845 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			845 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- X86InterleavedAccess.cpp -------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// This file contains the X86 implementation of the interleaved accesses
 | |
| /// optimization generating X86-specific instructions/intrinsics for
 | |
| /// interleaved access groups.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86ISelLowering.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/MachineValueType.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cmath>
 | |
| #include <cstdint>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// This class holds necessary information to represent an interleaved
 | |
| /// access group and supports utilities to lower the group into
 | |
| /// X86-specific instructions/intrinsics.
 | |
| ///  E.g. A group of interleaving access loads (Factor = 2; accessing every
 | |
| ///       other element)
 | |
| ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
 | |
| ///        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
 | |
| ///        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
 | |
| class X86InterleavedAccessGroup {
 | |
|   /// Reference to the wide-load instruction of an interleaved access
 | |
|   /// group.
 | |
|   Instruction *const Inst;
 | |
| 
 | |
|   /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'.
 | |
|   ArrayRef<ShuffleVectorInst *> Shuffles;
 | |
| 
 | |
|   /// Reference to the starting index of each user-shuffle.
 | |
|   ArrayRef<unsigned> Indices;
 | |
| 
 | |
|   /// Reference to the interleaving stride in terms of elements.
 | |
|   const unsigned Factor;
 | |
| 
 | |
|   /// Reference to the underlying target.
 | |
|   const X86Subtarget &Subtarget;
 | |
| 
 | |
|   const DataLayout &DL;
 | |
| 
 | |
|   IRBuilder<> &Builder;
 | |
| 
 | |
|   /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors
 | |
|   /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors.
 | |
|   void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T,
 | |
|                  SmallVectorImpl<Instruction *> &DecomposedVectors);
 | |
| 
 | |
|   /// Performs matrix transposition on a 4x4 matrix \p InputVectors and
 | |
|   /// returns the transposed-vectors in \p TransposedVectors.
 | |
|   /// E.g.
 | |
|   /// InputVectors:
 | |
|   ///   In-V0 = p1, p2, p3, p4
 | |
|   ///   In-V1 = q1, q2, q3, q4
 | |
|   ///   In-V2 = r1, r2, r3, r4
 | |
|   ///   In-V3 = s1, s2, s3, s4
 | |
|   /// OutputVectors:
 | |
|   ///   Out-V0 = p1, q1, r1, s1
 | |
|   ///   Out-V1 = p2, q2, r2, s2
 | |
|   ///   Out-V2 = p3, q3, r3, s3
 | |
|   ///   Out-V3 = P4, q4, r4, s4
 | |
|   void transpose_4x4(ArrayRef<Instruction *> InputVectors,
 | |
|                      SmallVectorImpl<Value *> &TransposedMatrix);
 | |
|   void interleave8bitStride4(ArrayRef<Instruction *> InputVectors,
 | |
|                              SmallVectorImpl<Value *> &TransposedMatrix,
 | |
|                              unsigned NumSubVecElems);
 | |
|   void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors,
 | |
|                                 SmallVectorImpl<Value *> &TransposedMatrix);
 | |
|   void interleave8bitStride3(ArrayRef<Instruction *> InputVectors,
 | |
|                              SmallVectorImpl<Value *> &TransposedMatrix,
 | |
|                              unsigned NumSubVecElems);
 | |
|   void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors,
 | |
|                                SmallVectorImpl<Value *> &TransposedMatrix,
 | |
|                                unsigned NumSubVecElems);
 | |
| 
 | |
| public:
 | |
|   /// In order to form an interleaved access group X86InterleavedAccessGroup
 | |
|   /// requires a wide-load instruction \p 'I', a group of interleaved-vectors
 | |
|   /// \p Shuffs, reference to the first indices of each interleaved-vector
 | |
|   /// \p 'Ind' and the interleaving stride factor \p F. In order to generate
 | |
|   /// X86-specific instructions/intrinsics it also requires the underlying
 | |
|   /// target information \p STarget.
 | |
|   explicit X86InterleavedAccessGroup(Instruction *I,
 | |
|                                      ArrayRef<ShuffleVectorInst *> Shuffs,
 | |
|                                      ArrayRef<unsigned> Ind, const unsigned F,
 | |
|                                      const X86Subtarget &STarget,
 | |
|                                      IRBuilder<> &B)
 | |
|       : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget),
 | |
|         DL(Inst->getModule()->getDataLayout()), Builder(B) {}
 | |
| 
 | |
|   /// Returns true if this interleaved access group can be lowered into
 | |
|   /// x86-specific instructions/intrinsics, false otherwise.
