2923 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2923 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Rewrite an existing set of gc.statepoints such that they make potential
 | |
| // relocations performed by the garbage collector explicit in the IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/ADT/SetOperations.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| 
 | |
| #define DEBUG_TYPE "rewrite-statepoints-for-gc"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // Print the liveset found at the insert location
 | |
| static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
 | |
|                                   cl::init(false));
 | |
| static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", cl::Hidden,
 | |
|                                       cl::init(false));
 | |
| // Print out the base pointers for debugging
 | |
| static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", cl::Hidden,
 | |
|                                        cl::init(false));
 | |
| 
 | |
| // Cost threshold measuring when it is profitable to rematerialize value instead
 | |
| // of relocating it
 | |
| static cl::opt<unsigned>
 | |
| RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden,
 | |
|                            cl::init(6));
 | |
| 
 | |
| #ifdef XDEBUG
 | |
| static bool ClobberNonLive = true;
 | |
| #else
 | |
| static bool ClobberNonLive = false;
 | |
| #endif
 | |
| static cl::opt<bool, true> ClobberNonLiveOverride("rs4gc-clobber-non-live",
 | |
|                                                   cl::location(ClobberNonLive),
 | |
|                                                   cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> UseDeoptBundles("rs4gc-use-deopt-bundles", cl::Hidden,
 | |
|                                      cl::init(false));
 | |
| static cl::opt<bool>
 | |
|     AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info",
 | |
|                                    cl::Hidden, cl::init(true));
 | |
| 
 | |
| namespace {
 | |
| struct RewriteStatepointsForGC : public ModulePass {
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
| 
 | |
|   RewriteStatepointsForGC() : ModulePass(ID) {
 | |
|     initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   bool runOnFunction(Function &F);
 | |
|   bool runOnModule(Module &M) override {
 | |
|     bool Changed = false;
 | |
|     for (Function &F : M)
 | |
|       Changed |= runOnFunction(F);
 | |
| 
 | |
|     if (Changed) {
 | |
|       // stripNonValidAttributes asserts that shouldRewriteStatepointsIn
 | |
|       // returns true for at least one function in the module.  Since at least
 | |
|       // one function changed, we know that the precondition is satisfied.
 | |
|       stripNonValidAttributes(M);
 | |
|     }
 | |
| 
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     // We add and rewrite a bunch of instructions, but don't really do much
 | |
|     // else.  We could in theory preserve a lot more analyses here.
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|   }
 | |
| 
 | |
|   /// The IR fed into RewriteStatepointsForGC may have had attributes implying
 | |
|   /// dereferenceability that are no longer valid/correct after
 | |
|   /// RewriteStatepointsForGC has run.  This is because semantically, after
 | |
|   /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire
 | |
|   /// heap.  stripNonValidAttributes (conservatively) restores correctness
 | |
|   /// by erasing all attributes in the module that externally imply
 | |
|   /// dereferenceability.
 | |
|   /// Similar reasoning also applies to the noalias attributes. gc.statepoint
 | |
|   /// can touch the entire heap including noalias objects.
 | |
|   void stripNonValidAttributes(Module &M);
 | |
| 
 | |
|   // Helpers for stripNonValidAttributes
 | |
|   void stripNonValidAttributesFromBody(Function &F);
 | |
|   void stripNonValidAttributesFromPrototype(Function &F);
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| char RewriteStatepointsForGC::ID = 0;
 | |
| 
 | |
| ModulePass *llvm::createRewriteStatepointsForGCPass() {
 | |
|   return new RewriteStatepointsForGC();
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
 | |
|                       "Make relocations explicit at statepoints", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
 | |
|                     "Make relocations explicit at statepoints", false, false)
 | |
| 
 | |
| namespace {
 | |
| struct GCPtrLivenessData {
 | |
|   /// Values defined in this block.
 | |
|   DenseMap<BasicBlock *, DenseSet<Value *>> KillSet;
 | |
|   /// Values used in this block (and thus live); does not included values
 | |
|   /// killed within this block.
 | |
|   DenseMap<BasicBlock *, DenseSet<Value *>> LiveSet;
 | |
| 
 | |
|   /// Values live into this basic block (i.e. used by any
 | |
|   /// instruction in this basic block or ones reachable from here)
 | |
|   DenseMap<BasicBlock *, DenseSet<Value *>> LiveIn;
 | |
| 
 | |
|   /// Values live out of this basic block (i.e. live into
 | |
|   /// any successor block)
 | |
|   DenseMap<BasicBlock *, DenseSet<Value *>> LiveOut;
 | |
| };
 | |
| 
 | |
| // The type of the internal cache used inside the findBasePointers family
 | |
| // of functions.  From the callers perspective, this is an opaque type and
 | |
| // should not be inspected.
 | |
| //
 | |
| // In the actual implementation this caches two relations:
 | |
| // - The base relation itself (i.e. this pointer is based on that one)
 | |
| // - The base defining value relation (i.e. before base_phi insertion)
 | |
| // Generally, after the execution of a full findBasePointer call, only the
 | |
| // base relation will remain.  Internally, we add a mixture of the two
 | |
| // types, then update all the second type to the first type
 | |
| typedef DenseMap<Value *, Value *> DefiningValueMapTy;
 | |
| typedef DenseSet<Value *> StatepointLiveSetTy;
 | |
| typedef DenseMap<AssertingVH<Instruction>, AssertingVH<Value>>
 | |
|   RematerializedValueMapTy;
 | |
| 
 | |
| struct PartiallyConstructedSafepointRecord {
 | |
|   /// The set of values known to be live across this safepoint
 | |
|   StatepointLiveSetTy LiveSet;
 | |
| 
 | |
|   /// Mapping from live pointers to a base-defining-value
 | |
|   DenseMap<Value *, Value *> PointerToBase;
 | |
| 
 | |
|   /// The *new* gc.statepoint instruction itself.  This produces the token
 | |
|   /// that normal path gc.relocates and the gc.result are tied to.
 | |
|   Instruction *StatepointToken;
 | |
| 
 | |
|   /// Instruction to which exceptional gc relocates are attached
 | |
|   /// Makes it easier to iterate through them during relocationViaAlloca.
 | |
|   Instruction *UnwindToken;
 | |
| 
 | |
|   /// Record live values we are rematerialized instead of relocating.
 | |
|   /// They are not included into 'LiveSet' field.
 | |
|   /// Maps rematerialized copy to it's original value.
 | |
|   RematerializedValueMapTy RematerializedValues;
 | |
| };
 | |
| }
 | |
| 
 | |
| static ArrayRef<Use> GetDeoptBundleOperands(ImmutableCallSite CS) {
 | |
|   assert(UseDeoptBundles && "Should not be called otherwise!");
 | |
| 
 | |
|   Optional<OperandBundleUse> DeoptBundle = CS.getOperandBundle("deopt");
 | |
| 
 | |
|   if (!DeoptBundle.hasValue()) {
 | |
|     assert(AllowStatepointWithNoDeoptInfo &&
 | |
|            "Found non-leaf call without deopt info!");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   return DeoptBundle.getValue().Inputs;
 | |
| }
 | |
| 
 | |
| /// Compute the live-in set for every basic block in the function
 | |
| static void computeLiveInValues(DominatorTree &DT, Function &F,
 | |
|                                 GCPtrLivenessData &Data);
 | |
| 
 | |
| /// Given results from the dataflow liveness computation, find the set of live
 | |
| /// Values at a particular instruction.
 | |
| static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data,
 | |
|                               StatepointLiveSetTy &out);
 | |
| 
 | |
| // TODO: Once we can get to the GCStrategy, this becomes
 | |
| // Optional<bool> isGCManagedPointer(const Value *V) const override {
 | |
| 
 | |
| static bool isGCPointerType(Type *T) {
 | |
|   if (auto *PT = dyn_cast<PointerType>(T))
 | |
|     // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
 | |
|     // GC managed heap.  We know that a pointer into this heap needs to be
 | |
|     // updated and that no other pointer does.
 | |
|     return (1 == PT->getAddressSpace());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return true if this type is one which a) is a gc pointer or contains a GC
 | |
| // pointer and b) is of a type this code expects to encounter as a live value.
 | |
| // (The insertion code will assert that a type which matches (a) and not (b)
 | |
| // is not encountered.)
 | |
| static bool isHandledGCPointerType(Type *T) {
 | |
|   // We fully support gc pointers
 | |
|   if (isGCPointerType(T))
 | |
|     return true;
 | |
|   // We partially support vectors of gc pointers. The code will assert if it
 | |
|   // can't handle something.
 | |
|   if (auto VT = dyn_cast<VectorType>(T))
 | |
|     if (isGCPointerType(VT->getElementType()))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// Returns true if this type contains a gc pointer whether we know how to
 | |
| /// handle that type or not.
 | |
| static bool containsGCPtrType(Type *Ty) {
 | |
|   if (isGCPointerType(Ty))
 | |
|     return true;
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(Ty))
 | |
|     return isGCPointerType(VT->getScalarType());
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
 | |
|     return containsGCPtrType(AT->getElementType());
 | |
|   if (StructType *ST = dyn_cast<StructType>(Ty))
 | |
|     return std::any_of(
 | |
|         ST->subtypes().begin(), ST->subtypes().end(),
 | |
|         [](Type *SubType) { return containsGCPtrType(SubType); });
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Returns true if this is a type which a) is a gc pointer or contains a GC
 | |
| // pointer and b) is of a type which the code doesn't expect (i.e. first class
 | |
| // aggregates).  Used to trip assertions.
 | |
| static bool isUnhandledGCPointerType(Type *Ty) {
 | |
|   return containsGCPtrType(Ty) && !isHandledGCPointerType(Ty);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool order_by_name(Value *a, Value *b) {
 | |
|   if (a->hasName() && b->hasName()) {
 | |
|     return -1 == a->getName().compare(b->getName());
 | |
|   } else if (a->hasName() && !b->hasName()) {
 | |
|     return true;
 | |
|   } else if (!a->hasName() && b->hasName()) {
 | |
|     return false;
 | |
|   } else {
 | |
|     // Better than nothing, but not stable
 | |
|     return a < b;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return the name of the value suffixed with the provided value, or if the
 | |
| // value didn't have a name, the default value specified.
 | |
| static std::string suffixed_name_or(Value *V, StringRef Suffix,
 | |
|                                     StringRef DefaultName) {
 | |
|   return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str();
 | |
| }
 | |
| 
 | |
| // Conservatively identifies any definitions which might be live at the
 | |
| // given instruction. The  analysis is performed immediately before the
 | |
| // given instruction. Values defined by that instruction are not considered
 | |
| // live.  Values used by that instruction are considered live.
 | |
| static void analyzeParsePointLiveness(
 | |
|     DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData,
 | |
|     const CallSite &CS, PartiallyConstructedSafepointRecord &result) {
 | |
|   Instruction *inst = CS.getInstruction();
 | |
| 
 | |
|   StatepointLiveSetTy LiveSet;
 | |
|   findLiveSetAtInst(inst, OriginalLivenessData, LiveSet);
 | |
| 
 | |
|   if (PrintLiveSet) {
 | |
|     // Note: This output is used by several of the test cases
 | |
|     // The order of elements in a set is not stable, put them in a vec and sort
 | |
|     // by name
 | |
|     SmallVector<Value *, 64> Temp;
 | |
|     Temp.insert(Temp.end(), LiveSet.begin(), LiveSet.end());
 | |
|     std::sort(Temp.begin(), Temp.end(), order_by_name);
 | |
|     errs() << "Live Variables:\n";
 | |
|     for (Value *V : Temp)
 | |
|       dbgs() << " " << V->getName() << " " << *V << "\n";
 | |
|   }
 | |
|   if (PrintLiveSetSize) {
 | |
|     errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
 | |
|     errs() << "Number live values: " << LiveSet.size() << "\n";
 | |
|   }
 | |
|   result.LiveSet = LiveSet;
 | |
| }
 | |
| 
 | |
| static bool isKnownBaseResult(Value *V);
 | |
| namespace {
 | |
| /// A single base defining value - An immediate base defining value for an
 | |
| /// instruction 'Def' is an input to 'Def' whose base is also a base of 'Def'.
 | |
| /// For instructions which have multiple pointer [vector] inputs or that
 | |
| /// transition between vector and scalar types, there is no immediate base
 | |
| /// defining value.  The 'base defining value' for 'Def' is the transitive
 | |
| /// closure of this relation stopping at the first instruction which has no
 | |
| /// immediate base defining value.  The b.d.v. might itself be a base pointer,
 | |
| /// but it can also be an arbitrary derived pointer. 
 | |
| struct BaseDefiningValueResult {
 | |
|   /// Contains the value which is the base defining value.
 | |
|   Value * const BDV;
 | |
|   /// True if the base defining value is also known to be an actual base
 | |
|   /// pointer.
 | |
|   const bool IsKnownBase;
 | |
|   BaseDefiningValueResult(Value *BDV, bool IsKnownBase)
 | |
|     : BDV(BDV), IsKnownBase(IsKnownBase) {
 | |
| #ifndef NDEBUG
 | |
|     // Check consistency between new and old means of checking whether a BDV is
 | |
|     // a base.
 | |
|     bool MustBeBase = isKnownBaseResult(BDV);
 | |
|     assert(!MustBeBase || MustBeBase == IsKnownBase);
 | |
| #endif
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static BaseDefiningValueResult findBaseDefiningValue(Value *I);
 | |
| 
 | |
| /// Return a base defining value for the 'Index' element of the given vector
 | |
| /// instruction 'I'.  If Index is null, returns a BDV for the entire vector
 | |
| /// 'I'.  As an optimization, this method will try to determine when the 
 | |
| /// element is known to already be a base pointer.  If this can be established,
 | |
| /// the second value in the returned pair will be true.  Note that either a
 | |
| /// vector or a pointer typed value can be returned.  For the former, the
 | |
| /// vector returned is a BDV (and possibly a base) of the entire vector 'I'.
 | |
| /// If the later, the return pointer is a BDV (or possibly a base) for the
 | |
| /// particular element in 'I'.  
 | |
| static BaseDefiningValueResult
 | |
| findBaseDefiningValueOfVector(Value *I) {
 | |
|   assert(I->getType()->isVectorTy() &&
 | |
|          cast<VectorType>(I->getType())->getElementType()->isPointerTy() &&
 | |
|          "Illegal to ask for the base pointer of a non-pointer type");
 | |
| 
 | |
|   // Each case parallels findBaseDefiningValue below, see that code for
 | |
|   // detailed motivation.
 | |
| 
 | |
|   if (isa<Argument>(I))
 | |
|     // An incoming argument to the function is a base pointer
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   // We shouldn't see the address of a global as a vector value?
 | |
|   assert(!isa<GlobalVariable>(I) &&
 | |
|          "unexpected global variable found in base of vector");
 | |
| 
 | |
|   // inlining could possibly introduce phi node that contains
 | |
|   // undef if callee has multiple returns
 | |
|   if (isa<UndefValue>(I))
 | |
|     // utterly meaningless, but useful for dealing with partially optimized
 | |
|     // code.
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   // Due to inheritance, this must be _after_ the global variable and undef
 | |
|   // checks
 | |
|   if (Constant *Con = dyn_cast<Constant>(I)) {
 | |
|     assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
 | |
|            "order of checks wrong!");
 | |
|     assert(Con->isNullValue() && "null is the only case which makes sense");
 | |
|     return BaseDefiningValueResult(Con, true);
 | |
|   }
 | |
|   
 | |
|   if (isa<LoadInst>(I))
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   if (isa<InsertElementInst>(I))
 | |
|     // We don't know whether this vector contains entirely base pointers or
 | |
|     // not.  To be conservatively correct, we treat it as a BDV and will
 | |
|     // duplicate code as needed to construct a parallel vector of bases.
 | |
|     return BaseDefiningValueResult(I, false);
 | |
| 
 | |
|   if (isa<ShuffleVectorInst>(I))
 | |
|     // We don't know whether this vector contains entirely base pointers or
 | |
|     // not.  To be conservatively correct, we treat it as a BDV and will
 | |
|     // duplicate code as needed to construct a parallel vector of bases.
 | |
|     // TODO: There a number of local optimizations which could be applied here
 | |
|     // for particular sufflevector patterns.
 | |
|     return BaseDefiningValueResult(I, false);
 | |
| 
 | |
|   // A PHI or Select is a base defining value.  The outer findBasePointer
 | |
|   // algorithm is responsible for constructing a base value for this BDV.
 | |
|   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
 | |
|          "unknown vector instruction - no base found for vector element");
 | |
|   return BaseDefiningValueResult(I, false);
 | |
| }
 | |
| 
 | |
| /// Helper function for findBasePointer - Will return a value which either a)
 | |
| /// defines the base pointer for the input, b) blocks the simple search
 | |
| /// (i.e. a PHI or Select of two derived pointers), or c) involves a change
 | |
| /// from pointer to vector type or back.
 | |
| static BaseDefiningValueResult findBaseDefiningValue(Value *I) {
 | |
|   if (I->getType()->isVectorTy())
 | |
|     return findBaseDefiningValueOfVector(I);
 | |
|   
 | |
|   assert(I->getType()->isPointerTy() &&
 | |
|          "Illegal to ask for the base pointer of a non-pointer type");
 | |
| 
 | |
|   if (isa<Argument>(I))
 | |
|     // An incoming argument to the function is a base pointer
 | |
|     // We should have never reached here if this argument isn't an gc value
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   if (isa<GlobalVariable>(I))
 | |
|     // base case
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   // inlining could possibly introduce phi node that contains
 | |
|   // undef if callee has multiple returns
 | |
|   if (isa<UndefValue>(I))
 | |
|     // utterly meaningless, but useful for dealing with
 | |
|     // partially optimized code.
