1636 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			LLVM
		
	
	
	
			
		
		
	
	
			1636 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			LLVM
		
	
	
	
| ; RUN: opt < %s -sroa -S | FileCheck %s
 | |
| ; RUN: opt < %s -passes=sroa -S | FileCheck %s
 | |
| 
 | |
| target datalayout = "e-p:64:64:64-p1:16:16:16-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64"
 | |
| 
 | |
| declare void @llvm.lifetime.start(i64, i8* nocapture)
 | |
| declare void @llvm.lifetime.end(i64, i8* nocapture)
 | |
| 
 | |
| define i32 @test0() {
 | |
| ; CHECK-LABEL: @test0(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret i32
 | |
| 
 | |
| entry:
 | |
|   %a1 = alloca i32
 | |
|   %a2 = alloca float
 | |
| 
 | |
|   %a1.i8 = bitcast i32* %a1 to i8*
 | |
|   call void @llvm.lifetime.start(i64 4, i8* %a1.i8)
 | |
| 
 | |
|   store i32 0, i32* %a1
 | |
|   %v1 = load i32, i32* %a1
 | |
| 
 | |
|   call void @llvm.lifetime.end(i64 4, i8* %a1.i8)
 | |
| 
 | |
|   %a2.i8 = bitcast float* %a2 to i8*
 | |
|   call void @llvm.lifetime.start(i64 4, i8* %a2.i8)
 | |
| 
 | |
|   store float 0.0, float* %a2
 | |
|   %v2 = load float , float * %a2
 | |
|   %v2.int = bitcast float %v2 to i32
 | |
|   %sum1 = add i32 %v1, %v2.int
 | |
| 
 | |
|   call void @llvm.lifetime.end(i64 4, i8* %a2.i8)
 | |
| 
 | |
|   ret i32 %sum1
 | |
| }
 | |
| 
 | |
| define i32 @test1() {
 | |
| ; CHECK-LABEL: @test1(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret i32 0
 | |
| 
 | |
| entry:
 | |
|   %X = alloca { i32, float }
 | |
|   %Y = getelementptr { i32, float }, { i32, float }* %X, i64 0, i32 0
 | |
|   store i32 0, i32* %Y
 | |
|   %Z = load i32, i32* %Y
 | |
|   ret i32 %Z
 | |
| }
 | |
| 
 | |
| define i64 @test2(i64 %X) {
 | |
| ; CHECK-LABEL: @test2(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret i64 %X
 | |
| 
 | |
| entry:
 | |
|   %A = alloca [8 x i8]
 | |
|   %B = bitcast [8 x i8]* %A to i64*
 | |
|   store i64 %X, i64* %B
 | |
|   br label %L2
 | |
| 
 | |
| L2:
 | |
|   %Z = load i64, i64* %B
 | |
|   ret i64 %Z
 | |
| }
 | |
| 
 | |
| define void @test3(i8* %dst, i8* %src) {
 | |
| ; CHECK-LABEL: @test3(
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [300 x i8]
 | |
| ; CHECK-NOT:  alloca
 | |
| ; CHECK:      %[[test3_a1:.*]] = alloca [42 x i8]
 | |
| ; CHECK-NEXT: %[[test3_a2:.*]] = alloca [99 x i8]
 | |
| ; CHECK-NEXT: %[[test3_a3:.*]] = alloca [16 x i8]
 | |
| ; CHECK-NEXT: %[[test3_a4:.*]] = alloca [42 x i8]
 | |
| ; CHECK-NEXT: %[[test3_a5:.*]] = alloca [7 x i8]
 | |
| ; CHECK-NEXT: %[[test3_a6:.*]] = alloca [7 x i8]
 | |
| ; CHECK-NEXT: %[[test3_a7:.*]] = alloca [85 x i8]
 | |
| 
 | |
|   %b = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 0
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 300, i32 1, i1 false)
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 42
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
 | |
| ; CHECK-NEXT: %[[test3_r1:.*]] = load i8, i8* %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 142
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 158
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 200
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 207
 | |
| ; CHECK-NEXT: %[[test3_r2:.*]] = load i8, i8* %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 208
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 215
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
 | |
| 
 | |
|   ; Clobber a single element of the array, this should be promotable.
 | |
|   %c = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 42
 | |
|   store i8 0, i8* %c
 | |
| 
 | |
|   ; Make a sequence of overlapping stores to the array. These overlap both in
 | |
|   ; forward strides and in shrinking accesses.
 | |
|   %overlap.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 142
 | |
|   %overlap.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 143
 | |
|   %overlap.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 144
 | |
|   %overlap.4.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 145
 | |
|   %overlap.5.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 146
 | |
|   %overlap.6.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 147
 | |
|   %overlap.7.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 148
 | |
|   %overlap.8.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 149
 | |
|   %overlap.9.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 150
 | |
|   %overlap.1.i16 = bitcast i8* %overlap.1.i8 to i16*
 | |
|   %overlap.1.i32 = bitcast i8* %overlap.1.i8 to i32*
 | |
|   %overlap.1.i64 = bitcast i8* %overlap.1.i8 to i64*
 | |
|   %overlap.2.i64 = bitcast i8* %overlap.2.i8 to i64*
 | |
|   %overlap.3.i64 = bitcast i8* %overlap.3.i8 to i64*
 | |
|   %overlap.4.i64 = bitcast i8* %overlap.4.i8 to i64*
 | |
|   %overlap.5.i64 = bitcast i8* %overlap.5.i8 to i64*
 | |
|   %overlap.6.i64 = bitcast i8* %overlap.6.i8 to i64*
 | |
|   %overlap.7.i64 = bitcast i8* %overlap.7.i8 to i64*
 | |
|   %overlap.8.i64 = bitcast i8* %overlap.8.i8 to i64*
 | |
|   %overlap.9.i64 = bitcast i8* %overlap.9.i8 to i64*
 | |
|   store i8 1, i8* %overlap.1.i8
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
 | |
| ; CHECK-NEXT: store i8 1, i8* %[[gep]]
 | |
|   store i16 1, i16* %overlap.1.i16
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i16*
 | |
| ; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
 | |
|   store i32 1, i32* %overlap.1.i32
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i32*
 | |
| ; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
 | |
|   store i64 1, i64* %overlap.1.i64
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [16 x i8]* %[[test3_a3]] to i64*
 | |
| ; CHECK-NEXT: store i64 1, i64* %[[bitcast]]
 | |
|   store i64 2, i64* %overlap.2.i64
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 1
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
 | |
| ; CHECK-NEXT: store i64 2, i64* %[[bitcast]]
 | |
|   store i64 3, i64* %overlap.3.i64
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 2
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
 | |
| ; CHECK-NEXT: store i64 3, i64* %[[bitcast]]
 | |
|   store i64 4, i64* %overlap.4.i64
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 3
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
 | |
| ; CHECK-NEXT: store i64 4, i64* %[[bitcast]]
 | |
|   store i64 5, i64* %overlap.5.i64
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 4
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
 | |
| ; CHECK-NEXT: store i64 5, i64* %[[bitcast]]
 | |
|   store i64 6, i64* %overlap.6.i64
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 5
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
 | |
| ; CHECK-NEXT: store i64 6, i64* %[[bitcast]]
 | |
|   store i64 7, i64* %overlap.7.i64
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 6
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
 | |
| ; CHECK-NEXT: store i64 7, i64* %[[bitcast]]
 | |
|   store i64 8, i64* %overlap.8.i64
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 7
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
 | |
| ; CHECK-NEXT: store i64 8, i64* %[[bitcast]]
 | |
|   store i64 9, i64* %overlap.9.i64
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 8
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i64*
 | |
| ; CHECK-NEXT: store i64 9, i64* %[[bitcast]]
 | |
| 
 | |
|   ; Make two sequences of overlapping stores with more gaps and irregularities.
 | |
|   %overlap2.1.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 200
 | |
|   %overlap2.1.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 201
 | |
|   %overlap2.1.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 202
 | |
|   %overlap2.1.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 203
 | |
| 
 | |
|   %overlap2.2.0.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 208
 | |
|   %overlap2.2.1.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 209
 | |
|   %overlap2.2.2.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 210
 | |
|   %overlap2.2.3.i8 = getelementptr [300 x i8], [300 x i8]* %a, i64 0, i64 211
 | |
| 
 | |
|   %overlap2.1.0.i16 = bitcast i8* %overlap2.1.0.i8 to i16*
 | |
|   %overlap2.1.0.i32 = bitcast i8* %overlap2.1.0.i8 to i32*
 | |
|   %overlap2.1.1.i32 = bitcast i8* %overlap2.1.1.i8 to i32*
 | |
|   %overlap2.1.2.i32 = bitcast i8* %overlap2.1.2.i8 to i32*
 | |
|   %overlap2.1.3.i32 = bitcast i8* %overlap2.1.3.i8 to i32*
 | |
|   store i8 1,  i8*  %overlap2.1.0.i8
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
 | |
| ; CHECK-NEXT: store i8 1, i8* %[[gep]]
 | |
|   store i16 1, i16* %overlap2.1.0.i16
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i16*
 | |
| ; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
 | |
|   store i32 1, i32* %overlap2.1.0.i32
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a5]] to i32*
 | |
| ; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
 | |
|   store i32 2, i32* %overlap2.1.1.i32
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 1
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
 | |
| ; CHECK-NEXT: store i32 2, i32* %[[bitcast]]
 | |
|   store i32 3, i32* %overlap2.1.2.i32
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
 | |
| ; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
 | |
|   store i32 4, i32* %overlap2.1.3.i32
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 3
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
 | |
| ; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
 | |
| 
 | |
|   %overlap2.2.0.i32 = bitcast i8* %overlap2.2.0.i8 to i32*
 | |
|   %overlap2.2.1.i16 = bitcast i8* %overlap2.2.1.i8 to i16*
 | |
|   %overlap2.2.1.i32 = bitcast i8* %overlap2.2.1.i8 to i32*
 | |
|   %overlap2.2.2.i32 = bitcast i8* %overlap2.2.2.i8 to i32*
 | |
|   %overlap2.2.3.i32 = bitcast i8* %overlap2.2.3.i8 to i32*
 | |
|   store i32 1, i32* %overlap2.2.0.i32
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast [7 x i8]* %[[test3_a6]] to i32*
 | |
| ; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
 | |
|   store i8 1,  i8*  %overlap2.2.1.i8
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
 | |
| ; CHECK-NEXT: store i8 1, i8* %[[gep]]
 | |
|   store i16 1, i16* %overlap2.2.1.i16
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
 | |
| ; CHECK-NEXT: store i16 1, i16* %[[bitcast]]
 | |
|   store i32 1, i32* %overlap2.2.1.i32
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
 | |
| ; CHECK-NEXT: store i32 1, i32* %[[bitcast]]
 | |
|   store i32 3, i32* %overlap2.2.2.i32
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
 | |
| ; CHECK-NEXT: store i32 3, i32* %[[bitcast]]
 | |
|   store i32 4, i32* %overlap2.2.3.i32
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 3
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i32*
 | |
| ; CHECK-NEXT: store i32 4, i32* %[[bitcast]]
 | |
| 
 | |
|   %overlap2.prefix = getelementptr i8, i8* %overlap2.1.1.i8, i64 -4
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.prefix, i8* %src, i32 8, i32 1, i1 false)
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 39
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %src, i32 3
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 3
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 5
 | |
| 
 | |
|   ; Bridge between the overlapping areas
 | |
|   call void @llvm.memset.p0i8.i32(i8* %overlap2.1.2.i8, i8 42, i32 8, i32 1, i1 false)
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 2
 | |
| ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 5
 | |
| ; ...promoted i8 store...
