869 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			869 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
| //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// This file implements a pass that converts X86 cmov instructions into
 | |
| /// branches when profitable. This pass is conservative. It transforms if and
 | |
| /// only if it can guarantee a gain with high confidence.
 | |
| ///
 | |
| /// Thus, the optimization applies under the following conditions:
 | |
| ///   1. Consider as candidates only CMOVs in innermost loops (assume that
 | |
| ///      most hotspots are represented by these loops).
 | |
| ///   2. Given a group of CMOV instructions that are using the same EFLAGS def
 | |
| ///      instruction:
 | |
| ///      a. Consider them as candidates only if all have the same code condition
 | |
| ///         or the opposite one to prevent generating more than one conditional
 | |
| ///         jump per EFLAGS def instruction.
 | |
| ///      b. Consider them as candidates only if all are profitable to be
 | |
| ///         converted (assume that one bad conversion may cause a degradation).
 | |
| ///   3. Apply conversion only for loops that are found profitable and only for
 | |
| ///      CMOV candidates that were found profitable.
 | |
| ///      a. A loop is considered profitable only if conversion will reduce its
 | |
| ///         depth cost by some threshold.
 | |
| ///      b. CMOV is considered profitable if the cost of its condition is higher
 | |
| ///         than the average cost of its true-value and false-value by 25% of
 | |
| ///         branch-misprediction-penalty. This assures no degradation even with
 | |
| ///         25% branch misprediction.
 | |
| ///
 | |
| /// Note: This pass is assumed to run on SSA machine code.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  External interfaces:
 | |
| //      FunctionPass *llvm::createX86CmovConverterPass();
 | |
| //      bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSchedule.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/MC/MCSchedule.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "x86-cmov-conversion"
 | |
| 
 | |
| STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
 | |
| STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
 | |
| STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
 | |
| STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| void initializeX86CmovConverterPassPass(PassRegistry &);
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| // This internal switch can be used to turn off the cmov/branch optimization.
 | |
| static cl::opt<bool>
 | |
|     EnableCmovConverter("x86-cmov-converter",
 | |
|                         cl::desc("Enable the X86 cmov-to-branch optimization."),
 | |
|                         cl::init(true), cl::Hidden);
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
|     GainCycleThreshold("x86-cmov-converter-threshold",
 | |
|                        cl::desc("Minimum gain per loop (in cycles) threshold."),
 | |
|                        cl::init(4), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> ForceMemOperand(
 | |
|     "x86-cmov-converter-force-mem-operand",
 | |
|     cl::desc("Convert cmovs to branches whenever they have memory operands."),
 | |
|     cl::init(true), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Converts X86 cmov instructions into branches when profitable.
 | |
| class X86CmovConverterPass : public MachineFunctionPass {
 | |
| public:
 | |
|   X86CmovConverterPass() : MachineFunctionPass(ID) {
 | |
|     initializeX86CmovConverterPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   StringRef getPassName() const override { return "X86 cmov Conversion"; }
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|   /// Pass identification, replacement for typeid.
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   MachineRegisterInfo *MRI;
 | |
|   const TargetInstrInfo *TII;
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   TargetSchedModel TSchedModel;
 | |
| 
 | |
|   /// List of consecutive CMOV instructions.
 | |
|   using CmovGroup = SmallVector<MachineInstr *, 2>;
 | |
|   using CmovGroups = SmallVector<CmovGroup, 2>;
 | |
| 
 | |
|   /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
 | |
|   /// CmovInstGroups accordingly.
 | |
|   ///
 | |
|   /// \param Blocks List of blocks to process.
 | |
|   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
 | |
|   /// \returns true iff it found any CMOV-group-candidate.
 | |
|   bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
 | |
|                              CmovGroups &CmovInstGroups,
 | |
|                              bool IncludeLoads = false);
 | |
| 
 | |
|   /// Check if it is profitable to transform each CMOV-group-candidates into
 | |
|   /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
 | |
|   ///
 | |
|   /// \param Blocks List of blocks to process.
 | |
|   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
 | |
|   /// \returns true iff any CMOV-group-candidate remain.
 | |
|   bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
 | |
|                                         CmovGroups &CmovInstGroups);
 | |
| 
 | |
|   /// Convert the given list of consecutive CMOV instructions into a branch.
 | |
|   ///
 | |
|   /// \param Group Consecutive CMOV instructions to be converted into branch.
