725 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			725 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements straight-line strength reduction (SLSR). Unlike loop
 | |
| // strength reduction, this algorithm is designed to reduce arithmetic
 | |
| // redundancy in straight-line code instead of loops. It has proven to be
 | |
| // effective in simplifying arithmetic statements derived from an unrolled loop.
 | |
| // It can also simplify the logic of SeparateConstOffsetFromGEP.
 | |
| //
 | |
| // There are many optimizations we can perform in the domain of SLSR. This file
 | |
| // for now contains only an initial step. Specifically, we look for strength
 | |
| // reduction candidates in the following forms:
 | |
| //
 | |
| // Form 1: B + i * S
 | |
| // Form 2: (B + i) * S
 | |
| // Form 3: &B[i * S]
 | |
| //
 | |
| // where S is an integer variable, and i is a constant integer. If we found two
 | |
| // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
 | |
| // in a simpler way with respect to S1. For example,
 | |
| //
 | |
| // S1: X = B + i * S
 | |
| // S2: Y = B + i' * S   => X + (i' - i) * S
 | |
| //
 | |
| // S1: X = (B + i) * S
 | |
| // S2: Y = (B + i') * S => X + (i' - i) * S
 | |
| //
 | |
| // S1: X = &B[i * S]
 | |
| // S2: Y = &B[i' * S]   => &X[(i' - i) * S]
 | |
| //
 | |
| // Note: (i' - i) * S is folded to the extent possible.
 | |
| //
 | |
| // This rewriting is in general a good idea. The code patterns we focus on
 | |
| // usually come from loop unrolling, so (i' - i) * S is likely the same
 | |
| // across iterations and can be reused. When that happens, the optimized form
 | |
| // takes only one add starting from the second iteration.
 | |
| //
 | |
| // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
 | |
| // multiple bases, we choose to rewrite S2 with respect to its "immediate"
 | |
| // basis, the basis that is the closest ancestor in the dominator tree.
 | |
| //
 | |
| // TODO:
 | |
| //
 | |
| // - Floating point arithmetics when fast math is enabled.
 | |
| //
 | |
| // - SLSR may decrease ILP at the architecture level. Targets that are very
 | |
| //   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
 | |
| //   left as future work.
 | |
| //
 | |
| // - When (i' - i) is constant but i and i' are not, we could still perform
 | |
| //   SLSR.
 | |
| #include <vector>
 | |
| 
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class StraightLineStrengthReduce : public FunctionPass {
 | |
| public:
 | |
|   // SLSR candidate. Such a candidate must be in one of the forms described in
 | |
|   // the header comments.
 | |
|   struct Candidate : public ilist_node<Candidate> {
 | |
|     enum Kind {
 | |
|       Invalid, // reserved for the default constructor
 | |
|       Add,     // B + i * S
 | |
|       Mul,     // (B + i) * S
 | |
|       GEP,     // &B[..][i * S][..]
 | |
|     };
 | |
| 
 | |
|     Candidate()
 | |
|         : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
 | |
|           Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
 | |
|     Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
 | |
|               Instruction *I)
 | |
|         : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
 | |
|           Basis(nullptr) {}
 | |
|     Kind CandidateKind;
 | |
|     const SCEV *Base;
 | |
|     // Note that Index and Stride of a GEP candidate do not necessarily have the
 | |
|     // same integer type. In that case, during rewriting, Stride will be
 | |
|     // sign-extended or truncated to Index's type.
 | |
|     ConstantInt *Index;
 | |
|     Value *Stride;
 | |
|     // The instruction this candidate corresponds to. It helps us to rewrite a
 | |
|     // candidate with respect to its immediate basis. Note that one instruction
 | |
|     // can correspond to multiple candidates depending on how you associate the
 | |
|     // expression. For instance,
 | |
|     //
 | |
|     // (a + 1) * (b + 2)
 | |
|     //
 | |
|     // can be treated as
 | |
|     //
 | |
|     // <Base: a, Index: 1, Stride: b + 2>
 | |
|     //
 | |
|     // or
 | |
|     //
 | |
|     // <Base: b, Index: 2, Stride: a + 1>
 | |
|     Instruction *Ins;
 | |
|     // Points to the immediate basis of this candidate, or nullptr if we cannot
 | |
|     // find any basis for this candidate.
