602 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			602 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the pass that finds instructions that can be
 | |
| // re-written as LEA instructions in order to reduce pipeline delays.
 | |
| // When optimizing for size it replaces suitable LEAs with INC or DEC.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetSchedule.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
| void initializeFixupLEAPassPass(PassRegistry &);
 | |
| }
 | |
| 
 | |
| #define FIXUPLEA_DESC "X86 LEA Fixup"
 | |
| #define FIXUPLEA_NAME "x86-fixup-LEAs"
 | |
| 
 | |
| #define DEBUG_TYPE FIXUPLEA_NAME
 | |
| 
 | |
| STATISTIC(NumLEAs, "Number of LEA instructions created");
 | |
| 
 | |
| namespace {
 | |
| class FixupLEAPass : public MachineFunctionPass {
 | |
|   enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
 | |
| 
 | |
|   /// Loop over all of the instructions in the basic block
 | |
|   /// replacing applicable instructions with LEA instructions,
 | |
|   /// where appropriate.
 | |
|   bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
 | |
| 
 | |
| 
 | |
|   /// Given a machine register, look for the instruction
 | |
|   /// which writes it in the current basic block. If found,
 | |
|   /// try to replace it with an equivalent LEA instruction.
 | |
|   /// If replacement succeeds, then also process the newly created
 | |
|   /// instruction.
 | |
|   void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
 | |
|                     MachineFunction::iterator MFI);
 | |
| 
 | |
|   /// Given a memory access or LEA instruction
 | |
|   /// whose address mode uses a base and/or index register, look for
 | |
|   /// an opportunity to replace the instruction which sets the base or index
 | |
|   /// register with an equivalent LEA instruction.
 | |
|   void processInstruction(MachineBasicBlock::iterator &I,
 | |
|                           MachineFunction::iterator MFI);
 | |
| 
 | |
|   /// Given a LEA instruction which is unprofitable
 | |
|   /// on Silvermont try to replace it with an equivalent ADD instruction
 | |
|   void processInstructionForSLM(MachineBasicBlock::iterator &I,
 | |
|                                 MachineFunction::iterator MFI);
 | |
| 
 | |
| 
 | |
|   /// Given a LEA instruction which is unprofitable
 | |
|   /// on SNB+ try to replace it with other instructions.
 | |
|   /// According to Intel's Optimization Reference Manual:
 | |
|   /// " For LEA instructions with three source operands and some specific
 | |
|   ///   situations, instruction latency has increased to 3 cycles, and must
 | |
|   ///   dispatch via port 1:
 | |
|   /// - LEA that has all three source operands: base, index, and offset
 | |
|   /// - LEA that uses base and index registers where the base is EBP, RBP,
 | |
|   ///   or R13
 | |
|   /// - LEA that uses RIP relative addressing mode
 | |
|   /// - LEA that uses 16-bit addressing mode "
 | |
|   /// This function currently handles the first 2 cases only.
 | |
|   MachineInstr *processInstrForSlow3OpLEA(MachineInstr &MI,
 | |
|                                           MachineFunction::iterator MFI);
 | |
| 
 | |
|   /// Look for LEAs that add 1 to reg or subtract 1 from reg
 | |
|   /// and convert them to INC or DEC respectively.
 | |
|   bool fixupIncDec(MachineBasicBlock::iterator &I,
 | |
|                    MachineFunction::iterator MFI) const;
 | |
| 
 | |
|   /// Determine if an instruction references a machine register
 | |
|   /// and, if so, whether it reads or writes the register.
 | |
|   RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
 | |
| 
 | |
|   /// Step backwards through a basic block, looking
 | |
|   /// for an instruction which writes a register within
 | |
|   /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
 | |
|   MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
 | |
|                                               MachineBasicBlock::iterator &I,
 | |
|                                               MachineFunction::iterator MFI);
 | |
| 
 | |
|   /// if an instruction can be converted to an
 | |
|   /// equivalent LEA, insert the new instruction into the basic block
 | |
|   /// and return a pointer to it. Otherwise, return zero.