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[gep]], i8 42, i32 2
 | |
| 
 | |
|   ; Entirely within the second overlap.
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.1.i8, i8* %src, i32 5, i32 1, i1 false)
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 1
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
 | |
| 
 | |
|   ; Trailing past the second overlap.
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %overlap2.2.2.i8, i8* %src, i32 8, i32 1, i1 false)
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 2
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 5
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 5
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 3
 | |
| 
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 300, i32 1, i1 false)
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a1]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 42
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
 | |
| ; CHECK-NEXT: store i8 0, i8* %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [99 x i8], [99 x i8]* %[[test3_a2]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 99
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 142
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [16 x i8], [16 x i8]* %[[test3_a3]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 16
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 158
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [42 x i8], [42 x i8]* %[[test3_a4]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 42
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 200
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a5]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 207
 | |
| ; CHECK-NEXT: store i8 42, i8* %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 208
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test3_a6]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 215
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [85 x i8], [85 x i8]* %[[test3_a7]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 85
 | |
| 
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @test4(i8* %dst, i8* %src) {
 | |
| ; CHECK-LABEL: @test4(
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [100 x i8]
 | |
| ; CHECK-NOT:  alloca
 | |
| ; CHECK:      %[[test4_a1:.*]] = alloca [20 x i8]
 | |
| ; CHECK-NEXT: %[[test4_a2:.*]] = alloca [7 x i8]
 | |
| ; CHECK-NEXT: %[[test4_a3:.*]] = alloca [10 x i8]
 | |
| ; CHECK-NEXT: %[[test4_a4:.*]] = alloca [7 x i8]
 | |
| ; CHECK-NEXT: %[[test4_a5:.*]] = alloca [7 x i8]
 | |
| ; CHECK-NEXT: %[[test4_a6:.*]] = alloca [40 x i8]
 | |
| 
 | |
|   %b = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 0
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b, i8* %src, i32 100, i32 1, i1 false)
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep]], i8* %src, i32 20
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 20
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
 | |
| ; CHECK-NEXT: %[[test4_r1:.*]] = load i16, i16* %[[bitcast]]
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 22
 | |
| ; CHECK-NEXT: %[[test4_r2:.*]] = load i8, i8* %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 23
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 30
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 40
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
 | |
| ; CHECK-NEXT: %[[test4_r3:.*]] = load i16, i16* %[[bitcast]]
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 42
 | |
| ; CHECK-NEXT: %[[test4_r4:.*]] = load i8, i8* %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 43
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 50
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
 | |
| ; CHECK-NEXT: %[[test4_r5:.*]] = load i16, i16* %[[bitcast]]
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %src, i64 52
 | |
| ; CHECK-NEXT: %[[test4_r6:.*]] = load i8, i8* %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 53
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds i8, i8* %src, i64 60
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
 | |
| 
 | |
|   %a.src.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 20
 | |
|   %a.dst.1 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 40
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.1, i32 10, i32 1, i1 false)
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| 
 | |
|   ; Clobber a single element of the array, this should be promotable, and be deleted.
 | |
|   %c = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 42
 | |
|   store i8 0, i8* %c
 | |
| 
 | |
|   %a.src.2 = getelementptr [100 x i8], [100 x i8]* %a, i64 0, i64 50
 | |
|   call void @llvm.memmove.p0i8.p0i8.i32(i8* %a.dst.1, i8* %a.src.2, i32 10, i32 1, i1 false)
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| 
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %b, i32 100, i32 1, i1 false)
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds [20 x i8], [20 x i8]* %[[test4_a1]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[gep]], i32 20
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 20
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
 | |
| ; CHECK-NEXT: store i16 %[[test4_r1]], i16* %[[bitcast]]
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 22
 | |
| ; CHECK-NEXT: store i8 %[[test4_r2]], i8* %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 23
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a2]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 30
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [10 x i8], [10 x i8]* %[[test4_a3]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 10
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 40
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
 | |
| ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 42
 | |
| ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 43
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a4]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 50
 | |
| ; CHECK-NEXT: %[[bitcast:.*]] = bitcast i8* %[[gep]] to i16*
 | |
| ; CHECK-NEXT: store i16 %[[test4_r5]], i16* %[[bitcast]]
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr inbounds i8, i8* %dst, i64 52
 | |
| ; CHECK-NEXT: store i8 %[[test4_r6]], i8* %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 53
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [7 x i8], [7 x i8]* %[[test4_a5]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 7
 | |
| ; CHECK-NEXT: %[[gep_dst:.*]] = getelementptr inbounds i8, i8* %dst, i64 60
 | |
| ; CHECK-NEXT: %[[gep_src:.*]] = getelementptr inbounds [40 x i8], [40 x i8]* %[[test4_a6]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[gep_dst]], i8* %[[gep_src]], i32 40
 | |
| 
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| declare void @llvm.memcpy.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
 | |
| declare void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* nocapture, i8* nocapture, i32, i32, i1) nounwind
 | |
| declare void @llvm.memmove.p0i8.p0i8.i32(i8* nocapture, i8* nocapture, i32, i32, i1) nounwind
 | |
| declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1) nounwind
 | |
| 
 | |
| define i16 @test5() {
 | |
| ; CHECK-LABEL: @test5(
 | |
| ; CHECK-NOT: alloca float
 | |
| ; CHECK:      %[[cast:.*]] = bitcast float 0.0{{.*}} to i32
 | |
| ; CHECK-NEXT: %[[shr:.*]] = lshr i32 %[[cast]], 16
 | |
| ; CHECK-NEXT: %[[trunc:.*]] = trunc i32 %[[shr]] to i16
 | |
| ; CHECK-NEXT: ret i16 %[[trunc]]
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [4 x i8]
 | |
|   %fptr = bitcast [4 x i8]* %a to float*
 | |
|   store float 0.0, float* %fptr
 | |
|   %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 2
 | |
|   %iptr = bitcast i8* %ptr to i16*
 | |
|   %val = load i16, i16* %iptr
 | |
|   ret i16 %val
 | |
| }
 | |
| 
 | |
| define i32 @test6() {
 | |
| ; CHECK-LABEL: @test6(
 | |
| ; CHECK: alloca i32
 | |
| ; CHECK-NEXT: store volatile i32
 | |
| ; CHECK-NEXT: load i32, i32*
 | |
| ; CHECK-NEXT: ret i32
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [4 x i8]
 | |
|   %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
 | |
|   call void @llvm.memset.p0i8.i32(i8* %ptr, i8 42, i32 4, i32 1, i1 true)
 | |
|   %iptr = bitcast i8* %ptr to i32*
 | |
|   %val = load i32, i32* %iptr
 | |
|   ret i32 %val
 | |
| }
 | |
| 
 | |
| define void @test7(i8* %src, i8* %dst) {
 | |
| ; CHECK-LABEL: @test7(
 | |
| ; CHECK: alloca i32
 | |
| ; CHECK-NEXT: bitcast i8* %src to i32*
 | |
| ; CHECK-NEXT: load volatile i32, i32*
 | |
| ; CHECK-NEXT: store volatile i32
 | |
| ; CHECK-NEXT: bitcast i8* %dst to i32*
 | |
| ; CHECK-NEXT: load volatile i32, i32*
 | |
| ; CHECK-NEXT: store volatile i32
 | |
| ; CHECK-NEXT: ret
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [4 x i8]
 | |
|   %ptr = getelementptr [4 x i8], [4 x i8]* %a, i32 0, i32 0
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| 
 | |
| %S1 = type { i32, i32, [16 x i8] }
 | |
| %S2 = type { %S1*, %S2* }
 | |
| 
 | |
| define %S2 @test8(%S2* %s2) {
 | |
| ; CHECK-LABEL: @test8(
 | |
| entry:
 | |
|   %new = alloca %S2
 | |
| ; CHECK-NOT: alloca
 | |
| 
 | |
|   %s2.next.ptr = getelementptr %S2, %S2* %s2, i64 0, i32 1
 | |
|   %s2.next = load %S2*, %S2** %s2.next.ptr
 | |
| ; CHECK:      %[[gep:.*]] = getelementptr %S2, %S2* %s2, i64 0, i32 1
 | |
| ; CHECK-NEXT: %[[next:.*]] = load %S2*, %S2** %[[gep]]
 | |
| 
 | |
|   %s2.next.s1.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 0
 | |
|   %s2.next.s1 = load %S1*, %S1** %s2.next.s1.ptr
 | |
|   %new.s1.ptr = getelementptr %S2, %S2* %new, i64 0, i32 0
 | |
|   store %S1* %s2.next.s1, %S1** %new.s1.ptr
 | |
|   %s2.next.next.ptr = getelementptr %S2, %S2* %s2.next, i64 0, i32 1
 | |
|   %s2.next.next = load %S2*, %S2** %s2.next.next.ptr
 | |
|   %new.next.ptr = getelementptr %S2, %S2* %new, i64 0, i32 1
 | |
|   store %S2* %s2.next.next, %S2** %new.next.ptr
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 0
 | |
| ; CHECK-NEXT: %[[next_s1:.*]] = load %S1*, %S1** %[[gep]]
 | |
| ; CHECK-NEXT: %[[gep:.*]] = getelementptr %S2, %S2* %[[next]], i64 0, i32 1
 | |
| ; CHECK-NEXT: %[[next_next:.*]] = load %S2*, %S2** %[[gep]]
 | |
| 
 | |
|   %new.s1 = load %S1*, %S1** %new.s1.ptr
 | |
|   %result1 = insertvalue %S2 undef, %S1* %new.s1, 0
 | |
| ; CHECK-NEXT: %[[result1:.*]] = insertvalue %S2 undef, %S1* %[[next_s1]], 0
 | |
|   %new.next = load %S2*, %S2** %new.next.ptr
 | |
|   %result2 = insertvalue %S2 %result1, %S2* %new.next, 1
 | |
| ; CHECK-NEXT: %[[result2:.*]] = insertvalue %S2 %[[result1]], %S2* %[[next_next]], 1
 | |
|   ret %S2 %result2
 | |
| ; CHECK-NEXT: ret %S2 %[[result2]]
 | |
| }
 | |
| 
 | |
| define i64 @test9() {
 | |
| ; Ensure we can handle loads off the end of an alloca even when wrapped in
 | |
| ; weird bit casts and types. This is valid IR due to the alignment and masking
 | |
| ; off the bits past the end of the alloca.
