3244 lines
		
	
	
		
			103 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3244 lines
		
	
	
		
			103 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- HexagonBitSimplify.cpp ---------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "BitTracker.h"
 | 
						|
#include "HexagonBitTracker.h"
 | 
						|
#include "HexagonInstrInfo.h"
 | 
						|
#include "HexagonRegisterInfo.h"
 | 
						|
#include "HexagonSubtarget.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/MC/MCInstrDesc.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <cstdint>
 | 
						|
#include <iterator>
 | 
						|
#include <limits>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
#define DEBUG_TYPE "hexbit"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
 | 
						|
  cl::init(true), cl::desc("Preserve subregisters in tied operands"));
 | 
						|
static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
 | 
						|
  cl::init(true), cl::desc("Generate extract instructions"));
 | 
						|
static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
 | 
						|
  cl::init(true), cl::desc("Generate bitsplit instructions"));
 | 
						|
 | 
						|
static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
 | 
						|
  cl::init(std::numeric_limits<unsigned>::max()));
 | 
						|
static unsigned CountExtract = 0;
 | 
						|
static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
 | 
						|
  cl::init(std::numeric_limits<unsigned>::max()));
 | 
						|
static unsigned CountBitSplit = 0;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
  void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
 | 
						|
  FunctionPass *createHexagonBitSimplify();
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  // Set of virtual registers, based on BitVector.
 | 
						|
  struct RegisterSet : private BitVector {
 | 
						|
    RegisterSet() = default;
 | 
						|
    explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
 | 
						|
    RegisterSet(const RegisterSet &RS) = default;
 | 
						|
 | 
						|
    using BitVector::clear;
 | 
						|
    using BitVector::count;
 | 
						|
 | 
						|
    unsigned find_first() const {
 | 
						|
      int First = BitVector::find_first();
 | 
						|
      if (First < 0)
 | 
						|
        return 0;
 | 
						|
      return x2v(First);
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned find_next(unsigned Prev) const {
 | 
						|
      int Next = BitVector::find_next(v2x(Prev));
 | 
						|
      if (Next < 0)
 | 
						|
        return 0;
 | 
						|
      return x2v(Next);
 | 
						|
    }
 | 
						|
 | 
						|
    RegisterSet &insert(unsigned R) {
 | 
						|
      unsigned Idx = v2x(R);
 | 
						|
      ensure(Idx);
 | 
						|
      return static_cast<RegisterSet&>(BitVector::set(Idx));
 | 
						|
    }
 | 
						|
    RegisterSet &remove(unsigned R) {
 | 
						|
      unsigned Idx = v2x(R);
 | 
						|
      if (Idx >= size())
 | 
						|
        return *this;
 | 
						|
      return static_cast<RegisterSet&>(BitVector::reset(Idx));
 | 
						|
    }
 | 
						|
 | 
						|
    RegisterSet &insert(const RegisterSet &Rs) {
 | 
						|
      return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
 | 
						|
    }
 | 
						|
    RegisterSet &remove(const RegisterSet &Rs) {
 | 
						|
      return static_cast<RegisterSet&>(BitVector::reset(Rs));
 | 
						|
    }
 | 
						|
 | 
						|
    reference operator[](unsigned R) {
 | 
						|
      unsigned Idx = v2x(R);
 | 
						|
      ensure(Idx);
 | 
						|
      return BitVector::operator[](Idx);
 | 
						|
    }
 | 
						|
    bool operator[](unsigned R) const {
 | 
						|
      unsigned Idx = v2x(R);
 | 
						|
      assert(Idx < size());
 | 
						|
      return BitVector::operator[](Idx);
 | 
						|
    }
 | 
						|
    bool has(unsigned R) const {
 | 
						|
      unsigned Idx = v2x(R);
 | 
						|
      if (Idx >= size())
 | 
						|
        return false;
 | 
						|
      return BitVector::test(Idx);
 | 
						|
    }
 | 
						|
 | 
						|
    bool empty() const {
 | 
						|
      return !BitVector::any();
 | 
						|
    }
 | 
						|
    bool includes(const RegisterSet &Rs) const {
 | 
						|
      // A.BitVector::test(B)  <=>  A-B != {}
 | 
						|
      return !Rs.BitVector::test(*this);
 | 
						|
    }
 | 
						|
    bool intersects(const RegisterSet &Rs) const {
 | 
						|
      return BitVector::anyCommon(Rs);
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    void ensure(unsigned Idx) {
 | 
						|
      if (size() <= Idx)
 | 
						|
        resize(std::max(Idx+1, 32U));
 | 
						|
    }
 | 
						|
 | 
						|
    static inline unsigned v2x(unsigned v) {
 | 
						|
      return TargetRegisterInfo::virtReg2Index(v);
 | 
						|
    }
 | 
						|
 | 
						|
    static inline unsigned x2v(unsigned x) {
 | 
						|
      return TargetRegisterInfo::index2VirtReg(x);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  struct PrintRegSet {
 | 
						|
    PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
 | 
						|
      : RS(S), TRI(RI) {}
 | 
						|
 | 
						|
    friend raw_ostream &operator<< (raw_ostream &OS,
 | 
						|
          const PrintRegSet &P);
 | 
						|
 | 
						|
  private:
 | 
						|
    const RegisterSet &RS;
 | 
						|
    const TargetRegisterInfo *TRI;
 | 
						|
  };
 | 
						|
 | 
						|
  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
 | 
						|
    LLVM_ATTRIBUTE_UNUSED;
 | 
						|
  raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
 | 
						|
    OS << '{';
 | 
						|
    for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
 | 
						|
      OS << ' ' << printReg(R, P.TRI);
 | 
						|
    OS << " }";
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
 | 
						|
  class Transformation;
 | 
						|
 | 
						|
  class HexagonBitSimplify : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
 | 
						|
    HexagonBitSimplify() : MachineFunctionPass(ID) {}
 | 
						|
 | 
						|
    StringRef getPassName() const override {
 | 
						|
      return "Hexagon bit simplification";
 | 
						|
    }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<MachineDominatorTree>();
 | 
						|
      AU.addPreserved<MachineDominatorTree>();
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
    static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
 | 
						|
    static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
 | 
						|
    static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
 | 
						|
        const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
 | 
						|
    static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
 | 
						|
        uint16_t W);
 | 
						|
    static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
 | 
						|
        uint16_t W, uint64_t &U);
 | 
						|
    static bool replaceReg(unsigned OldR, unsigned NewR,
 | 
						|
        MachineRegisterInfo &MRI);
 | 
						|
    static bool getSubregMask(const BitTracker::RegisterRef &RR,
 | 
						|
        unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
 | 
						|
    static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
 | 
						|
        unsigned NewSR, MachineRegisterInfo &MRI);
 | 
						|
    static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
 | 
						|
        unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
 | 
						|
    static bool parseRegSequence(const MachineInstr &I,
 | 
						|
        BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
 | 
						|
        const MachineRegisterInfo &MRI);
 | 
						|
 | 
						|
    static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
 | 
						|
        uint16_t Begin);
 | 
						|
    static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
 | 
						|
        uint16_t Begin, const HexagonInstrInfo &HII);
 | 
						|
 | 
						|
    static const TargetRegisterClass *getFinalVRegClass(
 | 
						|
        const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
 | 
						|
    static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
 | 
						|
        const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
 | 
						|
 | 
						|
  private:
 | 
						|
    MachineDominatorTree *MDT = nullptr;
 | 
						|
 | 
						|
    bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
 | 
						|
    static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
 | 
						|
        unsigned NewSub = Hexagon::NoSubRegister);
 | 
						|
  };
 | 
						|
 | 
						|
  using HBS = HexagonBitSimplify;
 | 
						|
 | 
						|
  // The purpose of this class is to provide a common facility to traverse
 | 
						|
  // the function top-down or bottom-up via the dominator tree, and keep
 | 
						|
  // track of the available registers.
 | 
						|
  class Transformation {
 | 
						|
  public:
 | 
						|
    bool TopDown;
 | 
						|
 | 
						|
    Transformation(bool TD) : TopDown(TD) {}
 | 
						|
    virtual ~Transformation() = default;
 | 
						|
 | 
						|
    virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char HexagonBitSimplify::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexagon-bit-simplify",
 | 
						|
      "Hexagon bit simplification", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | 
						|
INITIALIZE_PASS_END(HexagonBitSimplify, "hexagon-bit-simplify",
 | 
						|
      "Hexagon bit simplification", false, false)
 | 
						|
 | 
						|
bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
 | 
						|
      RegisterSet &AVs) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  if (T.TopDown)
 | 
						|
    Changed = T.processBlock(B, AVs);
 | 
						|
 | 
						|
  RegisterSet Defs;
 | 
						|
  for (auto &I : B)
 | 
						|
    getInstrDefs(I, Defs);
 | 
						|
  RegisterSet NewAVs = AVs;
 | 
						|
  NewAVs.insert(Defs);
 | 
						|
 | 
						|
  for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
 | 
						|
    Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
 | 
						|
 | 
						|
  if (!T.TopDown)
 | 
						|
    Changed |= T.processBlock(B, AVs);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// Utility functions:
 | 
						|
//
 | 
						|
void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
 | 
						|
      RegisterSet &Defs) {
 | 
						|
  for (auto &Op : MI.operands()) {
 | 
						|
    if (!Op.isReg() || !Op.isDef())
 | 
						|
      continue;
 | 
						|
    unsigned R = Op.getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(R))
 | 
						|
      continue;
 | 
						|
    Defs.insert(R);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
 | 
						|
      RegisterSet &Uses) {
 | 
						|
  for (auto &Op : MI.operands()) {
 | 
						|
    if (!Op.isReg() || !Op.isUse())
 | 
						|
      continue;
 | 
						|
    unsigned R = Op.getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(R))
 | 
						|
      continue;
 | 
						|
    Uses.insert(R);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Check if all the bits in range [B, E) in both cells are equal.
 | 
						|
bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
 | 
						|
      uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
 | 
						|
      uint16_t W) {
 | 
						|
  for (uint16_t i = 0; i < W; ++i) {
 | 
						|
    // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
 | 
						|
    if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
 | 
						|
      return false;
 | 
						|
    // Same for RC2[i].
 | 
						|
    if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
 | 
						|
      return false;
 | 
						|
    if (RC1[B1+i] != RC2[B2+i])
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
 | 
						|
      uint16_t B, uint16_t W) {
 | 
						|
  assert(B < RC.width() && B+W <= RC.width());
 | 
						|
  for (uint16_t i = B; i < B+W; ++i)
 | 
						|
    if (!RC[i].is(0))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
 | 
						|
        uint16_t B, uint16_t W, uint64_t &U) {
 | 
						|
  assert(B < RC.width() && B+W <= RC.width());
 | 
						|
  int64_t T = 0;
 | 
						|
  for (uint16_t i = B+W; i > B; --i) {
 | 
						|
    const BitTracker::BitValue &BV = RC[i-1];
 | 
						|
    T <<= 1;
 | 
						|
    if (BV.is(1))
 | 
						|
      T |= 1;
 | 
						|
    else if (!BV.is(0))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  U = T;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
 | 
						|
      MachineRegisterInfo &MRI) {
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
 | 
						|
      !TargetRegisterInfo::isVirtualRegister(NewR))
 | 
						|
    return false;
 | 
						|
  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
 | 
						|
  decltype(End) NextI;
 | 
						|
  for (auto I = Begin; I != End; I = NextI) {
 | 
						|
    NextI = std::next(I);
 | 
						|
    I->setReg(NewR);
 | 
						|
  }
 | 
						|
  return Begin != End;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
 | 
						|
      unsigned NewSR, MachineRegisterInfo &MRI) {
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
 | 
						|
      !TargetRegisterInfo::isVirtualRegister(NewR))
 | 
						|
    return false;
 | 
						|
  if (hasTiedUse(OldR, MRI, NewSR))
 | 
						|
    return false;
 | 
						|
  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
 | 
						|
  decltype(End) NextI;
 | 
						|
  for (auto I = Begin; I != End; I = NextI) {
 | 
						|
    NextI = std::next(I);
 | 
						|
    I->setReg(NewR);
 | 
						|
    I->setSubReg(NewSR);
 | 
						|
  }
 | 
						|
  return Begin != End;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
 | 
						|
      unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
 | 
						|
      !TargetRegisterInfo::isVirtualRegister(NewR))
 | 
						|
    return false;
 | 
						|
  if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
 | 
						|
    return false;
 | 
						|
  auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
 | 
						|
  decltype(End) NextI;
 | 
						|
  for (auto I = Begin; I != End; I = NextI) {
 | 
						|
    NextI = std::next(I);
 | 
						|
    if (I->getSubReg() != OldSR)
 | 
						|
      continue;
 | 
						|
    I->setReg(NewR);
 | 
						|
    I->setSubReg(NewSR);
 | 
						|
  }
 | 
						|
  return Begin != End;
 | 
						|
}
 | 
						|
 | 
						|
// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
 | 
						|
// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
 | 
						|
// if this succeeded, otherwise return false.
 | 
						|
bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
 | 
						|
      unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
 | 
						|
  const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
 | 
						|
  if (RR.Sub == 0) {
 | 
						|
    Begin = 0;
 | 
						|
    Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Begin = 0;
 | 
						|
 | 
						|
  switch (RC->getID()) {
 | 
						|
    case Hexagon::DoubleRegsRegClassID:
 | 
						|
    case Hexagon::HvxWRRegClassID:
 | 
						|
      Width = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 2;
 | 
						|
      if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
 | 
						|
        Begin = Width;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
 | 
						|
// subregister.
 | 
						|
bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
 | 
						|
      BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
 | 
						|
      const MachineRegisterInfo &MRI) {
 | 
						|
  assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
 | 
						|
  unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
 | 
						|
  auto &DstRC = *MRI.getRegClass(I.getOperand(0).getReg());
 | 
						|
  auto &HRI = static_cast<const HexagonRegisterInfo&>(
 | 
						|
                  *MRI.getTargetRegisterInfo());
 | 
						|
  unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
 | 
						|
  unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
 | 
						|
  assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
 | 
						|
  if (Sub1 == SubLo && Sub2 == SubHi) {
 | 
						|
    SL = I.getOperand(1);
 | 
						|
    SH = I.getOperand(3);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (Sub1 == SubHi && Sub2 == SubLo) {
 | 
						|
    SH = I.getOperand(1);
 | 
						|
    SL = I.getOperand(3);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// All stores (except 64-bit stores) take a 32-bit register as the source
 | 
						|
// of the value to be stored. If the instruction stores into a location
 | 
						|
// that is shorter than 32 bits, some bits of the source register are not
 | 
						|
// used. For each store instruction, calculate the set of used bits in
 | 
						|
// the source register, and set appropriate bits in Bits. Return true if
 | 
						|
// the bits are calculated, false otherwise.