 | |
|   void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char X86CmovConverterPass::ID = 0;
 | |
| 
 | |
| void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
| }
 | |
| 
 | |
| bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipFunction(MF.getFunction()))
 | |
|     return false;
 | |
|   if (!EnableCmovConverter)
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
 | |
|                     << "**********\n");
 | |
| 
 | |
|   bool Changed = false;
 | |
|   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
 | |
|   const TargetSubtargetInfo &STI = MF.getSubtarget();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TII = STI.getInstrInfo();
 | |
|   TRI = STI.getRegisterInfo();
 | |
|   TSchedModel.init(&STI);
 | |
| 
 | |
|   // Before we handle the more subtle cases of register-register CMOVs inside
 | |
|   // of potentially hot loops, we want to quickly remove all CMOVs with
 | |
|   // a memory operand. The CMOV will risk a stall waiting for the load to
 | |
|   // complete that speculative execution behind a branch is better suited to
 | |
|   // handle on modern x86 chips.
 | |
|   if (ForceMemOperand) {
 | |
|     CmovGroups AllCmovGroups;
 | |
|     SmallVector<MachineBasicBlock *, 4> Blocks;
 | |
|     for (auto &MBB : MF)
 | |
|       Blocks.push_back(&MBB);
 | |
|     if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) {
 | |
|       for (auto &Group : AllCmovGroups) {
 | |
|         // Skip any group that doesn't do at least one memory operand cmov.
 | |
|         if (!llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad(); }))
 | |
|           continue;
 | |
| 
 | |
|         // For CMOV groups which we can rewrite and which contain a memory load,
 | |
|         // always rewrite them. On x86, a CMOV will dramatically amplify any
 | |
|         // memory latency by blocking speculative execution.
 | |
|         Changed = true;
 | |
|         convertCmovInstsToBranches(Group);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Register-operand Conversion Algorithm
 | |
|   // ---------
 | |
|   //   For each inner most loop
 | |
|   //     collectCmovCandidates() {
 | |
|   //       Find all CMOV-group-candidates.
 | |
|   //     }
 | |
|   //
 | |
|   //     checkForProfitableCmovCandidates() {
 | |
|   //       * Calculate both loop-depth and optimized-loop-depth.
 | |
|   //       * Use these depth to check for loop transformation profitability.
 | |
|   //       * Check for CMOV-group-candidate transformation profitability.
 | |
|   //     }
 | |
|   //
 | |
|   //     For each profitable CMOV-group-candidate
 | |
|   //       convertCmovInstsToBranches() {
 | |
|   //           * Create FalseBB, SinkBB, Conditional branch to SinkBB.
 | |
|   //           * Replace each CMOV instruction with a PHI instruction in SinkBB.
 | |
|   //       }
 | |
|   //
 | |
|   // Note: For more details, see each function description.
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   // Build up the loops in pre-order.
 | |
|   SmallVector<MachineLoop *, 4> Loops(MLI.begin(), MLI.end());
 | |
|   // Note that we need to check size on each iteration as we accumulate child
 | |
|   // loops.
 | |
|   for (int i = 0; i < (int)Loops.size(); ++i)
 | |
|     for (MachineLoop *Child : Loops[i]->getSubLoops())
 | |
|       Loops.push_back(Child);
 | |
| 
 | |
|   for (MachineLoop *CurrLoop : Loops) {
 | |
|     // Optimize only inner most loops.
 | |
|     if (!CurrLoop->getSubLoops().empty())
 | |
|       continue;
 | |
| 
 | |
|     // List of consecutive CMOV instructions to be processed.
 | |
|     CmovGroups CmovInstGroups;
 | |
| 
 | |
|     if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups))
 | |
|       continue;
 | |
| 
 | |
|     if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(),
 | |
|                                           CmovInstGroups))
 | |
|       continue;
 | |
| 
 | |
|     Changed = true;
 | |
|     for (auto &Group : CmovInstGroups)
 | |
|       convertCmovInstsToBranches(Group);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool X86CmovConverterPass::collectCmovCandidates(
 | |
|     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups,
 | |
|     bool IncludeLoads) {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Collect all CMOV-group-candidates and add them into CmovInstGroups.
 | |
|   //
 | |
|   // CMOV-group:
 | |
|   //   CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
 | |
|   //
 | |
|   // CMOV-group-candidate:
 | |
|   //   CMOV-group where all the CMOV instructions are
 | |
|   //     1. consecutive.
 | |
|   //     2. have same condition code or opposite one.
 | |
|   //     3. have only operand registers (X86::CMOVrr).
