485 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			485 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- AMDGPURewriteOutArgumentsPass.cpp - Create struct returns ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file This pass attempts to replace out argument usage with a return of a
 | |
| /// struct.
 | |
| ///
 | |
| /// We can support returning a lot of values directly in registers, but
 | |
| /// idiomatic C code frequently uses a pointer argument to return a second value
 | |
| /// rather than returning a struct by value. GPU stack access is also quite
 | |
| /// painful, so we want to avoid that if possible. Passing a stack object
 | |
| /// pointer to a function also requires an additional address expansion code
 | |
| /// sequence to convert the pointer to be relative to the kernel's scratch wave
 | |
| /// offset register since the callee doesn't know what stack frame the incoming
 | |
| /// pointer is relative to.
 | |
| ///
 | |
| /// The goal is to try rewriting code that looks like this:
 | |
| ///
 | |
| ///  int foo(int a, int b, int* out) {
 | |
| ///     *out = bar();
 | |
| ///     return a + b;
 | |
| /// }
 | |
| ///
 | |
| /// into something like this:
 | |
| ///
 | |
| ///  std::pair<int, int> foo(int a, int b) {
 | |
| ///     return std::make_pair(a + b, bar());
 | |
| /// }
 | |
| ///
 | |
| /// Typically the incoming pointer is a simple alloca for a temporary variable
 | |
| /// to use the API, which if replaced with a struct return will be easily SROA'd
 | |
| /// out when the stub function we create is inlined
 | |
| ///
 | |
| /// This pass introduces the struct return, but leaves the unused pointer
 | |
| /// arguments and introduces a new stub function calling the struct returning
 | |
| /// body. DeadArgumentElimination should be run after this to clean these up.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AMDGPU.h"
 | |
| #include "Utils/AMDGPUBaseInfo.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <utility>
 | |
| 
 | |
| #define DEBUG_TYPE "amdgpu-rewrite-out-arguments"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> AnyAddressSpace(
 | |
|   "amdgpu-any-address-space-out-arguments",
 | |
|   cl::desc("Replace pointer out arguments with "
 | |
|            "struct returns for non-private address space"),
 | |
|   cl::Hidden,
 | |
|   cl::init(false));
 | |
| 
 | |
| static cl::opt<unsigned> MaxNumRetRegs(
 | |
|   "amdgpu-max-return-arg-num-regs",
 | |
|   cl::desc("Approximately limit number of return registers for replacing out arguments"),
 | |
|   cl::Hidden,
 | |
|   cl::init(16));
 | |
| 
 | |
| STATISTIC(NumOutArgumentsReplaced,
 | |
|           "Number out arguments moved to struct return values");
 | |
| STATISTIC(NumOutArgumentFunctionsReplaced,
 | |
|           "Number of functions with out arguments moved to struct return values");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class AMDGPURewriteOutArguments : public FunctionPass {
 | |
| private:
 | |
|   const DataLayout *DL = nullptr;
 | |
|   MemoryDependenceResults *MDA = nullptr;
 | |
| 
 | |
|   bool checkArgumentUses(Value &Arg) const;
 | |
|   bool isOutArgumentCandidate(Argument &Arg) const;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   bool isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const;
 | |
| #endif
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   AMDGPURewriteOutArguments() : FunctionPass(ID) {}
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<MemoryDependenceWrapperPass>();
 | |
|     FunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   bool doInitialization(Module &M) override;
 | |
|   bool runOnFunction(Function &F) override;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(AMDGPURewriteOutArguments, DEBUG_TYPE,
 | |
|                       "AMDGPU Rewrite Out Arguments", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
 | |
| INITIALIZE_PASS_END(AMDGPURewriteOutArguments, DEBUG_TYPE,
 | |
|                     "AMDGPU Rewrite Out Arguments", false, false)
 | |
| 
 | |
| char AMDGPURewriteOutArguments::ID = 0;
 | |
| 
 | |
| bool AMDGPURewriteOutArguments::checkArgumentUses(Value &Arg) const {
 | |
|   const int MaxUses = 10;
 | |
|   int UseCount = 0;
 | |
| 
 | |
|   for (Use &U : Arg.uses()) {
 | |
|     StoreInst *SI = dyn_cast<StoreInst>(U.getUser());
 | |
|     if (UseCount > MaxUses)
 | |
|       return false;
 | |
| 
 | |
|     if (!SI) {
 | |
|       auto *BCI = dyn_cast<BitCastInst>(U.getUser());
 | |
|       if (!BCI || !BCI->hasOneUse())
 | |
|         return false;
 | |
| 
 | |
|       // We don't handle multiple stores currently, so stores to aggregate
 | |
|       // pointers aren't worth the trouble since they are canonically split up.
