count which is still under
 | |
|       // threshold value.
 | |
|       Count = TripCount;
 | |
|   }
 | |
|   if (TripCount && Count > TripCount)
 | |
|     return TripCount;
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   if (skipOptnoneFunction(L))
 | |
|     return false;
 | |
| 
 | |
|   Function &F = *L->getHeader()->getParent();
 | |
| 
 | |
|   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|   const TargetTransformInfo &TTI =
 | |
|       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
| 
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   DEBUG(dbgs() << "Loop Unroll: F[" << Header->getParent()->getName()
 | |
|         << "] Loop %" << Header->getName() << "\n");
 | |
| 
 | |
|   if (HasUnrollDisablePragma(L)) {
 | |
|     return false;
 | |
|   }
 | |
|   bool PragmaFullUnroll = HasUnrollFullPragma(L);
 | |
|   bool PragmaEnableUnroll = HasUnrollEnablePragma(L);
 | |
|   unsigned PragmaCount = UnrollCountPragmaValue(L);
 | |
|   bool HasPragma = PragmaFullUnroll || PragmaEnableUnroll || PragmaCount > 0;
 | |
| 
 | |
|   TargetTransformInfo::UnrollingPreferences UP;
 | |
|   getUnrollingPreferences(L, TTI, UP);
 | |
| 
 | |
|   // Find trip count and trip multiple if count is not available
 | |
|   unsigned TripCount = 0;
 | |
|   unsigned TripMultiple = 1;
 | |
|   // If there are multiple exiting blocks but one of them is the latch, use the
 | |
|   // latch for the trip count estimation. Otherwise insist on a single exiting
 | |
|   // block for the trip count estimation.
 | |
|   BasicBlock *ExitingBlock = L->getLoopLatch();
 | |
|   if (!ExitingBlock || !L->isLoopExiting(ExitingBlock))
 | |
|     ExitingBlock = L->getExitingBlock();
 | |
|   if (ExitingBlock) {
 | |
|     TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
 | |
|     TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
 | |
|   }
 | |
| 
 | |
|   // Select an initial unroll count.  This may be reduced later based
 | |
|   // on size thresholds.
 | |
|   bool CountSetExplicitly;
 | |
|   unsigned Count = selectUnrollCount(L, TripCount, PragmaFullUnroll,
 | |
|                                      PragmaCount, UP, CountSetExplicitly);
 | |
| 
 | |
|   unsigned NumInlineCandidates;
 | |
|   bool notDuplicatable;
 | |
|   unsigned LoopSize =
 | |
|       ApproximateLoopSize(L, NumInlineCandidates, notDuplicatable, TTI, &AC);
 | |
|   DEBUG(dbgs() << "  Loop Size = " << LoopSize << "\n");
 | |
| 
 | |
|   // When computing the unrolled size, note that the conditional branch on the
 | |
|   // backedge and the comparison feeding it are not replicated like the rest of
 | |
|   // the loop body (which is why 2 is subtracted).
 | |
|   uint64_t UnrolledSize = (uint64_t)(LoopSize-2) * Count + 2;
 | |
|   if (notDuplicatable) {
 | |
|     DEBUG(dbgs() << "  Not unrolling loop which contains non-duplicatable"
 | |
|                  << " instructions.\n");
 | |
|     return false;
 | |
|   }
 | |
|   if (NumInlineCandidates != 0) {
 | |
|     DEBUG(dbgs() << "  Not unrolling loop with inlinable calls.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Threshold, PartialThreshold;
 | |
|   unsigned PercentDynamicCostSavedThreshold;
 | |
|   unsigned DynamicCostSavingsDiscount;
 | |
|   // Only use the high pragma threshold when we have a target unroll factor such
 | |
|   // as with "#pragma unroll N" or a pragma indicating full unrolling and the
 | |
|   // trip count is known. Otherwise we rely on the standard threshold to
 | |
|   // heuristically select a reasonable unroll count.
 | |
|   bool UsePragmaThreshold =
 | |
|       PragmaCount > 0 ||
 | |
|       ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount != 0);
 | |
| 
 | |
|   selectThresholds(L, UsePragmaThreshold, UP, Threshold, PartialThreshold,
 | |
|                    PercentDynamicCostSavedThreshold,
 | |
|                    DynamicCostSavingsDiscount);
 | |
| 
 | |
|   // Given Count, TripCount and thresholds determine the type of
 | |
|   // unrolling which is to be performed.
 | |
|   enum { Full = 0, Partial = 1, Runtime = 2 };
 | |
|   int Unrolling;
 | |
|   if (TripCount && Count == TripCount) {
 | |
|     Unrolling = Partial;
 | |
|     // If the loop is really small, we don't need to run an expensive analysis.
 | |
|     if (canUnrollCompletely(L, Threshold, 100, DynamicCostSavingsDiscount,
 | |
|                             UnrolledSize, UnrolledSize)) {
 | |
|       Unrolling = Full;
 | |
|     } else {
 | |
|       // The loop isn't that small, but we still can fully unroll it if that
 | |
|       // helps to remove a significant number of instructions.
 | |
|       // To check that, run additional analysis on the loop.
