955 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			955 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- PlaceSafepoints.cpp - Place GC Safepoints --------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Place garbage collection safepoints at appropriate locations in the IR. This
 | |
| // does not make relocation semantics or variable liveness explicit.  That's
 | |
| // done by RewriteStatepointsForGC.
 | |
| //
 | |
| // Terminology:
 | |
| // - A call is said to be "parseable" if there is a stack map generated for the
 | |
| // return PC of the call.  A runtime can determine where values listed in the
 | |
| // deopt arguments and (after RewriteStatepointsForGC) gc arguments are located
 | |
| // on the stack when the code is suspended inside such a call.  Every parse
 | |
| // point is represented by a call wrapped in an gc.statepoint intrinsic.
 | |
| // - A "poll" is an explicit check in the generated code to determine if the
 | |
| // runtime needs the generated code to cooperate by calling a helper routine
 | |
| // and thus suspending its execution at a known state. The call to the helper
 | |
| // routine will be parseable.  The (gc & runtime specific) logic of a poll is
 | |
| // assumed to be provided in a function of the name "gc.safepoint_poll".
 | |
| //
 | |
| // We aim to insert polls such that running code can quickly be brought to a
 | |
| // well defined state for inspection by the collector.  In the current
 | |
| // implementation, this is done via the insertion of poll sites at method entry
 | |
| // and the backedge of most loops.  We try to avoid inserting more polls than
 | |
| // are necessary to ensure a finite period between poll sites.  This is not
 | |
| // because the poll itself is expensive in the generated code; it's not.  Polls
 | |
| // do tend to impact the optimizer itself in negative ways; we'd like to avoid
 | |
| // perturbing the optimization of the method as much as we can.
 | |
| //
 | |
| // We also need to make most call sites parseable.  The callee might execute a
 | |
| // poll (or otherwise be inspected by the GC).  If so, the entire stack
 | |
| // (including the suspended frame of the current method) must be parseable.
 | |
| //
 | |
| // This pass will insert:
 | |
| // - Call parse points ("call safepoints") for any call which may need to
 | |
| // reach a safepoint during the execution of the callee function.
 | |
| // - Backedge safepoint polls and entry safepoint polls to ensure that
 | |
| // executing code reaches a safepoint poll in a finite amount of time.
 | |
| //
 | |
| // We do not currently support return statepoints, but adding them would not
 | |
| // be hard.  They are not required for correctness - entry safepoints are an
 | |
| // alternative - but some GCs may prefer them.  Patches welcome.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/IR/LegacyPassManager.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| 
 | |
| #define DEBUG_TYPE "safepoint-placement"
 | |
| STATISTIC(NumEntrySafepoints, "Number of entry safepoints inserted");
 | |
| STATISTIC(NumCallSafepoints, "Number of call safepoints inserted");
 | |
| STATISTIC(NumBackedgeSafepoints, "Number of backedge safepoints inserted");
 | |
| 
 | |
| STATISTIC(CallInLoop, "Number of loops w/o safepoints due to calls in loop");
 | |
| STATISTIC(FiniteExecution, "Number of loops w/o safepoints finite execution");
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // Ignore opportunities to avoid placing safepoints on backedges, useful for
 | |
| // validation
 | |
| static cl::opt<bool> AllBackedges("spp-all-backedges", cl::Hidden,
 | |
|                                   cl::init(false));
 | |
| 
 | |
| /// How narrow does the trip count of a loop have to be to have to be considered
 | |
| /// "counted"?  Counted loops do not get safepoints at backedges.
 | |
| static cl::opt<int> CountedLoopTripWidth("spp-counted-loop-trip-width",
 | |
|                                          cl::Hidden, cl::init(32));
 | |
| 
 | |
| // If true, split the backedge of a loop when placing the safepoint, otherwise
 | |
| // split the latch block itself.  Both are useful to support for
 | |
| // experimentation, but in practice, it looks like splitting the backedge
 | |
| // optimizes better.
 | |
| static cl::opt<bool> SplitBackedge("spp-split-backedge", cl::Hidden,
 | |
|                                    cl::init(false));
 | |
| 
 | |
| // Print tracing output
 | |
| static cl::opt<bool> TraceLSP("spp-trace", cl::Hidden, cl::init(false));
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// An analysis pass whose purpose is to identify each of the backedges in
 | |
| /// the function which require a safepoint poll to be inserted.
 | |
| struct PlaceBackedgeSafepointsImpl : public FunctionPass {
 | |
|   static char ID;
 | |
| 
 | |
|   /// The output of the pass - gives a list of each backedge (described by
 | |
|   /// pointing at the branch) which need a poll inserted.
 | |
|   std::vector<TerminatorInst *> PollLocations;
 | |
| 
 | |
|   /// True unless we're running spp-no-calls in which case we need to disable
 | |
|   /// the call-dependent placement opts.
 | |
|   bool CallSafepointsEnabled;
 | |
| 
 | |
|   ScalarEvolution *SE = nullptr;
 | |
|   DominatorTree *DT = nullptr;
 | |
|   LoopInfo *LI = nullptr;
 | |
| 
 | |
|   PlaceBackedgeSafepointsImpl(bool CallSafepoints = false)
 | |
|       : FunctionPass(ID), CallSafepointsEnabled(CallSafepoints) {
 | |
|     initializePlaceBackedgeSafepointsImplPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnLoop(Loop *);
 | |
|   void runOnLoopAndSubLoops(Loop *L) {
 | |
|     // Visit all the subloops
 | |
|     for (auto I = L->begin(), E = L->end(); I != E; I++)
 | |
|       runOnLoopAndSubLoops(*I);
 | |
|     runOnLoop(L);
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|     for (auto I = LI->begin(), E = LI->end(); I != E; I++) {
 | |
|       runOnLoopAndSubLoops(*I);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|     // We no longer modify the IR at all in this pass.  Thus all
 | |
|     // analysis are preserved.