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // List of possible improvement (TODO's):
 | |
|   // --------------------------------------
 | |
|   //   TODO: Add support for X86::CMOVrm instructions.
 | |
|   //   TODO: Add support for X86::SETcc instructions.
 | |
|   //   TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   // Current processed CMOV-Group.
 | |
|   CmovGroup Group;
 | |
|   for (auto *MBB : Blocks) {
 | |
|     Group.clear();
 | |
|     // Condition code of first CMOV instruction current processed range and its
 | |
|     // opposite condition code.
 | |
|     X86::CondCode FirstCC, FirstOppCC, MemOpCC;
 | |
|     // Indicator of a non CMOVrr instruction in the current processed range.
 | |
|     bool FoundNonCMOVInst = false;
 | |
|     // Indicator for current processed CMOV-group if it should be skipped.
 | |
|     bool SkipGroup = false;
 | |
| 
 | |
|     for (auto &I : *MBB) {
 | |
|       // Skip debug instructions.
 | |
|       if (I.isDebugInstr())
 | |
|         continue;
 | |
|       X86::CondCode CC = X86::getCondFromCMovOpc(I.getOpcode());
 | |
|       // Check if we found a X86::CMOVrr instruction.
 | |
|       if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) {
 | |
|         if (Group.empty()) {
 | |
|           // We found first CMOV in the range, reset flags.
 | |
|           FirstCC = CC;
 | |
|           FirstOppCC = X86::GetOppositeBranchCondition(CC);
 | |
|           // Clear out the prior group's memory operand CC.
 | |
|           MemOpCC = X86::COND_INVALID;
 | |
|           FoundNonCMOVInst = false;
 | |
|           SkipGroup = false;
 | |
|         }
 | |
|         Group.push_back(&I);
 | |
|         // Check if it is a non-consecutive CMOV instruction or it has different
 | |
|         // condition code than FirstCC or FirstOppCC.
 | |
|         if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
 | |
|           // Mark the SKipGroup indicator to skip current processed CMOV-Group.
 | |
|           SkipGroup = true;
 | |
|         if (I.mayLoad()) {
 | |
|           if (MemOpCC == X86::COND_INVALID)
 | |
|             // The first memory operand CMOV.
 | |
|             MemOpCC = CC;
 | |
|           else if (CC != MemOpCC)
 | |
|             // Can't handle mixed conditions with memory operands.
 | |
|             SkipGroup = true;
 | |
|         }
 | |
|         // Check if we were relying on zero-extending behavior of the CMOV.
 | |
|         if (!SkipGroup &&
 | |
|             llvm::any_of(
 | |
|                 MRI->use_nodbg_instructions(I.defs().begin()->getReg()),
 | |
|                 [&](MachineInstr &UseI) {
 | |
|                   return UseI.getOpcode() == X86::SUBREG_TO_REG;
 | |
|                 }))
 | |
|           // FIXME: We should model the cost of using an explicit MOV to handle
 | |
|           // the zero-extension rather than just refusing to handle this.
 | |
|           SkipGroup = true;
 | |
|         continue;
 | |
|       }
 | |
|       // If Group is empty, keep looking for first CMOV in the range.
 | |
|       if (Group.empty())
 | |
|         continue;
 | |
| 
 | |
|       // We found a non X86::CMOVrr instruction.
 | |
|       FoundNonCMOVInst = true;
 | |
|       // Check if this instruction define EFLAGS, to determine end of processed
 | |
|       // range, as there would be no more instructions using current EFLAGS def.
 | |
|       if (I.definesRegister(X86::EFLAGS)) {
 | |
|         // Check if current processed CMOV-group should not be skipped and add
 | |
|         // it as a CMOV-group-candidate.
 | |
|         if (!SkipGroup)
 | |
|           CmovInstGroups.push_back(Group);
 | |
|         else
 | |
|           ++NumOfSkippedCmovGroups;
 | |
|         Group.clear();
 | |
|       }
 | |
|     }
 | |
|     // End of basic block is considered end of range, check if current processed
 | |
|     // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
 | |
|     if (Group.empty())
 | |
|       continue;
 | |
|     if (!SkipGroup)
 | |
|       CmovInstGroups.push_back(Group);
 | |
|     else
 | |
|       ++NumOfSkippedCmovGroups;
 | |
|   }
 | |
| 
 | |
|   NumOfCmovGroupCandidate += CmovInstGroups.size();
 | |
|   return !CmovInstGroups.empty();
 | |
| }
 | |
| 
 | |
| /// \returns Depth of CMOV instruction as if it was converted into branch.
 | |
| /// \param TrueOpDepth depth cost of CMOV true value operand.
 | |
| /// \param FalseOpDepth depth cost of CMOV false value operand.
 | |
| static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // With no info about branch weight, we assume 50% for each value operand.
 | |
|   // Thus, depth of optimized CMOV instruction is the rounded up average of
 | |
|   // its True-Operand-Value-Depth and False-Operand-Value-Depth.