 | |
|   bool isSupported() const;
 | |
| 
 | |
|   /// Lowers this interleaved access group into X86-specific
 | |
|   /// instructions/intrinsics.
 | |
|   bool lowerIntoOptimizedSequence();
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| bool X86InterleavedAccessGroup::isSupported() const {
 | |
|   VectorType *ShuffleVecTy = Shuffles[0]->getType();
 | |
|   Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType();
 | |
|   unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy);
 | |
|   unsigned WideInstSize;
 | |
| 
 | |
|   // Currently, lowering is supported for the following vectors:
 | |
|   // Stride 4:
 | |
|   //    1. Store and load of 4-element vectors of 64 bits on AVX.
 | |
|   //    2. Store of 16/32-element vectors of 8 bits on AVX.
 | |
|   // Stride 3:
 | |
|   //    1. Load of 16/32-element vectors of 8 bits on AVX.
 | |
|   if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3))
 | |
|     return false;
 | |
| 
 | |
|   if (isa<LoadInst>(Inst)) {
 | |
|     WideInstSize = DL.getTypeSizeInBits(Inst->getType());
 | |
|     if (cast<LoadInst>(Inst)->getPointerAddressSpace())
 | |
|       return false;
 | |
|   } else
 | |
|     WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType());
 | |
| 
 | |
|   // We support shuffle represents stride 4 for byte type with size of
 | |
|   // WideInstSize.
 | |
|   if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4)
 | |
|      return true;
 | |
| 
 | |
|   if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 &&
 | |
|       (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 ||
 | |
|        WideInstSize == 2048))
 | |
|     return true;
 | |
| 
 | |
|   if (ShuffleElemSize == 8 && Factor == 3 &&
 | |
|       (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void X86InterleavedAccessGroup::decompose(
 | |
|     Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy,
 | |
|     SmallVectorImpl<Instruction *> &DecomposedVectors) {
 | |
|   assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) &&
 | |
|          "Expected Load or Shuffle");
 | |
| 
 | |
|   Type *VecWidth = VecInst->getType();
 | |
|   (void)VecWidth;
 | |
|   assert(VecWidth->isVectorTy() &&
 | |
|          DL.getTypeSizeInBits(VecWidth) >=
 | |
|              DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&
 | |
|          "Invalid Inst-size!!!");
 | |
| 
 | |
|   if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) {
 | |
|     Value *Op0 = SVI->getOperand(0);
 | |
|     Value *Op1 = SVI->getOperand(1);
 | |
| 
 | |
|     // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type.
 | |
|     for (unsigned i = 0; i < NumSubVectors; ++i)
 | |
|       DecomposedVectors.push_back(
 | |
|           cast<ShuffleVectorInst>(Builder.CreateShuffleVector(
 | |
|               Op0, Op1,
 | |
|               createSequentialMask(Builder, Indices[i],
 | |
|                                    SubVecTy->getVectorNumElements(), 0))));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Decompose the load instruction.
 | |
|   LoadInst *LI = cast<LoadInst>(VecInst);
 | |
|   Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace());
 | |
|   Value *VecBasePtr;
 | |
|   unsigned int NumLoads = NumSubVectors;
 | |
|   // In the case of stride 3 with a vector of 32 elements load the information
 | |
|   // in the following way:
 | |
|   // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1]
 | |
|   unsigned VecLength = DL.getTypeSizeInBits(VecWidth);
 | |
|   if (VecLength == 768 || VecLength == 1536) {
 | |
|     Type *VecTran =
 | |
|         VectorType::get(Type::getInt8Ty(LI->getContext()), 16)->getPointerTo();
 | |
|     VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecTran);
 | |
|     NumLoads = NumSubVectors * (VecLength / 384);
 | |
|   } else
 | |
|     VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);
 | |
|   // Generate N loads of T type.
 | |
|   for (unsigned i = 0; i < NumLoads; i++) {
 | |
|     // TODO: Support inbounds GEP.
 | |
|     Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i));
 | |
|     Instruction *NewLoad =
 | |
|         Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment());
 | |
|     DecomposedVectors.push_back(NewLoad);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Changing the scale of the vector type by reducing the number of elements and
 | |
| // doubling the scalar size.