 | |
|     Candidate *Basis;
 | |
|   };
 | |
| 
 | |
|   static char ID;
 | |
| 
 | |
|   StraightLineStrengthReduce()
 | |
|       : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
 | |
|     initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|     AU.addRequired<TargetTransformInfoWrapperPass>();
 | |
|     // We do not modify the shape of the CFG.
 | |
|     AU.setPreservesCFG();
 | |
|   }
 | |
| 
 | |
|   bool doInitialization(Module &M) override {
 | |
|     DL = &M.getDataLayout();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
| private:
 | |
|   // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
 | |
|   // share the same base and stride.
 | |
|   bool isBasisFor(const Candidate &Basis, const Candidate &C);
 | |
|   // Returns whether the candidate can be folded into an addressing mode.
 | |
|   bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
 | |
|                   const DataLayout *DL);
 | |
|   // Returns true if C is already in a simplest form and not worth being
 | |
|   // rewritten.
 | |
|   bool isSimplestForm(const Candidate &C);
 | |
|   // Checks whether I is in a candidate form. If so, adds all the matching forms
 | |
|   // to Candidates, and tries to find the immediate basis for each of them.
 | |
|   void allocateCandidatesAndFindBasis(Instruction *I);
 | |
|   // Allocate candidates and find bases for Add instructions.
 | |
|   void allocateCandidatesAndFindBasisForAdd(Instruction *I);
 | |
|   // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
 | |
|   // candidate.
 | |
|   void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
 | |
|                                             Instruction *I);
 | |
|   // Allocate candidates and find bases for Mul instructions.
 | |
|   void allocateCandidatesAndFindBasisForMul(Instruction *I);
 | |
|   // Splits LHS into Base + Index and, if succeeds, calls
 | |
|   // allocateCandidatesAndFindBasis.
 | |
|   void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
 | |
|                                             Instruction *I);
 | |
|   // Allocate candidates and find bases for GetElementPtr instructions.
 | |
|   void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
 | |
|   // A helper function that scales Idx with ElementSize before invoking
 | |
|   // allocateCandidatesAndFindBasis.
 | |
|   void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
 | |
|                                             Value *S, uint64_t ElementSize,
 | |
|                                             Instruction *I);
 | |
|   // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
 | |
|   // basis.
 | |
|   void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
 | |
|                                       ConstantInt *Idx, Value *S,
 | |
|                                       Instruction *I);
 | |
|   // Rewrites candidate C with respect to Basis.
 | |
|   void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
 | |
|   // A helper function that factors ArrayIdx to a product of a stride and a
 | |
|   // constant index, and invokes allocateCandidatesAndFindBasis with the
 | |
|   // factorings.
 | |
|   void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
 | |
|                         GetElementPtrInst *GEP);
 | |
|   // Emit code that computes the "bump" from Basis to C. If the candidate is a
 | |
|   // GEP and the bump is not divisible by the element size of the GEP, this
 | |
|   // function sets the BumpWithUglyGEP flag to notify its caller to bump the
 | |
|   // basis using an ugly GEP.
 | |
|   static Value *emitBump(const Candidate &Basis, const Candidate &C,
 | |
|                          IRBuilder<> &Builder, const DataLayout *DL,
 | |
|                          bool &BumpWithUglyGEP);
 | |
| 
 | |
|   const DataLayout *DL;
 | |
|   DominatorTree *DT;
 | |
|   ScalarEvolution *SE;
 | |
|   TargetTransformInfo *TTI;
 | |
|   ilist<Candidate> Candidates;
 | |
|   // Temporarily holds all instructions that are unlinked (but not deleted) by
 | |
|   // rewriteCandidateWithBasis. These instructions will be actually removed
 | |
|   // after all rewriting finishes.