 | |
|       if (Optional<EstimatedUnrollCost> Cost =
 | |
|               analyzeLoopUnrollCost(L, TripCount, DT, *SE, TTI,
 | |
|                                     Threshold + DynamicCostSavingsDiscount))
 | |
|         if (canUnrollCompletely(L, Threshold, PercentDynamicCostSavedThreshold,
 | |
|                                 DynamicCostSavingsDiscount, Cost->UnrolledCost,
 | |
|                                 Cost->RolledDynamicCost)) {
 | |
|           Unrolling = Full;
 | |
|         }
 | |
|     }
 | |
|   } else if (TripCount && Count < TripCount) {
 | |
|     Unrolling = Partial;
 | |
|   } else {
 | |
|     Unrolling = Runtime;
 | |
|   }
 | |
| 
 | |
|   // Reduce count based on the type of unrolling and the threshold values.
 | |
|   unsigned OriginalCount = Count;
 | |
|   bool AllowRuntime = PragmaEnableUnroll || (PragmaCount > 0) ||
 | |
|                       (UserRuntime ? CurrentRuntime : UP.Runtime);
 | |
|   // Don't unroll a runtime trip count loop with unroll full pragma.
 | |
|   if (HasRuntimeUnrollDisablePragma(L) || PragmaFullUnroll) {
 | |
|     AllowRuntime = false;
 | |
|   }
 | |
|   if (Unrolling == Partial) {
 | |
|     bool AllowPartial = PragmaEnableUnroll ||
 | |
|                         (UserAllowPartial ? CurrentAllowPartial : UP.Partial);
 | |
|     if (!AllowPartial && !CountSetExplicitly) {
 | |
|       DEBUG(dbgs() << "  will not try to unroll partially because "
 | |
|                    << "-unroll-allow-partial not given\n");
 | |
|       return false;
 | |
|     }
 | |
|     if (PartialThreshold != NoThreshold && UnrolledSize > PartialThreshold) {
 | |
|       // Reduce unroll count to be modulo of TripCount for partial unrolling.
 | |
|       Count = (std::max(PartialThreshold, 3u)-2) / (LoopSize-2);
 | |
|       while (Count != 0 && TripCount % Count != 0)
 | |
|         Count--;
 | |
|     }
 | |
|   } else if (Unrolling == Runtime) {
 | |
|     if (!AllowRuntime && !CountSetExplicitly) {
 | |
|       DEBUG(dbgs() << "  will not try to unroll loop with runtime trip count "
 | |
|                    << "-unroll-runtime not given\n");
 | |
|       return false;
 | |
|     }
 | |
|     // Reduce unroll count to be the largest power-of-two factor of
 | |
|     // the original count which satisfies the threshold limit.
 | |
|     while (Count != 0 && UnrolledSize > PartialThreshold) {
 | |
|       Count >>= 1;
 | |
|       UnrolledSize = (LoopSize-2) * Count + 2;
 | |
|     }
 | |
|     if (Count > UP.MaxCount)
 | |
|       Count = UP.MaxCount;
 | |
|     DEBUG(dbgs() << "  partially unrolling with count: " << Count << "\n");
 | |
|   }
 | |
| 
 | |
|   if (HasPragma) {
 | |
|     if (PragmaCount != 0)
 | |
|       // If loop has an unroll count pragma mark loop as unrolled to prevent
 | |
|       // unrolling beyond that requested by the pragma.
 | |
|       SetLoopAlreadyUnrolled(L);
 | |
| 
 | |
|     // Emit optimization remarks if we are unable to unroll the loop
 | |
|     // as directed by a pragma.
 | |
|     DebugLoc LoopLoc = L->getStartLoc();
 | |
|     Function *F = Header->getParent();
 | |
|     LLVMContext &Ctx = F->getContext();
 | |
|     if ((PragmaCount > 0) && Count != OriginalCount) {
 | |
|       emitOptimizationRemarkMissed(
 | |
|           Ctx, DEBUG_TYPE, *F, LoopLoc,
 | |
|           "Unable to unroll loop the number of times directed by "
 | |
|           "unroll_count pragma because unrolled size is too large.");
 | |
|     } else if (PragmaFullUnroll && !TripCount) {
 | |
|       emitOptimizationRemarkMissed(
 | |
|           Ctx, DEBUG_TYPE, *F, LoopLoc,
 | |
|           "Unable to fully unroll loop as directed by unroll(full) pragma "
 | |
|           "because loop has a runtime trip count.");
 | |
|     } else if (PragmaEnableUnroll && Count != TripCount && Count < 2) {
 | |
|       emitOptimizationRemarkMissed(
 | |
|           Ctx, DEBUG_TYPE, *F, LoopLoc,
 | |
|           "Unable to unroll loop as directed by unroll(enable) pragma because "
 | |
|           "unrolled size is too large.");
 | |
|     } else if ((PragmaFullUnroll || PragmaEnableUnroll) && TripCount &&
 | |
|                Count != TripCount) {
 | |
|       emitOptimizationRemarkMissed(
 | |
|           Ctx, DEBUG_TYPE, *F, LoopLoc,
 | |
|           "Unable to fully unroll loop as directed by unroll pragma because "
 | |
|           "unrolled size is too large.");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Unrolling != Full && Count < 2) {
 | |
|     // Partial unrolling by 1 is a nop.  For full unrolling, a factor
 | |
|     // of 1 makes sense because loop control can be eliminated.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Unroll the loop.
 | |
|   if (!UnrollLoop(L, Count, TripCount, AllowRuntime, UP.AllowExpensiveTripCount,
 | |
|                   TripMultiple, LI, this, &LPM, &AC))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 |