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   return (TrueOpDepth + FalseOpDepth + 1) / 2;
 | |
| }
 | |
| 
 | |
| bool X86CmovConverterPass::checkForProfitableCmovCandidates(
 | |
|     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) {
 | |
|   struct DepthInfo {
 | |
|     /// Depth of original loop.
 | |
|     unsigned Depth;
 | |
|     /// Depth of optimized loop.
 | |
|     unsigned OptDepth;
 | |
|   };
 | |
|   /// Number of loop iterations to calculate depth for ?!
 | |
|   static const unsigned LoopIterations = 2;
 | |
|   DenseMap<MachineInstr *, DepthInfo> DepthMap;
 | |
|   DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
 | |
|   enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
 | |
|   /// For each register type maps the register to its last def instruction.
 | |
|   DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
 | |
|   /// Maps register operand to its def instruction, which can be nullptr if it
 | |
|   /// is unknown (e.g., operand is defined outside the loop).
 | |
|   DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
 | |
| 
 | |
|   // Set depth of unknown instruction (i.e., nullptr) to zero.
 | |
|   DepthMap[nullptr] = {0, 0};
 | |
| 
 | |
|   SmallPtrSet<MachineInstr *, 4> CmovInstructions;
 | |
|   for (auto &Group : CmovInstGroups)
 | |
|     CmovInstructions.insert(Group.begin(), Group.end());
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Step 1: Calculate instruction depth and loop depth.
 | |
|   // Optimized-Loop:
 | |
|   //   loop with CMOV-group-candidates converted into branches.
 | |
|   //
 | |
|   // Instruction-Depth:
 | |
|   //   instruction latency + max operand depth.
 | |
|   //     * For CMOV instruction in optimized loop the depth is calculated as:
 | |
|   //       CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
 | |
|   // TODO: Find a better way to estimate the latency of the branch instruction
 | |
|   //       rather than using the CMOV latency.
 | |
|   //
 | |
|   // Loop-Depth:
 | |
|   //   max instruction depth of all instructions in the loop.
 | |
|   // Note: instruction with max depth represents the critical-path in the loop.
 | |
|   //
 | |
|   // Loop-Depth[i]:
 | |
|   //   Loop-Depth calculated for first `i` iterations.
 | |
|   //   Note: it is enough to calculate depth for up to two iterations.
 | |
|   //
 | |
|   // Depth-Diff[i]:
 | |
|   //   Number of cycles saved in first 'i` iterations by optimizing the loop.
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   for (unsigned I = 0; I < LoopIterations; ++I) {
 | |
|     DepthInfo &MaxDepth = LoopDepth[I];
 | |
|     for (auto *MBB : Blocks) {
 | |
|       // Clear physical registers Def map.
 | |
|       RegDefMaps[PhyRegType].clear();
 | |
|       for (MachineInstr &MI : *MBB) {
 | |
|         // Skip debug instructions.
 | |
|         if (MI.isDebugInstr())
 | |
|           continue;
 | |
|         unsigned MIDepth = 0;
 | |
|         unsigned MIDepthOpt = 0;
 | |
|         bool IsCMOV = CmovInstructions.count(&MI);
 | |
|         for (auto &MO : MI.uses()) {
 | |
|           // Checks for "isUse()" as "uses()" returns also implicit definitions.
 | |
|           if (!MO.isReg() || !MO.isUse())
 | |
|             continue;
 | |
|           unsigned Reg = MO.getReg();
 | |
|           auto &RDM = RegDefMaps[TargetRegisterInfo::isVirtualRegister(Reg)];
 | |
|           if (MachineInstr *DefMI = RDM.lookup(Reg)) {
 | |
|             OperandToDefMap[&MO] = DefMI;
 | |
|             DepthInfo Info = DepthMap.lookup(DefMI);
 | |
|             MIDepth = std::max(MIDepth, Info.Depth);
 | |
|             if (!IsCMOV)
 | |
|               MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (IsCMOV)
 | |
|           MIDepthOpt = getDepthOfOptCmov(
 | |
|               DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
 | |
|               DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
 | |
| 
 | |
|         // Iterates over all operands to handle implicit definitions as well.