 | |
|     AU.setPreservesAll();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static cl::opt<bool> NoEntry("spp-no-entry", cl::Hidden, cl::init(false));
 | |
| static cl::opt<bool> NoCall("spp-no-call", cl::Hidden, cl::init(false));
 | |
| static cl::opt<bool> NoBackedge("spp-no-backedge", cl::Hidden, cl::init(false));
 | |
| 
 | |
| namespace {
 | |
| struct PlaceSafepoints : public FunctionPass {
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
| 
 | |
|   PlaceSafepoints() : FunctionPass(ID) {
 | |
|     initializePlaceSafepointsPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     // We modify the graph wholesale (inlining, block insertion, etc).  We
 | |
|     // preserve nothing at the moment.  We could potentially preserve dom tree
 | |
|     // if that was worth doing
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| // Insert a safepoint poll immediately before the given instruction.  Does
 | |
| // not handle the parsability of state at the runtime call, that's the
 | |
| // callers job.
 | |
| static void
 | |
| InsertSafepointPoll(Instruction *InsertBefore,
 | |
|                     std::vector<CallSite> &ParsePointsNeeded /*rval*/);
 | |
| 
 | |
| static bool needsStatepoint(const CallSite &CS) {
 | |
|   if (callsGCLeafFunction(CS))
 | |
|     return false;
 | |
|   if (CS.isCall()) {
 | |
|     CallInst *call = cast<CallInst>(CS.getInstruction());
 | |
|     if (call->isInlineAsm())
 | |
|       return false;
 | |
|   }
 | |
|   if (isStatepoint(CS) || isGCRelocate(CS) || isGCResult(CS)) {
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static Value *ReplaceWithStatepoint(const CallSite &CS, Pass *P);
 | |
| 
 | |
| /// Returns true if this loop is known to contain a call safepoint which
 | |
| /// must unconditionally execute on any iteration of the loop which returns
 | |
| /// to the loop header via an edge from Pred.  Returns a conservative correct
 | |
| /// answer; i.e. false is always valid.
 | |
| static bool containsUnconditionalCallSafepoint(Loop *L, BasicBlock *Header,
 | |
|                                                BasicBlock *Pred,
 | |
|                                                DominatorTree &DT) {
 | |
|   // In general, we're looking for any cut of the graph which ensures
 | |
|   // there's a call safepoint along every edge between Header and Pred.
 | |
|   // For the moment, we look only for the 'cuts' that consist of a single call
 | |
|   // instruction in a block which is dominated by the Header and dominates the
 | |
|   // loop latch (Pred) block.  Somewhat surprisingly, walking the entire chain
 | |
|   // of such dominating blocks gets substantially more occurrences than just
 | |
|   // checking the Pred and Header blocks themselves.  This may be due to the
 | |
|   // density of loop exit conditions caused by range and null checks.
 | |
|   // TODO: structure this as an analysis pass, cache the result for subloops,
 | |
|   // avoid dom tree recalculations
 | |
|   assert(DT.dominates(Header, Pred) && "loop latch not dominated by header?");
 | |
| 
 | |
|   BasicBlock *Current = Pred;
 | |
|   while (true) {
 | |
|     for (Instruction &I : *Current) {
 | |
|       if (auto CS = CallSite(&I))
 | |
|         // Note: Technically, needing a safepoint isn't quite the right
 | |
|         // condition here.  We should instead be checking if the target method
 | |
|         // has an
 | |
|         // unconditional poll. In practice, this is only a theoretical concern
 | |
|         // since we don't have any methods with conditional-only safepoint
 | |
|         // polls.
 | |
|         if (needsStatepoint(CS))
 | |
|           return true;
 | |
|     }
 | |
| 
 | |
|     if (Current == Header)
 | |
|       break;
 | |
|     Current = DT.getNode(Current)->getIDom()->getBlock();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if this loop is known to terminate in a finite number of
 | |
| /// iterations.  Note that this function may return false for a loop which
 | |
| /// does actual terminate in a finite constant number of iterations due to
 | |
| /// conservatism in the analysis.
 | |
| static bool mustBeFiniteCountedLoop(Loop *L, ScalarEvolution *SE,
 | |
|                                     BasicBlock *Pred) {
 | |
|   // A conservative bound on the loop as a whole.
 | |
|   const SCEV *MaxTrips = SE->getMaxBackedgeTakenCount(L);
 | |
|   if (MaxTrips != SE->getCouldNotCompute() &&
 | |
|       SE->getUnsignedRange(MaxTrips).getUnsignedMax().isIntN(
 | |
|           CountedLoopTripWidth))
 | |
|     return true;
 | |
| 
 | |
|   // If this is a conditional branch to the header with the alternate path
 | |
|   // being outside the loop, we can ask questions about the execution frequency
 | |
|   // of the exit block.
 | |
|   if (L->isLoopExiting(Pred)) {
 | |
|     // This returns an exact expression only.  TODO: We really only need an
 | |
|     // upper bound here, but SE doesn't expose that.