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   // Due to inheritance, this must be _after_ the global variable and undef
 | |
|   // checks
 | |
|   if (isa<Constant>(I)) {
 | |
|     assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
 | |
|            "order of checks wrong!");
 | |
|     // Note: Finding a constant base for something marked for relocation
 | |
|     // doesn't really make sense.  The most likely case is either a) some
 | |
|     // screwed up the address space usage or b) your validating against
 | |
|     // compiled C++ code w/o the proper separation.  The only real exception
 | |
|     // is a null pointer.  You could have generic code written to index of
 | |
|     // off a potentially null value and have proven it null.  We also use
 | |
|     // null pointers in dead paths of relocation phis (which we might later
 | |
|     // want to find a base pointer for).
 | |
|     assert(isa<ConstantPointerNull>(I) &&
 | |
|            "null is the only case which makes sense");
 | |
|     return BaseDefiningValueResult(I, true);
 | |
|   }
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|     Value *Def = CI->stripPointerCasts();
 | |
|     // If we find a cast instruction here, it means we've found a cast which is
 | |
|     // not simply a pointer cast (i.e. an inttoptr).  We don't know how to
 | |
|     // handle int->ptr conversion.
 | |
|     assert(!isa<CastInst>(Def) && "shouldn't find another cast here");
 | |
|     return findBaseDefiningValue(Def);
 | |
|   }
 | |
| 
 | |
|   if (isa<LoadInst>(I))
 | |
|     // The value loaded is an gc base itself
 | |
|     return BaseDefiningValueResult(I, true);
 | |
|   
 | |
| 
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
 | |
|     // The base of this GEP is the base
 | |
|     return findBaseDefiningValue(GEP->getPointerOperand());
 | |
| 
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     case Intrinsic::experimental_gc_result_ptr:
 | |
|     default:
 | |
|       // fall through to general call handling
 | |
|       break;
 | |
|     case Intrinsic::experimental_gc_statepoint:
 | |
|     case Intrinsic::experimental_gc_result_float:
 | |
|     case Intrinsic::experimental_gc_result_int:
 | |
|       llvm_unreachable("these don't produce pointers");
 | |
|     case Intrinsic::experimental_gc_relocate: {
 | |
|       // Rerunning safepoint insertion after safepoints are already
 | |
|       // inserted is not supported.  It could probably be made to work,
 | |
|       // but why are you doing this?  There's no good reason.
 | |
|       llvm_unreachable("repeat safepoint insertion is not supported");
 | |
|     }
 | |
|     case Intrinsic::gcroot:
 | |
|       // Currently, this mechanism hasn't been extended to work with gcroot.
 | |
|       // There's no reason it couldn't be, but I haven't thought about the
 | |
|       // implications much.
 | |
|       llvm_unreachable(
 | |
|           "interaction with the gcroot mechanism is not supported");
 | |
|     }
 | |
|   }
 | |
|   // We assume that functions in the source language only return base
 | |
|   // pointers.  This should probably be generalized via attributes to support
 | |
|   // both source language and internal functions.
 | |
|   if (isa<CallInst>(I) || isa<InvokeInst>(I))
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   // I have absolutely no idea how to implement this part yet.  It's not
 | |
|   // necessarily hard, I just haven't really looked at it yet.
 | |
|   assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
 | |
| 
 | |
|   if (isa<AtomicCmpXchgInst>(I))
 | |
|     // A CAS is effectively a atomic store and load combined under a
 | |
|     // predicate.  From the perspective of base pointers, we just treat it
 | |
|     // like a load.
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   assert(!isa<AtomicRMWInst>(I) && "Xchg handled above, all others are "
 | |
|                                    "binary ops which don't apply to pointers");
 | |
| 
 | |
|   // The aggregate ops.  Aggregates can either be in the heap or on the
 | |
|   // stack, but in either case, this is simply a field load.  As a result,
 | |
|   // this is a defining definition of the base just like a load is.
 | |
|   if (isa<ExtractValueInst>(I))
 | |
|     return BaseDefiningValueResult(I, true);
 | |
| 
 | |
|   // We should never see an insert vector since that would require we be
 | |
|   // tracing back a struct value not a pointer value.
 | |
|   assert(!isa<InsertValueInst>(I) &&
 | |
|          "Base pointer for a struct is meaningless");
 | |
| 
 | |
|   // An extractelement produces a base result exactly when it's input does.
 | |
|   // We may need to insert a parallel instruction to extract the appropriate
 | |
|   // element out of the base vector corresponding to the input. Given this,
 | |
|   // it's analogous to the phi and select case even though it's not a merge.
 | |
|   if (isa<ExtractElementInst>(I))
 | |
|     // Note: There a lot of obvious peephole cases here.  This are deliberately
 | |
|     // handled after the main base pointer inference algorithm to make writing
 | |
|     // test cases to exercise that code easier.
 | |
|     return BaseDefiningValueResult(I, false);
 | |
| 
 | |
|   // The last two cases here don't return a base pointer.  Instead, they
 | |
|   // return a value which dynamically selects from among several base
 | |
|   // derived pointers (each with it's own base potentially).  It's the job of
 | |
|   // the caller to resolve these.
 | |
|   assert((isa<SelectInst>(I) || isa<PHINode>(I)) &&
 | |
|          "missing instruction case in findBaseDefiningValing");
 | |
|   return BaseDefiningValueResult(I, false);
 | |
| }
 | |
| 
 | |
| /// Returns the base defining value for this value.
 | |
| static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache) {
 | |
|   Value *&Cached = Cache[I];
 | |
|   if (!Cached) {
 | |
|     Cached = findBaseDefiningValue(I).BDV;
 | |
|     DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> "
 | |
|                  << Cached->getName() << "\n");
 | |
|   }
 | |
|   assert(Cache[I] != nullptr);
 | |
|   return Cached;
 | |
| }
 | |
| 
 | |
| /// Return a base pointer for this value if known.  Otherwise, return it's
 | |
| /// base defining value.
 | |
| static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache) {
 | |
|   Value *Def = findBaseDefiningValueCached(I, Cache);
 | |
|   auto Found = Cache.find(Def);
 | |
|   if (Found != Cache.end()) {
 | |
|     // Either a base-of relation, or a self reference.  Caller must check.
 | |
|     return Found->second;
 | |
|   }
 | |
|   // Only a BDV available
 | |
|   return Def;
 | |
| }
 | |
| 
 | |
| /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
 | |
| /// is it known to be a base pointer?  Or do we need to continue searching.
 | |
| static bool isKnownBaseResult(Value *V) {
 | |
|   if (!isa<PHINode>(V) && !isa<SelectInst>(V) &&
 | |
|       !isa<ExtractElementInst>(V) && !isa<InsertElementInst>(V) &&
 | |
|       !isa<ShuffleVectorInst>(V)) {
 | |
|     // no recursion possible
 | |
|     return true;
 | |
|   }
 | |
|   if (isa<Instruction>(V) &&
 | |
|       cast<Instruction>(V)->getMetadata("is_base_value")) {
 | |
|     // This is a previously inserted base phi or select.  We know
 | |
|     // that this is a base value.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // We need to keep searching
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// Models the state of a single base defining value in the findBasePointer
 | |
| /// algorithm for determining where a new instruction is needed to propagate
 | |
| /// the base of this BDV.
 | |
| class BDVState {
 | |
| public:
 | |
|   enum Status { Unknown, Base, Conflict };
 | |
| 
 | |
|   BDVState(Status s, Value *b = nullptr) : status(s), base(b) {
 | |
|     assert(status != Base || b);
 | |
|   }
 | |
|   explicit BDVState(Value *b) : status(Base), base(b) {}
 | |
|   BDVState() : status(Unknown), base(nullptr) {}
 | |
| 
 | |
|   Status getStatus() const { return status; }
 | |
|   Value *getBase() const { return base; }
 | |
| 
 | |
|   bool isBase() const { return getStatus() == Base; }
 | |
|   bool isUnknown() const { return getStatus() == Unknown; }
 | |
|   bool isConflict() const { return getStatus() == Conflict; }
 | |
| 
 | |
|   bool operator==(const BDVState &other) const {
 | |
|     return base == other.base && status == other.status;
 | |
|   }
 | |
| 
 | |
|   bool operator!=(const BDVState &other) const { return !(*this == other); }
 | |
| 
 | |
|   LLVM_DUMP_METHOD
 | |
|   void dump() const { print(dbgs()); dbgs() << '\n'; }
 | |
|   
 | |
|   void print(raw_ostream &OS) const {
 | |
|     switch (status) {
 | |
|     case Unknown:
 | |
|       OS << "U";
 | |
|       break;
 | |
|     case Base:
 | |
|       OS << "B";
 | |
|       break;
 | |
|     case Conflict:
 | |
|       OS << "C";
 | |
|       break;
 | |
|     };
 | |
|     OS << " (" << base << " - "
 | |
|        << (base ? base->getName() : "nullptr") << "): ";
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   Status status;
 | |
|   Value *base; // non null only if status == base
 | |
| };
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) {
 | |
|   State.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| namespace {
 | |
| // Values of type BDVState form a lattice, and this is a helper
 | |
| // class that implementes the meet operation.  The meat of the meet
 | |
| // operation is implemented in MeetBDVStates::pureMeet
 | |
| class MeetBDVStates {
 | |
| public:
 | |
|   /// Initializes the currentResult to the TOP state so that if can be met with
 | |
|   /// any other state to produce that state.
 | |
|   MeetBDVStates() {}
 | |
| 
 | |
|   // Destructively meet the current result with the given BDVState
 | |
|   void meetWith(BDVState otherState) {
 | |
|     currentResult = meet(otherState, currentResult);
 | |
|   }
 | |
| 
 | |
|   BDVState getResult() const { return currentResult; }
 | |
| 
 | |
| private:
 | |
|   BDVState currentResult;
 | |
| 
 | |
|   /// Perform a meet operation on two elements of the BDVState lattice.
 | |
|   static BDVState meet(BDVState LHS, BDVState RHS) {
 | |
|     assert((pureMeet(LHS, RHS) == pureMeet(RHS, LHS)) &&
 | |
|            "math is wrong: meet does not commute!");
 | |
|     BDVState Result = pureMeet(LHS, RHS);
 | |
|     DEBUG(dbgs() << "meet of " << LHS << " with " << RHS
 | |
|                  << " produced " << Result << "\n");
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   static BDVState pureMeet(const BDVState &stateA, const BDVState &stateB) {
 | |
|     switch (stateA.getStatus()) {
 | |
|     case BDVState::Unknown:
 | |
|       return stateB;
 | |
| 
 | |
|     case BDVState::Base:
 | |
|       assert(stateA.getBase() && "can't be null");
 | |
|       if (stateB.isUnknown())
 | |
|         return stateA;
 | |
| 
 | |
|       if (stateB.isBase()) {
 | |
|         if (stateA.getBase() == stateB.getBase()) {
 | |
|           assert(stateA == stateB && "equality broken!");
 | |
|           return stateA;
 | |
|         }
 | |
|         return BDVState(BDVState::Conflict);
 | |
|       }
 | |
|       assert(stateB.isConflict() && "only three states!");
 | |
|       return BDVState(BDVState::Conflict);
 | |
| 
 | |
|     case BDVState::Conflict:
 | |
|       return stateA;
 | |
|     }
 | |
|     llvm_unreachable("only three states!");
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| 
 | |
| /// For a given value or instruction, figure out what base ptr it's derived
 | |
| /// from.  For gc objects, this is simply itself.  On success, returns a value
 | |
| /// which is the base pointer.  (This is reliable and can be used for
 | |
| /// relocation.)  On failure, returns nullptr.
 | |
| static Value *findBasePointer(Value *I, DefiningValueMapTy &cache) {
 | |
|   Value *def = findBaseOrBDV(I, cache);
 | |
| 
 | |
|   if (isKnownBaseResult(def)) {
 | |
|     return def;
 | |
|   }
 | |
| 
 | |
|   // Here's the rough algorithm:
 | |
|   // - For every SSA value, construct a mapping to either an actual base
 | |
|   //   pointer or a PHI which obscures the base pointer.
 | |
|   // - Construct a mapping from PHI to unknown TOP state.  Use an
 | |
|   //   optimistic algorithm to propagate base pointer information.  Lattice
 | |
|   //   looks like:
 | |
|   //   UNKNOWN
 | |
|   //   b1 b2 b3 b4
 | |
|   //   CONFLICT
 | |
|   //   When algorithm terminates, all PHIs will either have a single concrete
 | |
|   //   base or be in a conflict state.
 | |
|   // - For every conflict, insert a dummy PHI node without arguments.  Add
 | |
|   //   these to the base[Instruction] = BasePtr mapping.  For every
 | |
|   //   non-conflict, add the actual base.
 | |
|   //  - For every conflict, add arguments for the base[a] of each input
 | |
|   //   arguments.
 | |
|   //
 | |
|   // Note: A simpler form of this would be to add the conflict form of all
 | |
|   // PHIs without running the optimistic algorithm.  This would be
 | |
|   // analogous to pessimistic data flow and would likely lead to an
 | |
|   // overall worse solution.
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   auto isExpectedBDVType = [](Value *BDV) {
 | |
|     return isa<PHINode>(BDV) || isa<SelectInst>(BDV) ||
 | |
|            isa<ExtractElementInst>(BDV) || isa<InsertElementInst>(BDV);
 | |
|   };
 | |
| #endif
 | |
| 
 | |
|   // Once populated, will contain a mapping from each potentially non-base BDV
 | |
|   // to a lattice value (described above) which corresponds to that BDV.
 | |
|   // We use the order of insertion (DFS over the def/use graph) to provide a
 | |
|   // stable deterministic ordering for visiting DenseMaps (which are unordered)
 | |
|   // below.  This is important for deterministic compilation.
 | |
|   MapVector<Value *, BDVState> States;
 | |
| 
 | |
|   // Recursively fill in all base defining values reachable from the initial
 | |
|   // one for which we don't already know a definite base value for
 | |
|   /* scope */ {
 | |
|     SmallVector<Value*, 16> Worklist;
 | |
|     Worklist.push_back(def);
 | |
|     States.insert(std::make_pair(def, BDVState()));
 | |
|     while (!Worklist.empty()) {
 | |
|       Value *Current = Worklist.pop_back_val();
 | |
|       assert(!isKnownBaseResult(Current) && "why did it get added?");
 | |
| 
 | |
|       auto visitIncomingValue = [&](Value *InVal) {
 | |
|         Value *Base = findBaseOrBDV(InVal, cache);
 | |
|         if (isKnownBaseResult(Base))
 | |
|           // Known bases won't need new instructions introduced and can be
 | |
|           // ignored safely
 | |
|           return;
 | |
|         assert(isExpectedBDVType(Base) && "the only non-base values "
 | |
|                "we see should be base defining values");
 | |
|         if (States.insert(std::make_pair(Base, BDVState())).second)
 | |
|           Worklist.push_back(Base);
 | |
|       };
 | |
|       if (PHINode *Phi = dyn_cast<PHINode>(Current)) {
 | |
|         for (Value *InVal : Phi->incoming_values())
 | |
|           visitIncomingValue(InVal);
 | |
|       } else if (SelectInst *Sel = dyn_cast<SelectInst>(Current)) {
 | |
|         visitIncomingValue(Sel->getTrueValue());
 | |
|         visitIncomingValue(Sel->getFalseValue());
 | |
|       } else if (auto *EE = dyn_cast<ExtractElementInst>(Current)) {
 | |
|         visitIncomingValue(EE->getVectorOperand());
 | |
|       } else if (auto *IE = dyn_cast<InsertElementInst>(Current)) {
 | |
|         visitIncomingValue(IE->getOperand(0)); // vector operand
 | |
|         visitIncomingValue(IE->getOperand(1)); // scalar operand
 | |
|       } else {
 | |
|         // There is one known class of instructions we know we don't handle.
 | |
|         assert(isa<ShuffleVectorInst>(Current));
 | |
|         llvm_unreachable("unimplemented instruction case");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   DEBUG(dbgs() << "States after initialization:\n");
 | |
|   for (auto Pair : States) {
 | |
|     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Return a phi state for a base defining value.  We'll generate a new
 | |
|   // base state for known bases and expect to find a cached state otherwise.
 | |
|   auto getStateForBDV = [&](Value *baseValue) {
 | |
|     if (isKnownBaseResult(baseValue))
 | |
|       return BDVState(baseValue);
 | |
|     auto I = States.find(baseValue);
 | |
|     assert(I != States.end() && "lookup failed!");
 | |
|     return I->second;
 | |
|   };
 | |
| 
 | |
|   bool progress = true;
 | |
|   while (progress) {
 | |
| #ifndef NDEBUG
 | |
|     const size_t oldSize = States.size();
 | |
| #endif
 | |
|     progress = false;
 | |
|     // We're only changing values in this loop, thus safe to keep iterators.