 | |
| ;
 | |
| ; CHECK-LABEL: @test9(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK:      %[[b2:.*]] = zext i8 26 to i64
 | |
| ; CHECK-NEXT: %[[s2:.*]] = shl i64 %[[b2]], 16
 | |
| ; CHECK-NEXT: %[[m2:.*]] = and i64 undef, -16711681
 | |
| ; CHECK-NEXT: %[[i2:.*]] = or i64 %[[m2]], %[[s2]]
 | |
| ; CHECK-NEXT: %[[b1:.*]] = zext i8 0 to i64
 | |
| ; CHECK-NEXT: %[[s1:.*]] = shl i64 %[[b1]], 8
 | |
| ; CHECK-NEXT: %[[m1:.*]] = and i64 %[[i2]], -65281
 | |
| ; CHECK-NEXT: %[[i1:.*]] = or i64 %[[m1]], %[[s1]]
 | |
| ; CHECK-NEXT: %[[b0:.*]] = zext i8 0 to i64
 | |
| ; CHECK-NEXT: %[[m0:.*]] = and i64 %[[i1]], -256
 | |
| ; CHECK-NEXT: %[[i0:.*]] = or i64 %[[m0]], %[[b0]]
 | |
| ; CHECK-NEXT: %[[result:.*]] = and i64 %[[i0]], 16777215
 | |
| ; CHECK-NEXT: ret i64 %[[result]]
 | |
| 
 | |
| entry:
 | |
|   %a = alloca { [3 x i8] }, align 8
 | |
|   %gep1 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 0
 | |
|   store i8 0, i8* %gep1, align 1
 | |
|   %gep2 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 1
 | |
|   store i8 0, i8* %gep2, align 1
 | |
|   %gep3 = getelementptr inbounds { [3 x i8] }, { [3 x i8] }* %a, i32 0, i32 0, i32 2
 | |
|   store i8 26, i8* %gep3, align 1
 | |
|   %cast = bitcast { [3 x i8] }* %a to { i64 }*
 | |
|   %elt = getelementptr inbounds { i64 }, { i64 }* %cast, i32 0, i32 0
 | |
|   %load = load i64, i64* %elt
 | |
|   %result = and i64 %load, 16777215
 | |
|   ret i64 %result
 | |
| }
 | |
| 
 | |
| define %S2* @test10() {
 | |
| ; CHECK-LABEL: @test10(
 | |
| ; CHECK-NOT: alloca %S2*
 | |
| ; CHECK: ret %S2* null
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [8 x i8]
 | |
|   %ptr = getelementptr [8 x i8], [8 x i8]* %a, i32 0, i32 0
 | |
|   call void @llvm.memset.p0i8.i32(i8* %ptr, i8 0, i32 8, i32 1, i1 false)
 | |
|   %s2ptrptr = bitcast i8* %ptr to %S2**
 | |
|   %s2ptr = load %S2*, %S2** %s2ptrptr
 | |
|   ret %S2* %s2ptr
 | |
| }
 | |
| 
 | |
| define i32 @test11() {
 | |
| ; CHECK-LABEL: @test11(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret i32 0
 | |
| 
 | |
| entry:
 | |
|   %X = alloca i32
 | |
|   br i1 undef, label %good, label %bad
 | |
| 
 | |
| good:
 | |
|   %Y = getelementptr i32, i32* %X, i64 0
 | |
|   store i32 0, i32* %Y
 | |
|   %Z = load i32, i32* %Y
 | |
|   ret i32 %Z
 | |
| 
 | |
| bad:
 | |
|   %Y2 = getelementptr i32, i32* %X, i64 1
 | |
|   store i32 0, i32* %Y2
 | |
|   %Z2 = load i32, i32* %Y2
 | |
|   ret i32 %Z2
 | |
| }
 | |
| 
 | |
| define i8 @test12() {
 | |
| ; We fully promote these to the i24 load or store size, resulting in just masks
 | |
| ; and other operations that instcombine will fold, but no alloca.
 | |
| ;
 | |
| ; CHECK-LABEL: @test12(
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [3 x i8]
 | |
|   %b = alloca [3 x i8]
 | |
| ; CHECK-NOT: alloca
 | |
| 
 | |
|   %a0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
 | |
|   store i8 0, i8* %a0ptr
 | |
|   %a1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
 | |
|   store i8 0, i8* %a1ptr
 | |
|   %a2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
 | |
|   store i8 0, i8* %a2ptr
 | |
|   %aiptr = bitcast [3 x i8]* %a to i24*
 | |
|   %ai = load i24, i24* %aiptr
 | |
| ; CHECK-NOT: store
 | |
| ; CHECK-NOT: load
 | |
| ; CHECK:      %[[ext2:.*]] = zext i8 0 to i24
 | |
| ; CHECK-NEXT: %[[shift2:.*]] = shl i24 %[[ext2]], 16
 | |
| ; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, 65535
 | |
| ; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[shift2]]
 | |
| ; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24
 | |
| ; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8
 | |
| ; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281
 | |
| ; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]]
 | |
| ; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24
 | |
| ; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], -256
 | |
| ; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[ext0]]
 | |
| 
 | |
|   %biptr = bitcast [3 x i8]* %b to i24*
 | |
|   store i24 %ai, i24* %biptr
 | |
|   %b0ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 0
 | |
|   %b0 = load i8, i8* %b0ptr
 | |
|   %b1ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 1
 | |
|   %b1 = load i8, i8* %b1ptr
 | |
|   %b2ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 2
 | |
|   %b2 = load i8, i8* %b2ptr
 | |
| ; CHECK-NOT: store
 | |
| ; CHECK-NOT: load
 | |
| ; CHECK:      %[[trunc0:.*]] = trunc i24 %[[insert0]] to i8
 | |
| ; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8
 | |
| ; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8
 | |
| ; CHECK-NEXT: %[[shift2:.*]] = lshr i24 %[[insert0]], 16
 | |
| ; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[shift2]] to i8
 | |
| 
 | |
|   %bsum0 = add i8 %b0, %b1
 | |
|   %bsum1 = add i8 %bsum0, %b2
 | |
|   ret i8 %bsum1
 | |
| ; CHECK:      %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]]
 | |
| ; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]]
 | |
| ; CHECK-NEXT: ret i8 %[[sum1]]
 | |
| }
 | |
| 
 | |
| define i32 @test13() {
 | |
| ; Ensure we don't crash and handle undefined loads that straddle the end of the
 | |
| ; allocation.
 | |
| ; CHECK-LABEL: @test13(
 | |
| ; CHECK:      %[[value:.*]] = zext i8 0 to i16
 | |
| ; CHECK-NEXT: %[[ret:.*]] = zext i16 %[[value]] to i32
 | |
| ; CHECK-NEXT: ret i32 %[[ret]]
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [3 x i8], align 2
 | |
|   %b0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0
 | |
|   store i8 0, i8* %b0ptr
 | |
|   %b1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1
 | |
|   store i8 0, i8* %b1ptr
 | |
|   %b2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2
 | |
|   store i8 0, i8* %b2ptr
 | |
|   %iptrcast = bitcast [3 x i8]* %a to i16*
 | |
|   %iptrgep = getelementptr i16, i16* %iptrcast, i64 1
 | |
|   %i = load i16, i16* %iptrgep
 | |
|   %ret = zext i16 %i to i32
 | |
|   ret i32 %ret
 | |
| }
 | |
| 
 | |
| %test14.struct = type { [3 x i32] }
 | |
| 
 | |
| define void @test14(...) nounwind uwtable {
 | |
| ; This is a strange case where we split allocas into promotable partitions, but
 | |
| ; also gain enough data to prove they must be dead allocas due to GEPs that walk
 | |
| ; across two adjacent allocas. Test that we don't try to promote or otherwise
 | |
| ; do bad things to these dead allocas, they should just be removed.