 | |
|     const SCEV *MaxExec = SE->getExitCount(L, Pred);
 | |
|     if (MaxExec != SE->getCouldNotCompute() &&
 | |
|         SE->getUnsignedRange(MaxExec).getUnsignedMax().isIntN(
 | |
|             CountedLoopTripWidth))
 | |
|         return true;
 | |
|   }
 | |
| 
 | |
|   return /* not finite */ false;
 | |
| }
 | |
| 
 | |
| static void scanOneBB(Instruction *start, Instruction *end,
 | |
|                       std::vector<CallInst *> &calls,
 | |
|                       std::set<BasicBlock *> &seen,
 | |
|                       std::vector<BasicBlock *> &worklist) {
 | |
|   for (BasicBlock::iterator itr(start);
 | |
|        itr != start->getParent()->end() && itr != BasicBlock::iterator(end);
 | |
|        itr++) {
 | |
|     if (CallInst *CI = dyn_cast<CallInst>(&*itr)) {
 | |
|       calls.push_back(CI);
 | |
|     }
 | |
|     // FIXME: This code does not handle invokes
 | |
|     assert(!dyn_cast<InvokeInst>(&*itr) &&
 | |
|            "support for invokes in poll code needed");
 | |
|     // Only add the successor blocks if we reach the terminator instruction
 | |
|     // without encountering end first
 | |
|     if (itr->isTerminator()) {
 | |
|       BasicBlock *BB = itr->getParent();
 | |
|       for (BasicBlock *Succ : successors(BB)) {
 | |
|         if (seen.count(Succ) == 0) {
 | |
|           worklist.push_back(Succ);
 | |
|           seen.insert(Succ);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void scanInlinedCode(Instruction *start, Instruction *end,
 | |
|                             std::vector<CallInst *> &calls,
 | |
|                             std::set<BasicBlock *> &seen) {
 | |
|   calls.clear();
 | |
|   std::vector<BasicBlock *> worklist;
 | |
|   seen.insert(start->getParent());
 | |
|   scanOneBB(start, end, calls, seen, worklist);
 | |
|   while (!worklist.empty()) {
 | |
|     BasicBlock *BB = worklist.back();
 | |
|     worklist.pop_back();
 | |
|     scanOneBB(&*BB->begin(), end, calls, seen, worklist);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool PlaceBackedgeSafepointsImpl::runOnLoop(Loop *L) {
 | |
|   // Loop through all loop latches (branches controlling backedges).  We need
 | |
|   // to place a safepoint on every backedge (potentially).
 | |
|   // Note: In common usage, there will be only one edge due to LoopSimplify
 | |
|   // having run sometime earlier in the pipeline, but this code must be correct
 | |
|   // w.r.t. loops with multiple backedges.
 | |
|   BasicBlock *header = L->getHeader();
 | |
|   SmallVector<BasicBlock*, 16> LoopLatches;
 | |
|   L->getLoopLatches(LoopLatches);
 | |
|   for (BasicBlock *pred : LoopLatches) {
 | |
|     assert(L->contains(pred));
 | |
| 
 | |
|     // Make a policy decision about whether this loop needs a safepoint or
 | |
|     // not.  Note that this is about unburdening the optimizer in loops, not
 | |
|     // avoiding the runtime cost of the actual safepoint.
 | |
|     if (!AllBackedges) {
 | |
|       if (mustBeFiniteCountedLoop(L, SE, pred)) {
 | |
|         if (TraceLSP)
 | |
|           errs() << "skipping safepoint placement in finite loop\n";
 | |
|         FiniteExecution++;
 | |
|         continue;
 | |
|       }
 | |
|       if (CallSafepointsEnabled &&
 | |
|           containsUnconditionalCallSafepoint(L, header, pred, *DT)) {
 | |
|         // Note: This is only semantically legal since we won't do any further
 | |
|         // IPO or inlining before the actual call insertion..  If we hadn't, we
 | |
|         // might latter loose this call safepoint.
 | |
|         if (TraceLSP)
 | |
|           errs() << "skipping safepoint placement due to unconditional call\n";
 | |
|         CallInLoop++;
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // TODO: We can create an inner loop which runs a finite number of
 | |
|     // iterations with an outer loop which contains a safepoint.  This would
 | |
|     // not help runtime performance that much, but it might help our ability to
 | |
|     // optimize the inner loop.
 | |
| 
 | |
|     // Safepoint insertion would involve creating a new basic block (as the
 | |
|     // target of the current backedge) which does the safepoint (of all live
 | |
|     // variables) and branches to the true header
 | |
|     TerminatorInst *term = pred->getTerminator();
 | |
| 
 | |
|     if (TraceLSP) {
 | |
|       errs() << "[LSP] terminator instruction: ";
 | |
|       term->dump();
 | |
|     }
 | |
| 
 | |
|     PollLocations.push_back(term);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if an entry safepoint is not required before this callsite in
 | |
| /// the caller function.
 | |
| static bool doesNotRequireEntrySafepointBefore(const CallSite &CS) {
 | |
|   Instruction *Inst = CS.getInstruction();
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     case Intrinsic::experimental_gc_statepoint:
 | |
|     case Intrinsic::experimental_patchpoint_void:
 | |
|     case Intrinsic::experimental_patchpoint_i64:
 | |
|       // The can wrap an actual call which may grow the stack by an unbounded
 | |
|       // amount or run forever.
 | |
|       return false;
 | |
|     default:
 | |
|       // Most LLVM intrinsics are things which do not expand to actual calls, or
 | |
|       // at least if they do, are leaf functions that cause only finite stack
 | |
|       // growth.  In particular, the optimizer likes to form things like memsets
 | |
|       // out of stores in the original IR.  Another important example is
 | |
|       // llvm.localescape which must occur in the entry block.  Inserting a
 | |
|       // safepoint before it is not legal since it could push the localescape
 | |
|       // out of the entry block.