 | |
| static MVT scaleVectorType(MVT VT) {
 | |
|   unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2;
 | |
|   return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize),
 | |
|                           VT.getVectorNumElements() / 2);
 | |
| }
 | |
| 
 | |
| static uint32_t Concat[] = {
 | |
|   0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15,
 | |
|   16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
 | |
|   32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
 | |
|   48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 };
 | |
| 
 | |
| // genShuffleBland - Creates shuffle according to two vectors.This function is
 | |
| // only works on instructions with lane inside 256 registers. According to
 | |
| // the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The
 | |
| // offset amount depends on the two integer, 'LowOffset' and 'HighOffset'.
 | |
| // Where the 'LowOffset' refers to the first vector and the highOffset refers to
 | |
| // the second vector.
 | |
| // |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20|
 | |
| // |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25|
 | |
| // |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31|
 | |
| // For the sequence to work as a mirror to the load.
 | |
| // We must consider the elements order as above.
 | |
| // In this function we are combining two types of shuffles.
 | |
| // The first one is vpshufed and the second is a type of "blend" shuffle.
 | |
| // By computing the shuffle on a sequence of 16 elements(one lane) and add the
 | |
| // correct offset. We are creating a vpsuffed + blend sequence between two
 | |
| // shuffles.
 | |
| static void genShuffleBland(MVT VT, ArrayRef<uint32_t> Mask,
 | |
|   SmallVectorImpl<uint32_t> &Out, int LowOffset,
 | |
|   int HighOffset) {
 | |
|   assert(VT.getSizeInBits() >= 256 &&
 | |
|     "This function doesn't accept width smaller then 256");
 | |
|   unsigned NumOfElm = VT.getVectorNumElements();
 | |
|   for (unsigned i = 0; i < Mask.size(); i++)
 | |
|     Out.push_back(Mask[i] + LowOffset);
 | |
|   for (unsigned i = 0; i < Mask.size(); i++)
 | |
|     Out.push_back(Mask[i] + HighOffset + NumOfElm);
 | |
| }
 | |
| 
 | |
| // reorderSubVector returns the data to is the original state. And de-facto is
 | |
| // the opposite of  the function concatSubVector.
 | |
| 
 | |
| // For VecElems = 16
 | |
| // Invec[0] -  |0|      TransposedMatrix[0] - |0|
 | |
| // Invec[1] -  |1|  =>  TransposedMatrix[1] - |1|
 | |
| // Invec[2] -  |2|      TransposedMatrix[2] - |2|
 | |
| 
 | |
| // For VecElems = 32
 | |
| // Invec[0] -  |0|3|      TransposedMatrix[0] - |0|1|
 | |
| // Invec[1] -  |1|4|  =>  TransposedMatrix[1] - |2|3|
 | |
| // Invec[2] -  |2|5|      TransposedMatrix[2] - |4|5|
 | |
| 
 | |
| // For VecElems = 64
 | |
| // Invec[0] -  |0|3|6|9 |     TransposedMatrix[0] - |0|1|2 |3 |
 | |
| // Invec[1] -  |1|4|7|10| =>  TransposedMatrix[1] - |4|5|6 |7 |
 | |
| // Invec[2] -  |2|5|8|11|     TransposedMatrix[2] - |8|9|10|11|
 | |
| 
 | |
| static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix,
 | |
|   ArrayRef<Value *> Vec, ArrayRef<uint32_t> VPShuf,
 | |
|   unsigned VecElems, unsigned Stride,
 | |
|   IRBuilder<> Builder) {
 | |
| 
 | |
|   if (VecElems == 16) {
 | |
|     for (unsigned i = 0; i < Stride; i++)
 | |
|       TransposedMatrix[i] = Builder.CreateShuffleVector(
 | |
|         Vec[i], UndefValue::get(Vec[i]->getType()), VPShuf);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   SmallVector<uint32_t, 32> OptimizeShuf;
 | |
|   Value *Temp[8];
 | |
| 
 | |