 | 
						|
bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
 | 
						|
      uint16_t Begin) {
 | 
						|
  using namespace Hexagon;
 | 
						|
 | 
						|
  switch (Opc) {
 | 
						|
    // Store byte
 | 
						|
    case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
 | 
						|
    case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
 | 
						|
    case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
 | 
						|
    case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
 | 
						|
    case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
 | 
						|
    case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
 | 
						|
    case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
 | 
						|
    case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
 | 
						|
    case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
 | 
						|
    case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
 | 
						|
    case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
 | 
						|
    case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
 | 
						|
    case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
 | 
						|
    case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
 | 
						|
    case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
 | 
						|
    case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
 | 
						|
    case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
 | 
						|
    case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
 | 
						|
    case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
 | 
						|
    case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
 | 
						|
    case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
 | 
						|
    case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
 | 
						|
    case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
 | 
						|
    case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
 | 
						|
    case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
 | 
						|
    case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
 | 
						|
    case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
 | 
						|
    case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
 | 
						|
    case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
 | 
						|
    case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
 | 
						|
    case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
 | 
						|
    case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
 | 
						|
    case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
 | 
						|
    case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
 | 
						|
    case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
 | 
						|
    case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
 | 
						|
    case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
 | 
						|
    case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
 | 
						|
    case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
 | 
						|
    case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
 | 
						|
    case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
 | 
						|
    case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
 | 
						|
    case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
 | 
						|
    case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
 | 
						|
    case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
 | 
						|
    case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
 | 
						|
    case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
 | 
						|
    case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
 | 
						|
    case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
 | 
						|
    case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
 | 
						|
    case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
 | 
						|
    case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
 | 
						|
      Bits.set(Begin, Begin+8);
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Store low half
 | 
						|
    case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
 | 
						|
    case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
 | 
						|
    case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
 | 
						|
    case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
 | 
						|
    case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
 | 
						|
    case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
 | 
						|
    case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
 | 
						|
    case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
 | 
						|
    case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
 | 
						|
    case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
 | 
						|
    case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
 | 
						|
    case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
 | 
						|
    case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
 | 
						|
    case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
 | 
						|
    case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
 | 
						|
    case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
 | 
						|
    case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
 | 
						|
    case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
 | 
						|
    case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
 | 
						|
    case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
 | 
						|
    case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
 | 
						|
    case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
 | 
						|
    case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
 | 
						|
    case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
 | 
						|
    case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
 | 
						|
    case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
 | 
						|
    case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
 | 
						|
    case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
 | 
						|
    case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
 | 
						|
    case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
 | 
						|
    case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
 | 
						|
    case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
 | 
						|
    case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
 | 
						|
    case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
 | 
						|
    case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
 | 
						|
    case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
 | 
						|
    case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
 | 
						|
    case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
 | 
						|
    case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
 | 
						|
    case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
 | 
						|
    case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
 | 
						|
    case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
 | 
						|
    case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
 | 
						|
    case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
 | 
						|
    case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
 | 
						|
    case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
 | 
						|
    case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
 | 
						|
    case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
 | 
						|
    case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
 | 
						|
    case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
 | 
						|
    case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
 | 
						|
    case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
 | 
						|
      Bits.set(Begin, Begin+16);
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Store high half
 | 
						|
    case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
 | 
						|
    case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
 | 
						|
    case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
 | 
						|
    case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
 | 
						|
    case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
 | 
						|
    case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
 | 
						|
    case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
 | 
						|
    case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
 | 
						|
    case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
 | 
						|
    case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
 | 
						|
    case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
 | 
						|
    case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
 | 
						|
    case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
 | 
						|
    case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
 | 
						|
    case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
 | 
						|
    case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
 | 
						|
    case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
 | 
						|
    case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
 | 
						|
    case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
 | 
						|
    case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
 | 
						|
    case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
 | 
						|
    case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
 | 
						|
    case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
 | 
						|
    case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
 | 
						|
    case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
 | 
						|
    case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
 | 
						|
      Bits.set(Begin+16, Begin+32);
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// For an instruction with opcode Opc, calculate the set of bits that it
 | 
						|
// uses in a register in operand OpN. This only calculates the set of used
 | 
						|
// bits for cases where it does not depend on any operands (as is the case
 | 
						|
// in shifts, for example). For concrete instructions from a program, the
 | 
						|
// operand may be a subregister of a larger register, while Bits would
 | 
						|
// correspond to the larger register in its entirety. Because of that,
 | 
						|
// the parameter Begin can be used to indicate which bit of Bits should be
 | 
						|
// considered the LSB of the operand.
 | 
						|
bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
 | 
						|
      BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
 | 
						|
  using namespace Hexagon;
 | 
						|
 | 
						|
  const MCInstrDesc &D = HII.get(Opc);
 | 
						|
  if (D.mayStore()) {
 | 
						|
    if (OpN == D.getNumOperands()-1)
 | 
						|
      return getUsedBitsInStore(Opc, Bits, Begin);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Opc) {
 | 
						|
    // One register source. Used bits: R1[0-7].
 | 
						|
    case A2_sxtb:
 | 
						|
    case A2_zxtb:
 | 
						|
    case A4_cmpbeqi:
 | 
						|
    case A4_cmpbgti:
 | 
						|
    case A4_cmpbgtui:
 | 
						|
      if (OpN == 1) {
 | 
						|
        Bits.set(Begin, Begin+8);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    // One register source. Used bits: R1[0-15].
 | 
						|
    case A2_aslh:
 | 
						|
    case A2_sxth:
 | 
						|
    case A2_zxth:
 | 
						|
    case A4_cmpheqi:
 | 
						|
    case A4_cmphgti:
 | 
						|
    case A4_cmphgtui:
 | 
						|
      if (OpN == 1) {
 | 
						|
        Bits.set(Begin, Begin+16);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    // One register source. Used bits: R1[16-31].
 | 
						|
    case A2_asrh:
 | 
						|
      if (OpN == 1) {
 | 
						|
        Bits.set(Begin+16, Begin+32);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    // Two register sources. Used bits: R1[0-7], R2[0-7].
 | 
						|
    case A4_cmpbeq:
 | 
						|
    case A4_cmpbgt:
 | 
						|
    case A4_cmpbgtu:
 | 
						|
      if (OpN == 1) {
 | 
						|
        Bits.set(Begin, Begin+8);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    // Two register sources. Used bits: R1[0-15], R2[0-15].
 | 
						|
    case A4_cmpheq:
 | 
						|
    case A4_cmphgt:
 | 
						|
    case A4_cmphgtu:
 | 
						|
    case A2_addh_h16_ll:
 | 
						|
    case A2_addh_h16_sat_ll:
 | 
						|
    case A2_addh_l16_ll:
 | 
						|
    case A2_addh_l16_sat_ll:
 | 
						|
    case A2_combine_ll:
 | 
						|
    case A2_subh_h16_ll:
 | 
						|
    case A2_subh_h16_sat_ll:
 | 
						|
    case A2_subh_l16_ll:
 | 
						|
    case A2_subh_l16_sat_ll:
 | 
						|
    case M2_mpy_acc_ll_s0:
 | 
						|
    case M2_mpy_acc_ll_s1:
 | 
						|
    case M2_mpy_acc_sat_ll_s0:
 | 
						|
    case M2_mpy_acc_sat_ll_s1:
 | 
						|
    case M2_mpy_ll_s0:
 | 
						|
    case M2_mpy_ll_s1:
 | 
						|
    case M2_mpy_nac_ll_s0:
 | 
						|
    case M2_mpy_nac_ll_s1:
 | 
						|
    case M2_mpy_nac_sat_ll_s0:
 | 
						|
    case M2_mpy_nac_sat_ll_s1:
 | 
						|
    case M2_mpy_rnd_ll_s0:
 | 
						|
    case M2_mpy_rnd_ll_s1:
 | 
						|
    case M2_mpy_sat_ll_s0:
 | 
						|
    case M2_mpy_sat_ll_s1:
 | 
						|
    case M2_mpy_sat_rnd_ll_s0:
 | 
						|
    case M2_mpy_sat_rnd_ll_s1:
 | 
						|
    case M2_mpyd_acc_ll_s0:
 | 
						|
    case M2_mpyd_acc_ll_s1:
 | 
						|
    case M2_mpyd_ll_s0:
 | 
						|
    case M2_mpyd_ll_s1:
 | 
						|
    case M2_mpyd_nac_ll_s0:
 | 
						|
    case M2_mpyd_nac_ll_s1:
 | 
						|
    case M2_mpyd_rnd_ll_s0:
 | 
						|
    case M2_mpyd_rnd_ll_s1:
 | 
						|
    case M2_mpyu_acc_ll_s0:
 | 
						|
    case M2_mpyu_acc_ll_s1:
 | 
						|
    case M2_mpyu_ll_s0:
 | 
						|
    case M2_mpyu_ll_s1:
 | 
						|
    case M2_mpyu_nac_ll_s0:
 | 
						|
    case M2_mpyu_nac_ll_s1:
 | 
						|
    case M2_mpyud_acc_ll_s0:
 | 
						|
    case M2_mpyud_acc_ll_s1:
 | 
						|
    case M2_mpyud_ll_s0:
 | 
						|
    case M2_mpyud_ll_s1:
 | 
						|
    case M2_mpyud_nac_ll_s0:
 | 
						|
    case M2_mpyud_nac_ll_s1:
 | 
						|
      if (OpN == 1 || OpN == 2) {
 | 
						|
        Bits.set(Begin, Begin+16);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    // Two register sources. Used bits: R1[0-15], R2[16-31].
 | 
						|
    case A2_addh_h16_lh:
 | 
						|
    case A2_addh_h16_sat_lh:
 | 
						|
    case A2_combine_lh:
 | 
						|
    case A2_subh_h16_lh:
 | 
						|
    case A2_subh_h16_sat_lh:
 | 
						|
    case M2_mpy_acc_lh_s0:
 | 
						|
    case M2_mpy_acc_lh_s1:
 | 
						|
    case M2_mpy_acc_sat_lh_s0:
 | 
						|
    case M2_mpy_acc_sat_lh_s1:
 | 
						|
    case M2_mpy_lh_s0:
 | 
						|
    case M2_mpy_lh_s1:
 | 
						|
    case M2_mpy_nac_lh_s0:
 | 
						|
    case M2_mpy_nac_lh_s1:
 | 
						|
    case M2_mpy_nac_sat_lh_s0:
 | 
						|
    case M2_mpy_nac_sat_lh_s1:
 | 
						|
    case M2_mpy_rnd_lh_s0:
 | 
						|
    case M2_mpy_rnd_lh_s1:
 | 
						|
    case M2_mpy_sat_lh_s0:
 | 
						|
    case M2_mpy_sat_lh_s1:
 | 
						|
    case M2_mpy_sat_rnd_lh_s0:
 | 
						|
    case M2_mpy_sat_rnd_lh_s1:
 | 
						|
    case M2_mpyd_acc_lh_s0:
 | 
						|
    case M2_mpyd_acc_lh_s1:
 | 
						|
    case M2_mpyd_lh_s0:
 | 
						|
    case M2_mpyd_lh_s1:
 | 
						|
    case M2_mpyd_nac_lh_s0:
 | 
						|
    case M2_mpyd_nac_lh_s1:
 | 
						|
    case M2_mpyd_rnd_lh_s0:
 | 
						|
    case M2_mpyd_rnd_lh_s1:
 | 
						|
    case M2_mpyu_acc_lh_s0:
 | 
						|
    case M2_mpyu_acc_lh_s1:
 | 
						|
    case M2_mpyu_lh_s0:
 | 
						|
    case M2_mpyu_lh_s1:
 | 
						|
    case M2_mpyu_nac_lh_s0:
 | 
						|
    case M2_mpyu_nac_lh_s1:
 | 
						|
    case M2_mpyud_acc_lh_s0:
 | 
						|
    case M2_mpyud_acc_lh_s1:
 | 
						|
    case M2_mpyud_lh_s0:
 | 
						|
    case M2_mpyud_lh_s1:
 | 
						|
    case M2_mpyud_nac_lh_s0:
 | 
						|
    case M2_mpyud_nac_lh_s1:
 | 
						|
    // These four are actually LH.
 | 
						|
    case A2_addh_l16_hl:
 | 
						|
    case A2_addh_l16_sat_hl:
 | 
						|
    case A2_subh_l16_hl:
 | 
						|
    case A2_subh_l16_sat_hl:
 | 
						|
      if (OpN == 1) {
 | 
						|
        Bits.set(Begin, Begin+16);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (OpN == 2) {
 | 
						|
        Bits.set(Begin+16, Begin+32);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    // Two register sources, used bits: R1[16-31], R2[0-15].
 | 
						|
    case A2_addh_h16_hl:
 | 
						|
    case A2_addh_h16_sat_hl:
 | 
						|
    case A2_combine_hl:
 | 
						|
    case A2_subh_h16_hl:
 | 
						|
    case A2_subh_h16_sat_hl:
 | 
						|
    case M2_mpy_acc_hl_s0:
 | 
						|
    case M2_mpy_acc_hl_s1:
 | 
						|
    case M2_mpy_acc_sat_hl_s0:
 | 
						|
    case M2_mpy_acc_sat_hl_s1:
 | 
						|
    case M2_mpy_hl_s0:
 | 
						|
    case M2_mpy_hl_s1:
 | 
						|
    case M2_mpy_nac_hl_s0:
 | 
						|
    case M2_mpy_nac_hl_s1:
 | 
						|
    case M2_mpy_nac_sat_hl_s0:
 | 
						|
    case M2_mpy_nac_sat_hl_s1:
 | 
						|
    case M2_mpy_rnd_hl_s0:
 | 
						|
    case M2_mpy_rnd_hl_s1:
 | 
						|
    case M2_mpy_sat_hl_s0:
 | 
						|
    case M2_mpy_sat_hl_s1:
 | 
						|
    case M2_mpy_sat_rnd_hl_s0:
 | 
						|
    case M2_mpy_sat_rnd_hl_s1:
 | 
						|
    case M2_mpyd_acc_hl_s0:
 | 
						|
    case M2_mpyd_acc_hl_s1:
 | 
						|
    case M2_mpyd_hl_s0:
 | 
						|
    case M2_mpyd_hl_s1:
 | 
						|
    case M2_mpyd_nac_hl_s0:
 | 
						|
    case M2_mpyd_nac_hl_s1:
 | 
						|
    case M2_mpyd_rnd_hl_s0:
 | 
						|
    case M2_mpyd_rnd_hl_s1:
 | 
						|
    case M2_mpyu_acc_hl_s0:
 | 
						|
    case M2_mpyu_acc_hl_s1:
 | 
						|
    case M2_mpyu_hl_s0:
 | 
						|
    case M2_mpyu_hl_s1:
 | 
						|
    case M2_mpyu_nac_hl_s0:
 | 
						|
    case M2_mpyu_nac_hl_s1:
 | 
						|
    case M2_mpyud_acc_hl_s0:
 | 
						|
    case M2_mpyud_acc_hl_s1:
 | 
						|
    case M2_mpyud_hl_s0:
 | 
						|
    case M2_mpyud_hl_s1:
 | 
						|
    case M2_mpyud_nac_hl_s0:
 | 
						|
    case M2_mpyud_nac_hl_s1:
 | 
						|
      if (OpN == 1) {
 | 
						|
        Bits.set(Begin+16, Begin+32);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      if (OpN == 2) {
 | 
						|
        Bits.set(Begin, Begin+16);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
 | 
						|
    // Two register sources, used bits: R1[16-31], R2[16-31].