 | |
|   std::vector<Instruction *> UnlinkedInstructions;
 | |
| };
 | |
| }  // anonymous namespace
 | |
| 
 | |
| char StraightLineStrengthReduce::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
 | |
|                       "Straight line strength reduction", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
 | |
|                     "Straight line strength reduction", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createStraightLineStrengthReducePass() {
 | |
|   return new StraightLineStrengthReduce();
 | |
| }
 | |
| 
 | |
| bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
 | |
|                                             const Candidate &C) {
 | |
|   return (Basis.Ins != C.Ins && // skip the same instruction
 | |
|           // They must have the same type too. Basis.Base == C.Base doesn't
 | |
|           // guarantee their types are the same (PR23975).
 | |
|           Basis.Ins->getType() == C.Ins->getType() &&
 | |
|           // Basis must dominate C in order to rewrite C with respect to Basis.
 | |
|           DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
 | |
|           // They share the same base, stride, and candidate kind.
 | |
|           Basis.Base == C.Base && Basis.Stride == C.Stride &&
 | |
|           Basis.CandidateKind == C.CandidateKind);
 | |
| }
 | |
| 
 | |
| // TODO: use TTI->getGEPCost.
 | |
| static bool isGEPFoldable(GetElementPtrInst *GEP,
 | |
|                           const TargetTransformInfo *TTI,
 | |
|                           const DataLayout *DL) {
 | |
|   GlobalVariable *BaseGV = nullptr;
 | |
|   int64_t BaseOffset = 0;
 | |
|   bool HasBaseReg = false;
 | |
|   int64_t Scale = 0;
 | |
| 
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
 | |
|     BaseGV = GV;
 | |
|   else
 | |
|     HasBaseReg = true;
 | |
| 
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
 | |
|     if (isa<SequentialType>(*GTI)) {
 | |
|       int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
 | |
|       if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
 | |
|         BaseOffset += ConstIdx->getSExtValue() * ElementSize;
 | |
|       } else {
 | |
|         // Needs scale register.
 | |
|         if (Scale != 0) {
 | |
|           // No addressing mode takes two scale registers.
 | |
|           return false;
 | |
|         }
 | |
|         Scale = ElementSize;
 | |
|       }
 | |
|     } else {
 | |
|       StructType *STy = cast<StructType>(*GTI);
 | |
|       uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
 | |
|       BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned AddrSpace = GEP->getPointerAddressSpace();
 | |
|   return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
 | |
|                                     BaseOffset, HasBaseReg, Scale, AddrSpace);
 | |
| }
 | |
| 
 | |
| // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
 | |
| static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
 | |
|                           TargetTransformInfo *TTI) {
 | |
|   return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
 | |
|                                     Index->getSExtValue());
 | |
| }
 | |
| 
 | |
| bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
 | |
|                                             TargetTransformInfo *TTI,
 | |
|                                             const DataLayout *DL) {
 | |
|   if (C.CandidateKind == Candidate::Add)
 | |
|     return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
 | |
|   if (C.CandidateKind == Candidate::GEP)
 | |
|     return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Returns true if GEP has zero or one non-zero index.
 | |
| static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
 | |
|   unsigned NumNonZeroIndices = 0;
 | |
|   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
 | |
|     ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
 | |
|     if (ConstIdx == nullptr || !ConstIdx->isZero())
 | |
|       ++NumNonZeroIndices;
 | |
|   }
 | |
|   return NumNonZeroIndices <= 1;
 | |
| }
 | |
| 
 | |
| bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
 | |
|   if (C.CandidateKind == Candidate::Add) {
 | |
|     // B + 1 * S or B + (-1) * S
 | |
|     return C.Index->isOne() || C.Index->isMinusOne();
 | |
|   }
 | |
|   if (C.CandidateKind == Candidate::Mul) {
 | |
|     // (B + 0) * S
 | |
|     return C.Index->isZero();
 | |
|   }
 | |
|   if (C.CandidateKind == Candidate::GEP) {
 | |
|     // (char*)B + S or (char*)B - S
 | |
|     return ((C.Index->isOne() || C.Index->isMinusOne()) &&
 | |
|             hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // TODO: We currently implement an algorithm whose time complexity is linear in
 | |
| // the number of existing candidates. However, we could do better by using
 | |
| // ScopedHashTable. Specifically, while traversing the dominator tree, we could
 | |
| // maintain all the candidates that dominate the basic block being traversed in
 | |
| // a ScopedHashTable. This hash table is indexed by the base and the stride of
 | |
| // a candidate. Therefore, finding the immediate basis of a candidate boils down
 | |
| // to one hash-table look up.