|   for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) {
 | |
|     genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16,
 | |
|       (i + 1) / Stride * 16);
 | |
|     Temp[i / 2] = Builder.CreateShuffleVector(
 | |
|       Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf);
 | |
|     OptimizeShuf.clear();
 | |
|   }
 | |
| 
 | |
|   if (VecElems == 32) {
 | |
|     std::copy(Temp, Temp + Stride, TransposedMatrix.begin());
 | |
|     return;
 | |
|   }
 | |
|   else
 | |
|     for (unsigned i = 0; i < Stride; i++)
 | |
|       TransposedMatrix[i] =
 | |
|       Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat);
 | |
| }
 | |
| 
 | |
| void X86InterleavedAccessGroup::interleave8bitStride4VF8(
 | |
|     ArrayRef<Instruction *> Matrix,
 | |
|     SmallVectorImpl<Value *> &TransposedMatrix) {
 | |
|   // Assuming we start from the following vectors:
 | |
|   // Matrix[0]= c0 c1 c2 c3 c4 ... c7
 | |
|   // Matrix[1]= m0 m1 m2 m3 m4 ... m7
 | |
|   // Matrix[2]= y0 y1 y2 y3 y4 ... y7
 | |
|   // Matrix[3]= k0 k1 k2 k3 k4 ... k7
 | |
| 
 | |
|   MVT VT = MVT::v8i16;
 | |
|   TransposedMatrix.resize(2);
 | |
|   SmallVector<uint32_t, 16> MaskLow;
 | |
|   SmallVector<uint32_t, 32> MaskLowTemp1, MaskLowWord;
 | |
|   SmallVector<uint32_t, 32> MaskHighTemp1, MaskHighWord;
 | |
| 
 | |
|   for (unsigned i = 0; i < 8; ++i) {
 | |
|     MaskLow.push_back(i);
 | |
|     MaskLow.push_back(i + 8);
 | |
|   }
 | |
| 
 | |
|   createUnpackShuffleMask<uint32_t>(VT, MaskLowTemp1, true, false);
 | |
|   createUnpackShuffleMask<uint32_t>(VT, MaskHighTemp1, false, false);
 | |
|   scaleShuffleMask<uint32_t>(2, MaskHighTemp1, MaskHighWord);
 | |
|   scaleShuffleMask<uint32_t>(2, MaskLowTemp1, MaskLowWord);
 | |
|   // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7
 | |
|   // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7
 | |
|   Value *IntrVec1Low =
 | |
|       Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
 | |
|   Value *IntrVec2Low =
 | |
|       Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
 | |
| 
 | |
|   // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3
 | |
|   // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7
 | |
| 
 | |
|   TransposedMatrix[0] =
 | |
|       Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord);
 | |
|   TransposedMatrix[1] =
 | |
|       Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord);
 | |
| }
 | |
| 
 | |
| void X86InterleavedAccessGroup::interleave8bitStride4(
 | |
|     ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix,
 | |
|     unsigned NumOfElm) {
 | |
|   // Example: Assuming we start from the following vectors:
 | |
|   // Matrix[0]= c0 c1 c2 c3 c4 ... c31
 | |
|   // Matrix[1]= m0 m1 m2 m3 m4 ... m31
 | |
|   // Matrix[2]= y0 y1 y2 y3 y4 ... y31
 | |
|   // Matrix[3]= k0 k1 k2 k3 k4 ... k31
 | |
| 
 | |
|   MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm);
 | |
|   MVT HalfVT = scaleVectorType(VT);
 | |
| 
 | |
|   TransposedMatrix.resize(4);
 | |
|   SmallVector<uint32_t, 32> MaskHigh;
 | |
|   SmallVector<uint32_t, 32> MaskLow;
 | |
|   SmallVector<uint32_t, 32> LowHighMask[2];
 | |
|   SmallVector<uint32_t, 32> MaskHighTemp;
 | |
|   SmallVector<uint32_t, 32> MaskLowTemp;
 | |
| 
 | |
|   // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86
 | |
|   // shuffle pattern.
 | |
| 
 | |
|   createUnpackShuffleMask<uint32_t>(VT, MaskLow, true, false);
 | |
|   createUnpackShuffleMask<uint32_t>(VT, MaskHigh, false, false);
 | |
| 
 | |
|   // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86
 | |
|   // shuffle pattern.