 | |
| ; CHECK-LABEL: @test14(
 | |
| ; CHECK-NEXT: entry:
 | |
| ; CHECK-NEXT: ret void
 | |
| 
 | |
| entry:
 | |
|   %a = alloca %test14.struct
 | |
|   %p = alloca %test14.struct*
 | |
|   %0 = bitcast %test14.struct* %a to i8*
 | |
|   %1 = getelementptr i8, i8* %0, i64 12
 | |
|   %2 = bitcast i8* %1 to %test14.struct*
 | |
|   %3 = getelementptr inbounds %test14.struct, %test14.struct* %2, i32 0, i32 0
 | |
|   %4 = getelementptr inbounds %test14.struct, %test14.struct* %a, i32 0, i32 0
 | |
|   %5 = bitcast [3 x i32]* %3 to i32*
 | |
|   %6 = bitcast [3 x i32]* %4 to i32*
 | |
|   %7 = load i32, i32* %6, align 4
 | |
|   store i32 %7, i32* %5, align 4
 | |
|   %8 = getelementptr inbounds i32, i32* %5, i32 1
 | |
|   %9 = getelementptr inbounds i32, i32* %6, i32 1
 | |
|   %10 = load i32, i32* %9, align 4
 | |
|   store i32 %10, i32* %8, align 4
 | |
|   %11 = getelementptr inbounds i32, i32* %5, i32 2
 | |
|   %12 = getelementptr inbounds i32, i32* %6, i32 2
 | |
|   %13 = load i32, i32* %12, align 4
 | |
|   store i32 %13, i32* %11, align 4
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define i32 @test15(i1 %flag) nounwind uwtable {
 | |
| ; Ensure that when there are dead instructions using an alloca that are not
 | |
| ; loads or stores we still delete them during partitioning and rewriting.
 | |
| ; Otherwise we'll go to promote them while thy still have unpromotable uses.
 | |
| ; CHECK-LABEL: @test15(
 | |
| ; CHECK-NEXT: entry:
 | |
| ; CHECK-NEXT:   br label %loop
 | |
| ; CHECK:      loop:
 | |
| ; CHECK-NEXT:   br label %loop
 | |
| 
 | |
| entry:
 | |
|   %l0 = alloca i64
 | |
|   %l1 = alloca i64
 | |
|   %l2 = alloca i64
 | |
|   %l3 = alloca i64
 | |
|   br label %loop
 | |
| 
 | |
| loop:
 | |
|   %dead3 = phi i8* [ %gep3, %loop ], [ null, %entry ]
 | |
| 
 | |
|   store i64 1879048192, i64* %l0, align 8
 | |
|   %bc0 = bitcast i64* %l0 to i8*
 | |
|   %gep0 = getelementptr i8, i8* %bc0, i64 3
 | |
|   %dead0 = bitcast i8* %gep0 to i64*
 | |
| 
 | |
|   store i64 1879048192, i64* %l1, align 8
 | |
|   %bc1 = bitcast i64* %l1 to i8*
 | |
|   %gep1 = getelementptr i8, i8* %bc1, i64 3
 | |
|   %dead1 = getelementptr i8, i8* %gep1, i64 1
 | |
| 
 | |
|   store i64 1879048192, i64* %l2, align 8
 | |
|   %bc2 = bitcast i64* %l2 to i8*
 | |
|   %gep2.1 = getelementptr i8, i8* %bc2, i64 1
 | |
|   %gep2.2 = getelementptr i8, i8* %bc2, i64 3
 | |
|   ; Note that this select should get visited multiple times due to using two
 | |
|   ; different GEPs off the same alloca. We should only delete it once.
 | |
|   %dead2 = select i1 %flag, i8* %gep2.1, i8* %gep2.2
 | |
| 
 | |
|   store i64 1879048192, i64* %l3, align 8
 | |
|   %bc3 = bitcast i64* %l3 to i8*
 | |
|   %gep3 = getelementptr i8, i8* %bc3, i64 3
 | |
| 
 | |
|   br label %loop
 | |
| }
 | |
| 
 | |
| define void @test16(i8* %src, i8* %dst) {
 | |
| ; Ensure that we can promote an alloca of [3 x i8] to an i24 SSA value.
 | |
| ; CHECK-LABEL: @test16(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK:      %[[srccast:.*]] = bitcast i8* %src to i24*
 | |
| ; CHECK-NEXT: load i24, i24* %[[srccast]]
 | |
| ; CHECK-NEXT: %[[dstcast:.*]] = bitcast i8* %dst to i24*
 | |
| ; CHECK-NEXT: store i24 0, i24* %[[dstcast]]
 | |
| ; CHECK-NEXT: ret void
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [3 x i8]
 | |
|   %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 false)
 | |
|   %cast = bitcast i8* %ptr to i24*
 | |
|   store i24 0, i24* %cast
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 false)
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @test17(i8* %src, i8* %dst) {
 | |
| ; Ensure that we can rewrite unpromotable memcpys which extend past the end of
 | |
| ; the alloca.
 | |
| ; CHECK-LABEL: @test17(
 | |
| ; CHECK:      %[[a:.*]] = alloca [3 x i8]
 | |
| ; CHECK-NEXT: %[[ptr:.*]] = getelementptr [3 x i8], [3 x i8]* %[[a]], i32 0, i32 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[ptr]], i8* %src,
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[ptr]],
 | |
| ; CHECK-NEXT: ret void
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [3 x i8]
 | |
|   %ptr = getelementptr [3 x i8], [3 x i8]* %a, i32 0, i32 0
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 4, i32 1, i1 true)
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 4, i32 1, i1 true)
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @test18(i8* %src, i8* %dst, i32 %size) {
 | |
| ; Preserve transfer instrinsics with a variable size, even if they overlap with
 | |
| ; fixed size operations. Further, continue to split and promote allocas preceding
 | |
| ; the variable sized intrinsic.
 | |
| ; CHECK-LABEL: @test18(
 | |
| ; CHECK:      %[[a:.*]] = alloca [34 x i8]
 | |
| ; CHECK:      %[[srcgep1:.*]] = getelementptr inbounds i8, i8* %src, i64 4
 | |
| ; CHECK-NEXT: %[[srccast1:.*]] = bitcast i8* %[[srcgep1]] to i32*
 | |
| ; CHECK-NEXT: %[[srcload:.*]] = load i32, i32* %[[srccast1]]
 | |
| ; CHECK-NEXT: %[[agep1:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %[[agep1]], i8* %src, i32 %size,
 | |
| ; CHECK-NEXT: %[[agep2:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memset.p0i8.i32(i8* %[[agep2]], i8 42, i32 %size,
 | |
| ; CHECK-NEXT: %[[dstcast1:.*]] = bitcast i8* %dst to i32*
 | |
| ; CHECK-NEXT: store i32 42, i32* %[[dstcast1]]
 | |
| ; CHECK-NEXT: %[[dstgep1:.*]] = getelementptr inbounds i8, i8* %dst, i64 4
 | |
| ; CHECK-NEXT: %[[dstcast2:.*]] = bitcast i8* %[[dstgep1]] to i32*
 | |
| ; CHECK-NEXT: store i32 %[[srcload]], i32* %[[dstcast2]]
 | |
| ; CHECK-NEXT: %[[agep3:.*]] = getelementptr inbounds [34 x i8], [34 x i8]* %[[a]], i64 0, i64 0
 | |
| ; CHECK-NEXT: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %[[agep3]], i32 %size,
 | |
| ; CHECK-NEXT: ret void
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [42 x i8]
 | |
|   %ptr = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 0
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 false)
 | |
|   %ptr2 = getelementptr [42 x i8], [42 x i8]* %a, i32 0, i32 8
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr2, i8* %src, i32 %size, i32 1, i1 false)
 | |
|   call void @llvm.memset.p0i8.i32(i8* %ptr2, i8 42, i32 %size, i32 1, i1 false)
 | |
|   %cast = bitcast i8* %ptr to i32*
 | |
|   store i32 42, i32* %cast
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 false)
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr2, i32 %size, i32 1, i1 false)
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| %opaque = type opaque
 | |
| 
 | |
| define i32 @test19(%opaque* %x) {
 | |
| ; This input will cause us to try to compute a natural GEP when rewriting
 | |
| ; pointers in such a way that we try to GEP through the opaque type. Previously,
 | |
| ; a check for an unsized type was missing and this crashed. Ensure it behaves
 | |
| ; reasonably now.
 | |
| ; CHECK-LABEL: @test19(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret i32 undef
 | |
| 
 | |
| entry:
 | |
|   %a = alloca { i64, i8* }
 | |
|   %cast1 = bitcast %opaque* %x to i8*
 | |
|   %cast2 = bitcast { i64, i8* }* %a to i8*
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast2, i8* %cast1, i32 16, i32 1, i1 false)
 | |
|   %gep = getelementptr inbounds { i64, i8* }, { i64, i8* }* %a, i32 0, i32 0
 | |
|   %val = load i64, i64* %gep
 | |
|   ret i32 undef
 | |
| }
 | |
| 
 | |
| define i32 @test20() {
 | |
| ; Ensure we can track negative offsets (before the beginning of the alloca) and
 | |
| ; negative relative offsets from offsets starting past the end of the alloca.
 | |
| ; CHECK-LABEL: @test20(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: %[[sum1:.*]] = add i32 1, 2
 | |
| ; CHECK: %[[sum2:.*]] = add i32 %[[sum1]], 3
 | |
| ; CHECK: ret i32 %[[sum2]]
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [3 x i32]
 | |
|   %gep1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 0
 | |
|   store i32 1, i32* %gep1
 | |
|   %gep2.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 -2
 | |
|   %gep2.2 = getelementptr i32, i32* %gep2.1, i32 3
 | |
|   store i32 2, i32* %gep2.2
 | |
|   %gep3.1 = getelementptr [3 x i32], [3 x i32]* %a, i32 0, i32 14
 | |
|   %gep3.2 = getelementptr i32, i32* %gep3.1, i32 -12
 | |
|   store i32 3, i32* %gep3.2
 | |
| 
 | |
|   %load1 = load i32, i32* %gep1
 | |
|   %load2 = load i32, i32* %gep2.2
 | |
|   %load3 = load i32, i32* %gep3.2
 | |
|   %sum1 = add i32 %load1, %load2
 | |
|   %sum2 = add i32 %sum1, %load3
 | |
|   ret i32 %sum2
 | |
| }
 | |
| 
 | |
| declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64, i32, i1) nounwind
 | |
| 
 | |
| define i8 @test21() {
 | |
| ; Test allocations and offsets which border on overflow of the int64_t used
 | |
| ; internally. This is really awkward to really test as LLVM doesn't really
 | |
| ; support such extreme constructs cleanly.