 | |
|     // Since this is computing a fixed point, the order of visit does not
 | |
|     // effect the result.  TODO: We could use a worklist here and make this run
 | |
|     // much faster.
 | |
|     for (auto Pair : States) {
 | |
|       Value *BDV = Pair.first;
 | |
|       assert(!isKnownBaseResult(BDV) && "why did it get added?");
 | |
| 
 | |
|       // Given an input value for the current instruction, return a BDVState
 | |
|       // instance which represents the BDV of that value.
 | |
|       auto getStateForInput = [&](Value *V) mutable {
 | |
|         Value *BDV = findBaseOrBDV(V, cache);
 | |
|         return getStateForBDV(BDV);
 | |
|       };
 | |
| 
 | |
|       MeetBDVStates calculateMeet;
 | |
|       if (SelectInst *select = dyn_cast<SelectInst>(BDV)) {
 | |
|         calculateMeet.meetWith(getStateForInput(select->getTrueValue()));
 | |
|         calculateMeet.meetWith(getStateForInput(select->getFalseValue()));
 | |
|       } else if (PHINode *Phi = dyn_cast<PHINode>(BDV)) {
 | |
|         for (Value *Val : Phi->incoming_values())
 | |
|           calculateMeet.meetWith(getStateForInput(Val));
 | |
|       } else if (auto *EE = dyn_cast<ExtractElementInst>(BDV)) {
 | |
|         // The 'meet' for an extractelement is slightly trivial, but it's still
 | |
|         // useful in that it drives us to conflict if our input is.
 | |
|         calculateMeet.meetWith(getStateForInput(EE->getVectorOperand()));
 | |
|       } else {
 | |
|         // Given there's a inherent type mismatch between the operands, will
 | |
|         // *always* produce Conflict.
 | |
|         auto *IE = cast<InsertElementInst>(BDV);
 | |
|         calculateMeet.meetWith(getStateForInput(IE->getOperand(0)));
 | |
|         calculateMeet.meetWith(getStateForInput(IE->getOperand(1)));
 | |
|       }
 | |
| 
 | |
|       BDVState oldState = States[BDV];
 | |
|       BDVState newState = calculateMeet.getResult();
 | |
|       if (oldState != newState) {
 | |
|         progress = true;
 | |
|         States[BDV] = newState;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     assert(oldSize == States.size() &&
 | |
|            "fixed point shouldn't be adding any new nodes to state");
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   DEBUG(dbgs() << "States after meet iteration:\n");
 | |
|   for (auto Pair : States) {
 | |
|     DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n");
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   // Insert Phis for all conflicts
 | |
|   // TODO: adjust naming patterns to avoid this order of iteration dependency
 | |
|   for (auto Pair : States) {
 | |
|     Instruction *I = cast<Instruction>(Pair.first);
 | |
|     BDVState State = Pair.second;
 | |
|     assert(!isKnownBaseResult(I) && "why did it get added?");
 | |
|     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
 | |
| 
 | |
|     // extractelement instructions are a bit special in that we may need to
 | |
|     // insert an extract even when we know an exact base for the instruction.
 | |
|     // The problem is that we need to convert from a vector base to a scalar
 | |
|     // base for the particular indice we're interested in.
 | |
|     if (State.isBase() && isa<ExtractElementInst>(I) &&
 | |
|         isa<VectorType>(State.getBase()->getType())) {
 | |
|       auto *EE = cast<ExtractElementInst>(I);
 | |
|       // TODO: In many cases, the new instruction is just EE itself.  We should
 | |
|       // exploit this, but can't do it here since it would break the invariant
 | |
|       // about the BDV not being known to be a base.
 | |
|       auto *BaseInst = ExtractElementInst::Create(State.getBase(),
 | |
|                                                   EE->getIndexOperand(),
 | |
|                                                   "base_ee", EE);
 | |
|       BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
 | |
|       States[I] = BDVState(BDVState::Base, BaseInst);
 | |
|     }
 | |
| 
 | |
|     // Since we're joining a vector and scalar base, they can never be the
 | |
|     // same.  As a result, we should always see insert element having reached
 | |
|     // the conflict state.
 | |
|     if (isa<InsertElementInst>(I)) {
 | |
|       assert(State.isConflict());
 | |
|     }
 | |
|     
 | |
|     if (!State.isConflict())
 | |
|       continue;
 | |
| 
 | |
|     /// Create and insert a new instruction which will represent the base of
 | |
|     /// the given instruction 'I'.
 | |
|     auto MakeBaseInstPlaceholder = [](Instruction *I) -> Instruction* {
 | |
|       if (isa<PHINode>(I)) {
 | |
|         BasicBlock *BB = I->getParent();
 | |
|         int NumPreds = std::distance(pred_begin(BB), pred_end(BB));
 | |
|         assert(NumPreds > 0 && "how did we reach here");
 | |
|         std::string Name = suffixed_name_or(I, ".base", "base_phi");
 | |
|         return PHINode::Create(I->getType(), NumPreds, Name, I);
 | |
|       } else if (SelectInst *Sel = dyn_cast<SelectInst>(I)) {
 | |
|         // The undef will be replaced later
 | |
|         UndefValue *Undef = UndefValue::get(Sel->getType());
 | |
|         std::string Name = suffixed_name_or(I, ".base", "base_select");
 | |
|         return SelectInst::Create(Sel->getCondition(), Undef,
 | |
|                                   Undef, Name, Sel);
 | |
|       } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
 | |
|         UndefValue *Undef = UndefValue::get(EE->getVectorOperand()->getType());
 | |
|         std::string Name = suffixed_name_or(I, ".base", "base_ee");
 | |
|         return ExtractElementInst::Create(Undef, EE->getIndexOperand(), Name,
 | |
|                                           EE);
 | |
|       } else {
 | |
|         auto *IE = cast<InsertElementInst>(I);
 | |
|         UndefValue *VecUndef = UndefValue::get(IE->getOperand(0)->getType());
 | |
|         UndefValue *ScalarUndef = UndefValue::get(IE->getOperand(1)->getType());
 | |
|         std::string Name = suffixed_name_or(I, ".base", "base_ie");
 | |
|         return InsertElementInst::Create(VecUndef, ScalarUndef,
 | |
|                                          IE->getOperand(2), Name, IE);
 | |
|       }
 | |
| 
 | |
|     };
 | |
|     Instruction *BaseInst = MakeBaseInstPlaceholder(I);
 | |
|     // Add metadata marking this as a base value
 | |
|     BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {}));
 | |
|     States[I] = BDVState(BDVState::Conflict, BaseInst);
 | |
|   }
 | |
| 
 | |
|   // Returns a instruction which produces the base pointer for a given
 | |
|   // instruction.  The instruction is assumed to be an input to one of the BDVs
 | |
|   // seen in the inference algorithm above.  As such, we must either already
 | |
|   // know it's base defining value is a base, or have inserted a new
 | |
|   // instruction to propagate the base of it's BDV and have entered that newly
 | |
|   // introduced instruction into the state table.  In either case, we are
 | |
|   // assured to be able to determine an instruction which produces it's base
 | |
|   // pointer. 
 | |
|   auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) {
 | |
|     Value *BDV = findBaseOrBDV(Input, cache);
 | |
|     Value *Base = nullptr;
 | |
|     if (isKnownBaseResult(BDV)) {
 | |
|       Base = BDV;
 | |
|     } else {
 | |
|       // Either conflict or base.
 | |
|       assert(States.count(BDV));
 | |
|       Base = States[BDV].getBase();
 | |
|     }
 | |
|     assert(Base && "can't be null");
 | |
|     // The cast is needed since base traversal may strip away bitcasts
 | |
|     if (Base->getType() != Input->getType() &&
 | |
|         InsertPt) {
 | |
|       Base = new BitCastInst(Base, Input->getType(), "cast",
 | |
|                              InsertPt);
 | |
|     }
 | |
|     return Base;
 | |
|   };
 | |
| 
 | |
|   // Fixup all the inputs of the new PHIs.  Visit order needs to be
 | |
|   // deterministic and predictable because we're naming newly created
 | |
|   // instructions.
 | |
|   for (auto Pair : States) {
 | |
|     Instruction *BDV = cast<Instruction>(Pair.first);
 | |
|     BDVState State = Pair.second;
 | |
| 
 | |
|     assert(!isKnownBaseResult(BDV) && "why did it get added?");
 | |
|     assert(!State.isUnknown() && "Optimistic algorithm didn't complete!");
 | |
|     if (!State.isConflict())
 | |
|       continue;
 | |
| 
 | |
|     if (PHINode *basephi = dyn_cast<PHINode>(State.getBase())) {
 | |
|       PHINode *phi = cast<PHINode>(BDV);
 | |
|       unsigned NumPHIValues = phi->getNumIncomingValues();
 | |
|       for (unsigned i = 0; i < NumPHIValues; i++) {
 | |
|         Value *InVal = phi->getIncomingValue(i);
 | |
|         BasicBlock *InBB = phi->getIncomingBlock(i);
 | |
| 
 | |
|         // If we've already seen InBB, add the same incoming value
 | |
|         // we added for it earlier.  The IR verifier requires phi
 | |
|         // nodes with multiple entries from the same basic block
 | |
|         // to have the same incoming value for each of those
 | |
|         // entries.  If we don't do this check here and basephi
 | |
|         // has a different type than base, we'll end up adding two
 | |
|         // bitcasts (and hence two distinct values) as incoming
 | |
|         // values for the same basic block.
 | |
| 
 | |
|         int blockIndex = basephi->getBasicBlockIndex(InBB);
 | |
|         if (blockIndex != -1) {
 | |
|           Value *oldBase = basephi->getIncomingValue(blockIndex);
 | |
|           basephi->addIncoming(oldBase, InBB);
 | |
|           
 | |
| #ifndef NDEBUG
 | |
|           Value *Base = getBaseForInput(InVal, nullptr);
 | |
|           // In essence this assert states: the only way two
 | |
|           // values incoming from the same basic block may be
 | |
|           // different is by being different bitcasts of the same
 | |
|           // value.  A cleanup that remains TODO is changing
 | |
|           // findBaseOrBDV to return an llvm::Value of the correct
 | |
|           // type (and still remain pure).  This will remove the
 | |
|           // need to add bitcasts.
 | |
|           assert(Base->stripPointerCasts() == oldBase->stripPointerCasts() &&
 | |
|                  "sanity -- findBaseOrBDV should be pure!");
 | |
| #endif
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Find the instruction which produces the base for each input.  We may
 | |
|         // need to insert a bitcast in the incoming block.
 | |
|         // TODO: Need to split critical edges if insertion is needed
 | |
|         Value *Base = getBaseForInput(InVal, InBB->getTerminator());
 | |
|         basephi->addIncoming(Base, InBB);
 | |
|       }
 | |
|       assert(basephi->getNumIncomingValues() == NumPHIValues);
 | |
|     } else if (SelectInst *BaseSel = dyn_cast<SelectInst>(State.getBase())) {
 | |
|       SelectInst *Sel = cast<SelectInst>(BDV);
 | |
|       // Operand 1 & 2 are true, false path respectively. TODO: refactor to
 | |
|       // something more safe and less hacky.
 | |
|       for (int i = 1; i <= 2; i++) {
 | |
|         Value *InVal = Sel->getOperand(i);
 | |
|         // Find the instruction which produces the base for each input.  We may
 | |
|         // need to insert a bitcast.
 | |
|         Value *Base = getBaseForInput(InVal, BaseSel);
 | |
|         BaseSel->setOperand(i, Base);
 | |
|       }
 | |
|     } else if (auto *BaseEE = dyn_cast<ExtractElementInst>(State.getBase())) {
 | |
|       Value *InVal = cast<ExtractElementInst>(BDV)->getVectorOperand();
 | |
|       // Find the instruction which produces the base for each input.  We may
 | |
|       // need to insert a bitcast.
 | |
|       Value *Base = getBaseForInput(InVal, BaseEE);
 | |
|       BaseEE->setOperand(0, Base);
 | |
|     } else {
 | |
|       auto *BaseIE = cast<InsertElementInst>(State.getBase());
 | |
|       auto *BdvIE = cast<InsertElementInst>(BDV);
 | |
|       auto UpdateOperand = [&](int OperandIdx) {
 | |
|         Value *InVal = BdvIE->getOperand(OperandIdx);
 | |
|         Value *Base = getBaseForInput(InVal, BaseIE);
 | |
|         BaseIE->setOperand(OperandIdx, Base);
 | |
|       };
 | |
|       UpdateOperand(0); // vector operand
 | |
|       UpdateOperand(1); // scalar operand
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // Now that we're done with the algorithm, see if we can optimize the 
 | |
|   // results slightly by reducing the number of new instructions needed. 
 | |
|   // Arguably, this should be integrated into the algorithm above, but 
 | |
|   // doing as a post process step is easier to reason about for the moment.
 | |
|   DenseMap<Value *, Value *> ReverseMap;
 | |
|   SmallPtrSet<Instruction *, 16> NewInsts;
 | |
|   SmallSetVector<AssertingVH<Instruction>, 16> Worklist;
 | |
|   // Note: We need to visit the states in a deterministic order.  We uses the
 | |
|   // Keys we sorted above for this purpose.  Note that we are papering over a
 | |
|   // bigger problem with the algorithm above - it's visit order is not
 | |
|   // deterministic.  A larger change is needed to fix this.
 | |
|   for (auto Pair : States) {
 | |
|     auto *BDV = Pair.first;
 | |
|     auto State = Pair.second;
 | |
|     Value *Base = State.getBase();
 | |
|     assert(BDV && Base);
 | |
|     assert(!isKnownBaseResult(BDV) && "why did it get added?");
 | |
|     assert(isKnownBaseResult(Base) &&
 | |
|            "must be something we 'know' is a base pointer");
 | |
|     if (!State.isConflict())
 | |
|       continue;
 | |
| 
 | |
|     ReverseMap[Base] = BDV;
 | |
|     if (auto *BaseI = dyn_cast<Instruction>(Base)) {
 | |
|       NewInsts.insert(BaseI);
 | |
|       Worklist.insert(BaseI);
 | |
|     }
 | |
|   }
 | |
|   auto ReplaceBaseInstWith = [&](Value *BDV, Instruction *BaseI,
 | |
|                                  Value *Replacement) {
 | |
|     // Add users which are new instructions (excluding self references)
 | |
|     for (User *U : BaseI->users())
 | |
|       if (auto *UI = dyn_cast<Instruction>(U))
 | |
|         if (NewInsts.count(UI) && UI != BaseI)
 | |
|           Worklist.insert(UI);
 | |
|     // Then do the actual replacement
 | |
|     NewInsts.erase(BaseI);
 | |
|     ReverseMap.erase(BaseI);
 | |
|     BaseI->replaceAllUsesWith(Replacement);
 | |
|     BaseI->eraseFromParent();
 | |
|     assert(States.count(BDV));
 | |
|     assert(States[BDV].isConflict() && States[BDV].getBase() == BaseI);
 | |
|     States[BDV] = BDVState(BDVState::Conflict, Replacement);
 | |
|   };
 | |
|   const DataLayout &DL = cast<Instruction>(def)->getModule()->getDataLayout();
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *BaseI = Worklist.pop_back_val();
 | |
|     assert(NewInsts.count(BaseI));
 | |
|     Value *Bdv = ReverseMap[BaseI];
 | |
|     if (auto *BdvI = dyn_cast<Instruction>(Bdv))
 | |
|       if (BaseI->isIdenticalTo(BdvI)) {
 | |
|         DEBUG(dbgs() << "Identical Base: " << *BaseI << "\n");
 | |
|         ReplaceBaseInstWith(Bdv, BaseI, Bdv);
 | |
|         continue;
 | |
|       }
 | |
|     if (Value *V = SimplifyInstruction(BaseI, DL)) {
 | |
|       DEBUG(dbgs() << "Base " << *BaseI << " simplified to " << *V << "\n");
 | |
|       ReplaceBaseInstWith(Bdv, BaseI, V);
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Cache all of our results so we can cheaply reuse them
 | |
|   // NOTE: This is actually two caches: one of the base defining value
 | |
|   // relation and one of the base pointer relation!  FIXME
 | |
|   for (auto Pair : States) {
 | |
|     auto *BDV = Pair.first;
 | |
|     Value *base = Pair.second.getBase();
 | |
|     assert(BDV && base);
 | |
| 
 | |
|     std::string fromstr = cache.count(BDV) ? cache[BDV]->getName() : "none";
 | |
|     DEBUG(dbgs() << "Updating base value cache"
 | |
|           << " for: " << BDV->getName()
 | |
|           << " from: " << fromstr
 | |
|           << " to: " << base->getName() << "\n");
 | |
| 
 | |
|     if (cache.count(BDV)) {
 | |
|       // Once we transition from the BDV relation being store in the cache to
 | |
|       // the base relation being stored, it must be stable
 | |
|       assert((!isKnownBaseResult(cache[BDV]) || cache[BDV] == base) &&
 | |
|              "base relation should be stable");
 | |
|     }
 | |
|     cache[BDV] = base;
 | |
|   }
 | |
|   assert(cache.find(def) != cache.end());
 | |
|   return cache[def];
 | |
| }
 | |
| 
 | |
| // For a set of live pointers (base and/or derived), identify the base
 | |
| // pointer of the object which they are derived from.  This routine will
 | |
| // mutate the IR graph as needed to make the 'base' pointer live at the
 | |
| // definition site of 'derived'.  This ensures that any use of 'derived' can
 | |
| // also use 'base'.  This may involve the insertion of a number of
 | |
| // additional PHI nodes.