 | |
|         for (auto &MO : MI.operands()) {
 | |
|           if (!MO.isReg() || !MO.isDef())
 | |
|             continue;
 | |
|           unsigned Reg = MO.getReg();
 | |
|           RegDefMaps[TargetRegisterInfo::isVirtualRegister(Reg)][Reg] = &MI;
 | |
|         }
 | |
| 
 | |
|         unsigned Latency = TSchedModel.computeInstrLatency(&MI);
 | |
|         DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
 | |
|         MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
 | |
|         MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
 | |
|                                    LoopDepth[1].Depth - LoopDepth[1].OptDepth};
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Step 2: Check if Loop worth to be optimized.
 | |
|   // Worth-Optimize-Loop:
 | |
|   //   case 1: Diff[1] == Diff[0]
 | |
|   //           Critical-path is iteration independent - there is no dependency
 | |
|   //           of critical-path instructions on critical-path instructions of
 | |
|   //           previous iteration.
 | |
|   //           Thus, it is enough to check gain percent of 1st iteration -
 | |
|   //           To be conservative, the optimized loop need to have a depth of
 | |
|   //           12.5% cycles less than original loop, per iteration.
 | |
|   //
 | |
|   //   case 2: Diff[1] > Diff[0]
 | |
|   //           Critical-path is iteration dependent - there is dependency of
 | |
|   //           critical-path instructions on critical-path instructions of
 | |
|   //           previous iteration.
 | |
|   //           Thus, check the gain percent of the 2nd iteration (similar to the
 | |
|   //           previous case), but it is also required to check the gradient of
 | |
|   //           the gain - the change in Depth-Diff compared to the change in
 | |
|   //           Loop-Depth between 1st and 2nd iterations.
 | |
|   //           To be conservative, the gradient need to be at least 50%.
 | |
|   //
 | |
|   //   In addition, In order not to optimize loops with very small gain, the
 | |
|   //   gain (in cycles) after 2nd iteration should not be less than a given
 | |
|   //   threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
 | |
|   //
 | |
|   // If loop is not worth optimizing, remove all CMOV-group-candidates.
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   if (Diff[1] < GainCycleThreshold)
 | |
|     return false;
 | |
| 
 | |
|   bool WorthOptLoop = false;
 | |
|   if (Diff[1] == Diff[0])
 | |
|     WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
 | |
|   else if (Diff[1] > Diff[0])
 | |
|     WorthOptLoop =
 | |
|         (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
 | |
|         (Diff[1] * 8 >= LoopDepth[1].Depth);
 | |
| 
 | |
|   if (!WorthOptLoop)
 | |
|     return false;
 | |
| 
 | |
|   ++NumOfLoopCandidate;
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
 | |
|   // Worth-Optimize-Group:
 | |
|   //   Iff it worths to optimize all CMOV instructions in the group.
 | |
|   //
 | |
|   // Worth-Optimize-CMOV:
 | |
|   //   Predicted branch is faster than CMOV by the difference between depth of
 | |
|   //   condition operand and depth of taken (predicted) value operand.
 | |
|   //   To be conservative, the gain of such CMOV transformation should cover at
 | |
|   //   at least 25% of branch-misprediction-penalty.
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
 | |
|   CmovGroups TempGroups;
 | |
|   std::swap(TempGroups, CmovInstGroups);
 | |
|   for (auto &Group : TempGroups) {
 | |
|     bool WorthOpGroup = true;
 | |
|     for (auto *MI : Group) {
 | |
|       // Avoid CMOV instruction which value is used as a pointer to load from.
 | |
|       // This is another conservative check to avoid converting CMOV instruction
 | |
|       // used with tree-search like algorithm, where the branch is unpredicted.
 | |
|       auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
 | |
|       if (UIs.begin() != UIs.end() && ++UIs.begin() == UIs.end()) {
 | |
|         unsigned Op = UIs.begin()->getOpcode();
 | |
|         if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
 | |
|           WorthOpGroup = false;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       unsigned CondCost =
 | |
|           DepthMap[OperandToDefMap.lookup(&MI->getOperand(3))].Depth;
 | |
|       unsigned ValCost = getDepthOfOptCmov(
 | |
|           DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
 | |
|           DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
 | |
|       if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
 | |
|         WorthOpGroup = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (WorthOpGroup)
 | |
|       CmovInstGroups.push_back(Group);
 | |
|   }
 | |
| 
 | |
|   return !CmovInstGroups.empty();
 | |
| }
 | |
| 
 | |
| static bool checkEFLAGSLive(MachineInstr *MI) {
 | |
|   if (MI->killsRegister(X86::EFLAGS))
 | |
|     return false;
 | |
| 
 | |
|   // The EFLAGS operand of MI might be missing a kill marker.