 | |
| ; CHECK-LABEL: @test21(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: or i8 -1, -1
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [2305843009213693951 x i8]
 | |
|   %gep0 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 2305843009213693949
 | |
|   store i8 255, i8* %gep0
 | |
|   %gep1 = getelementptr [2305843009213693951 x i8], [2305843009213693951 x i8]* %a, i64 0, i64 -9223372036854775807
 | |
|   %gep2 = getelementptr i8, i8* %gep1, i64 -1
 | |
|   call void @llvm.memset.p0i8.i64(i8* %gep2, i8 0, i64 18446744073709551615, i32 1, i1 false)
 | |
|   %gep3 = getelementptr i8, i8* %gep1, i64 9223372036854775807
 | |
|   %gep4 = getelementptr i8, i8* %gep3, i64 9223372036854775807
 | |
|   %gep5 = getelementptr i8, i8* %gep4, i64 -6917529027641081857
 | |
|   store i8 255, i8* %gep5
 | |
|   %cast1 = bitcast i8* %gep4 to i32*
 | |
|   store i32 0, i32* %cast1
 | |
|   %load = load i8, i8* %gep0
 | |
|   %gep6 = getelementptr i8, i8* %gep0, i32 1
 | |
|   %load2 = load i8, i8* %gep6
 | |
|   %result = or i8 %load, %load2
 | |
|   ret i8 %result
 | |
| }
 | |
| 
 | |
| %PR13916.struct = type { i8 }
 | |
| 
 | |
| define void @PR13916.1() {
 | |
| ; Ensure that we handle overlapping memcpy intrinsics correctly, especially in
 | |
| ; the case where there is a directly identical value for both source and dest.
 | |
| ; CHECK: @PR13916.1
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret void
 | |
| 
 | |
| entry:
 | |
|   %a = alloca i8
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a, i8* %a, i32 1, i32 1, i1 false)
 | |
|   %tmp2 = load i8, i8* %a
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @PR13916.2() {
 | |
| ; Check whether we continue to handle them correctly when they start off with
 | |
| ; different pointer value chains, but during rewriting we coalesce them into the
 | |
| ; same value.
 | |
| ; CHECK: @PR13916.2
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret void
 | |
| 
 | |
| entry:
 | |
|   %a = alloca %PR13916.struct, align 1
 | |
|   br i1 undef, label %if.then, label %if.end
 | |
| 
 | |
| if.then:
 | |
|   %tmp0 = bitcast %PR13916.struct* %a to i8*
 | |
|   %tmp1 = bitcast %PR13916.struct* %a to i8*
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %tmp0, i8* %tmp1, i32 1, i32 1, i1 false)
 | |
|   br label %if.end
 | |
| 
 | |
| if.end:
 | |
|   %gep = getelementptr %PR13916.struct, %PR13916.struct* %a, i32 0, i32 0
 | |
|   %tmp2 = load i8, i8* %gep
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @PR13990() {
 | |
| ; Ensure we can handle cases where processing one alloca causes the other
 | |
| ; alloca to become dead and get deleted. This might crash or fail under
 | |
| ; Valgrind if we regress.
 | |
| ; CHECK-LABEL: @PR13990(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: unreachable
 | |
| ; CHECK: unreachable
 | |
| 
 | |
| entry:
 | |
|   %tmp1 = alloca i8*
 | |
|   %tmp2 = alloca i8*
 | |
|   br i1 undef, label %bb1, label %bb2
 | |
| 
 | |
| bb1:
 | |
|   store i8* undef, i8** %tmp2
 | |
|   br i1 undef, label %bb2, label %bb3
 | |
| 
 | |
| bb2:
 | |
|   %tmp50 = select i1 undef, i8** %tmp2, i8** %tmp1
 | |
|   br i1 undef, label %bb3, label %bb4
 | |
| 
 | |
| bb3:
 | |
|   unreachable
 | |
| 
 | |
| bb4:
 | |
|   unreachable
 | |
| }
 | |
| 
 | |
| define double @PR13969(double %x) {
 | |
| ; Check that we detect when promotion will un-escape an alloca and iterate to
 | |
| ; re-try running SROA over that alloca. Without that, the two allocas that are
 | |
| ; stored into a dead alloca don't get rewritten and promoted.
 | |
| ; CHECK-LABEL: @PR13969(
 | |
| 
 | |
| entry:
 | |
|   %a = alloca double
 | |
|   %b = alloca double*
 | |
|   %c = alloca double
 | |
| ; CHECK-NOT: alloca
 | |
| 
 | |
|   store double %x, double* %a
 | |
|   store double* %c, double** %b
 | |
|   store double* %a, double** %b
 | |
|   store double %x, double* %c
 | |
|   %ret = load double, double* %a
 | |
| ; CHECK-NOT: store
 | |
| ; CHECK-NOT: load
 | |
| 
 | |
|   ret double %ret
 | |
| ; CHECK: ret double %x
 | |
| }
 | |
| 
 | |
| %PR14034.struct = type { { {} }, i32, %PR14034.list }
 | |
| %PR14034.list = type { %PR14034.list*, %PR14034.list* }
 | |
| 
 | |
| define void @PR14034() {
 | |
| ; This test case tries to form GEPs into the empty leading struct members, and
 | |
| ; subsequently crashed (under valgrind) before we fixed the PR. The important
 | |
| ; thing is to handle empty structs gracefully.
 | |
| ; CHECK-LABEL: @PR14034(
 | |
| 
 | |
| entry:
 | |
|   %a = alloca %PR14034.struct
 | |
|   %list = getelementptr %PR14034.struct, %PR14034.struct* %a, i32 0, i32 2
 | |
|   %prev = getelementptr %PR14034.list, %PR14034.list* %list, i32 0, i32 1
 | |
|   store %PR14034.list* undef, %PR14034.list** %prev
 | |
|   %cast0 = bitcast %PR14034.struct* undef to i8*
 | |
|   %cast1 = bitcast %PR14034.struct* %a to i8*
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast0, i8* %cast1, i32 12, i32 0, i1 false)
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define i32 @test22(i32 %x) {
 | |
| ; Test that SROA and promotion is not confused by a grab bax mixture of pointer
 | |
| ; types involving wrapper aggregates and zero-length aggregate members.
 | |
| ; CHECK-LABEL: @test22(
 | |
| 
 | |
| entry:
 | |
|   %a1 = alloca { { [1 x { i32 }] } }
 | |
|   %a2 = alloca { {}, { float }, [0 x i8] }
 | |
|   %a3 = alloca { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }
 | |
| ; CHECK-NOT: alloca
 | |
| 
 | |
|   %wrap1 = insertvalue [1 x { i32 }] undef, i32 %x, 0, 0
 | |
|   %gep1 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0, i32 0
 | |
|   store [1 x { i32 }] %wrap1, [1 x { i32 }]* %gep1
 | |
| 
 | |
|   %gep2 = getelementptr { { [1 x { i32 }] } }, { { [1 x { i32 }] } }* %a1, i32 0, i32 0
 | |
|   %ptrcast1 = bitcast { [1 x { i32 }] }* %gep2 to { [1 x { float }] }*
 | |
|   %load1 = load { [1 x { float }] }, { [1 x { float }] }* %ptrcast1
 | |
|   %unwrap1 = extractvalue { [1 x { float }] } %load1, 0, 0
 | |
| 
 | |
|   %wrap2 = insertvalue { {}, { float }, [0 x i8] } undef, { float } %unwrap1, 1
 | |
|   store { {}, { float }, [0 x i8] } %wrap2, { {}, { float }, [0 x i8] }* %a2
 | |
| 
 | |
|   %gep3 = getelementptr { {}, { float }, [0 x i8] }, { {}, { float }, [0 x i8] }* %a2, i32 0, i32 1, i32 0
 | |
|   %ptrcast2 = bitcast float* %gep3 to <4 x i8>*
 | |
|   %load3 = load <4 x i8>, <4 x i8>* %ptrcast2
 | |
|   %valcast1 = bitcast <4 x i8> %load3 to i32
 | |
| 
 | |
|   %wrap3 = insertvalue [1 x [1 x i32]] undef, i32 %valcast1, 0, 0
 | |
|   %wrap4 = insertvalue { [1 x [1 x i32]], {} } undef, [1 x [1 x i32]] %wrap3, 0
 | |
|   %gep4 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1
 | |
|   %ptrcast3 = bitcast { [0 x double], [1 x [1 x <4 x i8>]], {} }* %gep4 to { [1 x [1 x i32]], {} }*
 | |
|   store { [1 x [1 x i32]], {} } %wrap4, { [1 x [1 x i32]], {} }* %ptrcast3
 | |
| 
 | |
|   %gep5 = getelementptr { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }, { [0 x i8], { [0 x double], [1 x [1 x <4 x i8>]], {} }, { { {} } } }* %a3, i32 0, i32 1, i32 1, i32 0
 | |
|   %ptrcast4 = bitcast [1 x <4 x i8>]* %gep5 to { {}, float, {} }*
 | |
|   %load4 = load { {}, float, {} }, { {}, float, {} }* %ptrcast4
 | |
|   %unwrap2 = extractvalue { {}, float, {} } %load4, 1
 | |
|   %valcast2 = bitcast float %unwrap2 to i32
 | |
| 
 | |
|   ret i32 %valcast2
 | |
| ; CHECK: ret i32
 | |
| }
 | |
| 
 | |
| define void @PR14059.1(double* %d) {
 | |
| ; In PR14059 a peculiar construct was identified as something that is used
 | |
| ; pervasively in ARM's ABI-calling-convention lowering: the passing of a struct
 | |
| ; of doubles via an array of i32 in order to place the data into integer
 | |
| ; registers. This in turn was missed as an optimization by SROA due to the
 | |
| ; partial loads and stores of integers to the double alloca we were trying to
 | |
| ; form and promote. The solution is to widen the integer operations to be
 | |
| ; whole-alloca operations, and perform the appropriate bitcasting on the
 | |
| ; *values* rather than the pointers. When this works, partial reads and writes
 | |
| ; via integers can be promoted away.