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static Instruction *findLocationForEntrySafepoint(Function &F,
 | |
|                                                   DominatorTree &DT) {
 | |
| 
 | |
|   // Conceptually, this poll needs to be on method entry, but in
 | |
|   // practice, we place it as late in the entry block as possible.  We
 | |
|   // can place it as late as we want as long as it dominates all calls
 | |
|   // that can grow the stack.  This, combined with backedge polls,
 | |
|   // give us all the progress guarantees we need.
 | |
| 
 | |
|   // hasNextInstruction and nextInstruction are used to iterate
 | |
|   // through a "straight line" execution sequence.
 | |
| 
 | |
|   auto hasNextInstruction = [](Instruction *I) {
 | |
|     if (!I->isTerminator()) {
 | |
|       return true;
 | |
|     }
 | |
|     BasicBlock *nextBB = I->getParent()->getUniqueSuccessor();
 | |
|     return nextBB && (nextBB->getUniquePredecessor() != nullptr);
 | |
|   };
 | |
| 
 | |
|   auto nextInstruction = [&hasNextInstruction](Instruction *I) {
 | |
|     assert(hasNextInstruction(I) &&
 | |
|            "first check if there is a next instruction!");
 | |
|     if (I->isTerminator()) {
 | |
|       return &I->getParent()->getUniqueSuccessor()->front();
 | |
|     } else {
 | |
|       return &*++I->getIterator();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   Instruction *cursor = nullptr;
 | |
|   for (cursor = &F.getEntryBlock().front(); hasNextInstruction(cursor);
 | |
|        cursor = nextInstruction(cursor)) {
 | |
| 
 | |
|     // We need to ensure a safepoint poll occurs before any 'real' call.  The
 | |
|     // easiest way to ensure finite execution between safepoints in the face of
 | |
|     // recursive and mutually recursive functions is to enforce that each take
 | |
|     // a safepoint.  Additionally, we need to ensure a poll before any call
 | |
|     // which can grow the stack by an unbounded amount.  This isn't required
 | |
|     // for GC semantics per se, but is a common requirement for languages
 | |
|     // which detect stack overflow via guard pages and then throw exceptions.
 | |
|     if (auto CS = CallSite(cursor)) {
 | |
|       if (doesNotRequireEntrySafepointBefore(CS))
 | |
|         continue;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert((hasNextInstruction(cursor) || cursor->isTerminator()) &&
 | |
|          "either we stopped because of a call, or because of terminator");
 | |
| 
 | |
|   return cursor;
 | |
| }
 | |
| 
 | |
| /// Identify the list of call sites which need to be have parseable state
 | |
| static void findCallSafepoints(Function &F,
 | |
|                                std::vector<CallSite> &Found /*rval*/) {
 | |
|   assert(Found.empty() && "must be empty!");
 | |
|   for (Instruction &I : instructions(F)) {
 | |
|     Instruction *inst = &I;
 | |
|     if (isa<CallInst>(inst) || isa<InvokeInst>(inst)) {
 | |
|       CallSite CS(inst);
 | |
| 
 | |
|       // No safepoint needed or wanted
 | |
|       if (!needsStatepoint(CS)) {
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Found.push_back(CS);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Implement a unique function which doesn't require we sort the input
 | |
| /// vector.  Doing so has the effect of changing the output of a couple of
 | |
| /// tests in ways which make them less useful in testing fused safepoints.
 | |
| template <typename T> static void unique_unsorted(std::vector<T> &vec) {
 | |
|   std::set<T> seen;
 | |
|   std::vector<T> tmp;
 | |
|   vec.reserve(vec.size());
 | |
|   std::swap(tmp, vec);
 | |
|   for (auto V : tmp) {
 | |
|     if (seen.insert(V).second) {
 | |
|       vec.push_back(V);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const char *const GCSafepointPollName = "gc.safepoint_poll";
 | |
| 
 | |
| static bool isGCSafepointPoll(Function &F) {
 | |
|   return F.getName().equals(GCSafepointPollName);
 | |
| }
 | |
| 
 | |
| /// Returns true if this function should be rewritten to include safepoint
 | |
| /// polls and parseable call sites.  The main point of this function is to be
 | |
| /// an extension point for custom logic.
 | |
| static bool shouldRewriteFunction(Function &F) {
 | |
|   // TODO: This should check the GCStrategy
 | |
|   if (F.hasGC()) {
 | |
|     const char *FunctionGCName = F.getGC();
 | |
|     const StringRef StatepointExampleName("statepoint-example");
 | |
|     const StringRef CoreCLRName("coreclr");
 | |
|     return (StatepointExampleName == FunctionGCName) ||
 | |
|            (CoreCLRName == FunctionGCName);
 | |
|   } else
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| // TODO: These should become properties of the GCStrategy, possibly with
 | |
| // command line overrides.