 | |
|   // Figure out whether EFLAGS operand should LIVE after MI instruction.
 | |
|   MachineBasicBlock *BB = MI->getParent();
 | |
|   MachineBasicBlock::iterator ItrMI = MI;
 | |
| 
 | |
|   // Scan forward through BB for a use/def of EFLAGS.
 | |
|   for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
 | |
|     if (I->readsRegister(X86::EFLAGS))
 | |
|       return true;
 | |
|     if (I->definesRegister(X86::EFLAGS))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // We hit the end of the block, check whether EFLAGS is live into a successor.
 | |
|   for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) {
 | |
|     if ((*I)->isLiveIn(X86::EFLAGS))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
 | |
| /// group of CMOV instructions, which may contain debug instructions in between,
 | |
| /// move all debug instructions to after the last CMOV instruction, making the
 | |
| /// CMOV group consecutive.
 | |
| static void packCmovGroup(MachineInstr *First, MachineInstr *Last) {
 | |
|   assert(X86::getCondFromCMovOpc(Last->getOpcode()) != X86::COND_INVALID &&
 | |
|          "Last instruction in a CMOV group must be a CMOV instruction");
 | |
| 
 | |
|   SmallVector<MachineInstr *, 2> DBGInstructions;
 | |
|   for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) {
 | |
|     if (I->isDebugInstr())
 | |
|       DBGInstructions.push_back(&*I);
 | |
|   }
 | |
| 
 | |
|   // Splice the debug instruction after the cmov group.
 | |
|   MachineBasicBlock *MBB = First->getParent();
 | |
|   for (auto *MI : DBGInstructions)
 | |
|     MBB->insertAfter(Last, MI->removeFromParent());
 | |
| }
 | |
| 
 | |
| void X86CmovConverterPass::convertCmovInstsToBranches(
 | |
|     SmallVectorImpl<MachineInstr *> &Group) const {
 | |
|   assert(!Group.empty() && "No CMOV instructions to convert");
 | |
|   ++NumOfOptimizedCmovGroups;
 | |
| 
 | |
|   // If the CMOV group is not packed, e.g., there are debug instructions between
 | |
|   // first CMOV and last CMOV, then pack the group and make the CMOV instruction
 | |
|   // consecutive by moving the debug instructions to after the last CMOV. 
 | |
|   packCmovGroup(Group.front(), Group.back());
 | |
| 
 | |
|   // To convert a CMOVcc instruction, we actually have to insert the diamond
 | |
|   // control-flow pattern.  The incoming instruction knows the destination vreg
 | |
|   // to set, the condition code register to branch on, the true/false values to
 | |
|   // select between, and a branch opcode to use.
 | |
| 
 | |
|   // Before
 | |
|   // -----
 | |
|   // MBB:
 | |
|   //   cond = cmp ...
 | |
|   //   v1 = CMOVge t1, f1, cond
 | |
|   //   v2 = CMOVlt t2, f2, cond
 | |
|   //   v3 = CMOVge v1, f3, cond
 | |
|   //
 | |
|   // After
 | |
|   // -----
 | |
|   // MBB:
 | |
|   //   cond = cmp ...
 | |
|   //   jge %SinkMBB
 | |
|   //
 | |
|   // FalseMBB:
 | |
|   //   jmp %SinkMBB
 | |
|   //
 | |
|   // SinkMBB:
 | |
|   //   %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
 | |
|   //   %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
 | |
|   //                                          ; true-value with false-value
 | |
|   //   %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
 | |
|   //                                          ; previous Phi instruction result
 | |
| 
 | |
|   MachineInstr &MI = *Group.front();
 | |
|   MachineInstr *LastCMOV = Group.back();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   X86::CondCode CC = X86::CondCode(X86::getCondFromCMovOpc(MI.getOpcode()));
 | |
|   X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
 | |
|   // Potentially swap the condition codes so that any memory operand to a CMOV
 | |
|   // is in the *false* position instead of the *true* position. We can invert
 | |
|   // any non-memory operand CMOV instructions to cope with this and we ensure
 | |
|   // memory operand CMOVs are only included with a single condition code.
 | |
|   if (llvm::any_of(Group, [&](MachineInstr *I) {
 | |
|         return I->mayLoad() && X86::getCondFromCMovOpc(I->getOpcode()) == CC;
 | |
|       }))
 | |
|     std::swap(CC, OppCC);
 | |
| 
 | |
|   MachineBasicBlock *MBB = MI.getParent();
 | |
|   MachineFunction::iterator It = ++MBB->getIterator();
 | |
|   MachineFunction *F = MBB->getParent();
 | |
|   const BasicBlock *BB = MBB->getBasicBlock();
 | |
| 
 | |
|   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
 | |
|   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
 | |
|   F->insert(It, FalseMBB);
 | |
|   F->insert(It, SinkMBB);
 | |
| 
 | |
|   // If the EFLAGS register isn't dead in the terminator, then claim that it's
 | |
|   // live into the sink and copy blocks.