 | |
|   MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
 | |
|                                    MachineBasicBlock::iterator &MBBI) const;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   StringRef getPassName() const override { return FIXUPLEA_DESC; }
 | |
| 
 | |
|   FixupLEAPass() : MachineFunctionPass(ID) {
 | |
|     initializeFixupLEAPassPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   /// Loop over all of the basic blocks,
 | |
|   /// replacing instructions by equivalent LEA instructions
 | |
|   /// if needed and when possible.
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   // This pass runs after regalloc and doesn't support VReg operands.
 | |
|   MachineFunctionProperties getRequiredProperties() const override {
 | |
|     return MachineFunctionProperties().set(
 | |
|         MachineFunctionProperties::Property::NoVRegs);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   TargetSchedModel TSM;
 | |
|   MachineFunction *MF;
 | |
|   const X86InstrInfo *TII; // Machine instruction info.
 | |
|   bool OptIncDec;
 | |
|   bool OptLEA;
 | |
| };
 | |
| }
 | |
| 
 | |
| char FixupLEAPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS(FixupLEAPass, FIXUPLEA_NAME, FIXUPLEA_DESC, false, false)
 | |
| 
 | |
| MachineInstr *
 | |
| FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
 | |
|                                  MachineBasicBlock::iterator &MBBI) const {
 | |
|   MachineInstr &MI = *MBBI;
 | |
|   switch (MI.getOpcode()) {
 | |
|   case X86::MOV32rr:
 | |
|   case X86::MOV64rr: {
 | |
|     const MachineOperand &Src = MI.getOperand(1);
 | |
|     const MachineOperand &Dest = MI.getOperand(0);
 | |
|     MachineInstr *NewMI =
 | |
|         BuildMI(*MF, MI.getDebugLoc(),
 | |
|                 TII->get(MI.getOpcode() == X86::MOV32rr ? X86::LEA32r
 | |
|                                                         : X86::LEA64r))
 | |
|             .add(Dest)
 | |
|             .add(Src)
 | |
|             .addImm(1)
 | |
|             .addReg(0)
 | |
|             .addImm(0)
 | |
|             .addReg(0);
 | |
|     MFI->insert(MBBI, NewMI); // Insert the new inst
 | |
|     return NewMI;
 | |
|   }
 | |
|   case X86::ADD64ri32:
 | |
|   case X86::ADD64ri8:
 | |
|   case X86::ADD64ri32_DB:
 | |
|   case X86::ADD64ri8_DB:
 | |
|   case X86::ADD32ri:
 | |
|   case X86::ADD32ri8:
 | |
|   case X86::ADD32ri_DB:
 | |
|   case X86::ADD32ri8_DB:
 | |
|   case X86::ADD16ri:
 | |
|   case X86::ADD16ri8:
 | |
|   case X86::ADD16ri_DB:
 | |
|   case X86::ADD16ri8_DB:
 | |
|     if (!MI.getOperand(2).isImm()) {
 | |
|       // convertToThreeAddress will call getImm()
 | |
|       // which requires isImm() to be true
 | |
|       return nullptr;
 | |
|     }
 | |
|     break;
 | |
|   case X86::ADD16rr:
 | |
|   case X86::ADD16rr_DB:
 | |
|     if (MI.getOperand(1).getReg() != MI.getOperand(2).getReg()) {
 | |
|       // if src1 != src2, then convertToThreeAddress will
 | |
|       // need to create a Virtual register, which we cannot do
 | |
|       // after register allocation.