 | |
| //
 | |
| // preconditions: live is a set of pointer type Values
 | |
| //
 | |
| // side effects: may insert PHI nodes into the existing CFG, will preserve
 | |
| // CFG, will not remove or mutate any existing nodes
 | |
| //
 | |
| // post condition: PointerToBase contains one (derived, base) pair for every
 | |
| // pointer in live.  Note that derived can be equal to base if the original
 | |
| // pointer was a base pointer.
 | |
| static void
 | |
| findBasePointers(const StatepointLiveSetTy &live,
 | |
|                  DenseMap<Value *, Value *> &PointerToBase,
 | |
|                  DominatorTree *DT, DefiningValueMapTy &DVCache) {
 | |
|   // For the naming of values inserted to be deterministic - which makes for
 | |
|   // much cleaner and more stable tests - we need to assign an order to the
 | |
|   // live values.  DenseSets do not provide a deterministic order across runs.
 | |
|   SmallVector<Value *, 64> Temp;
 | |
|   Temp.insert(Temp.end(), live.begin(), live.end());
 | |
|   std::sort(Temp.begin(), Temp.end(), order_by_name);
 | |
|   for (Value *ptr : Temp) {
 | |
|     Value *base = findBasePointer(ptr, DVCache);
 | |
|     assert(base && "failed to find base pointer");
 | |
|     PointerToBase[ptr] = base;
 | |
|     assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
 | |
|             DT->dominates(cast<Instruction>(base)->getParent(),
 | |
|                           cast<Instruction>(ptr)->getParent())) &&
 | |
|            "The base we found better dominate the derived pointer");
 | |
| 
 | |
|     // If you see this trip and like to live really dangerously, the code should
 | |
|     // be correct, just with idioms the verifier can't handle.  You can try
 | |
|     // disabling the verifier at your own substantial risk.
 | |
|     assert(!isa<ConstantPointerNull>(base) &&
 | |
|            "the relocation code needs adjustment to handle the relocation of "
 | |
|            "a null pointer constant without causing false positives in the "
 | |
|            "safepoint ir verifier.");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Find the required based pointers (and adjust the live set) for the given
 | |
| /// parse point.
 | |
| static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
 | |
|                              const CallSite &CS,
 | |
|                              PartiallyConstructedSafepointRecord &result) {
 | |
|   DenseMap<Value *, Value *> PointerToBase;
 | |
|   findBasePointers(result.LiveSet, PointerToBase, &DT, DVCache);
 | |
| 
 | |
|   if (PrintBasePointers) {
 | |
|     // Note: Need to print these in a stable order since this is checked in
 | |
|     // some tests.
 | |
|     errs() << "Base Pairs (w/o Relocation):\n";
 | |
|     SmallVector<Value *, 64> Temp;
 | |
|     Temp.reserve(PointerToBase.size());
 | |
|     for (auto Pair : PointerToBase) {
 | |
|       Temp.push_back(Pair.first);
 | |
|     }
 | |
|     std::sort(Temp.begin(), Temp.end(), order_by_name);
 | |
|     for (Value *Ptr : Temp) {
 | |
|       Value *Base = PointerToBase[Ptr];
 | |
|       errs() << " derived %" << Ptr->getName() << " base %" << Base->getName()
 | |
|              << "\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   result.PointerToBase = PointerToBase;
 | |
| }
 | |
| 
 | |
| /// Given an updated version of the dataflow liveness results, update the
 | |
| /// liveset and base pointer maps for the call site CS.
 | |
| static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
 | |
|                                   const CallSite &CS,
 | |
|                                   PartiallyConstructedSafepointRecord &result);
 | |
| 
 | |
| static void recomputeLiveInValues(
 | |
|     Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
 | |
|     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
 | |
|   // TODO-PERF: reuse the original liveness, then simply run the dataflow
 | |
|   // again.  The old values are still live and will help it stabilize quickly.
 | |
|   GCPtrLivenessData RevisedLivenessData;
 | |
|   computeLiveInValues(DT, F, RevisedLivenessData);
 | |
|   for (size_t i = 0; i < records.size(); i++) {
 | |
|     struct PartiallyConstructedSafepointRecord &info = records[i];
 | |
|     const CallSite &CS = toUpdate[i];
 | |
|     recomputeLiveInValues(RevisedLivenessData, CS, info);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // When inserting gc.relocate and gc.result calls, we need to ensure there are
 | |
| // no uses of the original value / return value between the gc.statepoint and
 | |
| // the gc.relocate / gc.result call.  One case which can arise is a phi node
 | |
| // starting one of the successor blocks.  We also need to be able to insert the
 | |
| // gc.relocates only on the path which goes through the statepoint.  We might
 | |
| // need to split an edge to make this possible.
 | |
| static BasicBlock *
 | |
| normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent,
 | |
|                             DominatorTree &DT) {
 | |
|   BasicBlock *Ret = BB;
 | |
|   if (!BB->getUniquePredecessor())
 | |
|     Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT);
 | |
| 
 | |
|   // Now that 'Ret' has unique predecessor we can safely remove all phi nodes
 | |
|   // from it
 | |
|   FoldSingleEntryPHINodes(Ret);
 | |
|   assert(!isa<PHINode>(Ret->begin()) &&
 | |
|          "All PHI nodes should have been removed!");
 | |
| 
 | |
|   // At this point, we can safely insert a gc.relocate or gc.result as the first
 | |
|   // instruction in Ret if needed.
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| // Create new attribute set containing only attributes which can be transferred
 | |
| // from original call to the safepoint.
 | |
| static AttributeSet legalizeCallAttributes(AttributeSet AS) {
 | |
|   AttributeSet Ret;
 | |
| 
 | |
|   for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
 | |
|     unsigned Index = AS.getSlotIndex(Slot);
 | |
| 
 | |
|     if (Index == AttributeSet::ReturnIndex ||
 | |
|         Index == AttributeSet::FunctionIndex) {
 | |
| 
 | |
|       for (Attribute Attr : make_range(AS.begin(Slot), AS.end(Slot))) {
 | |
| 
 | |
|         // Do not allow certain attributes - just skip them
 | |
|         // Safepoint can not be read only or read none.
 | |
|         if (Attr.hasAttribute(Attribute::ReadNone) ||
 | |
|             Attr.hasAttribute(Attribute::ReadOnly))
 | |
|           continue;
 | |
| 
 | |
|         // These attributes control the generation of the gc.statepoint call /
 | |
|         // invoke itself; and once the gc.statepoint is in place, they're of no
 | |
|         // use.
 | |
|         if (Attr.hasAttribute("statepoint-num-patch-bytes") ||
 | |
|             Attr.hasAttribute("statepoint-id"))
 | |
|           continue;
 | |
| 
 | |
|         Ret = Ret.addAttributes(
 | |
|             AS.getContext(), Index,
 | |
|             AttributeSet::get(AS.getContext(), Index, AttrBuilder(Attr)));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Just skip parameter attributes for now
 | |
|   }
 | |
| 
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| /// Helper function to place all gc relocates necessary for the given
 | |
| /// statepoint.
 | |
| /// Inputs:
 | |
| ///   liveVariables - list of variables to be relocated.
 | |
| ///   liveStart - index of the first live variable.
 | |
| ///   basePtrs - base pointers.
 | |
| ///   statepointToken - statepoint instruction to which relocates should be
 | |
| ///   bound.
 | |
| ///   Builder - Llvm IR builder to be used to construct new calls.
 | |
| static void CreateGCRelocates(ArrayRef<Value *> LiveVariables,
 | |
|                               const int LiveStart,
 | |
|                               ArrayRef<Value *> BasePtrs,
 | |
|                               Instruction *StatepointToken,
 | |
|                               IRBuilder<> Builder) {
 | |
|   if (LiveVariables.empty())
 | |
|     return;
 | |
| 
 | |
|   auto FindIndex = [](ArrayRef<Value *> LiveVec, Value *Val) {
 | |
|     auto ValIt = std::find(LiveVec.begin(), LiveVec.end(), Val);
 | |
|     assert(ValIt != LiveVec.end() && "Val not found in LiveVec!");
 | |
|     size_t Index = std::distance(LiveVec.begin(), ValIt);
 | |
|     assert(Index < LiveVec.size() && "Bug in std::find?");
 | |
|     return Index;
 | |
|   };
 | |
| 
 | |
|   // All gc_relocate are set to i8 addrspace(1)* type. We originally generated
 | |
|   // unique declarations for each pointer type, but this proved problematic
 | |
|   // because the intrinsic mangling code is incomplete and fragile.  Since
 | |
|   // we're moving towards a single unified pointer type anyways, we can just
 | |
|   // cast everything to an i8* of the right address space.  A bitcast is added
 | |
|   // later to convert gc_relocate to the actual value's type. 
 | |
|   Module *M = StatepointToken->getModule();
 | |
|   auto AS = cast<PointerType>(LiveVariables[0]->getType())->getAddressSpace();
 | |
|   Type *Types[] = {Type::getInt8PtrTy(M->getContext(), AS)};
 | |
|   Value *GCRelocateDecl =
 | |
|     Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, Types);
 | |
| 
 | |
|   for (unsigned i = 0; i < LiveVariables.size(); i++) {
 | |
|     // Generate the gc.relocate call and save the result
 | |
|     Value *BaseIdx =
 | |
|       Builder.getInt32(LiveStart + FindIndex(LiveVariables, BasePtrs[i]));
 | |
|     Value *LiveIdx = Builder.getInt32(LiveStart + i);
 | |
| 
 | |
|     // only specify a debug name if we can give a useful one
 | |
|     CallInst *Reloc = Builder.CreateCall(
 | |
|         GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx},
 | |
|         suffixed_name_or(LiveVariables[i], ".relocated", ""));
 | |
|     // Trick CodeGen into thinking there are lots of free registers at this
 | |
|     // fake call.
 | |
|     Reloc->setCallingConv(CallingConv::Cold);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// This struct is used to defer RAUWs and `eraseFromParent` s.  Using this
 | |
| /// avoids having to worry about keeping around dangling pointers to Values.
 | |
| class DeferredReplacement {
 | |
|   AssertingVH<Instruction> Old;
 | |
|   AssertingVH<Instruction> New;
 | |
| 
 | |
| public:
 | |
|   explicit DeferredReplacement(Instruction *Old, Instruction *New) :
 | |
|     Old(Old), New(New) {
 | |
|     assert(Old != New && "Not allowed!");
 | |
|   }
 | |
| 
 | |
|   /// Does the task represented by this instance.
 | |
|   void doReplacement() {
 | |
|     Instruction *OldI = Old;
 | |
|     Instruction *NewI = New;
 | |
| 
 | |
|     assert(OldI != NewI && "Disallowed at construction?!");
 | |
| 
 | |
|     Old = nullptr;
 | |
|     New = nullptr;
 | |
| 
 | |
|     if (NewI)
 | |
|       OldI->replaceAllUsesWith(NewI);
 | |
|     OldI->eraseFromParent();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static void
 | |
| makeStatepointExplicitImpl(const CallSite CS, /* to replace */
 | |
|                            const SmallVectorImpl<Value *> &BasePtrs,
 | |
|                            const SmallVectorImpl<Value *> &LiveVariables,
 | |
|                            PartiallyConstructedSafepointRecord &Result,
 | |
|                            std::vector<DeferredReplacement> &Replacements) {
 | |
|   assert(BasePtrs.size() == LiveVariables.size());
 | |
|   assert((UseDeoptBundles || isStatepoint(CS)) &&
 | |
|          "This method expects to be rewriting a statepoint");
 | |
| 
 | |
|   // Then go ahead and use the builder do actually do the inserts.  We insert
 | |
|   // immediately before the previous instruction under the assumption that all
 | |
|   // arguments will be available here.  We can't insert afterwards since we may
 | |
|   // be replacing a terminator.
 | |
|   Instruction *InsertBefore = CS.getInstruction();
 | |
|   IRBuilder<> Builder(InsertBefore);
 | |
| 
 | |
|   ArrayRef<Value *> GCArgs(LiveVariables);
 | |
|   uint64_t StatepointID = 0xABCDEF00;
 | |
|   uint32_t NumPatchBytes = 0;
 | |
|   uint32_t Flags = uint32_t(StatepointFlags::None);
 | |
| 
 | |
|   ArrayRef<Use> CallArgs;
 | |
|   ArrayRef<Use> DeoptArgs;
 | |
|   ArrayRef<Use> TransitionArgs;
 | |
| 
 | |
|   Value *CallTarget = nullptr;
 | |
| 
 | |
|   if (UseDeoptBundles) {
 | |
|     CallArgs = {CS.arg_begin(), CS.arg_end()};
 | |
|     DeoptArgs = GetDeoptBundleOperands(CS);
 | |
|     // TODO: we don't fill in TransitionArgs or Flags in this branch, but we
 | |
|     // could have an operand bundle for that too.
 | |
|     AttributeSet OriginalAttrs = CS.getAttributes();
 | |
| 
 | |
|     Attribute AttrID = OriginalAttrs.getAttribute(AttributeSet::FunctionIndex,
 | |
|                                                   "statepoint-id");
 | |
|     if (AttrID.isStringAttribute())
 | |
|       AttrID.getValueAsString().getAsInteger(10, StatepointID);
 | |
| 
 | |
|     Attribute AttrNumPatchBytes = OriginalAttrs.getAttribute(
 | |
|         AttributeSet::FunctionIndex, "statepoint-num-patch-bytes");
 | |
|     if (AttrNumPatchBytes.isStringAttribute())
 | |
|       AttrNumPatchBytes.getValueAsString().getAsInteger(10, NumPatchBytes);
 | |
| 
 | |
|     CallTarget = CS.getCalledValue();
 | |
|   } else {
 | |
|     // This branch will be gone soon, and we will soon only support the
 | |
|     // UseDeoptBundles == true configuration.
 | |
|     Statepoint OldSP(CS);
 | |
|     StatepointID = OldSP.getID();
 | |
|     NumPatchBytes = OldSP.getNumPatchBytes();
 | |
|     Flags = OldSP.getFlags();
 | |
| 
 | |
|     CallArgs = {OldSP.arg_begin(), OldSP.arg_end()};
 | |
|     DeoptArgs = {OldSP.vm_state_begin(), OldSP.vm_state_end()};
 | |
|     TransitionArgs = {OldSP.gc_transition_args_begin(),
 | |
|                       OldSP.gc_transition_args_end()};
 | |
|     CallTarget = OldSP.getCalledValue();
 | |
|   }
 | |
| 
 | |
|   // Create the statepoint given all the arguments
 | |
|   Instruction *Token = nullptr;
 | |
|   AttributeSet ReturnAttrs;
 | |
|   if (CS.isCall()) {
 | |
|     CallInst *ToReplace = cast<CallInst>(CS.getInstruction());
 | |
|     CallInst *Call = Builder.CreateGCStatepointCall(
 | |
|         StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs,
 | |
|         TransitionArgs, DeoptArgs, GCArgs, "safepoint_token");
 | |
| 
 | |
|     Call->setTailCall(ToReplace->isTailCall());
 | |
|     Call->setCallingConv(ToReplace->getCallingConv());
 | |
| 
 | |
|     // Currently we will fail on parameter attributes and on certain
 | |
|     // function attributes.
 | |
|     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
 | |
|     // In case if we can handle this set of attributes - set up function attrs
 | |
|     // directly on statepoint and return attrs later for gc_result intrinsic.
 | |
|     Call->setAttributes(NewAttrs.getFnAttributes());
 | |
|     ReturnAttrs = NewAttrs.getRetAttributes();
 | |
| 
 | |
|     Token = Call;
 | |
| 
 | |
|     // Put the following gc_result and gc_relocate calls immediately after the
 | |
|     // the old call (which we're about to delete)
 | |
|     assert(ToReplace->getNextNode() && "Not a terminator, must have next!");
 | |
|     Builder.SetInsertPoint(ToReplace->getNextNode());
 | |
|     Builder.SetCurrentDebugLocation(ToReplace->getNextNode()->getDebugLoc());
 | |
|   } else {
 | |
|     InvokeInst *ToReplace = cast<InvokeInst>(CS.getInstruction());
 | |
| 
 | |
|     // Insert the new invoke into the old block.  We'll remove the old one in a
 | |
|     // moment at which point this will become the new terminator for the
 | |
|     // original block.
 | |
|     InvokeInst *Invoke = Builder.CreateGCStatepointInvoke(
 | |
|         StatepointID, NumPatchBytes, CallTarget, ToReplace->getNormalDest(),
 | |
|         ToReplace->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs,
 | |
|         GCArgs, "statepoint_token");
 | |
| 
 | |
|     Invoke->setCallingConv(ToReplace->getCallingConv());
 | |
| 
 | |
|     // Currently we will fail on parameter attributes and on certain
 | |
|     // function attributes.