 | |
|       Type *DestEltTy = BCI->getType()->getPointerElementType();
 | |
|       if (DestEltTy->isAggregateType())
 | |
|         return false;
 | |
| 
 | |
|       // We could handle these if we had a convenient way to bitcast between
 | |
|       // them.
 | |
|       Type *SrcEltTy = Arg.getType()->getPointerElementType();
 | |
|       if (SrcEltTy->isArrayTy())
 | |
|         return false;
 | |
| 
 | |
|       // Special case handle structs with single members. It is useful to handle
 | |
|       // some casts between structs and non-structs, but we can't bitcast
 | |
|       // directly between them.  directly bitcast between them.  Blender uses
 | |
|       // some casts that look like { <3 x float> }* to <4 x float>*
 | |
|       if ((SrcEltTy->isStructTy() && (SrcEltTy->getNumContainedTypes() != 1)))
 | |
|         return false;
 | |
| 
 | |
|       // Clang emits OpenCL 3-vector type accesses with a bitcast to the
 | |
|       // equivalent 4-element vector and accesses that, and we're looking for
 | |
|       // this pointer cast.
 | |
|       if (DL->getTypeAllocSize(SrcEltTy) != DL->getTypeAllocSize(DestEltTy))
 | |
|         return false;
 | |
| 
 | |
|       return checkArgumentUses(*BCI);
 | |
|     }
 | |
| 
 | |
|     if (!SI->isSimple() ||
 | |
|         U.getOperandNo() != StoreInst::getPointerOperandIndex())
 | |
|       return false;
 | |
| 
 | |
|     ++UseCount;
 | |
|   }
 | |
| 
 | |
|   // Skip unused arguments.
 | |
|   return UseCount > 0;
 | |
| }
 | |
| 
 | |
| bool AMDGPURewriteOutArguments::isOutArgumentCandidate(Argument &Arg) const {
 | |
|   const unsigned MaxOutArgSizeBytes = 4 * MaxNumRetRegs;
 | |
|   PointerType *ArgTy = dyn_cast<PointerType>(Arg.getType());
 | |
| 
 | |
|   // TODO: It might be useful for any out arguments, not just privates.
 | |
|   if (!ArgTy || (ArgTy->getAddressSpace() != DL->getAllocaAddrSpace() &&
 | |
|                  !AnyAddressSpace) ||
 | |
|       Arg.hasByValAttr() || Arg.hasStructRetAttr() ||
 | |
|       DL->getTypeStoreSize(ArgTy->getPointerElementType()) > MaxOutArgSizeBytes) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return checkArgumentUses(Arg);
 | |
| }
 | |
| 
 | |
| bool AMDGPURewriteOutArguments::doInitialization(Module &M) {
 | |
|   DL = &M.getDataLayout();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| bool AMDGPURewriteOutArguments::isVec3ToVec4Shuffle(Type *Ty0, Type* Ty1) const {
 | |
|   VectorType *VT0 = dyn_cast<VectorType>(Ty0);
 | |
|   VectorType *VT1 = dyn_cast<VectorType>(Ty1);
 | |
|   if (!VT0 || !VT1)
 | |
|     return false;
 | |
| 
 | |
|   if (VT0->getNumElements() != 3 ||
 | |
|       VT1->getNumElements() != 4)
 | |
|     return false;
 | |
| 
 | |
|   return DL->getTypeSizeInBits(VT0->getElementType()) ==
 | |
|          DL->getTypeSizeInBits(VT1->getElementType());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool AMDGPURewriteOutArguments::runOnFunction(Function &F) {
 | |
|   if (skipFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   // TODO: Could probably handle variadic functions.