 | 
						|
    case A2_addh_h16_hh:
 | 
						|
    case A2_addh_h16_sat_hh:
 | 
						|
    case A2_combine_hh:
 | 
						|
    case A2_subh_h16_hh:
 | 
						|
    case A2_subh_h16_sat_hh:
 | 
						|
    case M2_mpy_acc_hh_s0:
 | 
						|
    case M2_mpy_acc_hh_s1:
 | 
						|
    case M2_mpy_acc_sat_hh_s0:
 | 
						|
    case M2_mpy_acc_sat_hh_s1:
 | 
						|
    case M2_mpy_hh_s0:
 | 
						|
    case M2_mpy_hh_s1:
 | 
						|
    case M2_mpy_nac_hh_s0:
 | 
						|
    case M2_mpy_nac_hh_s1:
 | 
						|
    case M2_mpy_nac_sat_hh_s0:
 | 
						|
    case M2_mpy_nac_sat_hh_s1:
 | 
						|
    case M2_mpy_rnd_hh_s0:
 | 
						|
    case M2_mpy_rnd_hh_s1:
 | 
						|
    case M2_mpy_sat_hh_s0:
 | 
						|
    case M2_mpy_sat_hh_s1:
 | 
						|
    case M2_mpy_sat_rnd_hh_s0:
 | 
						|
    case M2_mpy_sat_rnd_hh_s1:
 | 
						|
    case M2_mpyd_acc_hh_s0:
 | 
						|
    case M2_mpyd_acc_hh_s1:
 | 
						|
    case M2_mpyd_hh_s0:
 | 
						|
    case M2_mpyd_hh_s1:
 | 
						|
    case M2_mpyd_nac_hh_s0:
 | 
						|
    case M2_mpyd_nac_hh_s1:
 | 
						|
    case M2_mpyd_rnd_hh_s0:
 | 
						|
    case M2_mpyd_rnd_hh_s1:
 | 
						|
    case M2_mpyu_acc_hh_s0:
 | 
						|
    case M2_mpyu_acc_hh_s1:
 | 
						|
    case M2_mpyu_hh_s0:
 | 
						|
    case M2_mpyu_hh_s1:
 | 
						|
    case M2_mpyu_nac_hh_s0:
 | 
						|
    case M2_mpyu_nac_hh_s1:
 | 
						|
    case M2_mpyud_acc_hh_s0:
 | 
						|
    case M2_mpyud_acc_hh_s1:
 | 
						|
    case M2_mpyud_hh_s0:
 | 
						|
    case M2_mpyud_hh_s1:
 | 
						|
    case M2_mpyud_nac_hh_s0:
 | 
						|
    case M2_mpyud_nac_hh_s1:
 | 
						|
      if (OpN == 1 || OpN == 2) {
 | 
						|
        Bits.set(Begin+16, Begin+32);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the register class that matches Reg:Sub. For example, if
 | 
						|
// %1 is a double register, then %1:isub_hi would match the "int"
 | 
						|
// register class.
 | 
						|
const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
 | 
						|
      const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
 | 
						|
    return nullptr;
 | 
						|
  auto *RC = MRI.getRegClass(RR.Reg);
 | 
						|
  if (RR.Sub == 0)
 | 
						|
    return RC;
 | 
						|
  auto &HRI = static_cast<const HexagonRegisterInfo&>(
 | 
						|
                  *MRI.getTargetRegisterInfo());
 | 
						|
 | 
						|
  auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
 | 
						|
    (void)HRI;
 | 
						|
    assert(Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_lo) ||
 | 
						|
           Sub == HRI.getHexagonSubRegIndex(*RC, Hexagon::ps_sub_hi));
 | 
						|
  };
 | 
						|
 | 
						|
  switch (RC->getID()) {
 | 
						|
    case Hexagon::DoubleRegsRegClassID:
 | 
						|
      VerifySR(RC, RR.Sub);
 | 
						|
      return &Hexagon::IntRegsRegClass;
 | 
						|
    case Hexagon::HvxWRRegClassID:
 | 
						|
      VerifySR(RC, RR.Sub);
 | 
						|
      return &Hexagon::HvxVRRegClass;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
// Check if RD could be replaced with RS at any possible use of RD.
 | 
						|
// For example a predicate register cannot be replaced with a integer
 | 
						|
// register, but a 64-bit register with a subregister can be replaced
 | 
						|
// with a 32-bit register.
 | 
						|
bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
 | 
						|
      const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
 | 
						|
      !TargetRegisterInfo::isVirtualRegister(RS.Reg))
 | 
						|
    return false;
 | 
						|
  // Return false if one (or both) classes are nullptr.
 | 
						|
  auto *DRC = getFinalVRegClass(RD, MRI);
 | 
						|
  if (!DRC)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return DRC == getFinalVRegClass(RS, MRI);
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
 | 
						|
      unsigned NewSub) {
 | 
						|
  if (!PreserveTiedOps)
 | 
						|
    return false;
 | 
						|
  return llvm::any_of(MRI.use_operands(Reg),
 | 
						|
                      [NewSub] (const MachineOperand &Op) -> bool {
 | 
						|
                        return Op.getSubReg() != NewSub && Op.isTied();
 | 
						|
                      });
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class DeadCodeElimination {
 | 
						|
  public:
 | 
						|
    DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
 | 
						|
      : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
 | 
						|
        MDT(mdt), MRI(mf.getRegInfo()) {}
 | 
						|
 | 
						|
    bool run() {
 | 
						|
      return runOnNode(MDT.getRootNode());
 | 
						|
    }
 | 
						|
 | 
						|
  private:
 | 
						|
    bool isDead(unsigned R) const;
 | 
						|
    bool runOnNode(MachineDomTreeNode *N);
 | 
						|
 | 
						|
    MachineFunction &MF;
 | 
						|
    const HexagonInstrInfo &HII;
 | 
						|
    MachineDominatorTree &MDT;
 | 
						|
    MachineRegisterInfo &MRI;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool DeadCodeElimination::isDead(unsigned R) const {
 | 
						|
  for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
 | 
						|
    MachineInstr *UseI = I->getParent();
 | 
						|
    if (UseI->isDebugValue())
 | 
						|
      continue;
 | 
						|
    if (UseI->isPHI()) {
 | 
						|
      assert(!UseI->getOperand(0).getSubReg());
 | 
						|
      unsigned DR = UseI->getOperand(0).getReg();
 | 
						|
      if (DR == R)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (auto *DTN : children<MachineDomTreeNode*>(N))
 | 
						|
    Changed |= runOnNode(DTN);
 | 
						|
 | 
						|
  MachineBasicBlock *B = N->getBlock();
 | 
						|
  std::vector<MachineInstr*> Instrs;
 | 
						|
  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
 | 
						|
    Instrs.push_back(&*I);
 | 
						|
 | 
						|
  for (auto MI : Instrs) {
 | 
						|
    unsigned Opc = MI->getOpcode();
 | 
						|
    // Do not touch lifetime markers. This is why the target-independent DCE
 | 
						|
    // cannot be used.
 | 
						|
    if (Opc == TargetOpcode::LIFETIME_START ||
 | 
						|
        Opc == TargetOpcode::LIFETIME_END)
 | 
						|
      continue;
 | 
						|
    bool Store = false;
 | 
						|
    if (MI->isInlineAsm())
 | 
						|
      continue;
 | 
						|
    // Delete PHIs if possible.
 | 
						|
    if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool AllDead = true;
 | 
						|
    SmallVector<unsigned,2> Regs;
 | 
						|
    for (auto &Op : MI->operands()) {
 | 
						|
      if (!Op.isReg() || !Op.isDef())
 | 
						|
        continue;
 | 
						|
      unsigned R = Op.getReg();
 | 
						|
      if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
 | 
						|
        AllDead = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      Regs.push_back(R);
 | 
						|
    }
 | 
						|
    if (!AllDead)
 | 
						|
      continue;
 | 
						|
 | 
						|
    B->erase(MI);
 | 
						|
    for (unsigned i = 0, n = Regs.size(); i != n; ++i)
 | 
						|
      MRI.markUsesInDebugValueAsUndef(Regs[i]);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Eliminate redundant instructions
 | 
						|
//
 | 
						|
// This transformation will identify instructions where the output register
 | 
						|
// is the same as one of its input registers. This only works on instructions
 | 
						|
// that define a single register (unlike post-increment loads, for example).
 | 
						|
// The equality check is actually more detailed: the code calculates which
 | 
						|
// bits of the output are used, and only compares these bits with the input
 | 
						|
// registers.
 | 
						|
// If the output matches an input, the instruction is replaced with COPY.
 | 
						|
// The copies will be removed by another transformation.
 | 
						|
  class RedundantInstrElimination : public Transformation {
 | 
						|
  public:
 | 
						|
    RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
 | 
						|
          const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
 | 
						|
        : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
 | 
						|
 | 
						|
    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
 | 
						|
 | 
						|
  private:
 | 
						|
    bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
 | 
						|
          unsigned &LostB, unsigned &LostE);
 | 
						|
    bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
 | 
						|
          unsigned &LostB, unsigned &LostE);
 | 
						|
    bool computeUsedBits(unsigned Reg, BitVector &Bits);
 | 
						|
    bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
 | 
						|
          uint16_t Begin);
 | 
						|
    bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
 | 
						|
 | 
						|
    const HexagonInstrInfo &HII;
 | 
						|
    const HexagonRegisterInfo &HRI;
 | 
						|
    MachineRegisterInfo &MRI;
 | 
						|
    BitTracker &BT;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
// Check if the instruction is a lossy shift left, where the input being
 | 
						|
// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
 | 
						|
// of bit indices that are lost.
 | 
						|
bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
 | 
						|
      unsigned OpN, unsigned &LostB, unsigned &LostE) {
 | 
						|
  using namespace Hexagon;
 | 
						|
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
  unsigned ImN, RegN, Width;
 | 
						|
  switch (Opc) {
 | 
						|
    case S2_asl_i_p:
 | 
						|
      ImN = 2;
 | 
						|
      RegN = 1;
 | 
						|
      Width = 64;
 | 
						|
      break;
 | 
						|
    case S2_asl_i_p_acc:
 | 
						|
    case S2_asl_i_p_and:
 | 
						|
    case S2_asl_i_p_nac:
 | 
						|
    case S2_asl_i_p_or:
 | 
						|
    case S2_asl_i_p_xacc:
 | 
						|
      ImN = 3;
 | 
						|
      RegN = 2;
 | 
						|
      Width = 64;
 | 
						|
      break;
 | 
						|
    case S2_asl_i_r:
 | 
						|
      ImN = 2;
 | 
						|
      RegN = 1;
 | 
						|
      Width = 32;
 | 
						|
      break;
 | 
						|
    case S2_addasl_rrri:
 | 
						|
    case S4_andi_asl_ri:
 | 
						|
    case S4_ori_asl_ri:
 | 
						|
    case S4_addi_asl_ri:
 | 
						|
    case S4_subi_asl_ri:
 | 
						|
    case S2_asl_i_r_acc:
 | 
						|
    case S2_asl_i_r_and:
 | 
						|
    case S2_asl_i_r_nac:
 | 
						|
    case S2_asl_i_r_or:
 | 
						|
    case S2_asl_i_r_sat:
 | 
						|
    case S2_asl_i_r_xacc:
 | 
						|
      ImN = 3;
 | 
						|
      RegN = 2;
 | 
						|
      Width = 32;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (RegN != OpN)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(MI.getOperand(ImN).isImm());
 | 
						|
  unsigned S = MI.getOperand(ImN).getImm();
 | 
						|
  if (S == 0)
 | 
						|
    return false;
 | 
						|
  LostB = Width-S;
 | 
						|
  LostE = Width;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Check if the instruction is a lossy shift right, where the input being
 | 
						|
// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
 | 
						|
// of bit indices that are lost.
 | 
						|
bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
 | 
						|
      unsigned OpN, unsigned &LostB, unsigned &LostE) {
 | 
						|
  using namespace Hexagon;
 | 
						|
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
  unsigned ImN, RegN;
 | 
						|
  switch (Opc) {
 | 
						|
    case S2_asr_i_p:
 | 
						|
    case S2_lsr_i_p:
 | 
						|
      ImN = 2;
 | 
						|
      RegN = 1;
 | 
						|
      break;
 | 
						|
    case S2_asr_i_p_acc:
 | 
						|
    case S2_asr_i_p_and:
 | 
						|
    case S2_asr_i_p_nac:
 | 
						|
    case S2_asr_i_p_or:
 | 
						|
    case S2_lsr_i_p_acc:
 | 
						|
    case S2_lsr_i_p_and:
 | 
						|
    case S2_lsr_i_p_nac:
 | 
						|
    case S2_lsr_i_p_or:
 | 
						|
    case S2_lsr_i_p_xacc:
 | 
						|
      ImN = 3;
 | 
						|
      RegN = 2;
 | 
						|
      break;
 | 
						|
    case S2_asr_i_r:
 | 
						|
    case S2_lsr_i_r:
 | 
						|
      ImN = 2;
 | 
						|
      RegN = 1;
 | 
						|
      break;
 | 
						|
    case S4_andi_lsr_ri:
 | 
						|
    case S4_ori_lsr_ri:
 | 
						|
    case S4_addi_lsr_ri:
 | 
						|
    case S4_subi_lsr_ri:
 | 
						|
    case S2_asr_i_r_acc:
 | 
						|
    case S2_asr_i_r_and:
 | 
						|
    case S2_asr_i_r_nac:
 | 
						|
    case S2_asr_i_r_or:
 | 
						|
    case S2_lsr_i_r_acc:
 | 
						|
    case S2_lsr_i_r_and:
 | 
						|
    case S2_lsr_i_r_nac:
 | 
						|
    case S2_lsr_i_r_or:
 | 
						|
    case S2_lsr_i_r_xacc:
 | 
						|
      ImN = 3;
 | 
						|
      RegN = 2;
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (RegN != OpN)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(MI.getOperand(ImN).isImm());
 | 
						|
  unsigned S = MI.getOperand(ImN).getImm();
 | 
						|
  LostB = 0;
 | 
						|
  LostE = S;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the bit vector that corresponds to the used bits of register Reg.
 | 
						|
// The vector Bits has the same size, as the size of Reg in bits. If the cal-
 | 
						|
// culation fails (i.e. the used bits are unknown), it returns false. Other-
 | 
						|
// wise, it returns true and sets the corresponding bits in Bits.
 | 
						|
bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
 | 
						|
  BitVector Used(Bits.size());
 | 
						|
  RegisterSet Visited;
 | 
						|
  std::vector<unsigned> Pending;
 | 
						|
  Pending.push_back(Reg);
 | 
						|
 | 
						|
  for (unsigned i = 0; i < Pending.size(); ++i) {
 | 
						|
    unsigned R = Pending[i];
 | 
						|
    if (Visited.has(R))
 | 
						|
      continue;
 | 
						|
    Visited.insert(R);
 | 
						|
    for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
 | 
						|
      BitTracker::RegisterRef UR = *I;
 | 
						|
      unsigned B, W;
 | 
						|
      if (!HBS::getSubregMask(UR, B, W, MRI))
 | 
						|
        return false;
 | 
						|
      MachineInstr &UseI = *I->getParent();
 | 
						|
      if (UseI.isPHI() || UseI.isCopy()) {
 | 
						|
        unsigned DefR = UseI.getOperand(0).getReg();
 | 
						|
        if (!TargetRegisterInfo::isVirtualRegister(DefR))
 | 
						|
          return false;
 | 
						|
        Pending.push_back(DefR);
 | 
						|
      } else {
 | 
						|
        if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Bits |= Used;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the bits used by instruction MI in a register in operand OpN.