 | |
| static bool enableEntrySafepoints(Function &F) { return !NoEntry; }
 | |
| static bool enableBackedgeSafepoints(Function &F) { return !NoBackedge; }
 | |
| static bool enableCallSafepoints(Function &F) { return !NoCall; }
 | |
| 
 | |
| // Normalize basic block to make it ready to be target of invoke statepoint.
 | |
| // Ensure that 'BB' does not have phi nodes. It may require spliting it.
 | |
| static BasicBlock *normalizeForInvokeSafepoint(BasicBlock *BB,
 | |
|                                                BasicBlock *InvokeParent) {
 | |
|   BasicBlock *ret = BB;
 | |
| 
 | |
|   if (!BB->getUniquePredecessor()) {
 | |
|     ret = SplitBlockPredecessors(BB, InvokeParent, "");
 | |
|   }
 | |
| 
 | |
|   // Now that 'ret' has unique predecessor we can safely remove all phi nodes
 | |
|   // from it
 | |
|   FoldSingleEntryPHINodes(ret);
 | |
|   assert(!isa<PHINode>(ret->begin()));
 | |
| 
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| bool PlaceSafepoints::runOnFunction(Function &F) {
 | |
|   if (F.isDeclaration() || F.empty()) {
 | |
|     // This is a declaration, nothing to do.  Must exit early to avoid crash in
 | |
|     // dom tree calculation
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (isGCSafepointPoll(F)) {
 | |
|     // Given we're inlining this inside of safepoint poll insertion, this
 | |
|     // doesn't make any sense.  Note that we do make any contained calls
 | |
|     // parseable after we inline a poll.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!shouldRewriteFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   bool modified = false;
 | |
| 
 | |
|   // In various bits below, we rely on the fact that uses are reachable from
 | |
|   // defs.  When there are basic blocks unreachable from the entry, dominance
 | |
|   // and reachablity queries return non-sensical results.  Thus, we preprocess
 | |
|   // the function to ensure these properties hold.
 | |
|   modified |= removeUnreachableBlocks(F);
 | |
| 
 | |
|   // STEP 1 - Insert the safepoint polling locations.  We do not need to
 | |
|   // actually insert parse points yet.  That will be done for all polls and
 | |
|   // calls in a single pass.
 | |
| 
 | |
|   DominatorTree DT;
 | |
|   DT.recalculate(F);
 | |
| 
 | |
|   SmallVector<Instruction *, 16> PollsNeeded;
 | |
|   std::vector<CallSite> ParsePointNeeded;
 | |
| 
 | |
|   if (enableBackedgeSafepoints(F)) {
 | |
|     // Construct a pass manager to run the LoopPass backedge logic.  We
 | |
|     // need the pass manager to handle scheduling all the loop passes
 | |
|     // appropriately.  Doing this by hand is painful and just not worth messing
 | |
|     // with for the moment.
 | |
|     legacy::FunctionPassManager FPM(F.getParent());
 | |
|     bool CanAssumeCallSafepoints = enableCallSafepoints(F);
 | |
|     PlaceBackedgeSafepointsImpl *PBS =
 | |
|       new PlaceBackedgeSafepointsImpl(CanAssumeCallSafepoints);
 | |
|     FPM.add(PBS);
 | |
|     FPM.run(F);
 | |
| 
 | |
|     // We preserve dominance information when inserting the poll, otherwise
 | |
|     // we'd have to recalculate this on every insert
 | |
|     DT.recalculate(F);
 | |
| 
 | |
|     auto &PollLocations = PBS->PollLocations;
 | |
| 
 | |
|     auto OrderByBBName = [](Instruction *a, Instruction *b) {
 | |
|       return a->getParent()->getName() < b->getParent()->getName();
 | |
|     };
 | |
|     // We need the order of list to be stable so that naming ends up stable
 | |
|     // when we split edges.  This makes test cases much easier to write.
 | |
|     std::sort(PollLocations.begin(), PollLocations.end(), OrderByBBName);
 | |
| 
 | |
|     // We can sometimes end up with duplicate poll locations.  This happens if
 | |
|     // a single loop is visited more than once.   The fact this happens seems
 | |
|     // wrong, but it does happen for the split-backedge.ll test case.
 | |
|     PollLocations.erase(std::unique(PollLocations.begin(),
 | |
|                                     PollLocations.end()),
 | |
|                         PollLocations.end());
 | |
| 
 | |
|     // Insert a poll at each point the analysis pass identified
 | |
|     // The poll location must be the terminator of a loop latch block.
 | |
|     for (TerminatorInst *Term : PollLocations) {
 | |
|       // We are inserting a poll, the function is modified
 | |
|       modified = true;
 | |
| 
 | |
|       if (SplitBackedge) {
 | |
|         // Split the backedge of the loop and insert the poll within that new
 | |
|         // basic block.  This creates a loop with two latches per original
 | |
|         // latch (which is non-ideal), but this appears to be easier to
 | |
|         // optimize in practice than inserting the poll immediately before the
 | |
|         // latch test.
 | |
| 
 | |
|         // Since this is a latch, at least one of the successors must dominate
 | |
|         // it. Its possible that we have a) duplicate edges to the same header
 | |
|         // and b) edges to distinct loop headers.  We need to insert pools on
 | |
|         // each.