 | |
|   if (F.isVarArg() || F.hasStructRetAttr() ||
 | |
|       AMDGPU::isEntryFunctionCC(F.getCallingConv()))
 | |
|     return false;
 | |
| 
 | |
|   MDA = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
 | |
| 
 | |
|   unsigned ReturnNumRegs = 0;
 | |
|   SmallSet<int, 4> OutArgIndexes;
 | |
|   SmallVector<Type *, 4> ReturnTypes;
 | |
|   Type *RetTy = F.getReturnType();
 | |
|   if (!RetTy->isVoidTy()) {
 | |
|     ReturnNumRegs = DL->getTypeStoreSize(RetTy) / 4;
 | |
| 
 | |
|     if (ReturnNumRegs >= MaxNumRetRegs)
 | |
|       return false;
 | |
| 
 | |
|     ReturnTypes.push_back(RetTy);
 | |
|   }
 | |
| 
 | |
|   SmallVector<Argument *, 4> OutArgs;
 | |
|   for (Argument &Arg : F.args()) {
 | |
|     if (isOutArgumentCandidate(Arg)) {
 | |
|       LLVM_DEBUG(dbgs() << "Found possible out argument " << Arg
 | |
|                         << " in function " << F.getName() << '\n');
 | |
|       OutArgs.push_back(&Arg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (OutArgs.empty())
 | |
|     return false;
 | |
| 
 | |
|   using ReplacementVec = SmallVector<std::pair<Argument *, Value *>, 4>;
 | |
| 
 | |
|   DenseMap<ReturnInst *, ReplacementVec> Replacements;
 | |
| 
 | |
|   SmallVector<ReturnInst *, 4> Returns;
 | |
|   for (BasicBlock &BB : F) {
 | |
|     if (ReturnInst *RI = dyn_cast<ReturnInst>(&BB.back()))
 | |
|       Returns.push_back(RI);
 | |
|   }
 | |
| 
 | |
|   if (Returns.empty())
 | |
|     return false;
 | |
| 
 | |
|   bool Changing;
 | |
| 
 | |
|   do {
 | |
|     Changing = false;
 | |
| 
 | |
|     // Keep retrying if we are able to successfully eliminate an argument. This
 | |
|     // helps with cases with multiple arguments which may alias, such as in a
 | |
|     // sincos implemntation. If we have 2 stores to arguments, on the first
 | |
|     // attempt the MDA query will succeed for the second store but not the
 | |
|     // first. On the second iteration we've removed that out clobbering argument
 | |
|     // (by effectively moving it into another function) and will find the second
 | |
|     // argument is OK to move.
 | |
|     for (Argument *OutArg : OutArgs) {
 | |
|       bool ThisReplaceable = true;
 | |
|       SmallVector<std::pair<ReturnInst *, StoreInst *>, 4> ReplaceableStores;
 | |
| 
 | |
|       Type *ArgTy = OutArg->getType()->getPointerElementType();
 | |
| 
 | |
|       // Skip this argument if converting it will push us over the register
 | |
|       // count to return limit.
 | |
| 
 | |
|       // TODO: This is an approximation. When legalized this could be more. We
 | |
|       // can ask TLI for exactly how many.
 | |
|       unsigned ArgNumRegs = DL->getTypeStoreSize(ArgTy) / 4;
 | |
|       if (ArgNumRegs + ReturnNumRegs > MaxNumRetRegs)
 | |
|         continue;
 | |
| 
 | |
|       // An argument is convertible only if all exit blocks are able to replace
 | |
|       // it.
 | |
|       for (ReturnInst *RI : Returns) {
 | |
|         BasicBlock *BB = RI->getParent();
 | |
| 
 | |
|         MemDepResult Q = MDA->getPointerDependencyFrom(MemoryLocation(OutArg),
 | |
|                                                        true, BB->end(), BB, RI);
 | |
|         StoreInst *SI = nullptr;
 | |
|         if (Q.isDef())
 | |
|           SI = dyn_cast<StoreInst>(Q.getInst());
 | |
| 
 | |
|         if (SI) {
 | |
|           LLVM_DEBUG(dbgs() << "Found out argument store: " << *SI << '\n');
 | |
|           ReplaceableStores.emplace_back(RI, SI);
 | |
|         } else {
 | |
|           ThisReplaceable = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!ThisReplaceable)
 | |
|         continue; // Try the next argument candidate.