 | |
|     AttributeSet NewAttrs = legalizeCallAttributes(ToReplace->getAttributes());
 | |
|     // In case if we can handle this set of attributes - set up function attrs
 | |
|     // directly on statepoint and return attrs later for gc_result intrinsic.
 | |
|     Invoke->setAttributes(NewAttrs.getFnAttributes());
 | |
|     ReturnAttrs = NewAttrs.getRetAttributes();
 | |
| 
 | |
|     Token = Invoke;
 | |
| 
 | |
|     // Generate gc relocates in exceptional path
 | |
|     BasicBlock *UnwindBlock = ToReplace->getUnwindDest();
 | |
|     assert(!isa<PHINode>(UnwindBlock->begin()) &&
 | |
|            UnwindBlock->getUniquePredecessor() &&
 | |
|            "can't safely insert in this block!");
 | |
| 
 | |
|     Builder.SetInsertPoint(&*UnwindBlock->getFirstInsertionPt());
 | |
|     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
 | |
| 
 | |
|     // Extract second element from landingpad return value. We will attach
 | |
|     // exceptional gc relocates to it.
 | |
|     Instruction *ExceptionalToken =
 | |
|         cast<Instruction>(Builder.CreateExtractValue(
 | |
|             UnwindBlock->getLandingPadInst(), 1, "relocate_token"));
 | |
|     Result.UnwindToken = ExceptionalToken;
 | |
| 
 | |
|     const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
 | |
|     CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, ExceptionalToken,
 | |
|                       Builder);
 | |
| 
 | |
|     // Generate gc relocates and returns for normal block
 | |
|     BasicBlock *NormalDest = ToReplace->getNormalDest();
 | |
|     assert(!isa<PHINode>(NormalDest->begin()) &&
 | |
|            NormalDest->getUniquePredecessor() &&
 | |
|            "can't safely insert in this block!");
 | |
| 
 | |
|     Builder.SetInsertPoint(&*NormalDest->getFirstInsertionPt());
 | |
| 
 | |
|     // gc relocates will be generated later as if it were regular call
 | |
|     // statepoint
 | |
|   }
 | |
|   assert(Token && "Should be set in one of the above branches!");
 | |
| 
 | |
|   if (UseDeoptBundles) {
 | |
|     Token->setName("statepoint_token");
 | |
|     if (!CS.getType()->isVoidTy() && !CS.getInstruction()->use_empty()) {
 | |
|       StringRef Name =
 | |
|           CS.getInstruction()->hasName() ? CS.getInstruction()->getName() : "";
 | |
|       CallInst *GCResult = Builder.CreateGCResult(Token, CS.getType(), Name);
 | |
|       GCResult->setAttributes(CS.getAttributes().getRetAttributes());
 | |
| 
 | |
|       // We cannot RAUW or delete CS.getInstruction() because it could be in the
 | |
|       // live set of some other safepoint, in which case that safepoint's
 | |
|       // PartiallyConstructedSafepointRecord will hold a raw pointer to this
 | |
|       // llvm::Instruction.  Instead, we defer the replacement and deletion to
 | |
|       // after the live sets have been made explicit in the IR, and we no longer
 | |
|       // have raw pointers to worry about.
 | |
|       Replacements.emplace_back(CS.getInstruction(), GCResult);
 | |
|     } else {
 | |
|       Replacements.emplace_back(CS.getInstruction(), nullptr);
 | |
|     }
 | |
|   } else {
 | |
|     assert(!CS.getInstruction()->hasNUsesOrMore(2) &&
 | |
|            "only valid use before rewrite is gc.result");
 | |
|     assert(!CS.getInstruction()->hasOneUse() ||
 | |
|            isGCResult(cast<Instruction>(*CS.getInstruction()->user_begin())));
 | |
| 
 | |
|     // Take the name of the original statepoint token if there was one.
 | |
|     Token->takeName(CS.getInstruction());
 | |
| 
 | |
|     // Update the gc.result of the original statepoint (if any) to use the newly
 | |
|     // inserted statepoint.  This is safe to do here since the token can't be
 | |
|     // considered a live reference.
 | |
|     CS.getInstruction()->replaceAllUsesWith(Token);
 | |
|     CS.getInstruction()->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   Result.StatepointToken = Token;
 | |
| 
 | |
|   // Second, create a gc.relocate for every live variable
 | |
|   const unsigned LiveStartIdx = Statepoint(Token).gcArgsStartIdx();
 | |
|   CreateGCRelocates(LiveVariables, LiveStartIdx, BasePtrs, Token, Builder);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct NameOrdering {
 | |
|   Value *Base;
 | |
|   Value *Derived;
 | |
| 
 | |
|   bool operator()(NameOrdering const &a, NameOrdering const &b) {
 | |
|     return -1 == a.Derived->getName().compare(b.Derived->getName());
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| static void StabilizeOrder(SmallVectorImpl<Value *> &BaseVec,
 | |
|                            SmallVectorImpl<Value *> &LiveVec) {
 | |
|   assert(BaseVec.size() == LiveVec.size());
 | |
| 
 | |
|   SmallVector<NameOrdering, 64> Temp;
 | |
|   for (size_t i = 0; i < BaseVec.size(); i++) {
 | |
|     NameOrdering v;
 | |
|     v.Base = BaseVec[i];
 | |
|     v.Derived = LiveVec[i];
 | |
|     Temp.push_back(v);
 | |
|   }
 | |
| 
 | |
|   std::sort(Temp.begin(), Temp.end(), NameOrdering());
 | |
|   for (size_t i = 0; i < BaseVec.size(); i++) {
 | |
|     BaseVec[i] = Temp[i].Base;
 | |
|     LiveVec[i] = Temp[i].Derived;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Replace an existing gc.statepoint with a new one and a set of gc.relocates
 | |
| // which make the relocations happening at this safepoint explicit.
 | |
| //
 | |
| // WARNING: Does not do any fixup to adjust users of the original live
 | |
| // values.  That's the callers responsibility.
 | |
| static void
 | |
| makeStatepointExplicit(DominatorTree &DT, const CallSite &CS,
 | |
|                        PartiallyConstructedSafepointRecord &Result,
 | |
|                        std::vector<DeferredReplacement> &Replacements) {
 | |
|   const auto &LiveSet = Result.LiveSet;
 | |
|   const auto &PointerToBase = Result.PointerToBase;
 | |
| 
 | |
|   // Convert to vector for efficient cross referencing.
 | |
|   SmallVector<Value *, 64> BaseVec, LiveVec;
 | |
|   LiveVec.reserve(LiveSet.size());
 | |
|   BaseVec.reserve(LiveSet.size());
 | |
|   for (Value *L : LiveSet) {
 | |
|     LiveVec.push_back(L);
 | |
|     assert(PointerToBase.count(L));
 | |
|     Value *Base = PointerToBase.find(L)->second;
 | |
|     BaseVec.push_back(Base);
 | |
|   }
 | |
|   assert(LiveVec.size() == BaseVec.size());
 | |
| 
 | |
|   // To make the output IR slightly more stable (for use in diffs), ensure a
 | |
|   // fixed order of the values in the safepoint (by sorting the value name).
 | |
|   // The order is otherwise meaningless.
 | |
|   StabilizeOrder(BaseVec, LiveVec);
 | |
| 
 | |
|   // Do the actual rewriting and delete the old statepoint
 | |
|   makeStatepointExplicitImpl(CS, BaseVec, LiveVec, Result, Replacements);
 | |
| }
 | |
| 
 | |
| // Helper function for the relocationViaAlloca.
 | |
| //
 | |
| // It receives iterator to the statepoint gc relocates and emits a store to the
 | |
| // assigned location (via allocaMap) for the each one of them.  It adds the
 | |
| // visited values into the visitedLiveValues set, which we will later use them
 | |
| // for sanity checking.
 | |
| static void
 | |
| insertRelocationStores(iterator_range<Value::user_iterator> GCRelocs,
 | |
|                        DenseMap<Value *, Value *> &AllocaMap,
 | |
|                        DenseSet<Value *> &VisitedLiveValues) {
 | |
| 
 | |
|   for (User *U : GCRelocs) {
 | |
|     if (!isa<IntrinsicInst>(U))
 | |
|       continue;
 | |
| 
 | |
|     IntrinsicInst *RelocatedValue = cast<IntrinsicInst>(U);
 | |
| 
 | |
|     // We only care about relocates
 | |
|     if (RelocatedValue->getIntrinsicID() !=
 | |
|         Intrinsic::experimental_gc_relocate) {
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     GCRelocateOperands RelocateOperands(RelocatedValue);
 | |
|     Value *OriginalValue =
 | |
|         const_cast<Value *>(RelocateOperands.getDerivedPtr());
 | |
|     assert(AllocaMap.count(OriginalValue));
 | |
|     Value *Alloca = AllocaMap[OriginalValue];
 | |
| 
 | |
|     // Emit store into the related alloca
 | |
|     // All gc_relocates are i8 addrspace(1)* typed, and it must be bitcasted to
 | |
|     // the correct type according to alloca.
 | |
|     assert(RelocatedValue->getNextNode() &&
 | |
|            "Should always have one since it's not a terminator");
 | |
|     IRBuilder<> Builder(RelocatedValue->getNextNode());
 | |
|     Value *CastedRelocatedValue =
 | |
|       Builder.CreateBitCast(RelocatedValue,
 | |
|                             cast<AllocaInst>(Alloca)->getAllocatedType(),
 | |
|                             suffixed_name_or(RelocatedValue, ".casted", ""));
 | |
| 
 | |
|     StoreInst *Store = new StoreInst(CastedRelocatedValue, Alloca);
 | |
|     Store->insertAfter(cast<Instruction>(CastedRelocatedValue));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     VisitedLiveValues.insert(OriginalValue);
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Helper function for the "relocationViaAlloca". Similar to the
 | |
| // "insertRelocationStores" but works for rematerialized values.
 | |
| static void
 | |
| insertRematerializationStores(
 | |
|   RematerializedValueMapTy RematerializedValues,
 | |
|   DenseMap<Value *, Value *> &AllocaMap,
 | |
|   DenseSet<Value *> &VisitedLiveValues) {
 | |
| 
 | |
|   for (auto RematerializedValuePair: RematerializedValues) {
 | |
|     Instruction *RematerializedValue = RematerializedValuePair.first;
 | |
|     Value *OriginalValue = RematerializedValuePair.second;
 | |
| 
 | |
|     assert(AllocaMap.count(OriginalValue) &&
 | |
|            "Can not find alloca for rematerialized value");
 | |
|     Value *Alloca = AllocaMap[OriginalValue];
 | |
| 
 | |
|     StoreInst *Store = new StoreInst(RematerializedValue, Alloca);
 | |
|     Store->insertAfter(RematerializedValue);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     VisitedLiveValues.insert(OriginalValue);
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Do all the relocation update via allocas and mem2reg
 | |
| static void relocationViaAlloca(
 | |
|     Function &F, DominatorTree &DT, ArrayRef<Value *> Live,
 | |
|     ArrayRef<PartiallyConstructedSafepointRecord> Records) {
 | |
| #ifndef NDEBUG
 | |
|   // record initial number of (static) allocas; we'll check we have the same
 | |
|   // number when we get done.
 | |
|   int InitialAllocaNum = 0;
 | |
|   for (auto I = F.getEntryBlock().begin(), E = F.getEntryBlock().end(); I != E;
 | |
|        I++)
 | |
|     if (isa<AllocaInst>(*I))
 | |
|       InitialAllocaNum++;
 | |
| #endif
 | |
| 
 | |
|   // TODO-PERF: change data structures, reserve
 | |
|   DenseMap<Value *, Value *> AllocaMap;
 | |
|   SmallVector<AllocaInst *, 200> PromotableAllocas;
 | |
|   // Used later to chack that we have enough allocas to store all values
 | |
|   std::size_t NumRematerializedValues = 0;
 | |
|   PromotableAllocas.reserve(Live.size());
 | |
| 
 | |
|   // Emit alloca for "LiveValue" and record it in "allocaMap" and
 | |
|   // "PromotableAllocas"
 | |
|   auto emitAllocaFor = [&](Value *LiveValue) {
 | |
|     AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), "",
 | |
|                                         F.getEntryBlock().getFirstNonPHI());
 | |
|     AllocaMap[LiveValue] = Alloca;
 | |
|     PromotableAllocas.push_back(Alloca);
 | |
|   };
 | |
| 
 | |
|   // Emit alloca for each live gc pointer
 | |
|   for (Value *V : Live)
 | |
|     emitAllocaFor(V);
 | |
| 
 | |
|   // Emit allocas for rematerialized values
 | |
|   for (const auto &Info : Records)
 | |
|     for (auto RematerializedValuePair : Info.RematerializedValues) {
 | |
|       Value *OriginalValue = RematerializedValuePair.second;
 | |
|       if (AllocaMap.count(OriginalValue) != 0)
 | |
|         continue;
 | |
| 
 | |
|       emitAllocaFor(OriginalValue);
 | |
|       ++NumRematerializedValues;
 | |
|     }
 | |
| 
 | |
|   // The next two loops are part of the same conceptual operation.  We need to
 | |
|   // insert a store to the alloca after the original def and at each
 | |
|   // redefinition.  We need to insert a load before each use.  These are split
 | |
|   // into distinct loops for performance reasons.
 | |
| 
 | |
|   // Update gc pointer after each statepoint: either store a relocated value or
 | |
|   // null (if no relocated value was found for this gc pointer and it is not a
 | |
|   // gc_result).  This must happen before we update the statepoint with load of
 | |
|   // alloca otherwise we lose the link between statepoint and old def.
 | |
|   for (const auto &Info : Records) {
 | |
|     Value *Statepoint = Info.StatepointToken;
 | |
| 
 | |
|     // This will be used for consistency check
 | |
|     DenseSet<Value *> VisitedLiveValues;
 | |
| 
 | |
|     // Insert stores for normal statepoint gc relocates
 | |
|     insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues);
 | |
| 
 | |
|     // In case if it was invoke statepoint
 | |
|     // we will insert stores for exceptional path gc relocates.
 | |
|     if (isa<InvokeInst>(Statepoint)) {
 | |
|       insertRelocationStores(Info.UnwindToken->users(), AllocaMap,
 | |
|                              VisitedLiveValues);
 | |
|     }
 | |
| 
 | |
|     // Do similar thing with rematerialized values
 | |
|     insertRematerializationStores(Info.RematerializedValues, AllocaMap,
 | |
|                                   VisitedLiveValues);
 | |
| 
 | |
|     if (ClobberNonLive) {
 | |
|       // As a debugging aid, pretend that an unrelocated pointer becomes null at
 | |
|       // the gc.statepoint.  This will turn some subtle GC problems into
 | |
|       // slightly easier to debug SEGVs.  Note that on large IR files with
 | |
|       // lots of gc.statepoints this is extremely costly both memory and time
 | |
|       // wise.
 | |
|       SmallVector<AllocaInst *, 64> ToClobber;
 | |
|       for (auto Pair : AllocaMap) {
 | |
|         Value *Def = Pair.first;
 | |
|         AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
 | |
| 
 | |
|         // This value was relocated
 | |
|         if (VisitedLiveValues.count(Def)) {
 | |
|           continue;
 | |
|         }
 | |
|         ToClobber.push_back(Alloca);
 | |
|       }
 | |
| 
 | |
|       auto InsertClobbersAt = [&](Instruction *IP) {
 | |
|         for (auto *AI : ToClobber) {
 | |
|           auto AIType = cast<PointerType>(AI->getType());
 | |
|           auto PT = cast<PointerType>(AIType->getElementType());
 | |
|           Constant *CPN = ConstantPointerNull::get(PT);
 | |
|           StoreInst *Store = new StoreInst(CPN, AI);
 | |
|           Store->insertBefore(IP);
 | |
|         }
 | |
|       };
 | |
| 
 | |
|       // Insert the clobbering stores.  These may get intermixed with the
 | |
|       // gc.results and gc.relocates, but that's fine.
 | |
|       if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
 | |
|         InsertClobbersAt(&*II->getNormalDest()->getFirstInsertionPt());
 | |
|         InsertClobbersAt(&*II->getUnwindDest()->getFirstInsertionPt());
 | |
|       } else {
 | |
|         InsertClobbersAt(cast<Instruction>(Statepoint)->getNextNode());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Update use with load allocas and add store for gc_relocated.
 | |
|   for (auto Pair : AllocaMap) {
 | |
|     Value *Def = Pair.first;
 | |
|     Value *Alloca = Pair.second;
 | |
| 
 | |
|     // We pre-record the uses of allocas so that we dont have to worry about
 | |
|     // later update that changes the user information..
 | |
| 
 | |
|     SmallVector<Instruction *, 20> Uses;
 | |
|     // PERF: trade a linear scan for repeated reallocation
 | |
|     Uses.reserve(std::distance(Def->user_begin(), Def->user_end()));
 | |
|     for (User *U : Def->users()) {
 | |
|       if (!isa<ConstantExpr>(U)) {
 | |
|         // If the def has a ConstantExpr use, then the def is either a
 | |
|         // ConstantExpr use itself or null.  In either case
 | |
|         // (recursively in the first, directly in the second), the oop
 | |
|         // it is ultimately dependent on is null and this particular
 | |
|         // use does not need to be fixed up.