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
|   return TII->convertToThreeAddress(MFI, MI, nullptr);
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
 | |
| 
 | |
| bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
 | |
|   if (skipFunction(Func.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   MF = &Func;
 | |
|   const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>();
 | |
|   OptIncDec = !ST.slowIncDec() || Func.getFunction().optForMinSize();
 | |
|   OptLEA = ST.LEAusesAG() || ST.slowLEA() || ST.slow3OpsLEA();
 | |
| 
 | |
|   if (!OptLEA && !OptIncDec)
 | |
|     return false;
 | |
| 
 | |
|   TSM.init(&Func.getSubtarget());
 | |
|   TII = ST.getInstrInfo();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Start X86FixupLEAs\n";);
 | |
|   // Process all basic blocks.
 | |
|   for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
 | |
|     processBasicBlock(Func, I);
 | |
|   LLVM_DEBUG(dbgs() << "End X86FixupLEAs\n";);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FixupLEAPass::RegUsageState
 | |
| FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
 | |
|   RegUsageState RegUsage = RU_NotUsed;
 | |
|   MachineInstr &MI = *I;
 | |
| 
 | |
|   for (unsigned int i = 0; i < MI.getNumOperands(); ++i) {
 | |
|     MachineOperand &opnd = MI.getOperand(i);
 | |
|     if (opnd.isReg() && opnd.getReg() == p.getReg()) {
 | |
|       if (opnd.isDef())
 | |
|         return RU_Write;
 | |
|       RegUsage = RU_Read;
 | |
|     }
 | |
|   }
 | |
|   return RegUsage;
 | |
| }
 | |
| 
 | |
| /// getPreviousInstr - Given a reference to an instruction in a basic
 | |
| /// block, return a reference to the previous instruction in the block,
 | |
| /// wrapping around to the last instruction of the block if the block
 | |
| /// branches to itself.
 | |
| static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
 | |
|                                     MachineFunction::iterator MFI) {
 | |
|   if (I == MFI->begin()) {
 | |
|     if (MFI->isPredecessor(&*MFI)) {
 | |
|       I = --MFI->end();
 | |
|       return true;
 | |
|     } else
 | |
|       return false;
 | |
|   }
 | |
|   --I;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock::iterator
 | |
| FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
 | |
|                               MachineFunction::iterator MFI) {
 | |
|   int InstrDistance = 1;
 | |
|   MachineBasicBlock::iterator CurInst;
 | |
|   static const int INSTR_DISTANCE_THRESHOLD = 5;
 | |
| 
 | |
|   CurInst = I;
 | |
|   bool Found;
 | |
|   Found = getPreviousInstr(CurInst, MFI);
 | |
|   while (Found && I != CurInst) {
 | |
|     if (CurInst->isCall() || CurInst->isInlineAsm())
 | |
|       break;
 | |
|     if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
 | |
|       break; // too far back to make a difference
 | |
|     if (usesRegister(p, CurInst) == RU_Write) {
 | |
|       return CurInst;
 | |
|     }
 | |
|     InstrDistance += TSM.computeInstrLatency(&*CurInst);
 | |
|     Found = getPreviousInstr(CurInst, MFI);
 | |
|   }
 | |
|   return MachineBasicBlock::iterator();
 | |
| }
 | |
| 
 | |
| static inline bool isLEA(const int Opcode) {
 | |
|   return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
 | |
|          Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
 | |
| }
 | |
| 
 | |
| static inline bool isInefficientLEAReg(unsigned int Reg) {
 | |
|   return Reg == X86::EBP || Reg == X86::RBP || Reg == X86::R13;
 | |
| }
 | |
| 
 | |
| static inline bool isRegOperand(const MachineOperand &Op) {
 | |
|   return Op.isReg() && Op.getReg() != X86::NoRegister;
 | |
| }
 | |
| /// hasIneffecientLEARegs - LEA that uses base and index registers
 | |
| /// where the base is EBP, RBP, or R13
 | |
| static inline bool hasInefficientLEABaseReg(const MachineOperand &Base,
 | |