 | |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
 | |
|     Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
 | |
|     Instruction *I) {
 | |
|   Candidate C(CT, B, Idx, S, I);
 | |
|   // SLSR can complicate an instruction in two cases:
 | |
|   //
 | |
|   // 1. If we can fold I into an addressing mode, computing I is likely free or
 | |
|   // takes only one instruction.
 | |
|   //
 | |
|   // 2. I is already in a simplest form. For example, when
 | |
|   //      X = B + 8 * S
 | |
|   //      Y = B + S,
 | |
|   //    rewriting Y to X - 7 * S is probably a bad idea.
 | |
|   //
 | |
|   // In the above cases, we still add I to the candidate list so that I can be
 | |
|   // the basis of other candidates, but we leave I's basis blank so that I
 | |
|   // won't be rewritten.
 | |
|   if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
 | |
|     // Try to compute the immediate basis of C.
 | |
|     unsigned NumIterations = 0;
 | |
|     // Limit the scan radius to avoid running in quadratice time.
 | |
|     static const unsigned MaxNumIterations = 50;
 | |
|     for (auto Basis = Candidates.rbegin();
 | |
|          Basis != Candidates.rend() && NumIterations < MaxNumIterations;
 | |
|          ++Basis, ++NumIterations) {
 | |
|       if (isBasisFor(*Basis, C)) {
 | |
|         C.Basis = &(*Basis);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Regardless of whether we find a basis for C, we need to push C to the
 | |
|   // candidate list so that it can be the basis of other candidates.
 | |
|   Candidates.push_back(C);
 | |
| }
 | |
| 
 | |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
 | |
|     Instruction *I) {
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|     allocateCandidatesAndFindBasisForAdd(I);
 | |
|     break;
 | |
|   case Instruction::Mul:
 | |
|     allocateCandidatesAndFindBasisForMul(I);
 | |
|     break;
 | |
|   case Instruction::GetElementPtr:
 | |
|     allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
 | |
|     Instruction *I) {
 | |
|   // Try matching B + i * S.
 | |
|   if (!isa<IntegerType>(I->getType()))
 | |
|     return;
 | |
| 
 | |
|   assert(I->getNumOperands() == 2 && "isn't I an add?");
 | |
|   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
 | |
|   allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
 | |
|   if (LHS != RHS)
 | |
|     allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
 | |
| }
 | |
| 
 | |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
 | |
|     Value *LHS, Value *RHS, Instruction *I) {
 | |
|   Value *S = nullptr;
 | |
|   ConstantInt *Idx = nullptr;
 | |
|   if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
 | |
|     // I = LHS + RHS = LHS + Idx * S
 | |
|     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
 | |
|   } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
 | |
|     // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
 | |
|     APInt One(Idx->getBitWidth(), 1);
 | |
|     Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
 | |
|     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
 | |
|   } else {
 | |
|     // At least, I = LHS + 1 * RHS
 | |
|     ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
 | |
|     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
 | |
|                                    I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Returns true if A matches B + C where C is constant.
 | |
| static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
 | |
|   return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
 | |
|           match(A, m_Add(m_ConstantInt(C), m_Value(B))));
 | |
| }
 | |
| 
 | |
| // Returns true if A matches B | C where C is constant.
 | |
| static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
 | |
|   return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
 | |
|           match(A, m_Or(m_ConstantInt(C), m_Value(B))));
 | |
| }
 | |
| 
 | |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
 | |
|     Value *LHS, Value *RHS, Instruction *I) {
 | |
|   Value *B = nullptr;
 | |
|   ConstantInt *Idx = nullptr;
 | |
|   if (matchesAdd(LHS, B, Idx)) {
 | |
|     // If LHS is in the form of "Base + Index", then I is in the form of
 | |
|     // "(Base + Index) * RHS".