 | 
						|
// Return true/false if the calculation succeeds/fails. If is succeeds, set
 | 
						|
// used bits in Bits. This function does not reset any bits in Bits, so
 | 
						|
// subsequent calls over different instructions will result in the union
 | 
						|
// of the used bits in all these instructions.
 | 
						|
// The register in question may be used with a sub-register, whereas Bits
 | 
						|
// holds the bits for the entire register. To keep track of that, the
 | 
						|
// argument Begin indicates where in Bits is the lowest-significant bit
 | 
						|
// of the register used in operand OpN. For example, in instruction:
 | 
						|
//   %1 = S2_lsr_i_r %2:isub_hi, 10
 | 
						|
// the operand 1 is a 32-bit register, which happens to be a subregister
 | 
						|
// of the 64-bit register %2, and that subregister starts at position 32.
 | 
						|
// In this case Begin=32, since Bits[32] would be the lowest-significant bit
 | 
						|
// of %2:isub_hi.
 | 
						|
bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
 | 
						|
      unsigned OpN, BitVector &Bits, uint16_t Begin) {
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
  BitVector T(Bits.size());
 | 
						|
  bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
 | 
						|
  // Even if we don't have bits yet, we could still provide some information
 | 
						|
  // if the instruction is a lossy shift: the lost bits will be marked as
 | 
						|
  // not used.
 | 
						|
  unsigned LB, LE;
 | 
						|
  if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
 | 
						|
    assert(MI.getOperand(OpN).isReg());
 | 
						|
    BitTracker::RegisterRef RR = MI.getOperand(OpN);
 | 
						|
    const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
 | 
						|
    uint16_t Width = HRI.getRegSizeInBits(*RC);
 | 
						|
 | 
						|
    if (!GotBits)
 | 
						|
      T.set(Begin, Begin+Width);
 | 
						|
    assert(LB <= LE && LB < Width && LE <= Width);
 | 
						|
    T.reset(Begin+LB, Begin+LE);
 | 
						|
    GotBits = true;
 | 
						|
  }
 | 
						|
  if (GotBits)
 | 
						|
    Bits |= T;
 | 
						|
  return GotBits;
 | 
						|
}
 | 
						|
 | 
						|
// Calculates the used bits in RD ("defined register"), and checks if these
 | 
						|
// bits in RS ("used register") and RD are identical.
 | 
						|
bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
 | 
						|
      BitTracker::RegisterRef RS) {
 | 
						|
  const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
 | 
						|
  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
 | 
						|
 | 
						|
  unsigned DB, DW;
 | 
						|
  if (!HBS::getSubregMask(RD, DB, DW, MRI))
 | 
						|
    return false;
 | 
						|
  unsigned SB, SW;
 | 
						|
  if (!HBS::getSubregMask(RS, SB, SW, MRI))
 | 
						|
    return false;
 | 
						|
  if (SW != DW)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BitVector Used(DC.width());
 | 
						|
  if (!computeUsedBits(RD.Reg, Used))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 0; i != DW; ++i)
 | 
						|
    if (Used[i+DB] && DC[DB+i] != SC[SB+i])
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
 | 
						|
      const RegisterSet&) {
 | 
						|
  if (!BT.reached(&B))
 | 
						|
    return false;
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
 | 
						|
    NextI = std::next(I);
 | 
						|
    MachineInstr *MI = &*I;
 | 
						|
 | 
						|
    if (MI->getOpcode() == TargetOpcode::COPY)
 | 
						|
      continue;
 | 
						|
    if (MI->isPHI() || MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
 | 
						|
      continue;
 | 
						|
    unsigned NumD = MI->getDesc().getNumDefs();
 | 
						|
    if (NumD != 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    BitTracker::RegisterRef RD = MI->getOperand(0);
 | 
						|
    if (!BT.has(RD.Reg))
 | 
						|
      continue;
 | 
						|
    const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
 | 
						|
    auto At = MachineBasicBlock::iterator(MI);
 | 
						|
 | 
						|
    // Find a source operand that is equal to the result.
 | 
						|
    for (auto &Op : MI->uses()) {
 | 
						|
      if (!Op.isReg())
 | 
						|
        continue;
 | 
						|
      BitTracker::RegisterRef RS = Op;
 | 
						|
      if (!BT.has(RS.Reg))
 | 
						|
        continue;
 | 
						|
      if (!HBS::isTransparentCopy(RD, RS, MRI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      unsigned BN, BW;
 | 
						|
      if (!HBS::getSubregMask(RS, BN, BW, MRI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
 | 
						|
      if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If found, replace the instruction with a COPY.
 | 
						|
      const DebugLoc &DL = MI->getDebugLoc();
 | 
						|
      const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
 | 
						|
      unsigned NewR = MRI.createVirtualRegister(FRC);
 | 
						|
      MachineInstr *CopyI =
 | 
						|
          BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
 | 
						|
            .addReg(RS.Reg, 0, RS.Sub);
 | 
						|
      HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
 | 
						|
      // This pass can create copies between registers that don't have the
 | 
						|
      // exact same values. Updating the tracker has to involve updating
 | 
						|
      // all dependent cells. Example:
 | 
						|
      //   %1  = inst %2     ; %1 != %2, but used bits are equal
 | 
						|
      //
 | 
						|
      //   %3  = copy %2     ; <- inserted
 | 
						|
      //   ... = %3          ; <- replaced from %2
 | 
						|
      // Indirectly, we can create a "copy" between %1 and %2 even
 | 
						|
      // though their exact values do not match.
 | 
						|
      BT.visit(*CopyI);
 | 
						|
      Changed = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Recognize instructions that produce constant values known at compile-time.
 | 
						|
// Replace them with register definitions that load these constants directly.
 | 
						|
  class ConstGeneration : public Transformation {
 | 
						|
  public:
 | 
						|
    ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
 | 
						|
        MachineRegisterInfo &mri)
 | 
						|
      : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
 | 
						|
 | 
						|
    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
 | 
						|
    static bool isTfrConst(const MachineInstr &MI);
 | 
						|
 | 
						|
  private:
 | 
						|
    unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
 | 
						|
        MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
 | 
						|
 | 
						|
    const HexagonInstrInfo &HII;
 | 
						|
    MachineRegisterInfo &MRI;
 | 
						|
    BitTracker &BT;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
    case Hexagon::A2_combineii:
 | 
						|
    case Hexagon::A4_combineii:
 | 
						|
    case Hexagon::A2_tfrsi:
 | 
						|
    case Hexagon::A2_tfrpi:
 | 
						|
    case Hexagon::PS_true:
 | 
						|
    case Hexagon::PS_false:
 | 
						|
    case Hexagon::CONST32:
 | 
						|
    case Hexagon::CONST64:
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Generate a transfer-immediate instruction that is appropriate for the
 | 
						|
// register class and the actual value being transferred.
 | 
						|
unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
 | 
						|
      MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
 | 
						|
  unsigned Reg = MRI.createVirtualRegister(RC);
 | 
						|
  if (RC == &Hexagon::IntRegsRegClass) {
 | 
						|
    BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
 | 
						|
        .addImm(int32_t(C));
 | 
						|
    return Reg;
 | 
						|
  }
 | 
						|
 | 
						|
  if (RC == &Hexagon::DoubleRegsRegClass) {
 | 
						|
    if (isInt<8>(C)) {
 | 
						|
      BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
 | 
						|
          .addImm(C);
 | 
						|
      return Reg;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned Lo = Lo_32(C), Hi = Hi_32(C);
 | 
						|
    if (isInt<8>(Lo) || isInt<8>(Hi)) {
 | 
						|
      unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
 | 
						|
                                  : Hexagon::A4_combineii;
 | 
						|
      BuildMI(B, At, DL, HII.get(Opc), Reg)
 | 
						|
          .addImm(int32_t(Hi))
 | 
						|
          .addImm(int32_t(Lo));
 | 
						|
      return Reg;
 | 
						|
    }
 | 
						|
 | 
						|
    BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
 | 
						|
        .addImm(C);
 | 
						|
    return Reg;
 | 
						|
  }
 | 
						|
 | 
						|
  if (RC == &Hexagon::PredRegsRegClass) {
 | 
						|
    unsigned Opc;
 | 
						|
    if (C == 0)
 | 
						|
      Opc = Hexagon::PS_false;
 | 
						|
    else if ((C & 0xFF) == 0xFF)
 | 
						|
      Opc = Hexagon::PS_true;
 | 
						|
    else
 | 
						|
      return 0;
 | 
						|
    BuildMI(B, At, DL, HII.get(Opc), Reg);
 | 
						|
    return Reg;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
 | 
						|
  if (!BT.reached(&B))
 | 
						|
    return false;
 | 
						|
  bool Changed = false;
 | 
						|
  RegisterSet Defs;
 | 
						|
 | 
						|
  for (auto I = B.begin(), E = B.end(); I != E; ++I) {
 | 
						|
    if (isTfrConst(*I))
 | 
						|
      continue;
 | 
						|
    Defs.clear();
 | 
						|
    HBS::getInstrDefs(*I, Defs);
 | 
						|
    if (Defs.count() != 1)
 | 
						|
      continue;
 | 
						|
    unsigned DR = Defs.find_first();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(DR))
 | 
						|
      continue;
 | 
						|
    uint64_t U;
 | 
						|
    const BitTracker::RegisterCell &DRC = BT.lookup(DR);
 | 
						|
    if (HBS::getConst(DRC, 0, DRC.width(), U)) {
 | 
						|
      int64_t C = U;
 | 
						|
      DebugLoc DL = I->getDebugLoc();
 | 
						|
      auto At = I->isPHI() ? B.getFirstNonPHI() : I;
 | 
						|
      unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
 | 
						|
      if (ImmReg) {
 | 
						|
        HBS::replaceReg(DR, ImmReg, MRI);
 | 
						|
        BT.put(ImmReg, DRC);
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Identify pairs of available registers which hold identical values.
 | 
						|
// In such cases, only one of them needs to be calculated, the other one
 | 
						|
// will be defined as a copy of the first.
 | 
						|
  class CopyGeneration : public Transformation {
 | 
						|
  public:
 | 
						|
    CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
 | 
						|
        const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
 | 
						|
      : Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
 | 
						|
 | 
						|
    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
 | 
						|
 | 
						|
  private:
 | 
						|
    bool findMatch(const BitTracker::RegisterRef &Inp,
 | 
						|
        BitTracker::RegisterRef &Out, const RegisterSet &AVs);
 | 
						|
 | 
						|
    const HexagonInstrInfo &HII;
 | 
						|
    const HexagonRegisterInfo &HRI;
 | 
						|
    MachineRegisterInfo &MRI;
 | 
						|
    BitTracker &BT;
 | 
						|
    RegisterSet Forbidden;
 | 
						|
  };
 | 
						|
 | 
						|
// Eliminate register copies RD = RS, by replacing the uses of RD with
 | 
						|
// with uses of RS.
 | 
						|
  class CopyPropagation : public Transformation {
 | 
						|
  public:
 | 
						|
    CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
 | 
						|
        : Transformation(false), HRI(hri), MRI(mri) {}
 | 
						|
 | 
						|
    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
 | 
						|
 | 
						|
    static bool isCopyReg(unsigned Opc, bool NoConv);
 | 
						|
 | 
						|
  private:
 | 
						|
    bool propagateRegCopy(MachineInstr &MI);
 | 
						|
 | 
						|
    const HexagonRegisterInfo &HRI;
 | 
						|
    MachineRegisterInfo &MRI;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Check if there is a register in AVs that is identical to Inp. If so,
 | 
						|
/// set Out to the found register. The output may be a pair Reg:Sub.
 | 
						|
bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
 | 
						|
      BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
 | 
						|
  if (!BT.has(Inp.Reg))
 | 
						|
    return false;
 | 
						|
  const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
 | 
						|
  auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
 | 
						|
  unsigned B, W;
 | 
						|
  if (!HBS::getSubregMask(Inp, B, W, MRI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
 | 
						|
    if (!BT.has(R) || Forbidden[R])
 | 
						|
      continue;
 | 
						|
    const BitTracker::RegisterCell &RC = BT.lookup(R);
 | 
						|
    unsigned RW = RC.width();
 | 
						|
    if (W == RW) {
 | 
						|
      if (FRC != MRI.getRegClass(R))
 | 
						|
        continue;
 | 
						|
      if (!HBS::isTransparentCopy(R, Inp, MRI))
 | 
						|
        continue;
 | 
						|
      if (!HBS::isEqual(InpRC, B, RC, 0, W))
 | 
						|
        continue;
 | 
						|
      Out.Reg = R;
 | 
						|
      Out.Sub = 0;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
    // Check if there is a super-register, whose part (with a subregister)
 | 
						|
    // is equal to the input.
 | 
						|
    // Only do double registers for now.
 | 
						|
    if (W*2 != RW)
 | 
						|
      continue;
 | 
						|
    if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (HBS::isEqual(InpRC, B, RC, 0, W))
 | 
						|
      Out.Sub = Hexagon::isub_lo;
 | 
						|
    else if (HBS::isEqual(InpRC, B, RC, W, W))
 | 
						|
      Out.Sub = Hexagon::isub_hi;
 | 
						|
    else
 | 
						|
      continue;
 | 
						|
    Out.Reg = R;
 | 
						|
    if (HBS::isTransparentCopy(Out, Inp, MRI))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CopyGeneration::processBlock(MachineBasicBlock &B,
 | 
						|
      const RegisterSet &AVs) {
 | 
						|
  if (!BT.reached(&B))
 | 
						|
    return false;
 | 
						|
  RegisterSet AVB(AVs);
 | 
						|
  bool Changed = false;
 | 
						|
  RegisterSet Defs;
 | 
						|
 | 
						|
  for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
 | 
						|
       ++I, AVB.insert(Defs)) {
 | 
						|
    NextI = std::next(I);
 | 
						|
    Defs.clear();
 | 
						|
    HBS::getInstrDefs(*I, Defs);
 | 
						|
 | 
						|
    unsigned Opc = I->getOpcode();
 | 
						|
    if (CopyPropagation::isCopyReg(Opc, false) ||
 | 
						|
        ConstGeneration::isTfrConst(*I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DebugLoc DL = I->getDebugLoc();
 | 
						|
    auto At = I->isPHI() ? B.getFirstNonPHI() : I;
 | 
						|
 | 
						|
    for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
 | 
						|
      BitTracker::RegisterRef MR;
 | 
						|
      auto *FRC = HBS::getFinalVRegClass(R, MRI);
 | 
						|
 | 
						|
      if (findMatch(R, MR, AVB)) {
 | 
						|
        unsigned NewR = MRI.createVirtualRegister(FRC);
 | 
						|
        BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
 | 
						|
          .addReg(MR.Reg, 0, MR.Sub);
 | 
						|
        BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
 | 
						|
        HBS::replaceReg(R, NewR, MRI);
 | 
						|
        Forbidden.insert(R);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (FRC == &Hexagon::DoubleRegsRegClass ||
 | 
						|
          FRC == &Hexagon::HvxWRRegClass) {
 | 
						|
        // Try to generate REG_SEQUENCE.