|                                             const MachineOperand &Index) {
 | |
|   return Base.isReg() && isInefficientLEAReg(Base.getReg()) &&
 | |
|          isRegOperand(Index);
 | |
| }
 | |
| 
 | |
| static inline bool hasLEAOffset(const MachineOperand &Offset) {
 | |
|   return (Offset.isImm() && Offset.getImm() != 0) || Offset.isGlobal();
 | |
| }
 | |
| 
 | |
| // LEA instruction that has all three operands: offset, base and index
 | |
| static inline bool isThreeOperandsLEA(const MachineOperand &Base,
 | |
|                                       const MachineOperand &Index,
 | |
|                                       const MachineOperand &Offset) {
 | |
|   return isRegOperand(Base) && isRegOperand(Index) && hasLEAOffset(Offset);
 | |
| }
 | |
| 
 | |
| static inline int getADDrrFromLEA(int LEAOpcode) {
 | |
|   switch (LEAOpcode) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected LEA instruction");
 | |
|   case X86::LEA16r:
 | |
|     return X86::ADD16rr;
 | |
|   case X86::LEA32r:
 | |
|     return X86::ADD32rr;
 | |
|   case X86::LEA64_32r:
 | |
|   case X86::LEA64r:
 | |
|     return X86::ADD64rr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static inline int getADDriFromLEA(int LEAOpcode, const MachineOperand &Offset) {
 | |
|   bool IsInt8 = Offset.isImm() && isInt<8>(Offset.getImm());
 | |
|   switch (LEAOpcode) {
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected LEA instruction");
 | |
|   case X86::LEA16r:
 | |
|     return IsInt8 ? X86::ADD16ri8 : X86::ADD16ri;
 | |
|   case X86::LEA32r:
 | |
|   case X86::LEA64_32r:
 | |
|     return IsInt8 ? X86::ADD32ri8 : X86::ADD32ri;
 | |
|   case X86::LEA64r:
 | |
|     return IsInt8 ? X86::ADD64ri8 : X86::ADD64ri32;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isLEASimpleIncOrDec - Does this LEA have one these forms:
 | |
| /// lea  %reg, 1(%reg)
 | |
| /// lea  %reg, -1(%reg)
 | |
| static inline bool isLEASimpleIncOrDec(MachineInstr &LEA) {
 | |
|   unsigned SrcReg = LEA.getOperand(1 + X86::AddrBaseReg).getReg();
 | |
|   unsigned DstReg = LEA.getOperand(0).getReg();
 | |
|   unsigned AddrDispOp = 1 + X86::AddrDisp;
 | |
|   return SrcReg == DstReg &&
 | |
|          LEA.getOperand(1 + X86::AddrIndexReg).getReg() == 0 &&
 | |
|          LEA.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
 | |
|          LEA.getOperand(AddrDispOp).isImm() &&
 | |
|          (LEA.getOperand(AddrDispOp).getImm() == 1 ||
 | |
|           LEA.getOperand(AddrDispOp).getImm() == -1);
 | |
| }
 | |
| 
 | |
| bool FixupLEAPass::fixupIncDec(MachineBasicBlock::iterator &I,
 | |
|                                MachineFunction::iterator MFI) const {
 | |
|   MachineInstr &MI = *I;
 | |
|   int Opcode = MI.getOpcode();
 | |
|   if (!isLEA(Opcode))
 | |
|     return false;
 | |
| 
 | |
|   if (isLEASimpleIncOrDec(MI) && TII->isSafeToClobberEFLAGS(*MFI, I)) {
 | |
|     int NewOpcode;
 | |
|     bool isINC = MI.getOperand(4).getImm() == 1;
 | |
|     switch (Opcode) {
 | |
|     case X86::LEA16r:
 | |
|       NewOpcode = isINC ? X86::INC16r : X86::DEC16r;
 | |
|       break;
 | |
|     case X86::LEA32r:
 | |
|     case X86::LEA64_32r:
 | |
|       NewOpcode = isINC ? X86::INC32r : X86::DEC32r;
 | |
|       break;
 | |
|     case X86::LEA64r:
 | |
|       NewOpcode = isINC ? X86::INC64r : X86::DEC64r;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     MachineInstr *NewMI =
 | |
|         BuildMI(*MFI, I, MI.getDebugLoc(), TII->get(NewOpcode))
 | |
|             .add(MI.getOperand(0))
 | |
|             .add(MI.getOperand(1));
 | |
|     MFI->erase(I);
 | |
|     I = static_cast<MachineBasicBlock::iterator>(NewMI);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
 | |
|                                       MachineFunction::iterator MFI) {
 | |
|   // Process a load, store, or LEA instruction.