 | |
| 
 | |
|   createUnpackShuffleMask<uint32_t>(HalfVT, MaskLowTemp, true, false);
 | |
|   createUnpackShuffleMask<uint32_t>(HalfVT, MaskHighTemp, false, false);
 | |
|   scaleShuffleMask<uint32_t>(2, MaskLowTemp, LowHighMask[0]);
 | |
|   scaleShuffleMask<uint32_t>(2, MaskHighTemp, LowHighMask[1]);
 | |
| 
 | |
|   // IntrVec1Low  = c0  m0  c1  m1 ... c7  m7  | c16 m16 c17 m17 ... c23 m23
 | |
|   // IntrVec1High = c8  m8  c9  m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31
 | |
|   // IntrVec2Low  = y0  k0  y1  k1 ... y7  k7  | y16 k16 y17 k17 ... y23 k23
 | |
|   // IntrVec2High = y8  k8  y9  k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31
 | |
|   Value *IntrVec[4];
 | |
| 
 | |
|   IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
 | |
|   IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh);
 | |
|   IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
 | |
|   IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh);
 | |
| 
 | |
|   // cmyk4  cmyk5  cmyk6   cmyk7  | cmyk20 cmyk21 cmyk22 cmyk23
 | |
|   // cmyk12 cmyk13 cmyk14  cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31
 | |
|   // cmyk0  cmyk1  cmyk2   cmyk3  | cmyk16 cmyk17 cmyk18 cmyk19
 | |
|   // cmyk8  cmyk9  cmyk10  cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27
 | |
| 
 | |
|   Value *VecOut[4];
 | |
|   for (int i = 0; i < 4; i++)
 | |
|     VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2],
 | |
|                                             LowHighMask[i % 2]);
 | |
| 
 | |
|   // cmyk0  cmyk1  cmyk2  cmyk3   | cmyk4  cmyk5  cmyk6  cmyk7
 | |
|   // cmyk8  cmyk9  cmyk10 cmyk11  | cmyk12 cmyk13 cmyk14 cmyk15
 | |
|   // cmyk16 cmyk17 cmyk18 cmyk19  | cmyk20 cmyk21 cmyk22 cmyk23
 | |
|   // cmyk24 cmyk25 cmyk26 cmyk27  | cmyk28 cmyk29 cmyk30 cmyk31
 | |
| 
 | |
|   if (VT == MVT::v16i8) {
 | |
|     std::copy(VecOut, VecOut + 4, TransposedMatrix.begin());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   reorderSubVector(VT, TransposedMatrix, VecOut, makeArrayRef(Concat, 16),
 | |
| 		   NumOfElm, 4, Builder);
 | |
| }
 | |
| 
 | |
| //  createShuffleStride returns shuffle mask of size N.
 | |
| //  The shuffle pattern is as following :
 | |
| //  {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane),
 | |
| //  (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),...,
 | |
| //  (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)}
 | |
| //  Where Lane is the # of lanes in a register:
 | |
| //  VectorSize = 128 => Lane = 1
 | |
| //  VectorSize = 256 => Lane = 2
 | |
| //  For example shuffle pattern for VF 16 register size 256 -> lanes = 2
 | |
| //  {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>}
 | |
| static void createShuffleStride(MVT VT, int Stride,
 | |
|                                 SmallVectorImpl<uint32_t> &Mask) {
 | |
|   int VectorSize = VT.getSizeInBits();
 | |
|   int VF = VT.getVectorNumElements();
 | |
|   int LaneCount = std::max(VectorSize / 128, 1);
 | |
|   for (int Lane = 0; Lane < LaneCount; Lane++)
 | |
|     for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i)
 | |
|       Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane);
 | |
| }
 | |
| 
 | |
| //  setGroupSize sets 'SizeInfo' to the size(number of elements) of group
 | |
| //  inside mask a shuffleMask. A mask contains exactly 3 groups, where
 | |
| //  each group is a monotonically increasing sequence with stride 3.
 | |
| //  For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2}
 | |
| static void setGroupSize(MVT VT, SmallVectorImpl<uint32_t> &SizeInfo) {
 | |
|   int VectorSize = VT.getSizeInBits();
 | |
|   int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1);
 | |
|   for (int i = 0, FirstGroupElement = 0; i < 3; i++) {
 | |
|     int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0);
 | |
|     SizeInfo.push_back(GroupSize);
 | |
|     FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //  DecodePALIGNRMask returns the shuffle mask of vpalign instruction.
 | |
| //  vpalign works according to lanes
 | |
| //  Where Lane is the # of lanes in a register:
 | |
| //  VectorWide = 128 => Lane = 1
 | |
| //  VectorWide = 256 => Lane = 2
 | |
| //  For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}.
 | |
| //  For Lane = 2 shuffle pattern is:
 | |
| //  {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}.