 | |
|         SetVector<BasicBlock *> Headers;
 | |
|         for (unsigned i = 0; i < Term->getNumSuccessors(); i++) {
 | |
|           BasicBlock *Succ = Term->getSuccessor(i);
 | |
|           if (DT.dominates(Succ, Term->getParent())) {
 | |
|             Headers.insert(Succ);
 | |
|           }
 | |
|         }
 | |
|         assert(!Headers.empty() && "poll location is not a loop latch?");
 | |
| 
 | |
|         // The split loop structure here is so that we only need to recalculate
 | |
|         // the dominator tree once.  Alternatively, we could just keep it up to
 | |
|         // date and use a more natural merged loop.
 | |
|         SetVector<BasicBlock *> SplitBackedges;
 | |
|         for (BasicBlock *Header : Headers) {
 | |
|           BasicBlock *NewBB = SplitEdge(Term->getParent(), Header, &DT);
 | |
|           PollsNeeded.push_back(NewBB->getTerminator());
 | |
|           NumBackedgeSafepoints++;
 | |
|         }
 | |
|       } else {
 | |
|         // Split the latch block itself, right before the terminator.
 | |
|         PollsNeeded.push_back(Term);
 | |
|         NumBackedgeSafepoints++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (enableEntrySafepoints(F)) {
 | |
|     Instruction *Location = findLocationForEntrySafepoint(F, DT);
 | |
|     if (!Location) {
 | |
|       // policy choice not to insert?
 | |
|     } else {
 | |
|       PollsNeeded.push_back(Location);
 | |
|       modified = true;
 | |
|       NumEntrySafepoints++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we've identified all the needed safepoint poll locations, insert
 | |
|   // safepoint polls themselves.
 | |
|   for (Instruction *PollLocation : PollsNeeded) {
 | |
|     std::vector<CallSite> RuntimeCalls;
 | |
|     InsertSafepointPoll(PollLocation, RuntimeCalls);
 | |
|     ParsePointNeeded.insert(ParsePointNeeded.end(), RuntimeCalls.begin(),
 | |
|                             RuntimeCalls.end());
 | |
|   }
 | |
|   PollsNeeded.clear(); // make sure we don't accidentally use
 | |
|   // The dominator tree has been invalidated by the inlining performed in the
 | |
|   // above loop.  TODO: Teach the inliner how to update the dom tree?
 | |
|   DT.recalculate(F);
 | |
| 
 | |
|   if (enableCallSafepoints(F)) {
 | |
|     std::vector<CallSite> Calls;
 | |
|     findCallSafepoints(F, Calls);
 | |
|     NumCallSafepoints += Calls.size();
 | |
|     ParsePointNeeded.insert(ParsePointNeeded.end(), Calls.begin(), Calls.end());
 | |
|   }
 | |
| 
 | |
|   // Unique the vectors since we can end up with duplicates if we scan the call
 | |
|   // site for call safepoints after we add it for entry or backedge.  The
 | |
|   // only reason we need tracking at all is that some functions might have
 | |
|   // polls but not call safepoints and thus we might miss marking the runtime
 | |
|   // calls for the polls. (This is useful in test cases!)
 | |
|   unique_unsorted(ParsePointNeeded);
 | |
| 
 | |
|   // Any parse point (no matter what source) will be handled here
 | |
| 
 | |
|   // We're about to start modifying the function
 | |
|   if (!ParsePointNeeded.empty())
 | |
|     modified = true;
 | |
| 
 | |
|   // Now run through and insert the safepoints, but do _NOT_ update or remove
 | |
|   // any existing uses.  We have references to live variables that need to
 | |
|   // survive to the last iteration of this loop.
 | |
|   std::vector<Value *> Results;
 | |
|   Results.reserve(ParsePointNeeded.size());
 | |
|   for (size_t i = 0; i < ParsePointNeeded.size(); i++) {
 | |
|     CallSite &CS = ParsePointNeeded[i];
 | |
| 
 | |
|     // For invoke statepoints we need to remove all phi nodes at the normal
 | |
|     // destination block.
 | |
|     // Reason for this is that we can place gc_result only after last phi node
 | |
|     // in basic block. We will get malformed code after RAUW for the
 | |
|     // gc_result if one of this phi nodes uses result from the invoke.
 | |
|     if (InvokeInst *Invoke = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | |
|       normalizeForInvokeSafepoint(Invoke->getNormalDest(),
 | |
|                                   Invoke->getParent());
 | |
|     }
 | |
| 
 | |
|     Value *GCResult = ReplaceWithStatepoint(CS, nullptr);
 | |
|     Results.push_back(GCResult);
 | |
|   }
 | |
|   assert(Results.size() == ParsePointNeeded.size());
 | |
| 
 | |
|   // Adjust all users of the old call sites to use the new ones instead
 | |
|   for (size_t i = 0; i < ParsePointNeeded.size(); i++) {
 | |
|     CallSite &CS = ParsePointNeeded[i];
 | |
|     Value *GCResult = Results[i];
 | |
|     if (GCResult) {
 | |
|       // Can not RAUW for the invoke gc result in case of phi nodes preset.
 | |
|       assert(CS.isCall() || !isa<PHINode>(cast<Instruction>(GCResult)->getParent()->begin()));
 | |
| 
 | |
|       // Replace all uses with the new call
 | |
|       CS.getInstruction()->replaceAllUsesWith(GCResult);
 | |
|     }
 | |
| 
 | |
|     // Now that we've handled all uses, remove the original call itself
 | |
|     // Note: The insert point can't be the deleted instruction!