 | |
|   MachineInstr &MI = *I;
 | |
|   const MCInstrDesc &Desc = MI.getDesc();
 | |
|   int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags);
 | |
|   if (AddrOffset >= 0) {
 | |
|     AddrOffset += X86II::getOperandBias(Desc);
 | |
|     MachineOperand &p = MI.getOperand(AddrOffset + X86::AddrBaseReg);
 | |
|     if (p.isReg() && p.getReg() != X86::ESP) {
 | |
|       seekLEAFixup(p, I, MFI);
 | |
|     }
 | |
|     MachineOperand &q = MI.getOperand(AddrOffset + X86::AddrIndexReg);
 | |
|     if (q.isReg() && q.getReg() != X86::ESP) {
 | |
|       seekLEAFixup(q, I, MFI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FixupLEAPass::seekLEAFixup(MachineOperand &p,
 | |
|                                 MachineBasicBlock::iterator &I,
 | |
|                                 MachineFunction::iterator MFI) {
 | |
|   MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
 | |
|   if (MBI != MachineBasicBlock::iterator()) {
 | |
|     MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
 | |
|     if (NewMI) {
 | |
|       ++NumLEAs;
 | |
|       LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
 | |
|       // now to replace with an equivalent LEA...
 | |
|       LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
 | |
|       MFI->erase(MBI);
 | |
|       MachineBasicBlock::iterator J =
 | |
|           static_cast<MachineBasicBlock::iterator>(NewMI);
 | |
|       processInstruction(J, MFI);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
 | |
|                                             MachineFunction::iterator MFI) {
 | |
|   MachineInstr &MI = *I;
 | |
|   const int Opcode = MI.getOpcode();
 | |
|   if (!isLEA(Opcode))
 | |
|     return;
 | |
|   if (MI.getOperand(5).getReg() != 0 || !MI.getOperand(4).isImm() ||
 | |
|       !TII->isSafeToClobberEFLAGS(*MFI, I))
 | |
|     return;
 | |
|   const unsigned DstR = MI.getOperand(0).getReg();
 | |
|   const unsigned SrcR1 = MI.getOperand(1).getReg();
 | |
|   const unsigned SrcR2 = MI.getOperand(3).getReg();
 | |
|   if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
 | |
|     return;
 | |
|   if (MI.getOperand(2).getImm() > 1)
 | |
|     return;
 | |
|   LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
 | |
|   LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
 | |
|   MachineInstr *NewMI = nullptr;
 | |
|   // Make ADD instruction for two registers writing to LEA's destination
 | |
|   if (SrcR1 != 0 && SrcR2 != 0) {
 | |
|     const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(Opcode));
 | |
|     const MachineOperand &Src = MI.getOperand(SrcR1 == DstR ? 3 : 1);
 | |
|     NewMI =
 | |
|         BuildMI(*MFI, I, MI.getDebugLoc(), ADDrr, DstR).addReg(DstR).add(Src);
 | |
|     LLVM_DEBUG(NewMI->dump(););
 | |
|   }
 | |
|   // Make ADD instruction for immediate
 | |
|   if (MI.getOperand(4).getImm() != 0) {
 | |
|     const MCInstrDesc &ADDri =
 | |
|         TII->get(getADDriFromLEA(Opcode, MI.getOperand(4)));
 | |