 | 
						|
        unsigned SubLo = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_lo);
 | 
						|
        unsigned SubHi = HRI.getHexagonSubRegIndex(*FRC, Hexagon::ps_sub_hi);
 | 
						|
        BitTracker::RegisterRef TL = { R, SubLo };
 | 
						|
        BitTracker::RegisterRef TH = { R, SubHi };
 | 
						|
        BitTracker::RegisterRef ML, MH;
 | 
						|
        if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
 | 
						|
          auto *FRC = HBS::getFinalVRegClass(R, MRI);
 | 
						|
          unsigned NewR = MRI.createVirtualRegister(FRC);
 | 
						|
          BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
 | 
						|
            .addReg(ML.Reg, 0, ML.Sub)
 | 
						|
            .addImm(SubLo)
 | 
						|
            .addReg(MH.Reg, 0, MH.Sub)
 | 
						|
            .addImm(SubHi);
 | 
						|
          BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
 | 
						|
          HBS::replaceReg(R, NewR, MRI);
 | 
						|
          Forbidden.insert(R);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
 | 
						|
  switch (Opc) {
 | 
						|
    case TargetOpcode::COPY:
 | 
						|
    case TargetOpcode::REG_SEQUENCE:
 | 
						|
    case Hexagon::A4_combineir:
 | 
						|
    case Hexagon::A4_combineri:
 | 
						|
      return true;
 | 
						|
    case Hexagon::A2_tfr:
 | 
						|
    case Hexagon::A2_tfrp:
 | 
						|
    case Hexagon::A2_combinew:
 | 
						|
    case Hexagon::V6_vcombine:
 | 
						|
      return NoConv;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
 | 
						|
  bool Changed = false;
 | 
						|
  unsigned Opc = MI.getOpcode();
 | 
						|
  BitTracker::RegisterRef RD = MI.getOperand(0);
 | 
						|
  assert(MI.getOperand(0).getSubReg() == 0);
 | 
						|
 | 
						|
  switch (Opc) {
 | 
						|
    case TargetOpcode::COPY:
 | 
						|
    case Hexagon::A2_tfr:
 | 
						|
    case Hexagon::A2_tfrp: {
 | 
						|
      BitTracker::RegisterRef RS = MI.getOperand(1);
 | 
						|
      if (!HBS::isTransparentCopy(RD, RS, MRI))
 | 
						|
        break;
 | 
						|
      if (RS.Sub != 0)
 | 
						|
        Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
 | 
						|
      else
 | 
						|
        Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case TargetOpcode::REG_SEQUENCE: {
 | 
						|
      BitTracker::RegisterRef SL, SH;
 | 
						|
      if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
 | 
						|
        const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
 | 
						|
        unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
 | 
						|
        unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
 | 
						|
        Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
 | 
						|
        Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Hexagon::A2_combinew:
 | 
						|
    case Hexagon::V6_vcombine: {
 | 
						|
      const TargetRegisterClass &RC = *MRI.getRegClass(RD.Reg);
 | 
						|
      unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
 | 
						|
      unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
 | 
						|
      BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
 | 
						|
      Changed  = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
 | 
						|
      Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Hexagon::A4_combineir:
 | 
						|
    case Hexagon::A4_combineri: {
 | 
						|
      unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
 | 
						|
      unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
 | 
						|
                                                    : Hexagon::isub_hi;
 | 
						|
      BitTracker::RegisterRef RS = MI.getOperand(SrcX);
 | 
						|
      Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
 | 
						|
  std::vector<MachineInstr*> Instrs;
 | 
						|
  for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
 | 
						|
    Instrs.push_back(&*I);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto I : Instrs) {
 | 
						|
    unsigned Opc = I->getOpcode();
 | 
						|
    if (!CopyPropagation::isCopyReg(Opc, true))
 | 
						|
      continue;
 | 
						|
    Changed |= propagateRegCopy(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// Recognize patterns that can be simplified and replace them with the
 | 
						|
// simpler forms.
 | 
						|
// This is by no means complete
 | 
						|
  class BitSimplification : public Transformation {
 | 
						|
  public:
 | 
						|
    BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
 | 
						|
        const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
 | 
						|
        MachineRegisterInfo &mri, MachineFunction &mf)
 | 
						|
      : Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
 | 
						|
        MF(mf), BT(bt) {}
 | 
						|
 | 
						|
    bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
 | 
						|
 | 
						|
  private:
 | 
						|
    struct RegHalf : public BitTracker::RegisterRef {
 | 
						|
      bool Low;  // Low/High halfword.
 | 
						|
    };
 | 
						|
 | 
						|
    bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
 | 
						|
          unsigned B, RegHalf &RH);
 | 
						|
    bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
 | 
						|
 | 
						|
    bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
 | 
						|
          BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
 | 
						|
    unsigned getCombineOpcode(bool HLow, bool LLow);
 | 
						|
 | 
						|
    bool genStoreUpperHalf(MachineInstr *MI);
 | 
						|
    bool genStoreImmediate(MachineInstr *MI);
 | 
						|
    bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
 | 
						|
          const BitTracker::RegisterCell &RC);
 | 
						|
    bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
 | 
						|
          const BitTracker::RegisterCell &RC);
 | 
						|
    bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
 | 
						|
          const BitTracker::RegisterCell &RC);
 | 
						|
    bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
 | 
						|
          const BitTracker::RegisterCell &RC);
 | 
						|
    bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
 | 
						|
          const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
 | 
						|
    bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
 | 
						|
          const BitTracker::RegisterCell &RC);
 | 
						|
    bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
 | 
						|
          const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
 | 
						|
 | 
						|
    // Cache of created instructions to avoid creating duplicates.
 | 
						|
    // XXX Currently only used by genBitSplit.
 | 
						|
    std::vector<MachineInstr*> NewMIs;
 | 
						|
 | 
						|
    const MachineDominatorTree &MDT;
 | 
						|
    const HexagonInstrInfo &HII;
 | 
						|
    const HexagonRegisterInfo &HRI;
 | 
						|
    MachineRegisterInfo &MRI;
 | 
						|
    MachineFunction &MF;
 | 
						|
    BitTracker &BT;
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
// Check if the bits [B..B+16) in register cell RC form a valid halfword,
 | 
						|
// i.e. [0..16), [16..32), etc. of some register. If so, return true and
 | 
						|
// set the information about the found register in RH.
 | 
						|
bool BitSimplification::matchHalf(unsigned SelfR,
 | 
						|
      const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
 | 
						|
  // XXX This could be searching in the set of available registers, in case
 | 
						|
  // the match is not exact.
 | 
						|
 | 
						|
  // Match 16-bit chunks, where the RC[B..B+15] references exactly one
 | 
						|
  // register and all the bits B..B+15 match between RC and the register.
 | 
						|
  // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
 | 
						|
  // and RC = { [0]:0 [1-15]:v1[1-15]... }.
 | 
						|
  bool Low = false;
 | 
						|
  unsigned I = B;
 | 
						|
  while (I < B+16 && RC[I].num())
 | 
						|
    I++;
 | 
						|
  if (I == B+16)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Reg = RC[I].RefI.Reg;
 | 
						|
  unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
 | 
						|
  if (P < I-B)
 | 
						|
    return false;
 | 
						|
  unsigned Pos = P - (I-B);
 | 
						|
 | 
						|
  if (Reg == 0 || Reg == SelfR)    // Don't match "self".
 | 
						|
    return false;
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
    return false;
 | 
						|
  if (!BT.has(Reg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  const BitTracker::RegisterCell &SC = BT.lookup(Reg);
 | 
						|
  if (Pos+16 > SC.width())
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (unsigned i = 0; i < 16; ++i) {
 | 
						|
    const BitTracker::BitValue &RV = RC[i+B];
 | 
						|
    if (RV.Type == BitTracker::BitValue::Ref) {
 | 
						|
      if (RV.RefI.Reg != Reg)
 | 
						|
        return false;
 | 
						|
      if (RV.RefI.Pos != i+Pos)
 | 
						|
        return false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (RC[i+B] != SC[i+Pos])
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Sub = 0;
 | 
						|
  switch (Pos) {
 | 
						|
    case 0:
 | 
						|
      Sub = Hexagon::isub_lo;
 | 
						|
      Low = true;
 | 
						|
      break;
 | 
						|
    case 16:
 | 
						|
      Sub = Hexagon::isub_lo;
 | 
						|
      Low = false;
 | 
						|
      break;
 | 
						|
    case 32:
 | 
						|
      Sub = Hexagon::isub_hi;
 | 
						|
      Low = true;
 | 
						|
      break;
 | 
						|
    case 48:
 | 
						|
      Sub = Hexagon::isub_hi;
 | 
						|
      Low = false;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  RH.Reg = Reg;
 | 
						|
  RH.Sub = Sub;
 | 
						|
  RH.Low = Low;
 | 
						|
  // If the subregister is not valid with the register, set it to 0.
 | 
						|
  if (!HBS::getFinalVRegClass(RH, MRI))
 | 
						|
    RH.Sub = 0;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
 | 
						|
      unsigned OpNum) {
 | 
						|
  auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
 | 
						|
  auto *RRC = HBS::getFinalVRegClass(R, MRI);
 | 
						|
  return OpRC->hasSubClassEq(RRC);
 | 
						|
}
 | 
						|
 | 
						|
// Check if RC matches the pattern of a S2_packhl. If so, return true and
 | 
						|
// set the inputs Rs and Rt.
 | 
						|
bool BitSimplification::matchPackhl(unsigned SelfR,
 | 
						|
      const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
 | 
						|
      BitTracker::RegisterRef &Rt) {
 | 
						|
  RegHalf L1, H1, L2, H2;
 | 
						|
 | 
						|
  if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
 | 
						|
    return false;
 | 
						|
  if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Rs = H1.L1, Rt = H2.L2
 | 
						|
  if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
 | 
						|
    return false;
 | 
						|
  if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Rs = H1;
 | 
						|
  Rt = H2;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
 | 
						|
  return HLow ? LLow ? Hexagon::A2_combine_ll
 | 
						|
                     : Hexagon::A2_combine_lh
 | 
						|
              : LLow ? Hexagon::A2_combine_hl
 | 
						|
                     : Hexagon::A2_combine_hh;
 | 
						|
}
 | 
						|
 | 
						|
// If MI stores the upper halfword of a register (potentially obtained via
 | 
						|
// shifts or extracts), replace it with a storerf instruction. This could
 | 
						|
// cause the "extraction" code to become dead.
 | 
						|
bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  if (Opc != Hexagon::S2_storerh_io)
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineOperand &ValOp = MI->getOperand(2);
 | 
						|
  BitTracker::RegisterRef RS = ValOp;
 | 
						|
  if (!BT.has(RS.Reg))
 | 
						|
    return false;
 | 
						|
  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
 | 
						|
  RegHalf H;
 | 
						|
  if (!matchHalf(0, RC, 0, H))
 | 
						|
    return false;
 | 
						|
  if (H.Low)
 | 
						|
    return false;
 | 
						|
  MI->setDesc(HII.get(Hexagon::S2_storerf_io));
 | 
						|
  ValOp.setReg(H.Reg);
 | 
						|
  ValOp.setSubReg(H.Sub);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// If MI stores a value known at compile-time, and the value is within a range
 | 
						|
// that avoids using constant-extenders, replace it with a store-immediate.
 | 
						|
bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  unsigned Align = 0;
 | 
						|
  switch (Opc) {
 | 
						|
    case Hexagon::S2_storeri_io:
 | 
						|
      Align++;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Hexagon::S2_storerh_io:
 | 
						|
      Align++;
 | 
						|
      LLVM_FALLTHROUGH;
 | 
						|
    case Hexagon::S2_storerb_io:
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Avoid stores to frame-indices (due to an unknown offset).
 | 
						|
  if (!MI->getOperand(0).isReg())
 | 
						|
    return false;
 | 
						|
  MachineOperand &OffOp = MI->getOperand(1);
 | 
						|
  if (!OffOp.isImm())
 | 
						|
    return false;
 | 
						|
 | 
						|
  int64_t Off = OffOp.getImm();
 | 
						|
  // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
 | 
						|
  if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
 | 
						|
    return false;
 | 
						|
  // Source register:
 | 
						|
  BitTracker::RegisterRef RS = MI->getOperand(2);
 | 
						|
  if (!BT.has(RS.Reg))
 | 
						|
    return false;
 | 
						|
  const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
 | 
						|
  uint64_t U;
 | 
						|
  if (!HBS::getConst(RC, 0, RC.width(), U))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Only consider 8-bit values to avoid constant-extenders.
 | 
						|
  int V;
 | 
						|
  switch (Opc) {
 | 
						|
    case Hexagon::S2_storerb_io:
 | 
						|
      V = int8_t(U);
 | 
						|
      break;
 | 
						|
    case Hexagon::S2_storerh_io:
 | 
						|
      V = int16_t(U);
 | 
						|
      break;
 | 
						|
    case Hexagon::S2_storeri_io:
 | 
						|
      V = int32_t(U);
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  if (!isInt<8>(V))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MI->RemoveOperand(2);
 | 
						|
  switch (Opc) {
 | 
						|
    case Hexagon::S2_storerb_io:
 | 
						|
      MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
 | 
						|
      break;
 | 
						|
    case Hexagon::S2_storerh_io:
 | 
						|
      MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
 | 
						|
      break;
 | 
						|
    case Hexagon::S2_storeri_io:
 | 
						|
      MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  MI->addOperand(MachineOperand::CreateImm(V));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
 | 
						|
// last instruction in a sequence that results in something equivalent to
 | 
						|
// the pack-halfwords. The intent is to cause the entire sequence to become
 | 
						|
// dead.
 | 
						|
bool BitSimplification::genPackhl(MachineInstr *MI,
 | 
						|
      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  if (Opc == Hexagon::S2_packhl)
 | 
						|
    return false;
 | 
						|
  BitTracker::RegisterRef Rs, Rt;
 | 
						|
  if (!matchPackhl(RD.Reg, RC, Rs, Rt))
 | 
						|
    return false;
 | 
						|
  if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
 | 
						|
      !validateReg(Rt, Hexagon::S2_packhl, 2))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock &B = *MI->getParent();
 | 
						|
  unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
 | 
						|
  DebugLoc DL = MI->getDebugLoc();
 | 
						|
  auto At = MI->isPHI() ? B.getFirstNonPHI()
 | 
						|
                        : MachineBasicBlock::iterator(MI);
 | 
						|
  BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
 | 
						|
      .addReg(Rs.Reg, 0, Rs.Sub)
 | 
						|
      .addReg(Rt.Reg, 0, Rt.Sub);
 | 
						|
  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
 | 
						|
  BT.put(BitTracker::RegisterRef(NewR), RC);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// If MI produces halfword of the input in the low half of the output,
 | 
						|
// replace it with zero-extend or extractu.
 | 
						|
bool BitSimplification::genExtractHalf(MachineInstr *MI,
 | 
						|
      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
 | 
						|
  RegHalf L;
 | 
						|
  // Check for halfword in low 16 bits, zeros elsewhere.
 | 
						|
  if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  MachineBasicBlock &B = *MI->getParent();
 | 
						|
  DebugLoc DL = MI->getDebugLoc();
 | 
						|
 | 
						|
  // Prefer zxth, since zxth can go in any slot, while extractu only in
 | 
						|
  // slots 2 and 3.