 | |
|     CS.getInstruction()->eraseFromParent();
 | |
|   }
 | |
|   return modified;
 | |
| }
 | |
| 
 | |
| char PlaceBackedgeSafepointsImpl::ID = 0;
 | |
| char PlaceSafepoints::ID = 0;
 | |
| 
 | |
| FunctionPass *llvm::createPlaceSafepointsPass() {
 | |
|   return new PlaceSafepoints();
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(PlaceBackedgeSafepointsImpl,
 | |
|                       "place-backedge-safepoints-impl",
 | |
|                       "Place Backedge Safepoints", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(PlaceBackedgeSafepointsImpl,
 | |
|                     "place-backedge-safepoints-impl",
 | |
|                     "Place Backedge Safepoints", false, false)
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(PlaceSafepoints, "place-safepoints", "Place Safepoints",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_END(PlaceSafepoints, "place-safepoints", "Place Safepoints",
 | |
|                     false, false)
 | |
| 
 | |
| static void
 | |
| InsertSafepointPoll(Instruction *InsertBefore,
 | |
|                     std::vector<CallSite> &ParsePointsNeeded /*rval*/) {
 | |
|   BasicBlock *OrigBB = InsertBefore->getParent();
 | |
|   Module *M = InsertBefore->getModule();
 | |
|   assert(M && "must be part of a module");
 | |
| 
 | |
|   // Inline the safepoint poll implementation - this will get all the branch,
 | |
|   // control flow, etc..  Most importantly, it will introduce the actual slow
 | |
|   // path call - where we need to insert a safepoint (parsepoint).
 | |
| 
 | |
|   auto *F = M->getFunction(GCSafepointPollName);
 | |
|   assert(F->getType()->getElementType() ==
 | |
|          FunctionType::get(Type::getVoidTy(M->getContext()), false) &&
 | |
|          "gc.safepoint_poll declared with wrong type");
 | |
|   assert(!F->empty() && "gc.safepoint_poll must be a non-empty function");
 | |
|   CallInst *PollCall = CallInst::Create(F, "", InsertBefore);
 | |
| 
 | |
|   // Record some information about the call site we're replacing
 | |
|   BasicBlock::iterator before(PollCall), after(PollCall);
 | |
|   bool isBegin(false);
 | |
|   if (before == OrigBB->begin()) {
 | |
|     isBegin = true;
 | |
|   } else {
 | |
|     before--;
 | |
|   }
 | |
|   after++;
 | |
|   assert(after != OrigBB->end() && "must have successor");
 | |
| 
 | |
|   // do the actual inlining
 | |
|   InlineFunctionInfo IFI;
 | |
|   bool InlineStatus = InlineFunction(PollCall, IFI);
 | |
|   assert(InlineStatus && "inline must succeed");
 | |
|   (void)InlineStatus; // suppress warning in release-asserts
 | |
| 
 | |
|   // Check post conditions
 | |
|   assert(IFI.StaticAllocas.empty() && "can't have allocs");
 | |
| 
 | |
|   std::vector<CallInst *> calls; // new calls
 | |
|   std::set<BasicBlock *> BBs;    // new BBs + insertee
 | |
|   // Include only the newly inserted instructions, Note: begin may not be valid
 | |
|   // if we inserted to the beginning of the basic block
 | |
|   BasicBlock::iterator start;
 | |
|   if (isBegin) {
 | |
|     start = OrigBB->begin();
 | |
|   } else {
 | |
|     start = before;
 | |
|     start++;
 | |
|   }
 | |
| 
 | |
|   // If your poll function includes an unreachable at the end, that's not
 | |
|   // valid.  Bugpoint likes to create this, so check for it.
 | |
|   assert(isPotentiallyReachable(&*start, &*after, nullptr, nullptr) &&
 | |
|          "malformed poll function");
 | |
| 
 | |
|   scanInlinedCode(&*(start), &*(after), calls, BBs);
 | |
|   assert(!calls.empty() && "slow path not found for safepoint poll");
 | |
| 
 | |
|   // Record the fact we need a parsable state at the runtime call contained in
 | |
|   // the poll function.  This is required so that the runtime knows how to
 | |
|   // parse the last frame when we actually take  the safepoint (i.e. execute
 | |
|   // the slow path)
 | |
|   assert(ParsePointsNeeded.empty());
 | |
|   for (size_t i = 0; i < calls.size(); i++) {
 | |
| 
 | |
|     // No safepoint needed or wanted
 | |
|     if (!needsStatepoint(calls[i])) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // These are likely runtime calls.  Should we assert that via calling
 | |
|     // convention or something?
 | |
|     ParsePointsNeeded.push_back(CallSite(calls[i]));
 | |
|   }
 | |
|   assert(ParsePointsNeeded.size() <= calls.size());
 | |
| }
 | |
| 
 | |
| /// Replaces the given call site (Call or Invoke) with a gc.statepoint
 | |
| /// intrinsic with an empty deoptimization arguments list.  This does
 | |
| /// NOT do explicit relocation for GC support.
 | |
| static Value *ReplaceWithStatepoint(const CallSite &CS, /* to replace */
 | |
|                                     Pass *P) {
 | |
|   assert(CS.getInstruction()->getParent()->getParent()->getParent() &&
 | |
|          "must be set");
 | |
| 
 | |
|   // TODO: technically, a pass is not allowed to get functions from within a
 | |
|   // function pass since it might trigger a new function addition.  Refactor
 | |
|   // this logic out to the initialization of the pass.  Doesn't appear to
 | |
|   // matter in practice.