|     const MachineOperand &SrcR = MI.getOperand(SrcR1 == DstR ? 1 : 3);
 | |
|     NewMI = BuildMI(*MFI, I, MI.getDebugLoc(), ADDri, DstR)
 | |
|                 .add(SrcR)
 | |
|                 .addImm(MI.getOperand(4).getImm());
 | |
|     LLVM_DEBUG(NewMI->dump(););
 | |
|   }
 | |
|   if (NewMI) {
 | |
|     MFI->erase(I);
 | |
|     I = NewMI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| FixupLEAPass::processInstrForSlow3OpLEA(MachineInstr &MI,
 | |
|                                         MachineFunction::iterator MFI) {
 | |
| 
 | |
|   const int LEAOpcode = MI.getOpcode();
 | |
|   if (!isLEA(LEAOpcode))
 | |
|     return nullptr;
 | |
| 
 | |
|   const MachineOperand &Dst = MI.getOperand(0);
 | |
|   const MachineOperand &Base = MI.getOperand(1);
 | |
|   const MachineOperand &Scale = MI.getOperand(2);
 | |
|   const MachineOperand &Index = MI.getOperand(3);
 | |
|   const MachineOperand &Offset = MI.getOperand(4);
 | |
|   const MachineOperand &Segment = MI.getOperand(5);
 | |
| 
 | |
|   if (!(isThreeOperandsLEA(Base, Index, Offset) ||
 | |
|         hasInefficientLEABaseReg(Base, Index)) ||
 | |
|       !TII->isSafeToClobberEFLAGS(*MFI, MI) ||
 | |
|       Segment.getReg() != X86::NoRegister)
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned int DstR = Dst.getReg();
 | |
|   unsigned int BaseR = Base.getReg();
 | |
|   unsigned int IndexR = Index.getReg();
 | |
|   unsigned SSDstR =
 | |
|       (LEAOpcode == X86::LEA64_32r) ? getX86SubSuperRegister(DstR, 64) : DstR;
 | |
|   bool IsScale1 = Scale.getImm() == 1;
 | |
|   bool IsInefficientBase = isInefficientLEAReg(BaseR);
 | |
|   bool IsInefficientIndex = isInefficientLEAReg(IndexR);
 | |
| 
 | |
|   // Skip these cases since it takes more than 2 instructions
 | |
|   // to replace the LEA instruction.
 | |
|   if (IsInefficientBase && SSDstR == BaseR && !IsScale1)
 | |
|     return nullptr;
 | |
|   if (LEAOpcode == X86::LEA64_32r && IsInefficientBase &&
 | |
|       (IsInefficientIndex || !IsScale1))
 | |
|     return nullptr;
 | |
| 
 | |
|   const DebugLoc DL = MI.getDebugLoc();
 | |
|   const MCInstrDesc &ADDrr = TII->get(getADDrrFromLEA(LEAOpcode));
 | |
|   const MCInstrDesc &ADDri = TII->get(getADDriFromLEA(LEAOpcode, Offset));
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MI.dump(););
 | |
|   LLVM_DEBUG(dbgs() << "FixLEA: Replaced by: ";);
 | |
| 
 | |
|   // First try to replace LEA with one or two (for the 3-op LEA case)
 | |
|   // add instructions:
 | |
|   // 1.lea (%base,%index,1), %base => add %index,%base
 | |
|   // 2.lea (%base,%index,1), %index => add %base,%index
 | |
|   if (IsScale1 && (DstR == BaseR || DstR == IndexR)) {
 | |
|     const MachineOperand &Src = DstR == BaseR ? Index : Base;
 | |
|     MachineInstr *NewMI =
 | |
|         BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Src);
 | |
|     LLVM_DEBUG(NewMI->dump(););
 | |
|     // Create ADD instruction for the Offset in case of 3-Ops LEA.