 | |
| 
 | |
|       for (std::pair<ReturnInst *, StoreInst *> Store : ReplaceableStores) {
 | |
|         Value *ReplVal = Store.second->getValueOperand();
 | |
| 
 | |
|         auto &ValVec = Replacements[Store.first];
 | |
|         if (llvm::find_if(ValVec,
 | |
|               [OutArg](const std::pair<Argument *, Value *> &Entry) {
 | |
|                  return Entry.first == OutArg;}) != ValVec.end()) {
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "Saw multiple out arg stores" << *OutArg << '\n');
 | |
|           // It is possible to see stores to the same argument multiple times,
 | |
|           // but we expect these would have been optimized out already.
 | |
|           ThisReplaceable = false;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         ValVec.emplace_back(OutArg, ReplVal);
 | |
|         Store.second->eraseFromParent();
 | |
|       }
 | |
| 
 | |
|       if (ThisReplaceable) {
 | |
|         ReturnTypes.push_back(ArgTy);
 | |
|         OutArgIndexes.insert(OutArg->getArgNo());
 | |
|         ++NumOutArgumentsReplaced;
 | |
|         Changing = true;
 | |
|       }
 | |
|     }
 | |
|   } while (Changing);
 | |
| 
 | |
|   if (Replacements.empty())
 | |
|     return false;
 | |
| 
 | |
|   LLVMContext &Ctx = F.getParent()->getContext();
 | |
|   StructType *NewRetTy = StructType::create(Ctx, ReturnTypes, F.getName());
 | |
| 
 | |
|   FunctionType *NewFuncTy = FunctionType::get(NewRetTy,
 | |
|                                               F.getFunctionType()->params(),
 | |
|                                               F.isVarArg());
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Computed new return type: " << *NewRetTy << '\n');
 | |
| 
 | |
|   Function *NewFunc = Function::Create(NewFuncTy, Function::PrivateLinkage,
 | |
|                                        F.getName() + ".body");
 | |
|   F.getParent()->getFunctionList().insert(F.getIterator(), NewFunc);
 | |
|   NewFunc->copyAttributesFrom(&F);
 | |
|   NewFunc->setComdat(F.getComdat());
 | |
| 
 | |
|   // We want to preserve the function and param attributes, but need to strip
 | |
|   // off any return attributes, e.g. zeroext doesn't make sense with a struct.
 | |
|   NewFunc->stealArgumentListFrom(F);
 | |
| 
 | |
|   AttrBuilder RetAttrs;
 | |
|   RetAttrs.addAttribute(Attribute::SExt);
 | |
|   RetAttrs.addAttribute(Attribute::ZExt);
 | |
|   RetAttrs.addAttribute(Attribute::NoAlias);
 | |
|   NewFunc->removeAttributes(AttributeList::ReturnIndex, RetAttrs);
 | |
|   // TODO: How to preserve metadata?
 | |
| 
 | |
|   // Move the body of the function into the new rewritten function, and replace
 | |
|   // this function with a stub.