 | |
| 
 | |
|   // Then go ahead and use the builder do actually do the inserts.  We insert
 | |
|   // immediately before the previous instruction under the assumption that all
 | |
|   // arguments will be available here.  We can't insert afterwards since we may
 | |
|   // be replacing a terminator.
 | |
|   IRBuilder<> Builder(CS.getInstruction());
 | |
| 
 | |
|   // Note: The gc args are not filled in at this time, that's handled by
 | |
|   // RewriteStatepointsForGC (which is currently under review).
 | |
| 
 | |
|   // Create the statepoint given all the arguments
 | |
|   Instruction *Token = nullptr;
 | |
| 
 | |
|   uint64_t ID;
 | |
|   uint32_t NumPatchBytes;
 | |
| 
 | |
|   AttributeSet OriginalAttrs = CS.getAttributes();
 | |
|   Attribute AttrID =
 | |
|       OriginalAttrs.getAttribute(AttributeSet::FunctionIndex, "statepoint-id");
 | |
|   Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
 | |
|       AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
 | |
| 
 | |
|   AttrBuilder AttrsToRemove;
 | |
|   bool HasID = AttrID.isStringAttribute() &&
 | |
|                !AttrID.getValueAsString().getAsInteger(10, ID);
 | |
| 
 | |
|   if (HasID)
 | |
|     AttrsToRemove.addAttribute("statepoint-id");
 | |
|   else
 | |
|     ID = 0xABCDEF00;
 | |
| 
 | |
|   bool HasNumPatchBytes =
 | |
|       AttrNumPatchBytes.isStringAttribute() &&
 | |
|       !AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
 | |
| 
 | |
|   if (HasNumPatchBytes)
 | |
|     AttrsToRemove.addAttribute("statepoint-num-patch-bytes");
 | |
|   else
 | |
|     NumPatchBytes = 0;
 | |
| 
 | |
|   OriginalAttrs = OriginalAttrs.removeAttributes(
 | |
|       CS.getInstruction()->getContext(), AttributeSet::FunctionIndex,
 | |
|       AttrsToRemove);
 | |
| 
 | |
|   if (CS.isCall()) {
 | |
|     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
 | |
|     CallInst *Call = Builder.CreateGCStatepointCall(
 | |
|         ID, NumPatchBytes, CS.getCalledValue(),
 | |
|         makeArrayRef(CS.arg_begin(), CS.arg_end()), None, None,
 | |
|         "safepoint_token");
 | |
|     Call->setTailCall(ToReplace->isTailCall());
 | |
|     Call->setCallingConv(ToReplace->getCallingConv());
 | |
| 
 | |
|     // In case if we can handle this set of attributes - set up function
 | |
|     // attributes directly on statepoint and return attributes later for
 | |
|     // gc_result intrinsic.
 | |
|     Call->setAttributes(OriginalAttrs.getFnAttributes());
 | |
| 
 | |
|     Token = Call;
 | |
| 
 | |
|     // Put the following gc_result and gc_relocate calls immediately after
 | |
|     // the old call (which we're about to delete).
 | |
|     assert(ToReplace->getNextNode() && "not a terminator, must have next");
 | |
|     Builder.SetInsertPoint(ToReplace->getNextNode());
 | |
|     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
 | |
|   } else if (CS.isInvoke()) {
 | |
|     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
 | |
| 
 | |
|     // Insert the new invoke into the old block.  We'll remove the old one in a
 | |
|     // moment at which point this will become the new terminator for the
 | |
|     // original block.
 | |
|     Builder.SetInsertPoint(ToReplace->getParent());
 | |
|     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
 | |
|         ID, NumPatchBytes, CS.getCalledValue(), ToReplace->getNormalDest(),
 | |
|         ToReplace->getUnwindDest(), makeArrayRef(CS.arg_begin(), CS.arg_end()),
 | |
|         None, None, "safepoint_token");
 | |
| 
 | |
|     Invoke->setCallingConv(ToReplace->getCallingConv());
 | |
| 
 | |
|     // In case if we can handle this set of attributes - set up function
 | |
|     // attributes directly on statepoint and return attributes later for
 | |
|     // gc_result intrinsic.
 | |
|     Invoke->setAttributes(OriginalAttrs.getFnAttributes());
 | |
| 
 | |
|     Token = Invoke;
 | |
| 
 | |
|     // We'll insert the gc.result into the normal block
 | |
|     BasicBlock *NormalDest = ToReplace->getNormalDest();
 | |
|     // Can not insert gc.result in case of phi nodes preset.
 | |
|     // Should have removed this cases prior to running this function
 | |
|     assert(!isa<PHINode>(NormalDest->begin()));
 | |
|     Instruction *IP = &*(NormalDest->getFirstInsertionPt());
 | |
|     Builder.SetInsertPoint(IP);
 | |
|   } else {
 | |
|     llvm_unreachable("unexpect type of CallSite");
 | |
|   }
 | |
|   assert(Token);
 | |
| 
 | |
|   // Handle the return value of the original call - update all uses to use a
 | |
|   // gc_result hanging off the statepoint node we just inserted
 | |
| 
 | |
|   // Only add the gc_result iff there is actually a used result
 | |
|   if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
 | |
|     std::string TakenName =
 | |
|         CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
 | |
|     CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), TakenName);
 | |
|     GCResult->setAttributes(OriginalAttrs.getRetAttributes());
 | |
|     return GCResult;
 | |
|   } else {
 | |
|     // No return value for the call.
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 |