 | |
| //  Imm variable sets the offset amount. The result of the
 | |
| //  function is stored inside ShuffleMask vector and it built as described in
 | |
| //  the begin of the description. AlignDirection is a boolean that indecat the
 | |
| //  direction of the alignment. (false - align to the "right" side while true -
 | |
| //  align to the "left" side)
 | |
| static void DecodePALIGNRMask(MVT VT, unsigned Imm,
 | |
|                               SmallVectorImpl<uint32_t> &ShuffleMask,
 | |
|                               bool AlignDirection = true, bool Unary = false) {
 | |
|   unsigned NumElts = VT.getVectorNumElements();
 | |
|   unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1);
 | |
|   unsigned NumLaneElts = NumElts / NumLanes;
 | |
| 
 | |
|   Imm = AlignDirection ? Imm : (NumLaneElts - Imm);
 | |
|   unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8);
 | |
| 
 | |
|   for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
 | |
|     for (unsigned i = 0; i != NumLaneElts; ++i) {
 | |
|       unsigned Base = i + Offset;
 | |
|       // if i+offset is out of this lane then we actually need the other source
 | |
|       // If Unary the other source is the first source.
 | |
|       if (Base >= NumLaneElts)
 | |
|         Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts;
 | |
|       ShuffleMask.push_back(Base + l);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // concatSubVector - The function rebuilds the data to a correct expected
 | |
| // order. An assumption(The shape of the matrix) was taken for the
 | |
| // deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'.
 | |
| // This function ensures that the data is built in correct way for the lane
 | |
| // instructions. Each lane inside the vector is a 128-bit length.
 | |
| //
 | |
| // The 'InVec' argument contains the data in increasing order. In InVec[0] You
 | |
| // can find the first 128 bit data. The number of different lanes inside a
 | |
| // vector depends on the 'VecElems'.In general, the formula is
 | |
| // VecElems * type / 128. The size of the array 'InVec' depends and equal to
 | |
| // 'VecElems'.
 | |
| 
 | |
| // For VecElems = 16
 | |
| // Invec[0] - |0|      Vec[0] - |0|
 | |
| // Invec[1] - |1|  =>  Vec[1] - |1|
 | |
| // Invec[2] - |2|      Vec[2] - |2|
 | |
| 
 | |
| // For VecElems = 32
 | |
| // Invec[0] - |0|1|      Vec[0] - |0|3|
 | |
| // Invec[1] - |2|3|  =>  Vec[1] - |1|4|
 | |
| // Invec[2] - |4|5|      Vec[2] - |2|5|
 | |
| 
 | |
| // For VecElems = 64
 | |
| // Invec[0] - |0|1|2 |3 |      Vec[0] - |0|3|6|9 |
 | |
| // Invec[1] - |4|5|6 |7 |  =>  Vec[1] - |1|4|7|10|
 | |
| // Invec[2] - |8|9|10|11|      Vec[2] - |2|5|8|11|
 | |
| 
 | |
| static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec,
 | |
|                             unsigned VecElems, IRBuilder<> Builder) {
 | |
|   if (VecElems == 16) {
 | |
|     for (int i = 0; i < 3; i++)
 | |
|       Vec[i] = InVec[i];
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   for (unsigned j = 0; j < VecElems / 32; j++)
 | |
|     for (int i = 0; i < 3; i++)
 | |
|       Vec[i + j * 3] = Builder.CreateShuffleVector(
 | |
|           InVec[j * 6 + i], InVec[j * 6 + i + 3], makeArrayRef(Concat, 32));
 | |
| 
 | |
|   if (VecElems == 32)
 | |
|     return;
 | |
| 
 | |
|   for (int i = 0; i < 3; i++)
 | |
|     Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat);
 | |
| }
 | |
| 
 | |
| void X86InterleavedAccessGroup::deinterleave8bitStride3(
 | |
|     ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
 | |
|     unsigned VecElems) {
 | |
|   // Example: Assuming we start from the following vectors:
 | |
|   // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2
 | |
|   // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5
 | |
|   // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7
 | |
| 
 | |
|   TransposedMatrix.resize(3);
 | |
|   SmallVector<uint32_t, 32> VPShuf;
 | |
|   SmallVector<uint32_t, 32> VPAlign[2];
 | |
|   SmallVector<uint32_t, 32> VPAlign2;
 | |
|   SmallVector<uint32_t, 32> VPAlign3;
 | |
|   SmallVector<uint32_t, 3> GroupSize;
 | |
|   Value *Vec[6], *TempVector[3];
 | |
| 
 | |
|   MVT VT = MVT::getVT(Shuffles[0]->getType());
 | |
| 
 | |
|   createShuffleStride(VT, 3, VPShuf);
 | |
|   setGroupSize(VT, GroupSize);
 | |
| 
 | |
|   for (int i = 0; i < 2; i++)
 | |
|     DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false);
 | |
| 
 | |
|   DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true);
 | |
|   DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true);
 | |
| 