 | |
|   NewFunc->getBasicBlockList().splice(NewFunc->begin(), F.getBasicBlockList());
 | |
| 
 | |
|   for (std::pair<ReturnInst *, ReplacementVec> &Replacement : Replacements) {
 | |
|     ReturnInst *RI = Replacement.first;
 | |
|     IRBuilder<> B(RI);
 | |
|     B.SetCurrentDebugLocation(RI->getDebugLoc());
 | |
| 
 | |
|     int RetIdx = 0;
 | |
|     Value *NewRetVal = UndefValue::get(NewRetTy);
 | |
| 
 | |
|     Value *RetVal = RI->getReturnValue();
 | |
|     if (RetVal)
 | |
|       NewRetVal = B.CreateInsertValue(NewRetVal, RetVal, RetIdx++);
 | |
| 
 | |
|     for (std::pair<Argument *, Value *> ReturnPoint : Replacement.second) {
 | |
|       Argument *Arg = ReturnPoint.first;
 | |
|       Value *Val = ReturnPoint.second;
 | |
|       Type *EltTy = Arg->getType()->getPointerElementType();
 | |
|       if (Val->getType() != EltTy) {
 | |
|         Type *EffectiveEltTy = EltTy;
 | |
|         if (StructType *CT = dyn_cast<StructType>(EltTy)) {
 | |
|           assert(CT->getNumContainedTypes() == 1);
 | |
|           EffectiveEltTy = CT->getContainedType(0);
 | |
|         }
 | |
| 
 | |
|         if (DL->getTypeSizeInBits(EffectiveEltTy) !=
 | |
|             DL->getTypeSizeInBits(Val->getType())) {
 | |
|           assert(isVec3ToVec4Shuffle(EffectiveEltTy, Val->getType()));
 | |
|           Val = B.CreateShuffleVector(Val, UndefValue::get(Val->getType()),
 | |
|                                       { 0, 1, 2 });
 | |
|         }
 | |
| 
 | |
|         Val = B.CreateBitCast(Val, EffectiveEltTy);
 | |
| 
 | |
|         // Re-create single element composite.
 | |
|         if (EltTy != EffectiveEltTy)
 | |
|           Val = B.CreateInsertValue(UndefValue::get(EltTy), Val, 0);
 | |
|       }
 | |
| 
 | |
|       NewRetVal = B.CreateInsertValue(NewRetVal, Val, RetIdx++);
 | |
|     }
 | |
| 
 | |
|     if (RetVal)
 | |
|       RI->setOperand(0, NewRetVal);
 | |
|     else {
 | |
|       B.CreateRet(NewRetVal);
 | |
|       RI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SmallVector<Value *, 16> StubCallArgs;
 | |
|   for (Argument &Arg : F.args()) {
 | |
|     if (OutArgIndexes.count(Arg.getArgNo())) {
 | |
|       // It's easier to preserve the type of the argument list. We rely on
 | |
|       // DeadArgumentElimination to take care of these.
 | |
|       StubCallArgs.push_back(UndefValue::get(Arg.getType()));
 | |
|     } else {
 | |
|       StubCallArgs.push_back(&Arg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BasicBlock *StubBB = BasicBlock::Create(Ctx, "", &F);
 | |
|   IRBuilder<> B(StubBB);
 | |
|   CallInst *StubCall = B.CreateCall(NewFunc, StubCallArgs);
 | |
| 
 | |
|   int RetIdx = RetTy->isVoidTy() ? 0 : 1;
 | |
|   for (Argument &Arg : F.args()) {
 | |
|     if (!OutArgIndexes.count(Arg.getArgNo()))
 | |
|       continue;
 | |
| 
 | |
|     PointerType *ArgType = cast<PointerType>(Arg.getType());
 | |
| 
 | |
|     auto *EltTy = ArgType->getElementType();
 | |
|     unsigned Align = Arg.getParamAlignment();
 | |
|     if (Align == 0)
 | |
|       Align = DL->getABITypeAlignment(EltTy);
 | |
| 
 | |
|     Value *Val = B.CreateExtractValue(StubCall, RetIdx++);
 | |
|     Type *PtrTy = Val->getType()->getPointerTo(ArgType->getAddressSpace());
 | |
| 
 | |
|     // We can peek through bitcasts, so the type may not match.
 | |
|     Value *PtrVal = B.CreateBitCast(&Arg, PtrTy);
 | |
| 
 | |
|     B.CreateAlignedStore(Val, PtrVal, Align);
 | |
|   }
 | |
| 
 | |
|   if (!RetTy->isVoidTy()) {
 | |
|     B.CreateRet(B.CreateExtractValue(StubCall, 0));
 | |
|   } else {
 | |
|     B.CreateRetVoid();
 | |
|   }
 | |
| 
 | |
|   // The function is now a stub we want to inline.
 | |
|   F.addFnAttr(Attribute::AlwaysInline);
 | |
| 
 | |
|   ++NumOutArgumentFunctionsReplaced;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createAMDGPURewriteOutArgumentsPass() {
 | |
|   return new AMDGPURewriteOutArguments();
 | |
| }
 |