 | |
| ; CHECK: @PR14059.1
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret void
 | |
| 
 | |
| entry:
 | |
|   %X.sroa.0.i = alloca double, align 8
 | |
|   %0 = bitcast double* %X.sroa.0.i to i8*
 | |
|   call void @llvm.lifetime.start(i64 -1, i8* %0)
 | |
| 
 | |
|   ; Store to the low 32-bits...
 | |
|   %X.sroa.0.0.cast2.i = bitcast double* %X.sroa.0.i to i32*
 | |
|   store i32 0, i32* %X.sroa.0.0.cast2.i, align 8
 | |
| 
 | |
|   ; Also use a memset to the middle 32-bits for fun.
 | |
|   %X.sroa.0.2.raw_idx2.i = getelementptr inbounds i8, i8* %0, i32 2
 | |
|   call void @llvm.memset.p0i8.i64(i8* %X.sroa.0.2.raw_idx2.i, i8 0, i64 4, i32 1, i1 false)
 | |
| 
 | |
|   ; Or a memset of the whole thing.
 | |
|   call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 8, i32 1, i1 false)
 | |
| 
 | |
|   ; Write to the high 32-bits with a memcpy.
 | |
|   %X.sroa.0.4.raw_idx4.i = getelementptr inbounds i8, i8* %0, i32 4
 | |
|   %d.raw = bitcast double* %d to i8*
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %X.sroa.0.4.raw_idx4.i, i8* %d.raw, i32 4, i32 1, i1 false)
 | |
| 
 | |
|   ; Store to the high 32-bits...
 | |
|   %X.sroa.0.4.cast5.i = bitcast i8* %X.sroa.0.4.raw_idx4.i to i32*
 | |
|   store i32 1072693248, i32* %X.sroa.0.4.cast5.i, align 4
 | |
| 
 | |
|   ; Do the actual math...
 | |
|   %X.sroa.0.0.load1.i = load double, double* %X.sroa.0.i, align 8
 | |
|   %accum.real.i = load double, double* %d, align 8
 | |
|   %add.r.i = fadd double %accum.real.i, %X.sroa.0.0.load1.i
 | |
|   store double %add.r.i, double* %d, align 8
 | |
|   call void @llvm.lifetime.end(i64 -1, i8* %0)
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define i64 @PR14059.2({ float, float }* %phi) {
 | |
| ; Check that SROA can split up alloca-wide integer loads and stores where the
 | |
| ; underlying alloca has smaller components that are accessed independently. This
 | |
| ; shows up particularly with ABI lowering patterns coming out of Clang that rely
 | |
| ; on the particular register placement of a single large integer return value.
 | |
| ; CHECK: @PR14059.2
 | |
| 
 | |
| entry:
 | |
|   %retval = alloca { float, float }, align 4
 | |
|   ; CHECK-NOT: alloca
 | |
| 
 | |
|   %0 = bitcast { float, float }* %retval to i64*
 | |
|   store i64 0, i64* %0
 | |
|   ; CHECK-NOT: store
 | |
| 
 | |
|   %phi.realp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
 | |
|   %phi.real = load float, float* %phi.realp
 | |
|   %phi.imagp = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
 | |
|   %phi.imag = load float, float* %phi.imagp
 | |
|   ; CHECK:      %[[realp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 0
 | |
|   ; CHECK-NEXT: %[[real:.*]] = load float, float* %[[realp]]
 | |
|   ; CHECK-NEXT: %[[imagp:.*]] = getelementptr inbounds { float, float }, { float, float }* %phi, i32 0, i32 1
 | |
|   ; CHECK-NEXT: %[[imag:.*]] = load float, float* %[[imagp]]
 | |
| 
 | |
|   %real = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 0
 | |
|   %imag = getelementptr inbounds { float, float }, { float, float }* %retval, i32 0, i32 1
 | |
|   store float %phi.real, float* %real
 | |
|   store float %phi.imag, float* %imag
 | |
|   ; CHECK-NEXT: %[[real_convert:.*]] = bitcast float %[[real]] to i32
 | |
|   ; CHECK-NEXT: %[[imag_convert:.*]] = bitcast float %[[imag]] to i32
 | |
|   ; CHECK-NEXT: %[[imag_ext:.*]] = zext i32 %[[imag_convert]] to i64
 | |
|   ; CHECK-NEXT: %[[imag_shift:.*]] = shl i64 %[[imag_ext]], 32
 | |
|   ; CHECK-NEXT: %[[imag_mask:.*]] = and i64 undef, 4294967295
 | |
|   ; CHECK-NEXT: %[[imag_insert:.*]] = or i64 %[[imag_mask]], %[[imag_shift]]
 | |
|   ; CHECK-NEXT: %[[real_ext:.*]] = zext i32 %[[real_convert]] to i64
 | |
|   ; CHECK-NEXT: %[[real_mask:.*]] = and i64 %[[imag_insert]], -4294967296
 | |
|   ; CHECK-NEXT: %[[real_insert:.*]] = or i64 %[[real_mask]], %[[real_ext]]
 | |
| 
 | |
|   %1 = load i64, i64* %0, align 1
 | |
|   ret i64 %1
 | |
|   ; CHECK-NEXT: ret i64 %[[real_insert]]
 | |
| }
 | |
| 
 | |
| define void @PR14105({ [16 x i8] }* %ptr) {
 | |
| ; Ensure that when rewriting the GEP index '-1' for this alloca we preserve is
 | |
| ; sign as negative. We use a volatile memcpy to ensure promotion never actually
 | |
| ; occurs.
 | |
| ; CHECK-LABEL: @PR14105(
 | |
| 
 | |
| entry:
 | |
|   %a = alloca { [16 x i8] }, align 8
 | |
| ; CHECK: alloca [16 x i8], align 8
 | |
| 
 | |
|   %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1
 | |
| ; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] }* %ptr, i64 -1, i32 0, i64 0
 | |
| 
 | |
|   %cast1 = bitcast { [16 x i8 ] }* %gep to i8*
 | |
|   %cast2 = bitcast { [16 x i8 ] }* %a to i8*
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
 | |
|   ret void
 | |
| ; CHECK: ret
 | |
| }
 | |
| 
 | |
| define void @PR14105_as1({ [16 x i8] } addrspace(1)* %ptr) {
 | |
| ; Make sure this the right address space pointer is used for type check.
 | |
| ; CHECK-LABEL: @PR14105_as1(
 | |
| 
 | |
| entry:
 | |
|   %a = alloca { [16 x i8] }, align 8
 | |
| ; CHECK: alloca [16 x i8], align 8
 | |
| 
 | |
|   %gep = getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i64 -1
 | |
| ; CHECK-NEXT: getelementptr inbounds { [16 x i8] }, { [16 x i8] } addrspace(1)* %ptr, i16 -1, i32 0, i16 0
 | |
| 
 | |
|   %cast1 = bitcast { [16 x i8 ] } addrspace(1)* %gep to i8 addrspace(1)*
 | |
|   %cast2 = bitcast { [16 x i8 ] }* %a to i8*
 | |
|   call void @llvm.memcpy.p1i8.p0i8.i32(i8 addrspace(1)* %cast1, i8* %cast2, i32 16, i32 8, i1 true)
 | |
|   ret void
 | |
| ; CHECK: ret
 | |
| }
 | |
| 
 | |
| define void @PR14465() {
 | |
| ; Ensure that we don't crash when analyzing a alloca larger than the maximum
 | |
| ; integer type width (MAX_INT_BITS) supported by llvm (1048576*32 > (1<<23)-1).
 | |
| ; CHECK-LABEL: @PR14465(
 | |
| 
 | |
|   %stack = alloca [1048576 x i32], align 16
 | |
| ; CHECK: alloca [1048576 x i32]
 | |
|   %cast = bitcast [1048576 x i32]* %stack to i8*
 | |
|   call void @llvm.memset.p0i8.i64(i8* %cast, i8 -2, i64 4194304, i32 16, i1 false)
 | |
|   ret void
 | |
| ; CHECK: ret
 | |
| }
 | |
| 
 | |
| define void @PR14548(i1 %x) {
 | |
| ; Handle a mixture of i1 and i8 loads and stores to allocas. This particular
 | |
| ; pattern caused crashes and invalid output in the PR, and its nature will
 | |
| ; trigger a mixture in several permutations as we resolve each alloca
 | |
| ; iteratively.
 | |
| ; Note that we don't do a particularly good *job* of handling these mixtures,
 | |
| ; but the hope is that this is very rare.
 | |
| ; CHECK-LABEL: @PR14548(
 | |
| 
 | |
| entry:
 | |
|   %a = alloca <{ i1 }>, align 8
 | |
|   %b = alloca <{ i1 }>, align 8
 | |
| ; CHECK:      %[[a:.*]] = alloca i8, align 8
 | |
| ; CHECK-NEXT: %[[b:.*]] = alloca i8, align 8
 | |
| 
 | |
|   %b.i1 = bitcast <{ i1 }>* %b to i1*
 | |
|   store i1 %x, i1* %b.i1, align 8
 | |
|   %b.i8 = bitcast <{ i1 }>* %b to i8*
 | |
|   %foo = load i8, i8* %b.i8, align 1
 | |
| ; CHECK-NEXT: %[[b_cast:.*]] = bitcast i8* %[[b]] to i1*
 | |
| ; CHECK-NEXT: store i1 %x, i1* %[[b_cast]], align 8
 | |
| ; CHECK-NEXT: {{.*}} = load i8, i8* %[[b]], align 8
 | |
| 
 | |
|   %a.i8 = bitcast <{ i1 }>* %a to i8*
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %a.i8, i8* %b.i8, i32 1, i32 1, i1 false) nounwind
 | |
|   %bar = load i8, i8* %a.i8, align 1
 | |
|   %a.i1 = getelementptr inbounds <{ i1 }>, <{ i1 }>* %a, i32 0, i32 0
 | |
|   %baz = load i1, i1* %a.i1, align 1
 | |
| ; CHECK-NEXT: %[[copy:.*]] = load i8, i8* %[[b]], align 8
 | |
| ; CHECK-NEXT: store i8 %[[copy]], i8* %[[a]], align 8
 | |
| ; CHECK-NEXT: {{.*}} = load i8, i8* %[[a]], align 8
 | |
| ; CHECK-NEXT: %[[a_cast:.*]] = bitcast i8* %[[a]] to i1*
 | |
| ; CHECK-NEXT: {{.*}} = load i1, i1* %[[a_cast]], align 8
 | |
| 
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define <3 x i8> @PR14572.1(i32 %x) {
 | |
| ; Ensure that a split integer store which is wider than the type size of the
 | |
| ; alloca (relying on the alloc size padding) doesn't trigger an assert.