 | |
|         Uses.push_back(cast<Instruction>(U));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     std::sort(Uses.begin(), Uses.end());
 | |
|     auto Last = std::unique(Uses.begin(), Uses.end());
 | |
|     Uses.erase(Last, Uses.end());
 | |
| 
 | |
|     for (Instruction *Use : Uses) {
 | |
|       if (isa<PHINode>(Use)) {
 | |
|         PHINode *Phi = cast<PHINode>(Use);
 | |
|         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) {
 | |
|           if (Def == Phi->getIncomingValue(i)) {
 | |
|             LoadInst *Load = new LoadInst(
 | |
|                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
 | |
|             Phi->setIncomingValue(i, Load);
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         LoadInst *Load = new LoadInst(Alloca, "", Use);
 | |
|         Use->replaceUsesOfWith(Def, Load);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Emit store for the initial gc value.  Store must be inserted after load,
 | |
|     // otherwise store will be in alloca's use list and an extra load will be
 | |
|     // inserted before it.
 | |
|     StoreInst *Store = new StoreInst(Def, Alloca);
 | |
|     if (Instruction *Inst = dyn_cast<Instruction>(Def)) {
 | |
|       if (InvokeInst *Invoke = dyn_cast<InvokeInst>(Inst)) {
 | |
|         // InvokeInst is a TerminatorInst so the store need to be inserted
 | |
|         // into its normal destination block.
 | |
|         BasicBlock *NormalDest = Invoke->getNormalDest();
 | |
|         Store->insertBefore(NormalDest->getFirstNonPHI());
 | |
|       } else {
 | |
|         assert(!Inst->isTerminator() &&
 | |
|                "The only TerminatorInst that can produce a value is "
 | |
|                "InvokeInst which is handled above.");
 | |
|         Store->insertAfter(Inst);
 | |
|       }
 | |
|     } else {
 | |
|       assert(isa<Argument>(Def));
 | |
|       Store->insertAfter(cast<Instruction>(Alloca));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues &&
 | |
|          "we must have the same allocas with lives");
 | |
|   if (!PromotableAllocas.empty()) {
 | |
|     // Apply mem2reg to promote alloca to SSA
 | |
|     PromoteMemToReg(PromotableAllocas, DT);
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (auto &I : F.getEntryBlock())
 | |
|     if (isa<AllocaInst>(I))
 | |
|       InitialAllocaNum--;
 | |
|   assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /// Implement a unique function which doesn't require we sort the input
 | |
| /// vector.  Doing so has the effect of changing the output of a couple of
 | |
| /// tests in ways which make them less useful in testing fused safepoints.
 | |
| template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
 | |
|   SmallSet<T, 8> Seen;
 | |
|   Vec.erase(std::remove_if(Vec.begin(), Vec.end(), [&](const T &V) {
 | |
|               return !Seen.insert(V).second;
 | |
|             }), Vec.end());
 | |
| }
 | |
| 
 | |
| /// Insert holders so that each Value is obviously live through the entire
 | |
| /// lifetime of the call.
 | |
| static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
 | |
|                                  SmallVectorImpl<CallInst *> &Holders) {
 | |
|   if (Values.empty())
 | |
|     // No values to hold live, might as well not insert the empty holder
 | |
|     return;
 | |
| 
 | |
|   Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
 | |
|   // Use a dummy vararg function to actually hold the values live
 | |
|   Function *Func = cast<Function>(M->getOrInsertFunction(
 | |
|       "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)));
 | |
|   if (CS.isCall()) {
 | |
|     // For call safepoints insert dummy calls right after safepoint
 | |
|     Holders.push_back(CallInst::Create(Func, Values, "",
 | |
|                                        &*++CS.getInstruction()->getIterator()));
 | |
|     return;
 | |
|   }
 | |
|   // For invoke safepooints insert dummy calls both in normal and
 | |
|   // exceptional destination blocks
 | |
|   auto *II = cast<InvokeInst>(CS.getInstruction());
 | |
|   Holders.push_back(CallInst::Create(
 | |
|       Func, Values, "", &*II->getNormalDest()->getFirstInsertionPt()));
 | |
|   Holders.push_back(CallInst::Create(
 | |
|       Func, Values, "", &*II->getUnwindDest()->getFirstInsertionPt()));
 | |
| }
 | |
| 
 | |
| static void findLiveReferences(
 | |
|     Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
 | |
|     MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
 | |
|   GCPtrLivenessData OriginalLivenessData;
 | |
|   computeLiveInValues(DT, F, OriginalLivenessData);
 | |
|   for (size_t i = 0; i < records.size(); i++) {
 | |
|     struct PartiallyConstructedSafepointRecord &info = records[i];
 | |
|     const CallSite &CS = toUpdate[i];
 | |
|     analyzeParsePointLiveness(DT, OriginalLivenessData, CS, info);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Remove any vector of pointers from the live set by scalarizing them over the
 | |
| /// statepoint instruction.  Adds the scalarized pieces to the live set.  It
 | |
| /// would be preferable to include the vector in the statepoint itself, but
 | |
| /// the lowering code currently does not handle that.  Extending it would be
 | |
| /// slightly non-trivial since it requires a format change.  Given how rare
 | |
| /// such cases are (for the moment?) scalarizing is an acceptable compromise.
 | |
| static void splitVectorValues(Instruction *StatepointInst,
 | |
|                               StatepointLiveSetTy &LiveSet,
 | |
|                               DenseMap<Value *, Value *>& PointerToBase,
 | |
|                               DominatorTree &DT) {
 | |
|   SmallVector<Value *, 16> ToSplit;
 | |
|   for (Value *V : LiveSet)
 | |
|     if (isa<VectorType>(V->getType()))
 | |
|       ToSplit.push_back(V);
 | |
| 
 | |
|   if (ToSplit.empty())
 | |
|     return;
 | |
| 
 | |
|   DenseMap<Value *, SmallVector<Value *, 16>> ElementMapping;
 | |
| 
 | |
|   Function &F = *(StatepointInst->getParent()->getParent());
 | |
| 
 | |
|   DenseMap<Value *, AllocaInst *> AllocaMap;
 | |
|   // First is normal return, second is exceptional return (invoke only)
 | |
|   DenseMap<Value *, std::pair<Value *, Value *>> Replacements;
 | |
|   for (Value *V : ToSplit) {
 | |
|     AllocaInst *Alloca =
 | |
|         new AllocaInst(V->getType(), "", F.getEntryBlock().getFirstNonPHI());
 | |
|     AllocaMap[V] = Alloca;
 | |
| 
 | |
|     VectorType *VT = cast<VectorType>(V->getType());
 | |
|     IRBuilder<> Builder(StatepointInst);
 | |
|     SmallVector<Value *, 16> Elements;
 | |
|     for (unsigned i = 0; i < VT->getNumElements(); i++)
 | |
|       Elements.push_back(Builder.CreateExtractElement(V, Builder.getInt32(i)));
 | |
|     ElementMapping[V] = Elements;
 | |
| 
 | |
|     auto InsertVectorReform = [&](Instruction *IP) {
 | |
|       Builder.SetInsertPoint(IP);
 | |
|       Builder.SetCurrentDebugLocation(IP->getDebugLoc());
 | |
|       Value *ResultVec = UndefValue::get(VT);
 | |
|       for (unsigned i = 0; i < VT->getNumElements(); i++)
 | |
|         ResultVec = Builder.CreateInsertElement(ResultVec, Elements[i],
 | |
|                                                 Builder.getInt32(i));
 | |
|       return ResultVec;
 | |
|     };
 | |
| 
 | |
|     if (isa<CallInst>(StatepointInst)) {
 | |
|       BasicBlock::iterator Next(StatepointInst);
 | |
|       Next++;
 | |
|       Instruction *IP = &*(Next);
 | |
|       Replacements[V].first = InsertVectorReform(IP);
 | |
|       Replacements[V].second = nullptr;
 | |
|     } else {
 | |
|       InvokeInst *Invoke = cast<InvokeInst>(StatepointInst);
 | |
|       // We've already normalized - check that we don't have shared destination
 | |
|       // blocks
 | |
|       BasicBlock *NormalDest = Invoke->getNormalDest();
 | |
|       assert(!isa<PHINode>(NormalDest->begin()));
 | |
|       BasicBlock *UnwindDest = Invoke->getUnwindDest();
 | |
|       assert(!isa<PHINode>(UnwindDest->begin()));
 | |
|       // Insert insert element sequences in both successors
 | |
|       Instruction *IP = &*(NormalDest->getFirstInsertionPt());
 | |
|       Replacements[V].first = InsertVectorReform(IP);
 | |
|       IP = &*(UnwindDest->getFirstInsertionPt());
 | |
|       Replacements[V].second = InsertVectorReform(IP);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (Value *V : ToSplit) {
 | |
|     AllocaInst *Alloca = AllocaMap[V];
 | |
| 
 | |
|     // Capture all users before we start mutating use lists
 | |
|     SmallVector<Instruction *, 16> Users;
 | |
|     for (User *U : V->users())
 | |
|       Users.push_back(cast<Instruction>(U));
 | |
| 
 | |
|     for (Instruction *I : Users) {
 | |
|       if (auto Phi = dyn_cast<PHINode>(I)) {
 | |
|         for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++)
 | |
|           if (V == Phi->getIncomingValue(i)) {
 | |
|             LoadInst *Load = new LoadInst(
 | |
|                 Alloca, "", Phi->getIncomingBlock(i)->getTerminator());
 | |
|             Phi->setIncomingValue(i, Load);
 | |
|           }
 | |
|       } else {
 | |
|         LoadInst *Load = new LoadInst(Alloca, "", I);
 | |
|         I->replaceUsesOfWith(V, Load);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Store the original value and the replacement value into the alloca
 | |
|     StoreInst *Store = new StoreInst(V, Alloca);
 | |
|     if (auto I = dyn_cast<Instruction>(V))
 | |
|       Store->insertAfter(I);
 | |
|     else
 | |
|       Store->insertAfter(Alloca);
 | |
| 
 | |
|     // Normal return for invoke, or call return
 | |
|     Instruction *Replacement = cast<Instruction>(Replacements[V].first);
 | |
|     (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
 | |
|     // Unwind return for invoke only
 | |
|     Replacement = cast_or_null<Instruction>(Replacements[V].second);
 | |
|     if (Replacement)
 | |
|       (new StoreInst(Replacement, Alloca))->insertAfter(Replacement);
 | |
|   }
 | |
| 
 | |
|   // apply mem2reg to promote alloca to SSA
 | |
|   SmallVector<AllocaInst *, 16> Allocas;
 | |
|   for (Value *V : ToSplit)
 | |
|     Allocas.push_back(AllocaMap[V]);
 | |
|   PromoteMemToReg(Allocas, DT);
 | |
| 
 | |
|   // Update our tracking of live pointers and base mappings to account for the
 | |
|   // changes we just made.
 | |
|   for (Value *V : ToSplit) {
 | |
|     auto &Elements = ElementMapping[V];
 | |
| 
 | |
|     LiveSet.erase(V);
 | |
|     LiveSet.insert(Elements.begin(), Elements.end());
 | |
|     // We need to update the base mapping as well.
 | |
|     assert(PointerToBase.count(V));
 | |
|     Value *OldBase = PointerToBase[V];
 | |
|     auto &BaseElements = ElementMapping[OldBase];
 | |
|     PointerToBase.erase(V);
 | |
|     assert(Elements.size() == BaseElements.size());
 | |
|     for (unsigned i = 0; i < Elements.size(); i++) {
 | |
|       Value *Elem = Elements[i];
 | |
|       PointerToBase[Elem] = BaseElements[i];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Helper function for the "rematerializeLiveValues". It walks use chain
 | |
| // starting from the "CurrentValue" until it meets "BaseValue". Only "simple"
 | |
| // values are visited (currently it is GEP's and casts). Returns true if it
 | |
| // successfully reached "BaseValue" and false otherwise.
 | |
| // Fills "ChainToBase" array with all visited values. "BaseValue" is not
 | |
| // recorded.
 | |
| static bool findRematerializableChainToBasePointer(
 | |
|   SmallVectorImpl<Instruction*> &ChainToBase,
 | |
|   Value *CurrentValue, Value *BaseValue) {
 | |
| 
 | |
|   // We have found a base value
 | |
|   if (CurrentValue == BaseValue) {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurrentValue)) {
 | |
|     ChainToBase.push_back(GEP);
 | |
|     return findRematerializableChainToBasePointer(ChainToBase,
 | |
|                                                   GEP->getPointerOperand(),
 | |
|                                                   BaseValue);
 | |
|   }
 | |
| 
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(CurrentValue)) {
 | |
|     Value *Def = CI->stripPointerCasts();
 | |
| 
 | |
|     // This two checks are basically similar. First one is here for the
 | |
|     // consistency with findBasePointers logic.
 | |
|     assert(!isa<CastInst>(Def) && "not a pointer cast found");
 | |
|     if (!CI->isNoopCast(CI->getModule()->getDataLayout()))
 | |
|       return false;
 | |
| 
 | |
|     ChainToBase.push_back(CI);
 | |
|     return findRematerializableChainToBasePointer(ChainToBase, Def, BaseValue);
 | |
|   }
 | |
| 
 | |
|   // Not supported instruction in the chain
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Helper function for the "rematerializeLiveValues". Compute cost of the use
 | |
| // chain we are going to rematerialize.
 | |
| static unsigned
 | |
| chainToBasePointerCost(SmallVectorImpl<Instruction*> &Chain,
 | |
|                        TargetTransformInfo &TTI) {
 | |
|   unsigned Cost = 0;
 | |
| 
 | |
|   for (Instruction *Instr : Chain) {
 | |
|     if (CastInst *CI = dyn_cast<CastInst>(Instr)) {
 | |
|       assert(CI->isNoopCast(CI->getModule()->getDataLayout()) &&
 | |
|              "non noop cast is found during rematerialization");
 | |
| 
 | |
|       Type *SrcTy = CI->getOperand(0)->getType();
 | |
|       Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy);
 | |
| 
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Instr)) {
 | |
|       // Cost of the address calculation
 | |
|       Type *ValTy = GEP->getPointerOperandType()->getPointerElementType();
 | |
|       Cost += TTI.getAddressComputationCost(ValTy);
 | |
| 
 | |
|       // And cost of the GEP itself
 | |
|       // TODO: Use TTI->getGEPCost here (it exists, but appears to be not
 | |
|       //       allowed for the external usage)
 | |
|       if (!GEP->hasAllConstantIndices())
 | |
|         Cost += 2;
 | |
| 
 | |
|     } else {
 | |
|       llvm_unreachable("unsupported instruciton type during rematerialization");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| // From the statepoint live set pick values that are cheaper to recompute then
 | |
| // to relocate. Remove this values from the live set, rematerialize them after
 | |
| // statepoint and record them in "Info" structure. Note that similar to
 | |
| // relocated values we don't do any user adjustments here.
 | |
| static void rematerializeLiveValues(CallSite CS,
 | |
|                                     PartiallyConstructedSafepointRecord &Info,
 | |
|                                     TargetTransformInfo &TTI) {
 | |
|   const unsigned int ChainLengthThreshold = 10;
 | |
| 
 | |
|   // Record values we are going to delete from this statepoint live set.
 | |
|   // We can not di this in following loop due to iterator invalidation.
 | |
|   SmallVector<Value *, 32> LiveValuesToBeDeleted;
 | |
| 
 | |
|   for (Value *LiveValue: Info.LiveSet) {
 | |
|     // For each live pointer find it's defining chain
 | |
|     SmallVector<Instruction *, 3> ChainToBase;
 | |
|     assert(Info.PointerToBase.count(LiveValue));
 | |
|     bool FoundChain =
 | |
|       findRematerializableChainToBasePointer(ChainToBase,
 | |
|                                              LiveValue,
 | |
|                                              Info.PointerToBase[LiveValue]);
 | |
|     // Nothing to do, or chain is too long
 | |
|     if (!FoundChain ||
 | |
|         ChainToBase.size() == 0 ||
 | |
|         ChainToBase.size() > ChainLengthThreshold)
 | |
|       continue;
 | |
| 
 | |
|     // Compute cost of this chain
 | |
|     unsigned Cost = chainToBasePointerCost(ChainToBase, TTI);
 | |
|     // TODO: We can also account for cases when we will be able to remove some
 | |
|     //       of the rematerialized values by later optimization passes. I.e if
 | |
|     //       we rematerialized several intersecting chains. Or if original values
 | |
|     //       don't have any uses besides this statepoint.
 | |
| 
 | |
|     // For invokes we need to rematerialize each chain twice - for normal and
 | |
|     // for unwind basic blocks. Model this by multiplying cost by two.