 | |
|   concatSubVector(Vec, InVec, VecElems, Builder);
 | |
|   // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
 | |
|   // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
 | |
|   // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7
 | |
| 
 | |
|   for (int i = 0; i < 3; i++)
 | |
|     Vec[i] = Builder.CreateShuffleVector(
 | |
|         Vec[i], UndefValue::get(Vec[0]->getType()), VPShuf);
 | |
| 
 | |
|   // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2
 | |
|   // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5
 | |
|   // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7
 | |
| 
 | |
|   for (int i = 0; i < 3; i++)
 | |
|     TempVector[i] =
 | |
|         Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]);
 | |
| 
 | |
|   // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
 | |
|   // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
 | |
|   // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7
 | |
| 
 | |
|   for (int i = 0; i < 3; i++)
 | |
|     Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i],
 | |
|                                          VPAlign[1]);
 | |
| 
 | |
|   // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
 | |
|   // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
 | |
|   // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7
 | |
| 
 | |
|   Value *TempVec = Builder.CreateShuffleVector(
 | |
|       Vec[1], UndefValue::get(Vec[1]->getType()), VPAlign3);
 | |
|   TransposedMatrix[0] = Builder.CreateShuffleVector(
 | |
|       Vec[0], UndefValue::get(Vec[1]->getType()), VPAlign2);
 | |
|   TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec;
 | |
|   TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2];
 | |
| }
 | |
| 
 | |
| // group2Shuffle reorder the shuffle stride back into continuous order.
 | |
| // For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} =>
 | |
| // MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}.
 | |
| static void group2Shuffle(MVT VT, SmallVectorImpl<uint32_t> &Mask,
 | |
|                           SmallVectorImpl<uint32_t> &Output) {
 | |
|   int IndexGroup[3] = {0, 0, 0};
 | |
|   int Index = 0;
 | |
|   int VectorWidth = VT.getSizeInBits();
 | |
|   int VF = VT.getVectorNumElements();
 | |
|   // Find the index of the different groups.
 | |
|   int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1;
 | |
|   for (int i = 0; i < 3; i++) {
 | |
|     IndexGroup[(Index * 3) % (VF / Lane)] = Index;
 | |
|     Index += Mask[i];
 | |
|   }
 | |
|   // According to the index compute the convert mask.
 | |
|   for (int i = 0; i < VF / Lane; i++) {
 | |
|     Output.push_back(IndexGroup[i % 3]);
 | |
|     IndexGroup[i % 3]++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86InterleavedAccessGroup::interleave8bitStride3(
 | |
|     ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
 | |
|     unsigned VecElems) {
 | |
|   // Example: Assuming we start from the following vectors:
 | |
|   // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
 | |
|   // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
 | |
|   // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7
 | |
| 
 | |
|   TransposedMatrix.resize(3);
 | |
|   SmallVector<uint32_t, 3> GroupSize;
 | |
|   SmallVector<uint32_t, 32> VPShuf;
 | |
|   SmallVector<uint32_t, 32> VPAlign[3];
 | |
|   SmallVector<uint32_t, 32> VPAlign2;
 | |
|   SmallVector<uint32_t, 32> VPAlign3;
 | |
| 
 | |
|   Value *Vec[3], *TempVector[3];
 | |
|   MVT VT = MVT::getVectorVT(MVT::i8, VecElems);
 | |
| 
 | |
|   setGroupSize(VT, GroupSize);
 | |
| 
 | |
|   for (int i = 0; i < 3; i++)
 | |
|     DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]);
 | |
| 
 | |
|   DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true);
 | |
|   DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true);
 | |
| 
 | |
|   // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
 | |
|   // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
 | |
|   // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7
 | |
| 
 | |
|   Vec[0] = Builder.CreateShuffleVector(
 | |
|       InVec[0], UndefValue::get(InVec[0]->getType()), VPAlign2);
 | |
|   Vec[1] = Builder.CreateShuffleVector(
 | |
|       InVec[1], UndefValue::get(InVec[1]->getType()), VPAlign3);
 | |
|   Vec[2] = InVec[2];
 | |
| 
 | |
|   // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2
 | |
|   // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5
 | |
|   // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7
 | |
| 
 | |
|   for (int i = 0; i < 3; i++)
 | |