 | |
|     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
 | |
|   } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
 | |
|     // If LHS is in the form of "Base | Index" and Base and Index have no common
 | |
|     // bits set, then
 | |
|     //   Base | Index = Base + Index
 | |
|     // and I is thus in the form of "(Base + Index) * RHS".
 | |
|     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
 | |
|   } else {
 | |
|     // Otherwise, at least try the form (LHS + 0) * RHS.
 | |
|     ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
 | |
|     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
 | |
|                                    I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
 | |
|     Instruction *I) {
 | |
|   // Try matching (B + i) * S.
 | |
|   // TODO: we could extend SLSR to float and vector types.
 | |
|   if (!isa<IntegerType>(I->getType()))
 | |
|     return;
 | |
| 
 | |
|   assert(I->getNumOperands() == 2 && "isn't I a mul?");
 | |
|   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
 | |
|   allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
 | |
|   if (LHS != RHS) {
 | |
|     // Symmetrically, try to split RHS to Base + Index.
 | |
|     allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
 | |
|     const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
 | |
|     Instruction *I) {
 | |
|   // I = B + sext(Idx *nsw S) * ElementSize
 | |
|   //   = B + (sext(Idx) * sext(S)) * ElementSize
 | |
|   //   = B + (sext(Idx) * ElementSize) * sext(S)
 | |
|   // Casting to IntegerType is safe because we skipped vector GEPs.
 | |
|   IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
 | |
|   ConstantInt *ScaledIdx = ConstantInt::get(
 | |
|       IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
 | |
|   allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
 | |
| }
 | |
| 
 | |
| void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
 | |
|                                                   const SCEV *Base,
 | |
|                                                   uint64_t ElementSize,
 | |
|                                                   GetElementPtrInst *GEP) {
 | |
|   // At least, ArrayIdx = ArrayIdx *nsw 1.
 | |
|   allocateCandidatesAndFindBasisForGEP(
 | |
|       Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
 | |
|       ArrayIdx, ElementSize, GEP);
 | |
|   Value *LHS = nullptr;
 | |
|   ConstantInt *RHS = nullptr;
 | |
|   // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
 | |
|   // itself. This would allow us to handle the shl case for free. However,
 | |
|   // matching SCEVs has two issues:
 | |
|   //
 | |
|   // 1. this would complicate rewriting because the rewriting procedure
 | |
|   // would have to translate SCEVs back to IR instructions. This translation
 | |
|   // is difficult when LHS is further evaluated to a composite SCEV.
 | |
|   //
 | |
|   // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
 | |
|   // to strip nsw/nuw flags which are critical for SLSR to trace into
 | |
|   // sext'ed multiplication.
 | |
|   if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
 | |
|     // SLSR is currently unsafe if i * S may overflow.
 | |
|     // GEP = Base + sext(LHS *nsw RHS) * ElementSize
 | |
|     allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
 | |
|   } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
 | |
|     // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
 | |
|     //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
 | |
|     APInt One(RHS->getBitWidth(), 1);
 | |
|     ConstantInt *PowerOf2 =
 | |
|         ConstantInt::get(RHS->getContext(), One << RHS->getValue());
 | |
|     allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
 | |
|     GetElementPtrInst *GEP) {
 | |
|   // TODO: handle vector GEPs
 | |
|   if (GEP->getType()->isVectorTy())
 | |
|     return;
 | |
| 
 | |
|   SmallVector<const SCEV *, 4> IndexExprs;
 | |
|   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
 | |
|     IndexExprs.push_back(SE->getSCEV(*I));
 | |
| 
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
 | |
|     if (!isa<SequentialType>(*GTI++))
 | |
|       continue;
 | |
| 
 | |
|     const SCEV *OrigIndexExpr = IndexExprs[I - 1];
 | |
|     IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
 | |
| 
 | |
|     // The base of this candidate is GEP's base plus the offsets of all
 | |
|     // indices except this current one.