 | |
|     if (CS.isInvoke()) {
 | |
|       Cost *= 2;
 | |
|     }
 | |
|     // If it's too expensive - skip it
 | |
|     if (Cost >= RematerializationThreshold)
 | |
|       continue;
 | |
| 
 | |
|     // Remove value from the live set
 | |
|     LiveValuesToBeDeleted.push_back(LiveValue);
 | |
| 
 | |
|     // Clone instructions and record them inside "Info" structure
 | |
| 
 | |
|     // Walk backwards to visit top-most instructions first
 | |
|     std::reverse(ChainToBase.begin(), ChainToBase.end());
 | |
| 
 | |
|     // Utility function which clones all instructions from "ChainToBase"
 | |
|     // and inserts them before "InsertBefore". Returns rematerialized value
 | |
|     // which should be used after statepoint.
 | |
|     auto rematerializeChain = [&ChainToBase](Instruction *InsertBefore) {
 | |
|       Instruction *LastClonedValue = nullptr;
 | |
|       Instruction *LastValue = nullptr;
 | |
|       for (Instruction *Instr: ChainToBase) {
 | |
|         // Only GEP's and casts are suported as we need to be careful to not
 | |
|         // introduce any new uses of pointers not in the liveset.
 | |
|         // Note that it's fine to introduce new uses of pointers which were
 | |
|         // otherwise not used after this statepoint.
 | |
|         assert(isa<GetElementPtrInst>(Instr) || isa<CastInst>(Instr));
 | |
| 
 | |
|         Instruction *ClonedValue = Instr->clone();
 | |
|         ClonedValue->insertBefore(InsertBefore);
 | |
|         ClonedValue->setName(Instr->getName() + ".remat");
 | |
| 
 | |
|         // If it is not first instruction in the chain then it uses previously
 | |
|         // cloned value. We should update it to use cloned value.
 | |
|         if (LastClonedValue) {
 | |
|           assert(LastValue);
 | |
|           ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue);
 | |
| #ifndef NDEBUG
 | |
|           // Assert that cloned instruction does not use any instructions from
 | |
|           // this chain other than LastClonedValue
 | |
|           for (auto OpValue : ClonedValue->operand_values()) {
 | |
|             assert(std::find(ChainToBase.begin(), ChainToBase.end(), OpValue) ==
 | |
|                        ChainToBase.end() &&
 | |
|                    "incorrect use in rematerialization chain");
 | |
|           }
 | |
| #endif
 | |
|         }
 | |
| 
 | |
|         LastClonedValue = ClonedValue;
 | |
|         LastValue = Instr;
 | |
|       }
 | |
|       assert(LastClonedValue);
 | |
|       return LastClonedValue;
 | |
|     };
 | |
| 
 | |
|     // Different cases for calls and invokes. For invokes we need to clone
 | |
|     // instructions both on normal and unwind path.
 | |
|     if (CS.isCall()) {
 | |
|       Instruction *InsertBefore = CS.getInstruction()->getNextNode();
 | |
|       assert(InsertBefore);
 | |
|       Instruction *RematerializedValue = rematerializeChain(InsertBefore);
 | |
|       Info.RematerializedValues[RematerializedValue] = LiveValue;
 | |
|     } else {
 | |
|       InvokeInst *Invoke = cast<InvokeInst>(CS.getInstruction());
 | |
| 
 | |
|       Instruction *NormalInsertBefore =
 | |
|           &*Invoke->getNormalDest()->getFirstInsertionPt();
 | |
|       Instruction *UnwindInsertBefore =
 | |
|           &*Invoke->getUnwindDest()->getFirstInsertionPt();
 | |
| 
 | |
|       Instruction *NormalRematerializedValue =
 | |
|           rematerializeChain(NormalInsertBefore);
 | |
|       Instruction *UnwindRematerializedValue =
 | |
|           rematerializeChain(UnwindInsertBefore);
 | |
| 
 | |
|       Info.RematerializedValues[NormalRematerializedValue] = LiveValue;
 | |
|       Info.RematerializedValues[UnwindRematerializedValue] = LiveValue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove rematerializaed values from the live set
 | |
|   for (auto LiveValue: LiveValuesToBeDeleted) {
 | |
|     Info.LiveSet.erase(LiveValue);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
 | |
|                               SmallVectorImpl<CallSite> &ToUpdate) {
 | |
| #ifndef NDEBUG
 | |
|   // sanity check the input
 | |
|   std::set<CallSite> Uniqued;
 | |
|   Uniqued.insert(ToUpdate.begin(), ToUpdate.end());
 | |
|   assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!");
 | |
| 
 | |
|   for (CallSite CS : ToUpdate) {
 | |
|     assert(CS.getInstruction()->getParent()->getParent() == &F);
 | |
|     assert((UseDeoptBundles || isStatepoint(CS)) &&
 | |
|            "expected to already be a deopt statepoint");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // When inserting gc.relocates for invokes, we need to be able to insert at
 | |
|   // the top of the successor blocks.  See the comment on
 | |
|   // normalForInvokeSafepoint on exactly what is needed.  Note that this step
 | |
|   // may restructure the CFG.
 | |
|   for (CallSite CS : ToUpdate) {
 | |
|     if (!CS.isInvoke())
 | |
|       continue;
 | |
|     auto *II = cast<InvokeInst>(CS.getInstruction());
 | |
|     normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT);
 | |
|     normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT);
 | |
|   }
 | |
| 
 | |
|   // A list of dummy calls added to the IR to keep various values obviously
 | |
|   // live in the IR.  We'll remove all of these when done.
 | |
|   SmallVector<CallInst *, 64> Holders;
 | |
| 
 | |
|   // Insert a dummy call with all of the arguments to the vm_state we'll need
 | |
|   // for the actual safepoint insertion.  This ensures reference arguments in
 | |
|   // the deopt argument list are considered live through the safepoint (and
 | |
|   // thus makes sure they get relocated.)
 | |
|   for (CallSite CS : ToUpdate) {
 | |
|     SmallVector<Value *, 64> DeoptValues;
 | |
| 
 | |
|     iterator_range<const Use *> DeoptStateRange =
 | |
|         UseDeoptBundles
 | |
|             ? iterator_range<const Use *>(GetDeoptBundleOperands(CS))
 | |
|             : iterator_range<const Use *>(Statepoint(CS).vm_state_args());
 | |
| 
 | |
|     for (Value *Arg : DeoptStateRange) {
 | |
|       assert(!isUnhandledGCPointerType(Arg->getType()) &&
 | |
|              "support for FCA unimplemented");
 | |
|       if (isHandledGCPointerType(Arg->getType()))
 | |
|         DeoptValues.push_back(Arg);
 | |
|     }
 | |
| 
 | |
|     insertUseHolderAfter(CS, DeoptValues, Holders);
 | |
|   }
 | |
| 
 | |
|   SmallVector<PartiallyConstructedSafepointRecord, 64> Records(ToUpdate.size());
 | |
| 
 | |
|   // A) Identify all gc pointers which are statically live at the given call
 | |
|   // site.
 | |
|   findLiveReferences(F, DT, P, ToUpdate, Records);
 | |
| 
 | |
|   // B) Find the base pointers for each live pointer
 | |
|   /* scope for caching */ {
 | |
|     // Cache the 'defining value' relation used in the computation and
 | |
|     // insertion of base phis and selects.  This ensures that we don't insert
 | |
|     // large numbers of duplicate base_phis.
 | |
|     DefiningValueMapTy DVCache;
 | |
| 
 | |
|     for (size_t i = 0; i < Records.size(); i++) {
 | |
|       PartiallyConstructedSafepointRecord &info = Records[i];
 | |
|       findBasePointers(DT, DVCache, ToUpdate[i], info);
 | |
|     }
 | |
|   } // end of cache scope
 | |
| 
 | |
|   // The base phi insertion logic (for any safepoint) may have inserted new
 | |
|   // instructions which are now live at some safepoint.  The simplest such
 | |
|   // example is:
 | |
|   // loop:
 | |
|   //   phi a  <-- will be a new base_phi here
 | |
|   //   safepoint 1 <-- that needs to be live here
 | |
|   //   gep a + 1
 | |
|   //   safepoint 2
 | |
|   //   br loop
 | |
|   // We insert some dummy calls after each safepoint to definitely hold live
 | |
|   // the base pointers which were identified for that safepoint.  We'll then
 | |
|   // ask liveness for _every_ base inserted to see what is now live.  Then we
 | |
|   // remove the dummy calls.
 | |
|   Holders.reserve(Holders.size() + Records.size());
 | |
|   for (size_t i = 0; i < Records.size(); i++) {
 | |
|     PartiallyConstructedSafepointRecord &Info = Records[i];
 | |
| 
 | |
|     SmallVector<Value *, 128> Bases;
 | |
|     for (auto Pair : Info.PointerToBase)
 | |
|       Bases.push_back(Pair.second);
 | |
| 
 | |
|     insertUseHolderAfter(ToUpdate[i], Bases, Holders);
 | |
|   }
 | |
| 
 | |
|   // By selecting base pointers, we've effectively inserted new uses. Thus, we
 | |
|   // need to rerun liveness.  We may *also* have inserted new defs, but that's
 | |
|   // not the key issue.
 | |
|   recomputeLiveInValues(F, DT, P, ToUpdate, Records);
 | |
| 
 | |
|   if (PrintBasePointers) {
 | |
|     for (auto &Info : Records) {
 | |
|       errs() << "Base Pairs: (w/Relocation)\n";
 | |
|       for (auto Pair : Info.PointerToBase)
 | |
|         errs() << " derived %" << Pair.first->getName() << " base %"
 | |
|                << Pair.second->getName() << "\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (CallInst *CI : Holders)
 | |
|     CI->eraseFromParent();
 | |
| 
 | |
|   Holders.clear();
 | |
| 
 | |
|   // Do a limited scalarization of any live at safepoint vector values which
 | |
|   // contain pointers.  This enables this pass to run after vectorization at
 | |
|   // the cost of some possible performance loss.  TODO: it would be nice to
 | |
|   // natively support vectors all the way through the backend so we don't need
 | |
|   // to scalarize here.
 | |
|   for (size_t i = 0; i < Records.size(); i++) {
 | |
|     PartiallyConstructedSafepointRecord &Info = Records[i];
 | |
|     Instruction *Statepoint = ToUpdate[i].getInstruction();
 | |
|     splitVectorValues(cast<Instruction>(Statepoint), Info.LiveSet,
 | |
|                       Info.PointerToBase, DT);
 | |
|   }
 | |
| 
 | |
|   // In order to reduce live set of statepoint we might choose to rematerialize
 | |
|   // some values instead of relocating them. This is purely an optimization and
 | |
|   // does not influence correctness.
 | |
|   TargetTransformInfo &TTI =
 | |
|     P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
| 
 | |
|   for (size_t i = 0; i < Records.size(); i++)
 | |
|     rematerializeLiveValues(ToUpdate[i], Records[i], TTI);
 | |
| 
 | |
|   // We need this to safely RAUW and delete call or invoke return values that
 | |
|   // may themselves be live over a statepoint.  For details, please see usage in
 | |
|   // makeStatepointExplicitImpl.
 | |
|   std::vector<DeferredReplacement> Replacements;
 | |
| 
 | |
|   // Now run through and replace the existing statepoints with new ones with
 | |
|   // the live variables listed.  We do not yet update uses of the values being
 | |
|   // relocated. We have references to live variables that need to
 | |
|   // survive to the last iteration of this loop.  (By construction, the
 | |
|   // previous statepoint can not be a live variable, thus we can and remove
 | |
|   // the old statepoint calls as we go.)
 | |
|   for (size_t i = 0; i < Records.size(); i++)
 | |
|     makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements);
 | |
| 
 | |
|   ToUpdate.clear(); // prevent accident use of invalid CallSites
 | |
| 
 | |
|   for (auto &PR : Replacements)
 | |
|     PR.doReplacement();
 | |
| 
 | |
|   Replacements.clear();
 | |
| 
 | |
|   for (auto &Info : Records) {
 | |
|     // These live sets may contain state Value pointers, since we replaced calls
 | |
|     // with operand bundles with calls wrapped in gc.statepoint, and some of
 | |
|     // those calls may have been def'ing live gc pointers.  Clear these out to
 | |
|     // avoid accidentally using them.
 | |
|     //
 | |
|     // TODO: We should create a separate data structure that does not contain
 | |
|     // these live sets, and migrate to using that data structure from this point
 | |
|     // onward.
 | |
|     Info.LiveSet.clear();
 | |
|     Info.PointerToBase.clear();
 | |
|   }
 | |
| 
 | |
|   // Do all the fixups of the original live variables to their relocated selves
 | |
|   SmallVector<Value *, 128> Live;
 | |
|   for (size_t i = 0; i < Records.size(); i++) {
 | |
|     PartiallyConstructedSafepointRecord &Info = Records[i];
 | |
| 
 | |
|     // We can't simply save the live set from the original insertion.  One of
 | |
|     // the live values might be the result of a call which needs a safepoint.
 | |
|     // That Value* no longer exists and we need to use the new gc_result.
 | |
|     // Thankfully, the live set is embedded in the statepoint (and updated), so
 | |
|     // we just grab that.
 | |
|     Statepoint Statepoint(Info.StatepointToken);
 | |
|     Live.insert(Live.end(), Statepoint.gc_args_begin(),
 | |
|                 Statepoint.gc_args_end());
 | |
| #ifndef NDEBUG
 | |
|     // Do some basic sanity checks on our liveness results before performing
 | |
|     // relocation.  Relocation can and will turn mistakes in liveness results
 | |
|     // into non-sensical code which is must harder to debug.
 | |
|     // TODO: It would be nice to test consistency as well
 | |
|     assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) &&
 | |
|            "statepoint must be reachable or liveness is meaningless");
 | |
|     for (Value *V : Statepoint.gc_args()) {
 | |
|       if (!isa<Instruction>(V))
 | |
|         // Non-instruction values trivial dominate all possible uses
 | |
|         continue;
 | |
|       auto *LiveInst = cast<Instruction>(V);
 | |
|       assert(DT.isReachableFromEntry(LiveInst->getParent()) &&
 | |
|              "unreachable values should never be live");
 | |
|       assert(DT.dominates(LiveInst, Info.StatepointToken) &&
 | |
|              "basic SSA liveness expectation violated by liveness analysis");
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   unique_unsorted(Live);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // sanity check
 | |
|   for (auto *Ptr : Live)
 | |
|     assert(isGCPointerType(Ptr->getType()) && "must be a gc pointer type");
 | |
| #endif
 | |
| 
 | |
|   relocationViaAlloca(F, DT, Live, Records);
 | |
|   return !Records.empty();
 | |
| }
 | |
| 
 | |
| // Handles both return values and arguments for Functions and CallSites.
 | |
| template <typename AttrHolder>
 | |
| static void RemoveNonValidAttrAtIndex(LLVMContext &Ctx, AttrHolder &AH,
 | |
|                                       unsigned Index) {
 | |
|   AttrBuilder R;
 | |
|   if (AH.getDereferenceableBytes(Index))
 | |
|     R.addAttribute(Attribute::get(Ctx, Attribute::Dereferenceable,
 | |
|                                   AH.getDereferenceableBytes(Index)));
 | |
|   if (AH.getDereferenceableOrNullBytes(Index))
 | |
|     R.addAttribute(Attribute::get(Ctx, Attribute::DereferenceableOrNull,
 | |
|                                   AH.getDereferenceableOrNullBytes(Index)));
 | |
|   if (AH.doesNotAlias(Index))
 | |
|     R.addAttribute(Attribute::NoAlias);
 | |
| 
 | |
|   if (!R.empty())
 | |
|     AH.setAttributes(AH.getAttributes().removeAttributes(
 | |
|         Ctx, Index, AttributeSet::get(Ctx, Index, R)));
 | |
| }
 | |
| 
 | |
| void
 | |
| RewriteStatepointsForGC::stripNonValidAttributesFromPrototype(Function &F) {
 | |
|   LLVMContext &Ctx = F.getContext();
 | |
| 
 | |
|   for (Argument &A : F.args())
 | |
|     if (isa<PointerType>(A.getType()))
 | |
|       RemoveNonValidAttrAtIndex(Ctx, F, A.getArgNo() + 1);
 | |
| 
 | |
|   if (isa<PointerType>(F.getReturnType()))
 | |
|     RemoveNonValidAttrAtIndex(Ctx, F, AttributeSet::ReturnIndex);
 | |
| }
 | |
| 
 | |
| void RewriteStatepointsForGC::stripNonValidAttributesFromBody(Function &F) {
 | |
|   if (F.empty())
 | |
|     return;
 | |
| 
 | |
|   LLVMContext &Ctx = F.getContext();
 | |
|   MDBuilder Builder(Ctx);
 | |
| 
 | |
|   for (Instruction &I : instructions(F)) {
 | |
|     if (const MDNode *MD = I.getMetadata(LLVMContext::MD_tbaa)) {
 | |
|       assert(MD->getNumOperands() < 5 && "unrecognized metadata shape!");
 | |
|       bool IsImmutableTBAA =
 | |
|           MD->getNumOperands() == 4 &&
 | |
|           mdconst::extract<ConstantInt>(MD->getOperand(3))->getValue() == 1;
 | |
| 
 | |
|       if (!IsImmutableTBAA)
 | |
|         continue; // no work to do, MD_tbaa is already marked mutable
 | |
| 
 | |
|       MDNode *Base = cast<MDNode>(MD->getOperand(0));
 | |
|       MDNode *Access = cast<MDNode>(MD->getOperand(1));
 | |
|       uint64_t Offset =
 | |
|           mdconst::extract<ConstantInt>(MD->getOperand(2))->getZExtValue();
 | |
| 
 | |
|       MDNode *MutableTBAA =
 | |
|           Builder.createTBAAStructTagNode(Base, Access, Offset);
 | |
|       I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA);
 | |
|     }
 | |
| 
 | |
|     if (CallSite CS = CallSite(&I)) {
 | |
|       for (int i = 0, e = CS.arg_size(); i != e; i++)
 | |
|         if (isa<PointerType>(CS.getArgument(i)->getType()))
 | |
|           RemoveNonValidAttrAtIndex(Ctx, CS, i + 1);
 | |
|       if (isa<PointerType>(CS.getType()))
 | |
|         RemoveNonValidAttrAtIndex(Ctx, CS, AttributeSet::ReturnIndex);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Returns true if this function should be rewritten by this pass.  The main
 | |
| /// point of this function is as an extension point for custom logic.