 | 
						|
  unsigned NewR = 0;
 | 
						|
  auto At = MI->isPHI() ? B.getFirstNonPHI()
 | 
						|
                        : MachineBasicBlock::iterator(MI);
 | 
						|
  if (L.Low && Opc != Hexagon::A2_zxth) {
 | 
						|
    if (validateReg(L, Hexagon::A2_zxth, 1)) {
 | 
						|
      NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
 | 
						|
      BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
 | 
						|
          .addReg(L.Reg, 0, L.Sub);
 | 
						|
    }
 | 
						|
  } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
 | 
						|
    if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
 | 
						|
      NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
 | 
						|
      BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
 | 
						|
          .addReg(L.Reg, 0, L.Sub)
 | 
						|
          .addImm(16);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (NewR == 0)
 | 
						|
    return false;
 | 
						|
  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
 | 
						|
  BT.put(BitTracker::RegisterRef(NewR), RC);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
 | 
						|
// combine.
 | 
						|
bool BitSimplification::genCombineHalf(MachineInstr *MI,
 | 
						|
      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
 | 
						|
  RegHalf L, H;
 | 
						|
  // Check for combine h/l
 | 
						|
  if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
 | 
						|
    return false;
 | 
						|
  // Do nothing if this is just a reg copy.
 | 
						|
  if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  unsigned COpc = getCombineOpcode(H.Low, L.Low);
 | 
						|
  if (COpc == Opc)
 | 
						|
    return false;
 | 
						|
  if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineBasicBlock &B = *MI->getParent();
 | 
						|
  DebugLoc DL = MI->getDebugLoc();
 | 
						|
  unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
 | 
						|
  auto At = MI->isPHI() ? B.getFirstNonPHI()
 | 
						|
                        : MachineBasicBlock::iterator(MI);
 | 
						|
  BuildMI(B, At, DL, HII.get(COpc), NewR)
 | 
						|
      .addReg(H.Reg, 0, H.Sub)
 | 
						|
      .addReg(L.Reg, 0, L.Sub);
 | 
						|
  HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
 | 
						|
  BT.put(BitTracker::RegisterRef(NewR), RC);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// If MI resets high bits of a register and keeps the lower ones, replace it
 | 
						|
// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
 | 
						|
bool BitSimplification::genExtractLow(MachineInstr *MI,
 | 
						|
      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
    case Hexagon::A2_zxtb:
 | 
						|
    case Hexagon::A2_zxth:
 | 
						|
    case Hexagon::S2_extractu:
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
 | 
						|
    int32_t Imm = MI->getOperand(2).getImm();
 | 
						|
    if (isInt<10>(Imm))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
 | 
						|
    return false;
 | 
						|
  unsigned W = RC.width();
 | 
						|
  while (W > 0 && RC[W-1].is(0))
 | 
						|
    W--;
 | 
						|
  if (W == 0 || W == RC.width())
 | 
						|
    return false;
 | 
						|
  unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
 | 
						|
                  : (W == 16) ? Hexagon::A2_zxth
 | 
						|
                  : (W < 10)  ? Hexagon::A2_andir
 | 
						|
                  : Hexagon::S2_extractu;
 | 
						|
  MachineBasicBlock &B = *MI->getParent();
 | 
						|
  DebugLoc DL = MI->getDebugLoc();
 | 
						|
 | 
						|
  for (auto &Op : MI->uses()) {
 | 
						|
    if (!Op.isReg())
 | 
						|
      continue;
 | 
						|
    BitTracker::RegisterRef RS = Op;
 | 
						|
    if (!BT.has(RS.Reg))
 | 
						|
      continue;
 | 
						|
    const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
 | 
						|
    unsigned BN, BW;
 | 
						|
    if (!HBS::getSubregMask(RS, BN, BW, MRI))
 | 
						|
      continue;
 | 
						|
    if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
 | 
						|
      continue;
 | 
						|
    if (!validateReg(RS, NewOpc, 1))
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
 | 
						|
    auto At = MI->isPHI() ? B.getFirstNonPHI()
 | 
						|
                          : MachineBasicBlock::iterator(MI);
 | 
						|
    auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
 | 
						|
                  .addReg(RS.Reg, 0, RS.Sub);
 | 
						|
    if (NewOpc == Hexagon::A2_andir)
 | 
						|
      MIB.addImm((1 << W) - 1);
 | 
						|
    else if (NewOpc == Hexagon::S2_extractu)
 | 
						|
      MIB.addImm(W).addImm(0);
 | 
						|
    HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
 | 
						|
    BT.put(BitTracker::RegisterRef(NewR), RC);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool BitSimplification::genBitSplit(MachineInstr *MI,
 | 
						|
      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
 | 
						|
      const RegisterSet &AVs) {
 | 
						|
  if (!GenBitSplit)
 | 
						|
    return false;
 | 
						|
  if (MaxBitSplit.getNumOccurrences()) {
 | 
						|
    if (CountBitSplit >= MaxBitSplit)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
    case Hexagon::A4_bitsplit:
 | 
						|
    case Hexagon::A4_bitspliti:
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned W = RC.width();
 | 
						|
  if (W != 32)
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
 | 
						|
    unsigned Z = C.width();
 | 
						|
    while (Z > 0 && C[Z-1].is(0))
 | 
						|
      --Z;
 | 
						|
    return C.width() - Z;
 | 
						|
  };
 | 
						|
 | 
						|
  // Count the number of leading zeros in the target RC.
 | 
						|
  unsigned Z = ctlz(RC);
 | 
						|
  if (Z == 0 || Z == W)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A simplistic analysis: assume the source register (the one being split)
 | 
						|
  // is fully unknown, and that all its bits are self-references.
 | 
						|
  const BitTracker::BitValue &B0 = RC[0];
 | 
						|
  if (B0.Type != BitTracker::BitValue::Ref)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned SrcR = B0.RefI.Reg;
 | 
						|
  unsigned SrcSR = 0;
 | 
						|
  unsigned Pos = B0.RefI.Pos;
 | 
						|
 | 
						|
  // All the non-zero bits should be consecutive bits from the same register.
 | 
						|
  for (unsigned i = 1; i < W-Z; ++i) {
 | 
						|
    const BitTracker::BitValue &V = RC[i];
 | 
						|
    if (V.Type != BitTracker::BitValue::Ref)
 | 
						|
      return false;
 | 
						|
    if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now, find the other bitfield among AVs.
 | 
						|
  for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
 | 
						|
    // The number of leading zeros here should be the number of trailing
 | 
						|
    // non-zeros in RC.
 | 
						|
    if (!BT.has(S))
 | 
						|
      continue;
 | 
						|
    const BitTracker::RegisterCell &SC = BT.lookup(S);
 | 
						|
    if (SC.width() != W || ctlz(SC) != W-Z)
 | 
						|
      continue;
 | 
						|
    // The Z lower bits should now match SrcR.
 | 
						|
    const BitTracker::BitValue &S0 = SC[0];
 | 
						|
    if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
 | 
						|
      continue;
 | 
						|
    unsigned P = S0.RefI.Pos;
 | 
						|
 | 
						|
    if (Pos <= P && (Pos + W-Z) != P)
 | 
						|
      continue;
 | 
						|
    if (P < Pos && (P + Z) != Pos)
 | 
						|
      continue;
 | 
						|
    // The starting bitfield position must be at a subregister boundary.
 | 
						|
    if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
 | 
						|
      continue;
 | 
						|
 | 
						|
    unsigned I;
 | 
						|
    for (I = 1; I < Z; ++I) {
 | 
						|
      const BitTracker::BitValue &V = SC[I];
 | 
						|
      if (V.Type != BitTracker::BitValue::Ref)
 | 
						|
        break;
 | 
						|
      if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    if (I != Z)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Generate bitsplit where S is defined.
 | 
						|
    if (MaxBitSplit.getNumOccurrences())
 | 
						|
      CountBitSplit++;
 | 
						|
    MachineInstr *DefS = MRI.getVRegDef(S);
 | 
						|
    assert(DefS != nullptr);
 | 
						|
    DebugLoc DL = DefS->getDebugLoc();
 | 
						|
    MachineBasicBlock &B = *DefS->getParent();
 | 
						|
    auto At = DefS->isPHI() ? B.getFirstNonPHI()
 | 
						|
                            : MachineBasicBlock::iterator(DefS);
 | 
						|
    if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
 | 
						|
      SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
 | 
						|
    if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
 | 
						|
      continue;
 | 
						|
    unsigned ImmOp = Pos <= P ? W-Z : Z;
 | 
						|
 | 
						|
    // Find an existing bitsplit instruction if one already exists.
 | 
						|
    unsigned NewR = 0;
 | 
						|
    for (MachineInstr *In : NewMIs) {
 | 
						|
      if (In->getOpcode() != Hexagon::A4_bitspliti)
 | 
						|
        continue;
 | 
						|
      MachineOperand &Op1 = In->getOperand(1);
 | 
						|
      if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
 | 
						|
        continue;
 | 
						|
      if (In->getOperand(2).getImm() != ImmOp)
 | 
						|
        continue;
 | 
						|
      // Check if the target register is available here.
 | 
						|
      MachineOperand &Op0 = In->getOperand(0);
 | 
						|
      MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
 | 
						|
      assert(DefI != nullptr);
 | 
						|
      if (!MDT.dominates(DefI, &*At))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Found one that can be reused.
 | 
						|
      assert(Op0.getSubReg() == 0);
 | 
						|
      NewR = Op0.getReg();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    if (!NewR) {
 | 
						|
      NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
 | 
						|
      auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
 | 
						|
                      .addReg(SrcR, 0, SrcSR)
 | 
						|
                      .addImm(ImmOp);
 | 
						|
      NewMIs.push_back(NewBS);
 | 
						|
    }
 | 
						|
    if (Pos <= P) {
 | 
						|
      HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
 | 
						|
      HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_hi, MRI);
 | 
						|
    } else {
 | 
						|
      HBS::replaceRegWithSub(S,      NewR, Hexagon::isub_lo, MRI);
 | 
						|
      HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Check for tstbit simplification opportunity, where the bit being checked
 | 
						|
// can be tracked back to another register. For example:
 | 
						|
//   %2 = S2_lsr_i_r  %1, 5
 | 
						|
//   %3 = S2_tstbit_i %2, 0
 | 
						|
// =>
 | 
						|
//   %3 = S2_tstbit_i %1, 5
 | 
						|
bool BitSimplification::simplifyTstbit(MachineInstr *MI,
 | 
						|
      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  if (Opc != Hexagon::S2_tstbit_i)
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned BN = MI->getOperand(2).getImm();
 | 
						|
  BitTracker::RegisterRef RS = MI->getOperand(1);
 | 
						|
  unsigned F, W;
 | 
						|
  DebugLoc DL = MI->getDebugLoc();
 | 
						|
  if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
 | 
						|
    return false;
 | 
						|
  MachineBasicBlock &B = *MI->getParent();
 | 
						|
  auto At = MI->isPHI() ? B.getFirstNonPHI()
 | 
						|
                        : MachineBasicBlock::iterator(MI);
 | 
						|
 | 
						|
  const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
 | 
						|
  const BitTracker::BitValue &V = SC[F+BN];
 | 
						|
  if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
 | 
						|
    const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
 | 
						|
    // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
 | 
						|
    // a double register, need to use a subregister and adjust bit
 | 
						|
    // number.
 | 
						|
    unsigned P = std::numeric_limits<unsigned>::max();
 | 
						|
    BitTracker::RegisterRef RR(V.RefI.Reg, 0);
 | 
						|
    if (TC == &Hexagon::DoubleRegsRegClass) {
 | 
						|
      P = V.RefI.Pos;
 | 
						|
      RR.Sub = Hexagon::isub_lo;
 | 
						|
      if (P >= 32) {
 | 
						|
        P -= 32;
 | 
						|
        RR.Sub = Hexagon::isub_hi;
 | 
						|
      }
 | 
						|
    } else if (TC == &Hexagon::IntRegsRegClass) {
 | 
						|
      P = V.RefI.Pos;
 | 
						|
    }
 | 
						|
    if (P != std::numeric_limits<unsigned>::max()) {
 | 
						|
      unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
 | 
						|
      BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
 | 
						|
          .addReg(RR.Reg, 0, RR.Sub)
 | 
						|
          .addImm(P);
 | 
						|
      HBS::replaceReg(RD.Reg, NewR, MRI);
 | 
						|
      BT.put(NewR, RC);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } else if (V.is(0) || V.is(1)) {
 | 
						|
    unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
 | 
						|
    unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
 | 
						|
    BuildMI(B, At, DL, HII.get(NewOpc), NewR);
 | 
						|
    HBS::replaceReg(RD.Reg, NewR, MRI);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Detect whether RD is a bitfield extract (sign- or zero-extended) of
 | 
						|
// some register from the AVs set. Create a new corresponding instruction
 | 
						|
// at the location of MI. The intent is to recognize situations where
 | 
						|
// a sequence of instructions performs an operation that is equivalent to
 | 
						|
// an extract operation, such as a shift left followed by a shift right.
 | 
						|
bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
 | 
						|
      BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
 | 
						|
      const RegisterSet &AVs) {
 | 
						|
  if (!GenExtract)
 | 
						|
    return false;
 | 
						|
  if (MaxExtract.getNumOccurrences()) {
 | 
						|
    if (CountExtract >= MaxExtract)
 | 
						|
      return false;
 | 
						|
    CountExtract++;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned W = RC.width();
 | 
						|
  unsigned RW = W;
 | 
						|
  unsigned Len;
 | 
						|
  bool Signed;
 | 
						|
 | 
						|
  // The code is mostly class-independent, except for the part that generates
 | 
						|
  // the extract instruction, and establishes the source register (in case it
 | 
						|
  // needs to use a subregister).
 | 
						|
  const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
 | 
						|
  if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
 | 
						|
    return false;
 | 
						|
  assert(RD.Sub == 0);
 | 
						|
 | 
						|
  // Observation:
 | 
						|
  // If the cell has a form of 00..0xx..x with k zeros and n remaining
 | 
						|
  // bits, this could be an extractu of the n bits, but it could also be
 | 
						|
  // an extractu of a longer field which happens to have 0s in the top
 | 
						|
  // bit positions.
 | 
						|
  // The same logic applies to sign-extended fields.
 | 
						|
  //
 | 
						|
  // Do not check for the extended extracts, since it would expand the
 | 
						|
  // search space quite a bit. The search may be expensive as it is.
 | 
						|
 | 
						|
  const BitTracker::BitValue &TopV = RC[W-1];
 | 
						|
 | 
						|
  // Eliminate candidates that have self-referential bits, since they
 | 
						|
  // cannot be extracts from other registers. Also, skip registers that
 | 
						|
  // have compile-time constant values.
 | 
						|
  bool IsConst = true;
 | 
						|
  for (unsigned I = 0; I != W; ++I) {
 | 
						|
    const BitTracker::BitValue &V = RC[I];
 | 
						|
    if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
 | 
						|
      return false;
 | 
						|
    IsConst = IsConst && (V.is(0) || V.is(1));
 | 
						|
  }
 | 
						|
  if (IsConst)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (TopV.is(0) || TopV.is(1)) {
 | 
						|
    bool S = TopV.is(1);
 | 
						|
    for (--W; W > 0 && RC[W-1].is(S); --W)
 | 
						|
      ;
 | 
						|
    Len = W;
 | 
						|
    Signed = S;
 | 
						|
    // The sign bit must be a part of the field being extended.
 | 
						|
    if (Signed)
 | 
						|
      ++Len;
 | 
						|
  } else {
 | 
						|
    // This could still be a sign-extended extract.
 | 
						|
    assert(TopV.Type == BitTracker::BitValue::Ref);
 | 
						|
    if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
 | 
						|
      return false;
 | 
						|
    for (--W; W > 0 && RC[W-1] == TopV; --W)
 | 
						|
      ;
 | 
						|
    // The top bits of RC are copies of TopV. One occurrence of TopV will
 | 
						|
    // be a part of the field.