 | |
|   if (checkEFLAGSLive(LastCMOV)) {
 | |
|     FalseMBB->addLiveIn(X86::EFLAGS);
 | |
|     SinkMBB->addLiveIn(X86::EFLAGS);
 | |
|   }
 | |
| 
 | |
|   // Transfer the remainder of BB and its successor edges to SinkMBB.
 | |
|   SinkMBB->splice(SinkMBB->begin(), MBB,
 | |
|                   std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
 | |
|   SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
| 
 | |
|   // Add the false and sink blocks as its successors.
 | |
|   MBB->addSuccessor(FalseMBB);
 | |
|   MBB->addSuccessor(SinkMBB);
 | |
| 
 | |
|   // Create the conditional branch instruction.
 | |
|   BuildMI(MBB, DL, TII->get(X86::GetCondBranchFromCond(CC))).addMBB(SinkMBB);
 | |
| 
 | |
|   // Add the sink block to the false block successors.
 | |
|   FalseMBB->addSuccessor(SinkMBB);
 | |
| 
 | |
|   MachineInstrBuilder MIB;
 | |
|   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
 | |
|   MachineBasicBlock::iterator MIItEnd =
 | |
|       std::next(MachineBasicBlock::iterator(LastCMOV));
 | |
|   MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin();
 | |
|   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
 | |
| 
 | |
|   // First we need to insert an explicit load on the false path for any memory
 | |
|   // operand. We also need to potentially do register rewriting here, but it is
 | |
|   // simpler as the memory operands are always on the false path so we can
 | |
|   // simply take that input, whatever it is.
 | |
|   DenseMap<unsigned, unsigned> FalseBBRegRewriteTable;
 | |
|   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) {
 | |
|     auto &MI = *MIIt++;
 | |
|     // Skip any CMOVs in this group which don't load from memory.
 | |
|     if (!MI.mayLoad()) {
 | |
|       // Remember the false-side register input.
 | |
|       unsigned FalseReg =
 | |
|           MI.getOperand(X86::getCondFromCMovOpc(MI.getOpcode()) == CC ? 1 : 2)
 | |
|               .getReg();
 | |
|       // Walk back through any intermediate cmovs referenced.
 | |
|       while (true) {
 | |
|         auto FRIt = FalseBBRegRewriteTable.find(FalseReg);
 | |
|         if (FRIt == FalseBBRegRewriteTable.end())
 | |
|           break;
 | |
|         FalseReg = FRIt->second;
 | |
|       }
 | |
|       FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // The condition must be the *opposite* of the one we've decided to branch
 | |
|     // on as the branch will go *around* the load and the load should happen
 | |
|     // when the CMOV condition is false.
 | |
|     assert(X86::getCondFromCMovOpc(MI.getOpcode()) == OppCC &&
 | |
|            "Can only handle memory-operand cmov instructions with a condition "
 | |
|            "opposite to the selected branch direction.");
 | |
| 
 | |
|     // The goal is to rewrite the cmov from:
 | |
|     //
 | |
|     //   MBB:
 | |
|     //     %A = CMOVcc %B (tied), (mem)
 | |
|     //
 | |
|     // to
 | |
|     //
 | |
|     //   MBB:
 | |
|     //     %A = CMOVcc %B (tied), %C
 | |
|     //   FalseMBB:
 | |
|     //     %C = MOV (mem)
 | |
|     //
 | |
|     // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
 | |
|     //
 | |
|     //   MBB:
 | |
|     //     JMP!cc SinkMBB
 | |
|     //   FalseMBB:
 | |
|     //     %C = MOV (mem)
 | |
|     //   SinkMBB:
 | |
|     //     %A = PHI [ %C, FalseMBB ], [ %B, MBB]
 | |
| 
 | |
|     // Get a fresh register to use as the destination of the MOV.
 | |
|     const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg());
 | |
|     unsigned TmpReg = MRI->createVirtualRegister(RC);
 | |
| 
 | |
|     SmallVector<MachineInstr *, 4> NewMIs;
 | |
|     bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg,
 | |
|                                              /*UnfoldLoad*/ true,
 | |
|                                              /*UnfoldStore*/ false, NewMIs);
 | |
|     (void)Unfolded;
 | |
|     assert(Unfolded && "Should never fail to unfold a loading cmov!");
 | |
| 
 | |
|     // Move the new CMOV to just before the old one and reset any impacted
 | |
|     // iterator.