 | |
| static bool shouldRewriteStatepointsIn(Function &F) {
 | |
|   // TODO: This should check the GCStrategy
 | |
|   if (F.hasGC()) {
 | |
|     const char *FunctionGCName = F.getGC();
 | |
|     const StringRef StatepointExampleName("statepoint-example");
 | |
|     const StringRef CoreCLRName("coreclr");
 | |
|     return (StatepointExampleName == FunctionGCName) ||
 | |
|            (CoreCLRName == FunctionGCName);
 | |
|   } else
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void RewriteStatepointsForGC::stripNonValidAttributes(Module &M) {
 | |
| #ifndef NDEBUG
 | |
|   assert(std::any_of(M.begin(), M.end(), shouldRewriteStatepointsIn) &&
 | |
|          "precondition!");
 | |
| #endif
 | |
| 
 | |
|   for (Function &F : M)
 | |
|     stripNonValidAttributesFromPrototype(F);
 | |
| 
 | |
|   for (Function &F : M)
 | |
|     stripNonValidAttributesFromBody(F);
 | |
| }
 | |
| 
 | |
| bool RewriteStatepointsForGC::runOnFunction(Function &F) {
 | |
|   // Nothing to do for declarations.
 | |
|   if (F.isDeclaration() || F.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Policy choice says not to rewrite - the most common reason is that we're
 | |
|   // compiling code without a GCStrategy.
 | |
|   if (!shouldRewriteStatepointsIn(F))
 | |
|     return false;
 | |
| 
 | |
|   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
 | |
| 
 | |
|   auto NeedsRewrite = [](Instruction &I) {
 | |
|     if (UseDeoptBundles) {
 | |
|       if (ImmutableCallSite CS = ImmutableCallSite(&I))
 | |
|         return !callsGCLeafFunction(CS);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     return isStatepoint(I);
 | |
|   };
 | |
| 
 | |
|   // Gather all the statepoints which need rewritten.  Be careful to only
 | |
|   // consider those in reachable code since we need to ask dominance queries
 | |
|   // when rewriting.  We'll delete the unreachable ones in a moment.
 | |
|   SmallVector<CallSite, 64> ParsePointNeeded;
 | |
|   bool HasUnreachableStatepoint = false;
 | |
|   for (Instruction &I : instructions(F)) {
 | |
|     // TODO: only the ones with the flag set!
 | |
|     if (NeedsRewrite(I)) {
 | |
|       if (DT.isReachableFromEntry(I.getParent()))
 | |
|         ParsePointNeeded.push_back(CallSite(&I));
 | |
|       else
 | |
|         HasUnreachableStatepoint = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Delete any unreachable statepoints so that we don't have unrewritten
 | |
|   // statepoints surviving this pass.  This makes testing easier and the
 | |
|   // resulting IR less confusing to human readers.  Rather than be fancy, we
 | |
|   // just reuse a utility function which removes the unreachable blocks.
 | |
|   if (HasUnreachableStatepoint)
 | |
|     MadeChange |= removeUnreachableBlocks(F);
 | |
| 
 | |
|   // Return early if no work to do.
 | |
|   if (ParsePointNeeded.empty())
 | |
|     return MadeChange;
 | |
| 
 | |
|   // As a prepass, go ahead and aggressively destroy single entry phi nodes.
 | |
|   // These are created by LCSSA.  They have the effect of increasing the size
 | |
|   // of liveness sets for no good reason.  It may be harder to do this post
 | |
|   // insertion since relocations and base phis can confuse things.
 | |
|   for (BasicBlock &BB : F)
 | |
|     if (BB.getUniquePredecessor()) {
 | |
|       MadeChange = true;
 | |
|       FoldSingleEntryPHINodes(&BB);
 | |
|     }
 | |
| 
 | |
|   // Before we start introducing relocations, we want to tweak the IR a bit to
 | |
|   // avoid unfortunate code generation effects.  The main example is that we 
 | |
|   // want to try to make sure the comparison feeding a branch is after any
 | |
|   // safepoints.  Otherwise, we end up with a comparison of pre-relocation
 | |
|   // values feeding a branch after relocation.  This is semantically correct,
 | |
|   // but results in extra register pressure since both the pre-relocation and
 | |
|   // post-relocation copies must be available in registers.  For code without
 | |
|   // relocations this is handled elsewhere, but teaching the scheduler to
 | |
|   // reverse the transform we're about to do would be slightly complex.
 | |
|   // Note: This may extend the live range of the inputs to the icmp and thus
 | |
|   // increase the liveset of any statepoint we move over.  This is profitable
 | |
|   // as long as all statepoints are in rare blocks.  If we had in-register
 | |
|   // lowering for live values this would be a much safer transform.
 | |
|   auto getConditionInst = [](TerminatorInst *TI) -> Instruction* {
 | |
|     if (auto *BI = dyn_cast<BranchInst>(TI))
 | |
|       if (BI->isConditional())
 | |
|         return dyn_cast<Instruction>(BI->getCondition());
 | |
|     // TODO: Extend this to handle switches
 | |
|     return nullptr;
 | |
|   };
 | |
|   for (BasicBlock &BB : F) {
 | |
|     TerminatorInst *TI = BB.getTerminator();
 | |
|     if (auto *Cond = getConditionInst(TI))
 | |
|       // TODO: Handle more than just ICmps here.  We should be able to move
 | |
|       // most instructions without side effects or memory access.  
 | |
|       if (isa<ICmpInst>(Cond) && Cond->hasOneUse()) {
 | |
|         MadeChange = true;
 | |
|         Cond->moveBefore(TI);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   MadeChange |= insertParsePoints(F, DT, this, ParsePointNeeded);
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // liveness computation via standard dataflow
 | |
| // -------------------------------------------------------------------
 | |
| 
 | |
| // TODO: Consider using bitvectors for liveness, the set of potentially
 | |
| // interesting values should be small and easy to pre-compute.
 | |
| 
 | |
| /// Compute the live-in set for the location rbegin starting from
 | |
| /// the live-out set of the basic block
 | |
| static void computeLiveInValues(BasicBlock::reverse_iterator rbegin,
 | |
|                                 BasicBlock::reverse_iterator rend,
 | |
|                                 DenseSet<Value *> &LiveTmp) {
 | |
| 
 | |
|   for (BasicBlock::reverse_iterator ritr = rbegin; ritr != rend; ritr++) {
 | |
|     Instruction *I = &*ritr;
 | |
| 
 | |
|     // KILL/Def - Remove this definition from LiveIn
 | |
|     LiveTmp.erase(I);
 | |
| 
 | |
|     // Don't consider *uses* in PHI nodes, we handle their contribution to
 | |
|     // predecessor blocks when we seed the LiveOut sets
 | |
|     if (isa<PHINode>(I))
 | |
|       continue;
 | |
| 
 | |
|     // USE - Add to the LiveIn set for this instruction
 | |
|     for (Value *V : I->operands()) {
 | |
|       assert(!isUnhandledGCPointerType(V->getType()) &&
 | |
|              "support for FCA unimplemented");
 | |
|       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
 | |
|         // The choice to exclude all things constant here is slightly subtle.
 | |
|         // There are two independent reasons:
 | |
|         // - We assume that things which are constant (from LLVM's definition)
 | |
|         // do not move at runtime.  For example, the address of a global
 | |
|         // variable is fixed, even though it's contents may not be.
 | |
|         // - Second, we can't disallow arbitrary inttoptr constants even
 | |
|         // if the language frontend does.  Optimization passes are free to
 | |
|         // locally exploit facts without respect to global reachability.  This
 | |
|         // can create sections of code which are dynamically unreachable and
 | |
|         // contain just about anything.  (see constants.ll in tests)
 | |
|         LiveTmp.insert(V);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void computeLiveOutSeed(BasicBlock *BB, DenseSet<Value *> &LiveTmp) {
 | |
| 
 | |
|   for (BasicBlock *Succ : successors(BB)) {
 | |
|     const BasicBlock::iterator E(Succ->getFirstNonPHI());
 | |
|     for (BasicBlock::iterator I = Succ->begin(); I != E; I++) {
 | |
|       PHINode *Phi = cast<PHINode>(&*I);
 | |
|       Value *V = Phi->getIncomingValueForBlock(BB);
 | |
|       assert(!isUnhandledGCPointerType(V->getType()) &&
 | |
|              "support for FCA unimplemented");
 | |
|       if (isHandledGCPointerType(V->getType()) && !isa<Constant>(V)) {
 | |
|         LiveTmp.insert(V);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static DenseSet<Value *> computeKillSet(BasicBlock *BB) {
 | |
|   DenseSet<Value *> KillSet;
 | |
|   for (Instruction &I : *BB)
 | |
|     if (isHandledGCPointerType(I.getType()))
 | |
|       KillSet.insert(&I);
 | |
|   return KillSet;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// Check that the items in 'Live' dominate 'TI'.  This is used as a basic
 | |
| /// sanity check for the liveness computation.
 | |
| static void checkBasicSSA(DominatorTree &DT, DenseSet<Value *> &Live,
 | |
|                           TerminatorInst *TI, bool TermOkay = false) {
 | |
|   for (Value *V : Live) {
 | |
|     if (auto *I = dyn_cast<Instruction>(V)) {
 | |
|       // The terminator can be a member of the LiveOut set.  LLVM's definition
 | |
|       // of instruction dominance states that V does not dominate itself.  As
 | |
|       // such, we need to special case this to allow it.
 | |
|       if (TermOkay && TI == I)
 | |
|         continue;
 | |
|       assert(DT.dominates(I, TI) &&
 | |
|              "basic SSA liveness expectation violated by liveness analysis");
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check that all the liveness sets used during the computation of liveness
 | |
| /// obey basic SSA properties.  This is useful for finding cases where we miss
 | |
| /// a def.
 | |
| static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data,
 | |
|                           BasicBlock &BB) {
 | |
|   checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator());
 | |
|   checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true);
 | |
|   checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void computeLiveInValues(DominatorTree &DT, Function &F,
 | |
|                                 GCPtrLivenessData &Data) {
 | |
| 
 | |
|   SmallSetVector<BasicBlock *, 200> Worklist;
 | |
|   auto AddPredsToWorklist = [&](BasicBlock *BB) {
 | |
|     // We use a SetVector so that we don't have duplicates in the worklist.
 | |
|     Worklist.insert(pred_begin(BB), pred_end(BB));
 | |
|   };
 | |
|   auto NextItem = [&]() {
 | |
|     BasicBlock *BB = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
|     return BB;
 | |
|   };
 | |
| 
 | |
|   // Seed the liveness for each individual block
 | |
|   for (BasicBlock &BB : F) {
 | |
|     Data.KillSet[&BB] = computeKillSet(&BB);
 | |
|     Data.LiveSet[&BB].clear();
 | |
|     computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB]);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     for (Value *Kill : Data.KillSet[&BB])
 | |
|       assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill");
 | |
| #endif
 | |
| 
 | |
|     Data.LiveOut[&BB] = DenseSet<Value *>();
 | |
|     computeLiveOutSeed(&BB, Data.LiveOut[&BB]);
 | |
|     Data.LiveIn[&BB] = Data.LiveSet[&BB];
 | |
|     set_union(Data.LiveIn[&BB], Data.LiveOut[&BB]);
 | |
|     set_subtract(Data.LiveIn[&BB], Data.KillSet[&BB]);
 | |
|     if (!Data.LiveIn[&BB].empty())
 | |
|       AddPredsToWorklist(&BB);
 | |
|   }
 | |
| 
 | |
|   // Propagate that liveness until stable
 | |
|   while (!Worklist.empty()) {
 | |
|     BasicBlock *BB = NextItem();
 | |
| 
 | |
|     // Compute our new liveout set, then exit early if it hasn't changed
 | |
|     // despite the contribution of our successor.
 | |
|     DenseSet<Value *> LiveOut = Data.LiveOut[BB];
 | |
|     const auto OldLiveOutSize = LiveOut.size();
 | |
|     for (BasicBlock *Succ : successors(BB)) {
 | |
|       assert(Data.LiveIn.count(Succ));
 | |
|       set_union(LiveOut, Data.LiveIn[Succ]);
 | |
|     }
 | |
|     // assert OutLiveOut is a subset of LiveOut
 | |
|     if (OldLiveOutSize == LiveOut.size()) {
 | |
|       // If the sets are the same size, then we didn't actually add anything
 | |
|       // when unioning our successors LiveIn  Thus, the LiveIn of this block
 | |
|       // hasn't changed.
 | |
|       continue;
 | |
|     }
 | |
|     Data.LiveOut[BB] = LiveOut;
 | |
| 
 | |
|     // Apply the effects of this basic block
 | |
|     DenseSet<Value *> LiveTmp = LiveOut;
 | |
|     set_union(LiveTmp, Data.LiveSet[BB]);
 | |
|     set_subtract(LiveTmp, Data.KillSet[BB]);
 | |
| 
 | |
|     assert(Data.LiveIn.count(BB));
 | |
|     const DenseSet<Value *> &OldLiveIn = Data.LiveIn[BB];
 | |
|     // assert: OldLiveIn is a subset of LiveTmp
 | |
|     if (OldLiveIn.size() != LiveTmp.size()) {
 | |
|       Data.LiveIn[BB] = LiveTmp;
 | |
|       AddPredsToWorklist(BB);
 | |
|     }
 | |
|   } // while( !worklist.empty() )
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Sanity check our output against SSA properties.  This helps catch any
 | |
|   // missing kills during the above iteration.
 | |
|   for (BasicBlock &BB : F) {
 | |
|     checkBasicSSA(DT, Data, BB);
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data,
 | |
|                               StatepointLiveSetTy &Out) {
 | |
| 
 | |
|   BasicBlock *BB = Inst->getParent();
 | |
| 
 | |
|   // Note: The copy is intentional and required
 | |
|   assert(Data.LiveOut.count(BB));
 | |
|   DenseSet<Value *> LiveOut = Data.LiveOut[BB];
 | |
| 
 | |
|   // We want to handle the statepoint itself oddly.  It's
 | |
|   // call result is not live (normal), nor are it's arguments
 | |
|   // (unless they're used again later).  This adjustment is
 | |
|   // specifically what we need to relocate
 | |
|   BasicBlock::reverse_iterator rend(Inst->getIterator());
 | |
|   computeLiveInValues(BB->rbegin(), rend, LiveOut);
 | |
|   LiveOut.erase(Inst);
 | |
|   Out.insert(LiveOut.begin(), LiveOut.end());
 | |
| }
 | |
| 
 | |
| static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData,
 | |
|                                   const CallSite &CS,
 | |
|                                   PartiallyConstructedSafepointRecord &Info) {
 | |
|   Instruction *Inst = CS.getInstruction();
 | |
|   StatepointLiveSetTy Updated;
 | |
|   findLiveSetAtInst(Inst, RevisedLivenessData, Updated);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   DenseSet<Value *> Bases;
 | |
|   for (auto KVPair : Info.PointerToBase) {
 | |
|     Bases.insert(KVPair.second);
 | |
|   }
 | |
| #endif
 | |
|   // We may have base pointers which are now live that weren't before.  We need
 | |
|   // to update the PointerToBase structure to reflect this.
 | |
|   for (auto V : Updated)
 | |
|     if (!Info.PointerToBase.count(V)) {
 | |
|       assert(Bases.count(V) && "can't find base for unexpected live value");
 | |
|       Info.PointerToBase[V] = V;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (auto V : Updated) {
 | |
|     assert(Info.PointerToBase.count(V) &&
 | |
|            "must be able to find base for live value");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Remove any stale base mappings - this can happen since our liveness is
 | |
|   // more precise then the one inherent in the base pointer analysis
 | |
|   DenseSet<Value *> ToErase;
 | |
|   for (auto KVPair : Info.PointerToBase)
 | |
|     if (!Updated.count(KVPair.first))
 | |
|       ToErase.insert(KVPair.first);
 | |
|   for (auto V : ToErase)
 | |
|     Info.PointerToBase.erase(V);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (auto KVPair : Info.PointerToBase)
 | |
|     assert(Updated.count(KVPair.first) && "record for non-live value");
 | |
| #endif
 | |
| 
 | |
|   Info.LiveSet = Updated;
 | |
| }
 |