 | 
						|
    Len = W + 1;
 | 
						|
    Signed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // This would be just a copy. It should be handled elsewhere.
 | 
						|
  if (Len == RW)
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG({
 | 
						|
    dbgs() << __func__ << " on reg: " << printReg(RD.Reg, &HRI, RD.Sub)
 | 
						|
           << ", MI: " << *MI;
 | 
						|
    dbgs() << "Cell: " << RC << '\n';
 | 
						|
    dbgs() << "Expected bitfield size: " << Len << " bits, "
 | 
						|
           << (Signed ? "sign" : "zero") << "-extended\n";
 | 
						|
  });
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
 | 
						|
    if (!BT.has(R))
 | 
						|
      continue;
 | 
						|
    const BitTracker::RegisterCell &SC = BT.lookup(R);
 | 
						|
    unsigned SW = SC.width();
 | 
						|
 | 
						|
    // The source can be longer than the destination, as long as its size is
 | 
						|
    // a multiple of the size of the destination. Also, we would need to be
 | 
						|
    // able to refer to the subregister in the source that would be of the
 | 
						|
    // same size as the destination, but only check the sizes here.
 | 
						|
    if (SW < RW || (SW % RW) != 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // The field can start at any offset in SC as long as it contains Len
 | 
						|
    // bits and does not cross subregister boundary (if the source register
 | 
						|
    // is longer than the destination).
 | 
						|
    unsigned Off = 0;
 | 
						|
    while (Off <= SW-Len) {
 | 
						|
      unsigned OE = (Off+Len)/RW;
 | 
						|
      if (OE != Off/RW) {
 | 
						|
        // The assumption here is that if the source (R) is longer than the
 | 
						|
        // destination, then the destination is a sequence of words of
 | 
						|
        // size RW, and each such word in R can be accessed via a subregister.
 | 
						|
        //
 | 
						|
        // If the beginning and the end of the field cross the subregister
 | 
						|
        // boundary, advance to the next subregister.
 | 
						|
        Off = OE*RW;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (HBS::isEqual(RC, 0, SC, Off, Len))
 | 
						|
        break;
 | 
						|
      ++Off;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Off > SW-Len)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Found match.
 | 
						|
    unsigned ExtOpc = 0;
 | 
						|
    if (Off == 0) {
 | 
						|
      if (Len == 8)
 | 
						|
        ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
 | 
						|
      else if (Len == 16)
 | 
						|
        ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
 | 
						|
      else if (Len < 10 && !Signed)
 | 
						|
        ExtOpc = Hexagon::A2_andir;
 | 
						|
    }
 | 
						|
    if (ExtOpc == 0) {
 | 
						|
      ExtOpc =
 | 
						|
          Signed ? (RW == 32 ? Hexagon::S4_extract  : Hexagon::S4_extractp)
 | 
						|
                 : (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
 | 
						|
    }
 | 
						|
    unsigned SR = 0;
 | 
						|
    // This only recognizes isub_lo and isub_hi.
 | 
						|
    if (RW != SW && RW*2 != SW)
 | 
						|
      continue;
 | 
						|
    if (RW != SW)
 | 
						|
      SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
 | 
						|
    Off = Off % RW;
 | 
						|
 | 
						|
    if (!validateReg({R,SR}, ExtOpc, 1))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't generate the same instruction as the one being optimized.
 | 
						|
    if (MI->getOpcode() == ExtOpc) {
 | 
						|
      // All possible ExtOpc's have the source in operand(1).
 | 
						|
      const MachineOperand &SrcOp = MI->getOperand(1);
 | 
						|
      if (SrcOp.getReg() == R)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    DebugLoc DL = MI->getDebugLoc();
 | 
						|
    MachineBasicBlock &B = *MI->getParent();
 | 
						|
    unsigned NewR = MRI.createVirtualRegister(FRC);
 | 
						|
    auto At = MI->isPHI() ? B.getFirstNonPHI()
 | 
						|
                          : MachineBasicBlock::iterator(MI);
 | 
						|
    auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
 | 
						|
                  .addReg(R, 0, SR);
 | 
						|
    switch (ExtOpc) {
 | 
						|
      case Hexagon::A2_sxtb:
 | 
						|
      case Hexagon::A2_zxtb:
 | 
						|
      case Hexagon::A2_sxth:
 | 
						|
      case Hexagon::A2_zxth:
 | 
						|
        break;
 | 
						|
      case Hexagon::A2_andir:
 | 
						|
        MIB.addImm((1u << Len) - 1);
 | 
						|
        break;
 | 
						|
      case Hexagon::S4_extract:
 | 
						|
      case Hexagon::S2_extractu:
 | 
						|
      case Hexagon::S4_extractp:
 | 
						|
      case Hexagon::S2_extractup:
 | 
						|
        MIB.addImm(Len)
 | 
						|
           .addImm(Off);
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        llvm_unreachable("Unexpected opcode");
 | 
						|
    }
 | 
						|
 | 
						|
    HBS::replaceReg(RD.Reg, NewR, MRI);
 | 
						|
    BT.put(BitTracker::RegisterRef(NewR), RC);
 | 
						|
    Changed = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool BitSimplification::processBlock(MachineBasicBlock &B,
 | 
						|
      const RegisterSet &AVs) {
 | 
						|
  if (!BT.reached(&B))
 | 
						|
    return false;
 | 
						|
  bool Changed = false;
 | 
						|
  RegisterSet AVB = AVs;
 | 
						|
  RegisterSet Defs;
 | 
						|
 | 
						|
  for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
 | 
						|
    MachineInstr *MI = &*I;
 | 
						|
    Defs.clear();
 | 
						|
    HBS::getInstrDefs(*MI, Defs);
 | 
						|
 | 
						|
    unsigned Opc = MI->getOpcode();
 | 
						|
    if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (MI->mayStore()) {
 | 
						|
      bool T = genStoreUpperHalf(MI);
 | 
						|
      T = T || genStoreImmediate(MI);
 | 
						|
      Changed |= T;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Defs.count() != 1)
 | 
						|
      continue;
 | 
						|
    const MachineOperand &Op0 = MI->getOperand(0);
 | 
						|
    if (!Op0.isReg() || !Op0.isDef())
 | 
						|
      continue;
 | 
						|
    BitTracker::RegisterRef RD = Op0;
 | 
						|
    if (!BT.has(RD.Reg))
 | 
						|
      continue;
 | 
						|
    const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
 | 
						|
    const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
 | 
						|
 | 
						|
    if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
 | 
						|
      bool T = genPackhl(MI, RD, RC);
 | 
						|
      T = T || simplifyExtractLow(MI, RD, RC, AVB);
 | 
						|
      Changed |= T;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FRC->getID() == Hexagon::IntRegsRegClassID) {
 | 
						|
      bool T = genBitSplit(MI, RD, RC, AVB);
 | 
						|
      T = T || simplifyExtractLow(MI, RD, RC, AVB);
 | 
						|
      T = T || genExtractHalf(MI, RD, RC);
 | 
						|
      T = T || genCombineHalf(MI, RD, RC);
 | 
						|
      T = T || genExtractLow(MI, RD, RC);
 | 
						|
      Changed |= T;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (FRC->getID() == Hexagon::PredRegsRegClassID) {
 | 
						|
      bool T = simplifyTstbit(MI, RD, RC);
 | 
						|
      Changed |= T;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (skipFunction(MF.getFunction()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
 | 
						|
  auto &HRI = *HST.getRegisterInfo();
 | 
						|
  auto &HII = *HST.getInstrInfo();
 | 
						|
 | 
						|
  MDT = &getAnalysis<MachineDominatorTree>();
 | 
						|
  MachineRegisterInfo &MRI = MF.getRegInfo();
 | 
						|
  bool Changed;
 | 
						|
 | 
						|
  Changed = DeadCodeElimination(MF, *MDT).run();
 | 
						|
 | 
						|
  const HexagonEvaluator HE(HRI, MRI, HII, MF);
 | 
						|
  BitTracker BT(HE, MF);
 | 
						|
  LLVM_DEBUG(BT.trace(true));
 | 
						|
  BT.run();
 | 
						|
 | 
						|
  MachineBasicBlock &Entry = MF.front();
 | 
						|
 | 
						|
  RegisterSet AIG;  // Available registers for IG.
 | 
						|
  ConstGeneration ImmG(BT, HII, MRI);
 | 
						|
  Changed |= visitBlock(Entry, ImmG, AIG);
 | 
						|
 | 
						|
  RegisterSet ARE;  // Available registers for RIE.
 | 
						|
  RedundantInstrElimination RIE(BT, HII, HRI, MRI);
 | 
						|
  bool Ried = visitBlock(Entry, RIE, ARE);
 | 
						|
  if (Ried) {
 | 
						|
    Changed = true;
 | 
						|
    BT.run();
 | 
						|
  }
 | 
						|
 | 
						|
  RegisterSet ACG;  // Available registers for CG.
 | 
						|
  CopyGeneration CopyG(BT, HII, HRI, MRI);
 | 
						|
  Changed |= visitBlock(Entry, CopyG, ACG);
 | 
						|
 | 
						|
  RegisterSet ACP;  // Available registers for CP.
 | 
						|
  CopyPropagation CopyP(HRI, MRI);
 | 
						|
  Changed |= visitBlock(Entry, CopyP, ACP);
 | 
						|
 | 
						|
  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
 | 
						|
 | 
						|
  BT.run();
 | 
						|
  RegisterSet ABS;  // Available registers for BS.
 | 
						|
  BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
 | 
						|
  Changed |= visitBlock(Entry, BitS, ABS);
 | 
						|
 | 
						|
  Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
 | 
						|
 | 
						|
  if (Changed) {
 | 
						|
    for (auto &B : MF)
 | 
						|
      for (auto &I : B)
 | 
						|
        I.clearKillInfo();
 | 
						|
    DeadCodeElimination(MF, *MDT).run();
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// Recognize loops where the code at the end of the loop matches the code
 | 
						|
// before the entry of the loop, and the matching code is such that is can
 | 
						|
// be simplified. This pass relies on the bit simplification above and only
 | 
						|
// prepares code in a way that can be handled by the bit simplifcation.
 | 
						|
//
 | 
						|
// This is the motivating testcase (and explanation):
 | 
						|
//
 | 
						|
// {
 | 
						|
//   loop0(.LBB0_2, r1)      // %for.body.preheader
 | 
						|
//   r5:4 = memd(r0++#8)
 | 
						|
// }
 | 
						|
// {
 | 
						|
//   r3 = lsr(r4, #16)
 | 
						|
//   r7:6 = combine(r5, r5)
 | 
						|
// }
 | 
						|
// {
 | 
						|
//   r3 = insert(r5, #16, #16)
 | 
						|
//   r7:6 = vlsrw(r7:6, #16)
 | 
						|
// }
 | 
						|
// .LBB0_2:
 | 
						|
// {
 | 
						|
//   memh(r2+#4) = r5
 | 
						|
//   memh(r2+#6) = r6            # R6 is really R5.H
 | 
						|
// }
 | 
						|
// {
 | 
						|
//   r2 = add(r2, #8)
 | 
						|
//   memh(r2+#0) = r4
 | 
						|
//   memh(r2+#2) = r3            # R3 is really R4.H
 | 
						|
// }
 | 
						|
// {
 | 
						|
//   r5:4 = memd(r0++#8)
 | 
						|
// }
 | 
						|
// {                             # "Shuffling" code that sets up R3 and R6
 | 
						|
//   r3 = lsr(r4, #16)           # so that their halves can be stored in the
 | 
						|
//   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
 | 
						|
// }                             # the stores if the code was at the beginning
 | 
						|
// {                             # of the loop iteration. Since the same code
 | 
						|
//   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
 | 
						|
//   r7:6 = vlsrw(r7:6, #16)     # there.