 | |
|     auto *NewCMOV = NewMIs.pop_back_val();
 | |
|     assert(X86::getCondFromCMovOpc(NewCMOV->getOpcode()) == OppCC &&
 | |
|            "Last new instruction isn't the expected CMOV!");
 | |
|     LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump());
 | |
|     MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV);
 | |
|     if (&*MIItBegin == &MI)
 | |
|       MIItBegin = MachineBasicBlock::iterator(NewCMOV);
 | |
| 
 | |
|     // Sink whatever instructions were needed to produce the unfolded operand
 | |
|     // into the false block.
 | |
|     for (auto *NewMI : NewMIs) {
 | |
|       LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump());
 | |
|       FalseMBB->insert(FalseInsertionPoint, NewMI);
 | |
|       // Re-map any operands that are from other cmovs to the inputs for this block.
 | |
|       for (auto &MOp : NewMI->uses()) {
 | |
|         if (!MOp.isReg())
 | |
|           continue;
 | |
|         auto It = FalseBBRegRewriteTable.find(MOp.getReg());
 | |
|         if (It == FalseBBRegRewriteTable.end())
 | |
|           continue;
 | |
| 
 | |
|         MOp.setReg(It->second);
 | |
|         // This might have been a kill when it referenced the cmov result, but
 | |
|         // it won't necessarily be once rewritten.
 | |
|         // FIXME: We could potentially improve this by tracking whether the
 | |
|         // operand to the cmov was also a kill, and then skipping the PHI node
 | |
|         // construction below.
 | |
|         MOp.setIsKill(false);
 | |
|       }
 | |
|     }
 | |
|     MBB->erase(MachineBasicBlock::iterator(MI),
 | |
|                std::next(MachineBasicBlock::iterator(MI)));
 | |
| 
 | |
|     // Add this PHI to the rewrite table.
 | |
|     FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg;
 | |
|   }
 | |
| 
 | |
|   // As we are creating the PHIs, we have to be careful if there is more than
 | |
|   // one.  Later CMOVs may reference the results of earlier CMOVs, but later
 | |
|   // PHIs have to reference the individual true/false inputs from earlier PHIs.
 | |
|   // That also means that PHI construction must work forward from earlier to
 | |
|   // later, and that the code must maintain a mapping from earlier PHI's
 | |
|   // destination registers, and the registers that went into the PHI.
 | |
|   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
 | |
| 
 | |
|   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
 | |
|     unsigned DestReg = MIIt->getOperand(0).getReg();
 | |
|     unsigned Op1Reg = MIIt->getOperand(1).getReg();
 | |
|     unsigned Op2Reg = MIIt->getOperand(2).getReg();
 | |
| 
 | |
|     // If this CMOV we are processing is the opposite condition from the jump we
 | |
|     // generated, then we have to swap the operands for the PHI that is going to
 | |
|     // be generated.
 | |
|     if (X86::getCondFromCMovOpc(MIIt->getOpcode()) == OppCC)
 | |
|       std::swap(Op1Reg, Op2Reg);
 | |
| 
 | |
|     auto Op1Itr = RegRewriteTable.find(Op1Reg);
 | |
|     if (Op1Itr != RegRewriteTable.end())
 | |
|       Op1Reg = Op1Itr->second.first;
 | |
| 
 | |
|     auto Op2Itr = RegRewriteTable.find(Op2Reg);
 | |
|     if (Op2Itr != RegRewriteTable.end())
 | |
|       Op2Reg = Op2Itr->second.second;
 | |
| 
 | |
|     //  SinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
 | |
|     //  ...
 | |
|     MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
 | |
|               .addReg(Op1Reg)
 | |
|               .addMBB(FalseMBB)
 | |
|               .addReg(Op2Reg)
 | |
|               .addMBB(MBB);
 | |
|     (void)MIB;
 | |
|     LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
 | |
|     LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump());
 | |
| 
 | |
|     // Add this PHI to the rewrite table.
 | |
|     RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
 | |
|   }
 | |
| 
 | |
|   // Now remove the CMOV(s).
 | |
|   MBB->erase(MIItBegin, MIItEnd);
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | |
| INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
 | |
|                     false, false)
 | |
| 
 | |
| FunctionPass *llvm::createX86CmovConverterPass() {
 | |
|   return new X86CmovConverterPass();
 | |
| }
 |