 | |
|     if (hasLEAOffset(Offset)) {
 | |
|       NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
 | |
|       LLVM_DEBUG(NewMI->dump(););
 | |
|     }
 | |
|     return NewMI;
 | |
|   }
 | |
|   // If the base is inefficient try switching the index and base operands,
 | |
|   // otherwise just break the 3-Ops LEA inst into 2-Ops LEA + ADD instruction:
 | |
|   // lea offset(%base,%index,scale),%dst =>
 | |
|   // lea (%base,%index,scale); add offset,%dst
 | |
|   if (!IsInefficientBase || (!IsInefficientIndex && IsScale1)) {
 | |
|     MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
 | |
|                               .add(Dst)
 | |
|                               .add(IsInefficientBase ? Index : Base)
 | |
|                               .add(Scale)
 | |
|                               .add(IsInefficientBase ? Base : Index)
 | |
|                               .addImm(0)
 | |
|                               .add(Segment);
 | |
|     LLVM_DEBUG(NewMI->dump(););
 | |
|     // Create ADD instruction for the Offset in case of 3-Ops LEA.
 | |
|     if (hasLEAOffset(Offset)) {
 | |
|       NewMI = BuildMI(*MFI, MI, DL, ADDri, DstR).addReg(DstR).add(Offset);
 | |
|       LLVM_DEBUG(NewMI->dump(););
 | |
|     }
 | |
|     return NewMI;
 | |
|   }
 | |
|   // Handle the rest of the cases with inefficient base register:
 | |
|   assert(SSDstR != BaseR && "SSDstR == BaseR should be handled already!");
 | |
|   assert(IsInefficientBase && "efficient base should be handled already!");
 | |
| 
 | |
|   // lea (%base,%index,1), %dst => mov %base,%dst; add %index,%dst
 | |
|   if (IsScale1 && !hasLEAOffset(Offset)) {
 | |
|     bool BIK = Base.isKill() && BaseR != IndexR;
 | |
|     TII->copyPhysReg(*MFI, MI, DL, DstR, BaseR, BIK);
 | |
|     LLVM_DEBUG(MI.getPrevNode()->dump(););
 | |
| 
 | |
|     MachineInstr *NewMI =
 | |
|         BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Index);
 | |
|     LLVM_DEBUG(NewMI->dump(););
 | |
|     return NewMI;
 | |
|   }
 | |
|   // lea offset(%base,%index,scale), %dst =>
 | |
|   // lea offset( ,%index,scale), %dst; add %base,%dst
 | |
|   MachineInstr *NewMI = BuildMI(*MFI, MI, DL, TII->get(LEAOpcode))
 | |
|                             .add(Dst)
 | |
|                             .addReg(0)
 | |
|                             .add(Scale)
 | |
|                             .add(Index)
 | |
|                             .add(Offset)
 | |
|                             .add(Segment);
 | |
|   LLVM_DEBUG(NewMI->dump(););
 | |
| 
 | |
|   NewMI = BuildMI(*MFI, MI, DL, ADDrr, DstR).addReg(DstR).add(Base);
 | |
|   LLVM_DEBUG(NewMI->dump(););
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
 | |
|                                      MachineFunction::iterator MFI) {
 | |
| 
 | |
|   for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
 | |
|     if (OptIncDec)
 | |
|       if (fixupIncDec(I, MFI))
 | |
|         continue;
 | |
| 
 | |
|     if (OptLEA) {
 | |
|       if (MF.getSubtarget<X86Subtarget>().isSLM())
 | |
|         processInstructionForSLM(I, MFI);
 | |
| 
 | |
|       else {
 | |
|         if (MF.getSubtarget<X86Subtarget>().slow3OpsLEA()) {
 | |
|           if (auto *NewMI = processInstrForSlow3OpLEA(*I, MFI)) {
 | |
|             MFI->erase(I);
 | |
|             I = NewMI;
 | |
|           }
 | |
|         } else
 | |
|           processInstruction(I, MFI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 |