209 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			209 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
| //=== X86CallingConv.cpp - X86 Custom Calling Convention Impl   -*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of custom routines for the X86
 | |
| // Calling Convention that aren't done by tablegen.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MCTargetDesc/X86MCTargetDesc.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/IR/CallingConv.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
 | |
|                                    CCValAssign::LocInfo &LocInfo,
 | |
|                                    ISD::ArgFlagsTy &ArgFlags, CCState &State) {
 | |
|   // List of GPR registers that are available to store values in regcall
 | |
|   // calling convention.
 | |
|   static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI,
 | |
|                                       X86::ESI};
 | |
| 
 | |
|   // The vector will save all the available registers for allocation.
 | |
|   SmallVector<unsigned, 5> AvailableRegs;
 | |
| 
 | |
|   // searching for the available registers.
 | |
|   for (auto Reg : RegList) {
 | |
|     if (!State.isAllocated(Reg))
 | |
|       AvailableRegs.push_back(Reg);
 | |
|   }
 | |
| 
 | |
|   const size_t RequiredGprsUponSplit = 2;
 | |
|   if (AvailableRegs.size() < RequiredGprsUponSplit)
 | |
|     return false; // Not enough free registers - continue the search.
 | |
| 
 | |
|   // Allocating the available registers.
 | |
|   for (unsigned I = 0; I < RequiredGprsUponSplit; I++) {
 | |
| 
 | |
|     // Marking the register as located.
 | |
|     unsigned Reg = State.AllocateReg(AvailableRegs[I]);
 | |
| 
 | |
|     // Since we previously made sure that 2 registers are available
 | |
|     // we expect that a real register number will be returned.
 | |
|     assert(Reg && "Expecting a register will be available");
 | |
| 
 | |
|     // Assign the value to the allocated register
 | |
|     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|   }
 | |
| 
 | |
|   // Successful in allocating regsiters - stop scanning next rules.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) {
 | |
|   if (ValVT.is512BitVector()) {
 | |
|     static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2,
 | |
|                                            X86::ZMM3, X86::ZMM4, X86::ZMM5};
 | |
|     return makeArrayRef(std::begin(RegListZMM), std::end(RegListZMM));
 | |
|   }
 | |
| 
 | |
|   if (ValVT.is256BitVector()) {
 | |
|     static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2,
 | |
|                                            X86::YMM3, X86::YMM4, X86::YMM5};
 | |
|     return makeArrayRef(std::begin(RegListYMM), std::end(RegListYMM));
 | |
|   }
 | |
| 
 | |
|   static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2,
 | |
|                                          X86::XMM3, X86::XMM4, X86::XMM5};
 | |
|   return makeArrayRef(std::begin(RegListXMM), std::end(RegListXMM));
 | |
| }
 | |
| 
 | |
| static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() {
 | |
|   static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9};
 | |
|   return makeArrayRef(std::begin(RegListGPR), std::end(RegListGPR));
 | |
| }
 | |
| 
 | |
| static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT,
 | |
|                                             MVT &LocVT,
 | |
|                                             CCValAssign::LocInfo &LocInfo,
 | |
|                                             ISD::ArgFlagsTy &ArgFlags,
 | |
|                                             CCState &State) {
 | |
| 
 | |
|   ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT);
 | |
|   bool Is64bit = static_cast<const X86Subtarget &>(
 | |
|                      State.getMachineFunction().getSubtarget())
 | |
|                      .is64Bit();
 | |
| 
 | |
|   for (auto Reg : RegList) {
 | |
|     // If the register is not marked as allocated - assign to it.
 | |
|     if (!State.isAllocated(Reg)) {
 | |
|       unsigned AssigedReg = State.AllocateReg(Reg);
 | |
|       assert(AssigedReg == Reg && "Expecting a valid register allocation");
 | |
|       State.addLoc(
 | |
|           CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo));
 | |
|       return true;
 | |
|     }
 | |
|     // If the register is marked as shadow allocated - assign to it.
 | |
|     if (Is64bit && State.IsShadowAllocatedReg(Reg)) {
 | |
|       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Clang should ensure that hva marked vectors will have "
 | |
|                    "an available register.");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
 | |
|                           CCValAssign::LocInfo &LocInfo,
 | |
|                           ISD::ArgFlagsTy &ArgFlags, CCState &State) {
 | |
|   // On the second pass, go through the HVAs only.
 | |
|   if (ArgFlags.isSecArgPass()) {
 | |
|     if (ArgFlags.isHva())
 | |
|       return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
 | |
|                                              ArgFlags, State);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Process only vector types as defined by vectorcall spec:
 | |
|   // "A vector type is either a floating-point type, for example,
 | |
|   //  a float or double, or an SIMD vector type, for example, __m128 or __m256".
 | |
|   if (!(ValVT.isFloatingPoint() ||
 | |
|         (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
 | |
|     // If R9 was already assigned it means that we are after the fourth element
 | |
|     // and because this is not an HVA / Vector type, we need to allocate
 | |
|     // shadow XMM register.
 | |
|     if (State.isAllocated(X86::R9)) {
 | |
|       // Assign shadow XMM register.
 | |
|       (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT));
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) {
 | |
|     // Assign shadow GPR register.
 | |
|     (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs());
 | |
| 
 | |
|     // Assign XMM register - (shadow for HVA and non-shadow for non HVA).
 | |
|     if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
 | |
|       // In Vectorcall Calling convention, additional shadow stack can be
 | |
|       // created on top of the basic 32 bytes of win64.
 | |
|       // It can happen if the fifth or sixth argument is vector type or HVA.
 | |
|       // At that case for each argument a shadow stack of 8 bytes is allocated.
 | |
|       if (Reg == X86::XMM4 || Reg == X86::XMM5)
 | |
|         State.AllocateStack(8, 8);
 | |
| 
 | |
|       if (!ArgFlags.isHva()) {
 | |
|         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|         return true; // Allocated a register - Stop the search.
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is an HVA - Stop the search,
 | |
|   // otherwise continue the search.
 | |
|   return ArgFlags.isHva();
 | |
| }
 | |
| 
 | |
| bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
 | |
|                           CCValAssign::LocInfo &LocInfo,
 | |
|                           ISD::ArgFlagsTy &ArgFlags, CCState &State) {
 | |
|   // On the second pass, go through the HVAs only.
 | |
|   if (ArgFlags.isSecArgPass()) {
 | |
|     if (ArgFlags.isHva())
 | |
|       return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo,
 | |
|                                              ArgFlags, State);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Process only vector types as defined by vectorcall spec:
 | |
|   // "A vector type is either a floating point type, for example,
 | |
|   //  a float or double, or an SIMD vector type, for example, __m128 or __m256".
 | |
|   if (!(ValVT.isFloatingPoint() ||
 | |
|         (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (ArgFlags.isHva())
 | |
|     return true; // If this is an HVA - Stop the search.
 | |
| 
 | |
|   // Assign XMM register.
 | |
|   if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) {
 | |
|     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // In case we did not find an available XMM register for a vector -
 | |
|   // pass it indirectly.
 | |
|   // It is similar to CCPassIndirect, with the addition of inreg.
 | |
|   if (!ValVT.isFloatingPoint()) {
 | |
|     LocVT = MVT::i32;
 | |
|     LocInfo = CCValAssign::Indirect;
 | |
|     ArgFlags.setInReg();
 | |
|   }
 | |
| 
 | |
|   return false; // No register was assigned - Continue the search.
 | |
| }
 | |
| 
 | |
| } // End llvm namespace
 |