 | |
| ; CHECK: @PR14572.1
 | |
| 
 | |
| entry:
 | |
|   %a = alloca <3 x i8>, align 4
 | |
| ; CHECK-NOT: alloca
 | |
| 
 | |
|   %cast = bitcast <3 x i8>* %a to i32*
 | |
|   store i32 %x, i32* %cast, align 1
 | |
|   %y = load <3 x i8>, <3 x i8>* %a, align 4
 | |
|   ret <3 x i8> %y
 | |
| ; CHECK: ret <3 x i8>
 | |
| }
 | |
| 
 | |
| define i32 @PR14572.2(<3 x i8> %x) {
 | |
| ; Ensure that a split integer load which is wider than the type size of the
 | |
| ; alloca (relying on the alloc size padding) doesn't trigger an assert.
 | |
| ; CHECK: @PR14572.2
 | |
| 
 | |
| entry:
 | |
|   %a = alloca <3 x i8>, align 4
 | |
| ; CHECK-NOT: alloca
 | |
| 
 | |
|   store <3 x i8> %x, <3 x i8>* %a, align 1
 | |
|   %cast = bitcast <3 x i8>* %a to i32*
 | |
|   %y = load i32, i32* %cast, align 4
 | |
|   ret i32 %y
 | |
| ; CHECK: ret i32
 | |
| }
 | |
| 
 | |
| define i32 @PR14601(i32 %x) {
 | |
| ; Don't try to form a promotable integer alloca when there is a variable length
 | |
| ; memory intrinsic.
 | |
| ; CHECK-LABEL: @PR14601(
 | |
| 
 | |
| entry:
 | |
|   %a = alloca i32
 | |
| ; CHECK: alloca
 | |
| 
 | |
|   %a.i8 = bitcast i32* %a to i8*
 | |
|   call void @llvm.memset.p0i8.i32(i8* %a.i8, i8 0, i32 %x, i32 1, i1 false)
 | |
|   %v = load i32, i32* %a
 | |
|   ret i32 %v
 | |
| }
 | |
| 
 | |
| define void @PR15674(i8* %data, i8* %src, i32 %size) {
 | |
| ; Arrange (via control flow) to have unmerged stores of a particular width to
 | |
| ; an alloca where we incrementally store from the end of the array toward the
 | |
| ; beginning of the array. Ensure that the final integer store, despite being
 | |
| ; convertable to the integer type that we end up promoting this alloca toward,
 | |
| ; doesn't get widened to a full alloca store.
 | |
| ; CHECK-LABEL: @PR15674(
 | |
| 
 | |
| entry:
 | |
|   %tmp = alloca [4 x i8], align 1
 | |
| ; CHECK: alloca i32
 | |
| 
 | |
|   switch i32 %size, label %end [
 | |
|     i32 4, label %bb4
 | |
|     i32 3, label %bb3
 | |
|     i32 2, label %bb2
 | |
|     i32 1, label %bb1
 | |
|   ]
 | |
| 
 | |
| bb4:
 | |
|   %src.gep3 = getelementptr inbounds i8, i8* %src, i32 3
 | |
|   %src.3 = load i8, i8* %src.gep3
 | |
|   %tmp.gep3 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 3
 | |
|   store i8 %src.3, i8* %tmp.gep3
 | |
| ; CHECK: store i8
 | |
| 
 | |
|   br label %bb3
 | |
| 
 | |
| bb3:
 | |
|   %src.gep2 = getelementptr inbounds i8, i8* %src, i32 2
 | |
|   %src.2 = load i8, i8* %src.gep2
 | |
|   %tmp.gep2 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 2
 | |
|   store i8 %src.2, i8* %tmp.gep2
 | |
| ; CHECK: store i8
 | |
| 
 | |
|   br label %bb2
 | |
| 
 | |
| bb2:
 | |
|   %src.gep1 = getelementptr inbounds i8, i8* %src, i32 1
 | |
|   %src.1 = load i8, i8* %src.gep1
 | |
|   %tmp.gep1 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 1
 | |
|   store i8 %src.1, i8* %tmp.gep1
 | |
| ; CHECK: store i8
 | |
| 
 | |
|   br label %bb1
 | |
| 
 | |
| bb1:
 | |
|   %src.gep0 = getelementptr inbounds i8, i8* %src, i32 0
 | |
|   %src.0 = load i8, i8* %src.gep0
 | |
|   %tmp.gep0 = getelementptr inbounds [4 x i8], [4 x i8]* %tmp, i32 0, i32 0
 | |
|   store i8 %src.0, i8* %tmp.gep0
 | |
| ; CHECK: store i8
 | |
| 
 | |
|   br label %end
 | |
| 
 | |
| end:
 | |
|   %tmp.raw = bitcast [4 x i8]* %tmp to i8*
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %data, i8* %tmp.raw, i32 %size, i32 1, i1 false)
 | |
|   ret void
 | |
| ; CHECK: ret void
 | |
| }
 | |
| 
 | |
| define void @PR15805(i1 %a, i1 %b) {
 | |
| ; CHECK-LABEL: @PR15805(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret void
 | |
| 
 | |
|   %c = alloca i64, align 8
 | |
|   %p.0.c = select i1 undef, i64* %c, i64* %c
 | |
|   %cond.in = select i1 undef, i64* %p.0.c, i64* %c
 | |
|   %cond = load i64, i64* %cond.in, align 8
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @PR15805.1(i1 %a, i1 %b) {
 | |
| ; Same as the normal PR15805, but rigged to place the use before the def inside
 | |
| ; of looping unreachable code. This helps ensure that we aren't sensitive to the
 | |
| ; order in which the uses of the alloca are visited.
 | |
| ;
 | |
| ; CHECK-LABEL: @PR15805.1(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret void
 | |
| 
 | |
|   %c = alloca i64, align 8
 | |
|   br label %exit
 | |
| 
 | |
| loop:
 | |
|   %cond.in = select i1 undef, i64* %c, i64* %p.0.c
 | |
|   %p.0.c = select i1 undef, i64* %c, i64* %c
 | |
|   %cond = load i64, i64* %cond.in, align 8
 | |
|   br i1 undef, label %loop, label %exit
 | |
| 
 | |
| exit:
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @PR16651.1(i8* %a) {
 | |
| ; This test case caused a crash due to the volatile memcpy in combination with
 | |
| ; lowering to integer loads and stores of a width other than that of the original
 | |
| ; memcpy.
 | |
| ;
 | |
| ; CHECK-LABEL: @PR16651.1(
 | |
| ; CHECK: alloca i16
 | |
| ; CHECK: alloca i8
 | |
| ; CHECK: alloca i8
 | |
| ; CHECK: unreachable
 | |
| 
 | |
| entry:
 | |
|   %b = alloca i32, align 4
 | |
|   %b.cast = bitcast i32* %b to i8*
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %b.cast, i8* %a, i32 4, i32 4, i1 true)
 | |
|   %b.gep = getelementptr inbounds i8, i8* %b.cast, i32 2
 | |
|   load i8, i8* %b.gep, align 2
 | |
|   unreachable
 | |
| }
 | |
| 
 | |
| define void @PR16651.2() {
 | |
| ; This test case caused a crash due to failing to promote given a select that
 | |
| ; can't be speculated. It shouldn't be promoted, but we missed that fact when
 | |
| ; analyzing whether we could form a vector promotion because that code didn't
 | |
| ; bail on select instructions.
 | |
| ;
 | |
| ; CHECK-LABEL: @PR16651.2(
 | |
| ; CHECK: alloca <2 x float>
 | |
| ; CHECK: ret void
 | |
| 
 | |
| entry:
 | |
|   %tv1 = alloca { <2 x float>, <2 x float> }, align 8
 | |
|   %0 = getelementptr { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1
 | |
|   store <2 x float> undef, <2 x float>* %0, align 8
 | |
|   %1 = getelementptr inbounds { <2 x float>, <2 x float> }, { <2 x float>, <2 x float> }* %tv1, i64 0, i32 1, i64 0
 | |
|   %cond105.in.i.i = select i1 undef, float* null, float* %1
 | |
|   %cond105.i.i = load float, float* %cond105.in.i.i, align 8
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @test23(i32 %x) {
 | |
| ; CHECK-LABEL: @test23(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret void
 | |
| entry:
 | |
|   %a = alloca i32, align 4
 | |
|   store i32 %x, i32* %a, align 4
 | |
|   %gep1 = getelementptr inbounds i32, i32* %a, i32 1
 | |
|   %gep0 = getelementptr inbounds i32, i32* %a, i32 0
 | |
|   %cast1 = bitcast i32* %gep1 to i8*
 | |
|   %cast0 = bitcast i32* %gep0 to i8*
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %cast1, i8* %cast0, i32 4, i32 1, i1 false)
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @PR18615() {
 | |
| ; CHECK-LABEL: @PR18615(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: ret void
 | |
| entry:
 | |
|   %f = alloca i8
 | |
|   %gep = getelementptr i8, i8* %f, i64 -1
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* undef, i8* %gep, i32 1, i32 1, i1 false)
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @test24(i8* %src, i8* %dst) {
 | |
| ; CHECK-LABEL: @test24(
 | |
| ; CHECK: alloca i64, align 16
 | |
| ; CHECK: load volatile i64, i64* %{{[^,]*}}, align 1
 | |
| ; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 16
 | |
| ; CHECK: load volatile i64, i64* %{{[^,]*}}, align 16
 | |
| ; CHECK: store volatile i64 %{{[^,]*}}, i64* %{{[^,]*}}, align 1
 | |
| 
 | |
| entry:
 | |
|   %a = alloca i64, align 16
 | |
|   %ptr = bitcast i64* %a to i8*
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %ptr, i8* %src, i32 8, i32 1, i1 true)
 | |
|   call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dst, i8* %ptr, i32 8, i32 1, i1 true)
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define float @test25() {
 | |
| ; Check that we split up stores in order to promote the smaller SSA values.. These types
 | |
| ; of patterns can arise because LLVM maps small memcpy's to integer load and
 | |
| ; stores. If we get a memcpy of an aggregate (such as C and C++ frontends would
 | |
| ; produce, but so might any language frontend), this will in many cases turn into
 | |
| ; an integer load and store. SROA needs to be extremely powerful to correctly
 | |
| ; handle these cases and form splitable and promotable SSA values.