 | |
|     const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(),
 | |
|                                           SE->getSCEV(GEP->getPointerOperand()),
 | |
|                                           IndexExprs, GEP->isInBounds());
 | |
|     Value *ArrayIdx = GEP->getOperand(I);
 | |
|     uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
 | |
|     factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
 | |
|     // When ArrayIdx is the sext of a value, we try to factor that value as
 | |
|     // well.  Handling this case is important because array indices are
 | |
|     // typically sign-extended to the pointer size.
 | |
|     Value *TruncatedArrayIdx = nullptr;
 | |
|     if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
 | |
|       factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
 | |
| 
 | |
|     IndexExprs[I - 1] = OrigIndexExpr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // A helper function that unifies the bitwidth of A and B.
 | |
| static void unifyBitWidth(APInt &A, APInt &B) {
 | |
|   if (A.getBitWidth() < B.getBitWidth())
 | |
|     A = A.sext(B.getBitWidth());
 | |
|   else if (A.getBitWidth() > B.getBitWidth())
 | |
|     B = B.sext(A.getBitWidth());
 | |
| }
 | |
| 
 | |
| Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
 | |
|                                             const Candidate &C,
 | |
|                                             IRBuilder<> &Builder,
 | |
|                                             const DataLayout *DL,
 | |
|                                             bool &BumpWithUglyGEP) {
 | |
|   APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
 | |
|   unifyBitWidth(Idx, BasisIdx);
 | |
|   APInt IndexOffset = Idx - BasisIdx;
 | |
| 
 | |
|   BumpWithUglyGEP = false;
 | |
|   if (Basis.CandidateKind == Candidate::GEP) {
 | |
|     APInt ElementSize(
 | |
|         IndexOffset.getBitWidth(),
 | |
|         DL->getTypeAllocSize(
 | |
|             cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
 | |
|     APInt Q, R;
 | |
|     APInt::sdivrem(IndexOffset, ElementSize, Q, R);
 | |
|     if (R.getSExtValue() == 0)
 | |
|       IndexOffset = Q;
 | |
|     else
 | |
|       BumpWithUglyGEP = true;
 | |
|   }
 | |
| 
 | |
|   // Compute Bump = C - Basis = (i' - i) * S.
 | |
|   // Common case 1: if (i' - i) is 1, Bump = S.
 | |
|   if (IndexOffset.getSExtValue() == 1)
 | |
|     return C.Stride;
 | |
|   // Common case 2: if (i' - i) is -1, Bump = -S.
 | |
|   if (IndexOffset.getSExtValue() == -1)
 | |
|     return Builder.CreateNeg(C.Stride);
 | |
| 
 | |
|   // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
 | |
|   // have different bit widths.
 | |
|   IntegerType *DeltaType =
 | |
|       IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
 | |
|   Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
 | |
|   if (IndexOffset.isPowerOf2()) {
 | |
|     // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
 | |
|     ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
 | |
|     return Builder.CreateShl(ExtendedStride, Exponent);
 | |
|   }
 | |
|   if ((-IndexOffset).isPowerOf2()) {
 | |
|     // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
 | |
|     ConstantInt *Exponent =
 | |
|         ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
 | |
|     return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
 | |
|   }
 | |
|   Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
 | |
|   return Builder.CreateMul(ExtendedStride, Delta);
 | |
| }
 | |
| 
 | |
| void StraightLineStrengthReduce::rewriteCandidateWithBasis(
 | |
|     const Candidate &C, const Candidate &Basis) {
 | |
|   assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
 | |
|          C.Stride == Basis.Stride);
 | |
|   // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
 | |
|   // basis of a candidate cannot be unlinked before the candidate.
 | |
|   assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
 | |
| 
 | |
|   // An instruction can correspond to multiple candidates. Therefore, instead of
 | |
|   // simply deleting an instruction when we rewrite it, we mark its parent as
 | |
|   // nullptr (i.e. unlink it) so that we can skip the candidates whose
 | |
|   // instruction is already rewritten.