 | 
						|
// }:endloop0
 | 
						|
//
 | 
						|
//
 | 
						|
// The outcome:
 | 
						|
//
 | 
						|
// {
 | 
						|
//   loop0(.LBB0_2, r1)
 | 
						|
//   r5:4 = memd(r0++#8)
 | 
						|
// }
 | 
						|
// .LBB0_2:
 | 
						|
// {
 | 
						|
//   memh(r2+#4) = r5
 | 
						|
//   memh(r2+#6) = r5.h
 | 
						|
// }
 | 
						|
// {
 | 
						|
//   r2 = add(r2, #8)
 | 
						|
//   memh(r2+#0) = r4
 | 
						|
//   memh(r2+#2) = r4.h
 | 
						|
// }
 | 
						|
// {
 | 
						|
//   r5:4 = memd(r0++#8)
 | 
						|
// }:endloop0
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
  FunctionPass *createHexagonLoopRescheduling();
 | 
						|
  void initializeHexagonLoopReschedulingPass(PassRegistry&);
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class HexagonLoopRescheduling : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
 | 
						|
    HexagonLoopRescheduling() : MachineFunctionPass(ID) {
 | 
						|
      initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override;
 | 
						|
 | 
						|
  private:
 | 
						|
    const HexagonInstrInfo *HII = nullptr;
 | 
						|
    const HexagonRegisterInfo *HRI = nullptr;
 | 
						|
    MachineRegisterInfo *MRI = nullptr;
 | 
						|
    BitTracker *BTP = nullptr;
 | 
						|
 | 
						|
    struct LoopCand {
 | 
						|
      LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
 | 
						|
            MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
 | 
						|
 | 
						|
      MachineBasicBlock *LB, *PB, *EB;
 | 
						|
    };
 | 
						|
    using InstrList = std::vector<MachineInstr *>;
 | 
						|
    struct InstrGroup {
 | 
						|
      BitTracker::RegisterRef Inp, Out;
 | 
						|
      InstrList Ins;
 | 
						|
    };
 | 
						|
    struct PhiInfo {
 | 
						|
      PhiInfo(MachineInstr &P, MachineBasicBlock &B);
 | 
						|
 | 
						|
      unsigned DefR;
 | 
						|
      BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
 | 
						|
      MachineBasicBlock *LB, *PB;     // Loop Block, Preheader Block
 | 
						|
    };
 | 
						|
 | 
						|
    static unsigned getDefReg(const MachineInstr *MI);
 | 
						|
    bool isConst(unsigned Reg) const;
 | 
						|
    bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
 | 
						|
    bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
 | 
						|
    bool isShuffleOf(unsigned OutR, unsigned InpR) const;
 | 
						|
    bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
 | 
						|
        unsigned &InpR2) const;
 | 
						|
    void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
 | 
						|
        MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
 | 
						|
    bool processLoop(LoopCand &C);
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char HexagonLoopRescheduling::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
 | 
						|
  "Hexagon Loop Rescheduling", false, false)
 | 
						|
 | 
						|
HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
 | 
						|
      MachineBasicBlock &B) {
 | 
						|
  DefR = HexagonLoopRescheduling::getDefReg(&P);
 | 
						|
  LB = &B;
 | 
						|
  PB = nullptr;
 | 
						|
  for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
 | 
						|
    const MachineOperand &OpB = P.getOperand(i+1);
 | 
						|
    if (OpB.getMBB() == &B) {
 | 
						|
      LR = P.getOperand(i);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    PB = OpB.getMBB();
 | 
						|
    PR = P.getOperand(i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
 | 
						|
  RegisterSet Defs;
 | 
						|
  HBS::getInstrDefs(*MI, Defs);
 | 
						|
  if (Defs.count() != 1)
 | 
						|
    return 0;
 | 
						|
  return Defs.find_first();
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
 | 
						|
  if (!BTP->has(Reg))
 | 
						|
    return false;
 | 
						|
  const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
 | 
						|
  for (unsigned i = 0, w = RC.width(); i < w; ++i) {
 | 
						|
    const BitTracker::BitValue &V = RC[i];
 | 
						|
    if (!V.is(0) && !V.is(1))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
 | 
						|
      unsigned DefR) const {
 | 
						|
  unsigned Opc = MI->getOpcode();
 | 
						|
  switch (Opc) {
 | 
						|
    case TargetOpcode::COPY:
 | 
						|
    case Hexagon::S2_lsr_i_r:
 | 
						|
    case Hexagon::S2_asr_i_r:
 | 
						|
    case Hexagon::S2_asl_i_r:
 | 
						|
    case Hexagon::S2_lsr_i_p:
 | 
						|
    case Hexagon::S2_asr_i_p:
 | 
						|
    case Hexagon::S2_asl_i_p:
 | 
						|
    case Hexagon::S2_insert:
 | 
						|
    case Hexagon::A2_or:
 | 
						|
    case Hexagon::A2_orp:
 | 
						|
    case Hexagon::A2_and:
 | 
						|
    case Hexagon::A2_andp:
 | 
						|
    case Hexagon::A2_combinew:
 | 
						|
    case Hexagon::A4_combineri:
 | 
						|
    case Hexagon::A4_combineir:
 | 
						|
    case Hexagon::A2_combineii:
 | 
						|
    case Hexagon::A4_combineii:
 | 
						|
    case Hexagon::A2_combine_ll:
 | 
						|
    case Hexagon::A2_combine_lh:
 | 
						|
    case Hexagon::A2_combine_hl:
 | 
						|
    case Hexagon::A2_combine_hh:
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
 | 
						|
      unsigned InpR) const {
 | 
						|
  for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
 | 
						|
    const MachineOperand &Op = MI->getOperand(i);
 | 
						|
    if (!Op.isReg())
 | 
						|
      continue;
 | 
						|
    if (Op.getReg() == InpR)
 | 
						|
      return i == n-1;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
 | 
						|
  if (!BTP->has(OutR) || !BTP->has(InpR))
 | 
						|
    return false;
 | 
						|
  const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
 | 
						|
  for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
 | 
						|
    const BitTracker::BitValue &V = OutC[i];
 | 
						|
    if (V.Type != BitTracker::BitValue::Ref)
 | 
						|
      continue;
 | 
						|
    if (V.RefI.Reg != InpR)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
 | 
						|
      unsigned OutR2, unsigned &InpR2) const {
 | 
						|
  if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
 | 
						|
    return false;
 | 
						|
  const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
 | 
						|
  const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
 | 
						|
  unsigned W = OutC1.width();
 | 
						|
  unsigned MatchR = 0;
 | 
						|
  if (W != OutC2.width())
 | 
						|
    return false;
 | 
						|
  for (unsigned i = 0; i < W; ++i) {
 | 
						|
    const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
 | 
						|
    if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
 | 
						|
      return false;
 | 
						|
    if (V1.Type != BitTracker::BitValue::Ref)
 | 
						|
      continue;
 | 
						|
    if (V1.RefI.Pos != V2.RefI.Pos)
 | 
						|
      return false;
 | 
						|
    if (V1.RefI.Reg != InpR1)
 | 
						|
      return false;
 | 
						|
    if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
 | 
						|
      return false;
 | 
						|
    if (!MatchR)
 | 
						|
      MatchR = V2.RefI.Reg;
 | 
						|
    else if (V2.RefI.Reg != MatchR)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  InpR2 = MatchR;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
 | 
						|
      MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
 | 
						|
      unsigned NewPredR) {
 | 
						|
  DenseMap<unsigned,unsigned> RegMap;
 | 
						|
 | 
						|
  const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
 | 
						|
  unsigned PhiR = MRI->createVirtualRegister(PhiRC);
 | 
						|
  BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
 | 
						|
    .addReg(NewPredR)
 | 
						|
    .addMBB(&PB)
 | 
						|
    .addReg(G.Inp.Reg)
 | 
						|
    .addMBB(&LB);
 | 
						|
  RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
 | 
						|
 | 
						|
  for (unsigned i = G.Ins.size(); i > 0; --i) {
 | 
						|
    const MachineInstr *SI = G.Ins[i-1];
 | 
						|
    unsigned DR = getDefReg(SI);
 | 
						|
    const TargetRegisterClass *RC = MRI->getRegClass(DR);
 | 
						|
    unsigned NewDR = MRI->createVirtualRegister(RC);
 | 
						|
    DebugLoc DL = SI->getDebugLoc();
 | 
						|
 | 
						|
    auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
 | 
						|
    for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
 | 
						|
      const MachineOperand &Op = SI->getOperand(j);
 | 
						|
      if (!Op.isReg()) {
 | 
						|
        MIB.add(Op);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!Op.isUse())
 | 
						|
        continue;
 | 
						|
      unsigned UseR = RegMap[Op.getReg()];
 | 
						|
      MIB.addReg(UseR, 0, Op.getSubReg());
 | 
						|
    }
 | 
						|
    RegMap.insert(std::make_pair(DR, NewDR));
 | 
						|
  }
 | 
						|
 | 
						|
  HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
 | 
						|
  LLVM_DEBUG(dbgs() << "Processing loop in " << printMBBReference(*C.LB)
 | 
						|
                    << "\n");
 | 
						|
  std::vector<PhiInfo> Phis;
 | 
						|
  for (auto &I : *C.LB) {
 | 
						|
    if (!I.isPHI())
 | 
						|
      break;
 | 
						|
    unsigned PR = getDefReg(&I);
 | 
						|
    if (isConst(PR))
 | 
						|
      continue;
 | 
						|
    bool BadUse = false, GoodUse = false;
 | 
						|
    for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
 | 
						|
      MachineInstr *UseI = UI->getParent();
 | 
						|
      if (UseI->getParent() != C.LB) {
 | 
						|
        BadUse = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
 | 
						|
        GoodUse = true;
 | 
						|
    }
 | 
						|
    if (BadUse || !GoodUse)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Phis.push_back(PhiInfo(I, *C.LB));
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG({
 | 
						|
    dbgs() << "Phis: {";
 | 
						|
    for (auto &I : Phis) {
 | 
						|
      dbgs() << ' ' << printReg(I.DefR, HRI) << "=phi("
 | 
						|
             << printReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
 | 
						|
             << ',' << printReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
 | 
						|
             << I.LB->getNumber() << ')';
 | 
						|
    }
 | 
						|
    dbgs() << " }\n";
 | 
						|
  });
 | 
						|
 | 
						|
  if (Phis.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  InstrList ShufIns;
 | 
						|
 | 
						|
  // Go backwards in the block: for each bit shuffling instruction, check
 | 
						|
  // if that instruction could potentially be moved to the front of the loop:
 | 
						|
  // the output of the loop cannot be used in a non-shuffling instruction
 | 
						|
  // in this loop.
 | 
						|
  for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
 | 
						|
    if (I->isTerminator())
 | 
						|
      continue;
 | 
						|
    if (I->isPHI())
 | 
						|
      break;
 | 
						|
 | 
						|
    RegisterSet Defs;
 | 
						|
    HBS::getInstrDefs(*I, Defs);
 | 
						|
    if (Defs.count() != 1)
 | 
						|
      continue;
 | 
						|
    unsigned DefR = Defs.find_first();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(DefR))
 | 
						|
      continue;
 | 
						|
    if (!isBitShuffle(&*I, DefR))
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool BadUse = false;
 | 
						|
    for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
 | 
						|
      MachineInstr *UseI = UI->getParent();
 | 
						|
      if (UseI->getParent() == C.LB) {
 | 
						|
        if (UseI->isPHI()) {
 | 
						|
          // If the use is in a phi node in this loop, then it should be
 | 
						|
          // the value corresponding to the back edge.
 | 
						|
          unsigned Idx = UI.getOperandNo();
 | 
						|
          if (UseI->getOperand(Idx+1).getMBB() != C.LB)
 | 
						|
            BadUse = true;
 | 
						|
        } else {
 | 
						|
          auto F = find(ShufIns, UseI);
 | 
						|
          if (F == ShufIns.end())
 | 
						|
            BadUse = true;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        // There is a use outside of the loop, but there is no epilog block
 | 
						|
        // suitable for a copy-out.
 | 
						|
        if (C.EB == nullptr)
 | 
						|
          BadUse = true;
 | 
						|
      }
 | 
						|
      if (BadUse)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (BadUse)
 | 
						|
      continue;
 | 
						|
    ShufIns.push_back(&*I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Partition the list of shuffling instructions into instruction groups,
 | 
						|
  // where each group has to be moved as a whole (i.e. a group is a chain of
 | 
						|
  // dependent instructions). A group produces a single live output register,
 | 
						|
  // which is meant to be the input of the loop phi node (although this is
 | 
						|
  // not checked here yet). It also uses a single register as its input,
 | 
						|
  // which is some value produced in the loop body. After moving the group
 | 
						|
  // to the beginning of the loop, that input register would need to be
 | 
						|
  // the loop-carried register (through a phi node) instead of the (currently
 | 
						|
  // loop-carried) output register.
 | 
						|
  using InstrGroupList = std::vector<InstrGroup>;
 | 
						|
  InstrGroupList Groups;
 | 
						|
 | 
						|
  for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
 | 
						|
    MachineInstr *SI = ShufIns[i];
 | 
						|
    if (SI == nullptr)
 | 
						|
      continue;
 | 
						|
 | 
						|
    InstrGroup G;
 | 
						|
    G.Ins.push_back(SI);
 | 
						|
    G.Out.Reg = getDefReg(SI);
 | 
						|
    RegisterSet Inputs;
 | 
						|
    HBS::getInstrUses(*SI, Inputs);
 | 
						|
 | 
						|
    for (unsigned j = i+1; j < n; ++j) {
 | 
						|
      MachineInstr *MI = ShufIns[j];
 | 
						|
      if (MI == nullptr)
 | 
						|
        continue;
 | 
						|
      RegisterSet Defs;
 | 
						|
      HBS::getInstrDefs(*MI, Defs);
 | 
						|
      // If this instruction does not define any pending inputs, skip it.
 | 
						|
      if (!Defs.intersects(Inputs))
 | 
						|
        continue;
 | 
						|
      // Otherwise, add it to the current group and remove the inputs that
 | 
						|
      // are defined by MI.
 | 
						|
      G.Ins.push_back(MI);
 | 
						|
      Inputs.remove(Defs);
 | 
						|
      // Then add all registers used by MI.
 | 
						|
      HBS::getInstrUses(*MI, Inputs);
 | 
						|
      ShufIns[j] = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // Only add a group if it requires at most one register.
 | 
						|
    if (Inputs.count() > 1)
 | 
						|
      continue;
 | 
						|
    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
 | 
						|
      return G.Out.Reg == P.LR.Reg;
 | 
						|
    };
 | 
						|
    if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    G.Inp.Reg = Inputs.find_first();
 | 
						|
    Groups.push_back(G);
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG({
 | 
						|
    for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
 | 
						|
      InstrGroup &G = Groups[i];
 | 
						|
      dbgs() << "Group[" << i << "] inp: "
 | 
						|
             << printReg(G.Inp.Reg, HRI, G.Inp.Sub)
 | 
						|
             << "  out: " << printReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
 | 
						|
      for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
 | 
						|
        dbgs() << "  " << *G.Ins[j];
 | 
						|
    }
 | 
						|
  });
 | 
						|
 | 
						|
  for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
 | 
						|
    InstrGroup &G = Groups[i];
 | 
						|
    if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
 | 
						|
      continue;
 | 
						|
    auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
 | 
						|
      return G.Out.Reg == P.LR.Reg;
 | 
						|
    };
 | 
						|
    auto F = llvm::find_if(Phis, LoopInpEq);
 | 
						|
    if (F == Phis.end())
 | 
						|
      continue;
 | 
						|
    unsigned PrehR = 0;
 | 
						|
    if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
 | 
						|
      const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
 | 
						|
      unsigned Opc = DefPrehR->getOpcode();
 | 
						|
      if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
 | 
						|
        continue;
 | 
						|
      if (!DefPrehR->getOperand(1).isImm())
 | 
						|
        continue;
 | 
						|
      if (DefPrehR->getOperand(1).getImm() != 0)
 | 
						|
        continue;
 | 
						|
      const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
 | 
						|
      if (RC != MRI->getRegClass(F->PR.Reg)) {
 | 
						|
        PrehR = MRI->createVirtualRegister(RC);
 | 
						|
        unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
 | 
						|
                                                          : Hexagon::A2_tfrpi;
 | 
						|
        auto T = C.PB->getFirstTerminator();
 | 
						|
        DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
 | 
						|
        BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
 | 
						|
          .addImm(0);
 | 
						|
      } else {
 | 
						|
        PrehR = F->PR.Reg;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // isSameShuffle could match with PrehR being of a wider class than
 | 
						|
    // G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
 | 
						|
    // it would match for the input being a 32-bit register, and PrehR
 | 
						|
    // being a 64-bit register (where the low 32 bits match). This could
 | 
						|
    // be handled, but for now skip these cases.
 | 
						|
    if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
 | 
						|
      continue;
 | 
						|
    moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
 | 
						|
  if (skipFunction(MF.getFunction()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
 | 
						|
  HII = HST.getInstrInfo();
 | 
						|
  HRI = HST.getRegisterInfo();
 | 
						|
  MRI = &MF.getRegInfo();
 | 
						|
  const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
 | 
						|
  BitTracker BT(HE, MF);
 | 
						|
  LLVM_DEBUG(BT.trace(true));
 | 
						|
  BT.run();
 | 
						|
  BTP = &BT;
 | 
						|
 | 
						|
  std::vector<LoopCand> Cand;
 | 
						|
 | 
						|
  for (auto &B : MF) {
 | 
						|
    if (B.pred_size() != 2 || B.succ_size() != 2)
 | 
						|
      continue;
 | 
						|
    MachineBasicBlock *PB = nullptr;
 | 
						|
    bool IsLoop = false;
 | 
						|
    for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
 | 
						|
      if (*PI != &B)
 | 
						|
        PB = *PI;
 | 
						|
      else
 | 
						|
        IsLoop = true;
 | 
						|
    }
 | 
						|
    if (!IsLoop)
 | 
						|
      continue;
 | 
						|
 | 
						|
    MachineBasicBlock *EB = nullptr;
 | 
						|
    for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
 | 
						|
      if (*SI == &B)
 | 
						|
        continue;
 | 
						|
      // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
 | 
						|
      // edge from B to EP is non-critical.
 | 
						|
      if ((*SI)->pred_size() == 1)
 | 
						|
        EB = *SI;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    Cand.push_back(LoopCand(&B, PB, EB));
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto &C : Cand)
 | 
						|
    Changed |= processLoop(C);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
FunctionPass *llvm::createHexagonLoopRescheduling() {
 | 
						|
  return new HexagonLoopRescheduling();
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createHexagonBitSimplify() {
 | 
						|
  return new HexagonBitSimplify();
 | 
						|
}
 |