 | |
| ;
 | |
| ; CHECK-LABEL: @test25(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: %[[F1:.*]] = bitcast i32 0 to float
 | |
| ; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
 | |
| ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
 | |
| ; CHECK: ret float %[[SUM]]
 | |
| 
 | |
| entry:
 | |
|   %a = alloca i64
 | |
|   %b = alloca i64
 | |
|   %a.cast = bitcast i64* %a to [2 x float]*
 | |
|   %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
 | |
|   %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
 | |
|   %b.cast = bitcast i64* %b to [2 x float]*
 | |
|   %b.gep1 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 0
 | |
|   %b.gep2 = getelementptr [2 x float], [2 x float]* %b.cast, i32 0, i32 1
 | |
|   store float 0.0, float* %a.gep1
 | |
|   store float 1.0, float* %a.gep2
 | |
|   %v = load i64, i64* %a
 | |
|   store i64 %v, i64* %b
 | |
|   %f1 = load float, float* %b.gep1
 | |
|   %f2 = load float, float* %b.gep2
 | |
|   %ret = fadd float %f1, %f2
 | |
|   ret float %ret
 | |
| }
 | |
| 
 | |
| @complex1 = external global [2 x float]
 | |
| @complex2 = external global [2 x float]
 | |
| 
 | |
| define void @test26() {
 | |
| ; Test a case of splitting up loads and stores against a globals.
 | |
| ;
 | |
| ; CHECK-LABEL: @test26(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: %[[L1:.*]] = load i32, i32* bitcast
 | |
| ; CHECK: %[[L2:.*]] = load i32, i32* bitcast
 | |
| ; CHECK: %[[F1:.*]] = bitcast i32 %[[L1]] to float
 | |
| ; CHECK: %[[F2:.*]] = bitcast i32 %[[L2]] to float
 | |
| ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
 | |
| ; CHECK: %[[C1:.*]] = bitcast float %[[SUM]] to i32
 | |
| ; CHECK: %[[C2:.*]] = bitcast float %[[SUM]] to i32
 | |
| ; CHECK: store i32 %[[C1]], i32* bitcast
 | |
| ; CHECK: store i32 %[[C2]], i32* bitcast
 | |
| ; CHECK: ret void
 | |
| 
 | |
| entry:
 | |
|   %a = alloca i64
 | |
|   %a.cast = bitcast i64* %a to [2 x float]*
 | |
|   %a.gep1 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 0
 | |
|   %a.gep2 = getelementptr [2 x float], [2 x float]* %a.cast, i32 0, i32 1
 | |
|   %v1 = load i64, i64* bitcast ([2 x float]* @complex1 to i64*)
 | |
|   store i64 %v1, i64* %a
 | |
|   %f1 = load float, float* %a.gep1
 | |
|   %f2 = load float, float* %a.gep2
 | |
|   %sum = fadd float %f1, %f2
 | |
|   store float %sum, float* %a.gep1
 | |
|   store float %sum, float* %a.gep2
 | |
|   %v2 = load i64, i64* %a
 | |
|   store i64 %v2, i64* bitcast ([2 x float]* @complex2 to i64*)
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define float @test27() {
 | |
| ; Another, more complex case of splittable i64 loads and stores. This example
 | |
| ; is a particularly challenging one because the load and store both point into
 | |
| ; the alloca SROA is processing, and they overlap but at an offset.
 | |
| ;
 | |
| ; CHECK-LABEL: @test27(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: %[[F1:.*]] = bitcast i32 0 to float
 | |
| ; CHECK: %[[F2:.*]] = bitcast i32 1065353216 to float
 | |
| ; CHECK: %[[SUM:.*]] = fadd float %[[F1]], %[[F2]]
 | |
| ; CHECK: ret float %[[SUM]]
 | |
| 
 | |
| entry:
 | |
|   %a = alloca [12 x i8]
 | |
|   %gep1 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 0
 | |
|   %gep2 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 4
 | |
|   %gep3 = getelementptr [12 x i8], [12 x i8]* %a, i32 0, i32 8
 | |
|   %iptr1 = bitcast i8* %gep1 to i64*
 | |
|   %iptr2 = bitcast i8* %gep2 to i64*
 | |
|   %fptr1 = bitcast i8* %gep1 to float*
 | |
|   %fptr2 = bitcast i8* %gep2 to float*
 | |
|   %fptr3 = bitcast i8* %gep3 to float*
 | |
|   store float 0.0, float* %fptr1
 | |
|   store float 1.0, float* %fptr2
 | |
|   %v = load i64, i64* %iptr1
 | |
|   store i64 %v, i64* %iptr2
 | |
|   %f1 = load float, float* %fptr2
 | |
|   %f2 = load float, float* %fptr3
 | |
|   %ret = fadd float %f1, %f2
 | |
|   ret float %ret
 | |
| }
 | |
| 
 | |
| define i32 @PR22093() {
 | |
| ; Test that we don't try to pre-split a splittable store of a splittable but
 | |
| ; not pre-splittable load over the same alloca. We "handle" this case when the
 | |
| ; load is unsplittable but unrelated to this alloca by just generating extra
 | |
| ; loads without touching the original, but when the original load was out of
 | |
| ; this alloca we need to handle it specially to ensure the splits line up
 | |
| ; properly for rewriting.
 | |
| ;
 | |
| ; CHECK-LABEL: @PR22093(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: alloca i16
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: store volatile i16
 | |
| 
 | |
| entry:
 | |
|   %a = alloca i32
 | |
|   %a.cast = bitcast i32* %a to i16*
 | |
|   store volatile i16 42, i16* %a.cast
 | |
|   %load = load i32, i32* %a
 | |
|   store i32 %load, i32* %a
 | |
|   ret i32 %load
 | |
| }
 | |
| 
 | |
| define void @PR22093.2() {
 | |
| ; Another way that we end up being unable to split a particular set of loads
 | |
| ; and stores can even have ordering importance. Here we have a load which is
 | |
| ; pre-splittable by itself, and the first store is also compatible. But the
 | |
| ; second store of the load makes the load unsplittable because of a mismatch of
 | |
| ; splits. Because this makes the load unsplittable, we also have to go back and
 | |
| ; remove the first store from the presplit candidates as its load won't be
 | |
| ; presplit.
 | |
| ;
 | |
| ; CHECK-LABEL: @PR22093.2(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: alloca i16
 | |
| ; CHECK-NEXT: alloca i8
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: store volatile i16
 | |
| ; CHECK: store volatile i8
 | |
| 
 | |
| entry:
 | |
|   %a = alloca i64
 | |
|   %a.cast1 = bitcast i64* %a to i32*
 | |
|   %a.cast2 = bitcast i64* %a to i16*
 | |
|   store volatile i16 42, i16* %a.cast2
 | |
|   %load = load i32, i32* %a.cast1
 | |
|   store i32 %load, i32* %a.cast1
 | |
|   %a.gep1 = getelementptr i32, i32* %a.cast1, i32 1
 | |
|   %a.cast3 = bitcast i32* %a.gep1 to i8*
 | |
|   store volatile i8 13, i8* %a.cast3
 | |
|   store i32 %load, i32* %a.gep1
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define void @PR23737() {
 | |
| ; CHECK-LABEL: @PR23737(
 | |
| ; CHECK: store atomic volatile {{.*}} seq_cst
 | |
| ; CHECK: load atomic volatile {{.*}} seq_cst
 | |
| entry:
 | |
|   %ptr = alloca i64, align 8
 | |
|   store atomic volatile i64 0, i64* %ptr seq_cst, align 8
 | |
|   %load = load atomic volatile i64, i64* %ptr seq_cst, align 8
 | |
|   ret void
 | |
| }
 | |
| 
 | |
| define i16 @PR24463() {
 | |
| ; Ensure we can handle a very interesting case where there is an integer-based
 | |
| ; rewrite of the uses of the alloca, but where one of the integers in that is
 | |
| ; a sub-integer that requires extraction *and* extends past the end of the
 | |
| ; alloca. In this case, we should extract the i8 and then zext it to i16.
 | |
| ;
 | |
| ; CHECK-LABEL: @PR24463(
 | |
| ; CHECK-NOT: alloca
 | |
| ; CHECK: %[[SHIFT:.*]] = lshr i16 0, 8
 | |
| ; CHECK: %[[TRUNC:.*]] = trunc i16 %[[SHIFT]] to i8
 | |
| ; CHECK: %[[ZEXT:.*]] = zext i8 %[[TRUNC]] to i16
 | |
| ; CHECK: ret i16 %[[ZEXT]]
 | |
| entry:
 | |
|   %alloca = alloca [3 x i8]
 | |
|   %gep1 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 1
 | |
|   %bc1 = bitcast i8* %gep1 to i16*
 | |
|   store i16 0, i16* %bc1
 | |
|   %gep2 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 2
 | |
|   %bc2 = bitcast i8* %gep2 to i16*
 | |
|   %load = load i16, i16* %bc2
 | |
|   ret i16 %load
 | |
| }
 |