 | |
|   if (!C.Ins->getParent())
 | |
|     return;
 | |
| 
 | |
|   IRBuilder<> Builder(C.Ins);
 | |
|   bool BumpWithUglyGEP;
 | |
|   Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
 | |
|   Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
 | |
|   switch (C.CandidateKind) {
 | |
|   case Candidate::Add:
 | |
|   case Candidate::Mul:
 | |
|     // C = Basis + Bump
 | |
|     if (BinaryOperator::isNeg(Bump)) {
 | |
|       // If Bump is a neg instruction, emit C = Basis - (-Bump).
 | |
|       Reduced =
 | |
|           Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
 | |
|       // We only use the negative argument of Bump, and Bump itself may be
 | |
|       // trivially dead.
 | |
|       RecursivelyDeleteTriviallyDeadInstructions(Bump);
 | |
|     } else {
 | |
|       // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
 | |
|       // usually unsound, e.g.,
 | |
|       //
 | |
|       // X = (-2 +nsw 1) *nsw INT_MAX
 | |
|       // Y = (-2 +nsw 3) *nsw INT_MAX
 | |
|       //   =>
 | |
|       // Y = X + 2 * INT_MAX
 | |
|       //
 | |
|       // Neither + and * in the resultant expression are nsw.
 | |
|       Reduced = Builder.CreateAdd(Basis.Ins, Bump);
 | |
|     }
 | |
|     break;
 | |
|   case Candidate::GEP:
 | |
|     {
 | |
|       Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
 | |
|       bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
 | |
|       if (BumpWithUglyGEP) {
 | |
|         // C = (char *)Basis + Bump
 | |
|         unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
 | |
|         Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
 | |
|         Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
 | |
|         if (InBounds)
 | |
|           Reduced =
 | |
|               Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
 | |
|         else
 | |
|           Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
 | |
|         Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
 | |
|       } else {
 | |
|         // C = gep Basis, Bump
 | |
|         // Canonicalize bump to pointer size.
 | |
|         Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
 | |
|         if (InBounds)
 | |
|           Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
 | |
|         else
 | |
|           Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("C.CandidateKind is invalid");
 | |
|   };
 | |
|   Reduced->takeName(C.Ins);
 | |
|   C.Ins->replaceAllUsesWith(Reduced);
 | |
|   // Unlink C.Ins so that we can skip other candidates also corresponding to
 | |
|   // C.Ins. The actual deletion is postponed to the end of runOnFunction.
 | |
|   C.Ins->removeFromParent();
 | |
|   UnlinkedInstructions.push_back(C.Ins);
 | |
| }
 | |
| 
 | |
| bool StraightLineStrengthReduce::runOnFunction(Function &F) {
 | |
|   if (skipOptnoneFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
|   // Traverse the dominator tree in the depth-first order. This order makes sure
 | |
|   // all bases of a candidate are in Candidates when we process it.
 | |
|   for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
 | |
|        node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
 | |
|     for (auto &I : *node->getBlock())
 | |
|       allocateCandidatesAndFindBasis(&I);
 | |
|   }
 | |
| 
 | |
|   // Rewrite candidates in the reverse depth-first order. This order makes sure
 | |
|   // a candidate being rewritten is not a basis for any other candidate.
 | |
|   while (!Candidates.empty()) {
 | |
|     const Candidate &C = Candidates.back();
 | |
|     if (C.Basis != nullptr) {
 | |
|       rewriteCandidateWithBasis(C, *C.Basis);
 | |
|     }
 | |
|     Candidates.pop_back();
 | |
|   }
 | |
| 
 | |
|   // Delete all unlink instructions.
 | |
|   for (auto *UnlinkedInst : UnlinkedInstructions) {
 | |
|     for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
 | |
|       Value *Op = UnlinkedInst->getOperand(I);
 | |
|       UnlinkedInst->setOperand(I, nullptr);
 | |
|       RecursivelyDeleteTriviallyDeadInstructions(Op);
 | |
|     }
 | |
|     delete UnlinkedInst;
 | |
|   }
 | |
|   bool Ret = !UnlinkedInstructions.empty();
 | |
|   UnlinkedInstructions.clear();
 | |
|   return Ret;
 | |
| }
 |