|     TempVector[i] =
 | |
|         Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]);
 | |
| 
 | |
|   // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
 | |
|   // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
 | |
|   // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7
 | |
| 
 | |
|   for (int i = 0; i < 3; i++)
 | |
|     Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3],
 | |
|                                          VPAlign[2]);
 | |
| 
 | |
|   // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2
 | |
|   // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5
 | |
|   // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7
 | |
| 
 | |
|   unsigned NumOfElm = VT.getVectorNumElements();
 | |
|   group2Shuffle(VT, GroupSize, VPShuf);
 | |
|   reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm,3, Builder);
 | |
| }
 | |
| 
 | |
| void X86InterleavedAccessGroup::transpose_4x4(
 | |
|     ArrayRef<Instruction *> Matrix,
 | |
|     SmallVectorImpl<Value *> &TransposedMatrix) {
 | |
|   assert(Matrix.size() == 4 && "Invalid matrix size");
 | |
|   TransposedMatrix.resize(4);
 | |
| 
 | |
|   // dst = src1[0,1],src2[0,1]
 | |
|   uint32_t IntMask1[] = {0, 1, 4, 5};
 | |
|   ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4);
 | |
|   Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
 | |
|   Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
 | |
| 
 | |
|   // dst = src1[2,3],src2[2,3]
 | |
|   uint32_t IntMask2[] = {2, 3, 6, 7};
 | |
|   Mask = makeArrayRef(IntMask2, 4);
 | |
|   Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
 | |
|   Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);
 | |
| 
 | |
|   // dst = src1[0],src2[0],src1[2],src2[2]
 | |
|   uint32_t IntMask3[] = {0, 4, 2, 6};
 | |
|   Mask = makeArrayRef(IntMask3, 4);
 | |
|   TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
 | |
|   TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
 | |
| 
 | |
|   // dst = src1[1],src2[1],src1[3],src2[3]
 | |
|   uint32_t IntMask4[] = {1, 5, 3, 7};
 | |
|   Mask = makeArrayRef(IntMask4, 4);
 | |
|   TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
 | |
|   TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
 | |
| }
 | |
| 
 | |
| // Lowers this interleaved access group into X86-specific
 | |
| // instructions/intrinsics.
 | |
| bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
 | |
|   SmallVector<Instruction *, 4> DecomposedVectors;
 | |
|   SmallVector<Value *, 4> TransposedVectors;
 | |
|   VectorType *ShuffleTy = Shuffles[0]->getType();
 | |
| 
 | |
|   if (isa<LoadInst>(Inst)) {
 | |
|     // Try to generate target-sized register(/instruction).
 | |
|     decompose(Inst, Factor, ShuffleTy, DecomposedVectors);
 | |
| 
 | |
|     Type *ShuffleEltTy = Inst->getType();
 | |
|     unsigned NumSubVecElems = ShuffleEltTy->getVectorNumElements() / Factor;
 | |
|     // Perform matrix-transposition in order to compute interleaved
 | |
|     // results by generating some sort of (optimized) target-specific
 | |
|     // instructions.
 | |
| 
 | |
|     switch (NumSubVecElems) {
 | |
|     default:
 | |
|       return false;
 | |
|     case 4:
 | |
|       transpose_4x4(DecomposedVectors, TransposedVectors);
 | |
|       break;
 | |
|     case 8:
 | |
|     case 16:
 | |
|     case 32:
 | |
|     case 64:
 | |
|       deinterleave8bitStride3(DecomposedVectors, TransposedVectors,
 | |
|                               NumSubVecElems);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // Now replace the unoptimized-interleaved-vectors with the
 | |
|     // transposed-interleaved vectors.
 | |
|     for (unsigned i = 0, e = Shuffles.size(); i < e; ++i)
 | |
|       Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Type *ShuffleEltTy = ShuffleTy->getVectorElementType();
 | |
|   unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor;
 | |
| 
 | |
|   // Lower the interleaved stores:
 | |
|   //   1. Decompose the interleaved wide shuffle into individual shuffle
 | |
|   //   vectors.
 | |
|   decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems),
 | |
|             DecomposedVectors);
 | |
| 
 | |
|   //   2. Transpose the interleaved-vectors into vectors of contiguous
 | |
|   //      elements.
 | |
|   switch (NumSubVecElems) {
 | |
|   case 4:
 | |
|     transpose_4x4(DecomposedVectors, TransposedVectors);
 | |
|     break;
 | |
|   case 8:
 | |
|     interleave8bitStride4VF8(DecomposedVectors, TransposedVectors);
 | |
|     break;
 | |
|   case 16:
 | |
|   case 32:
 | |
|   case 64:
 | |
|     if (Factor == 4)
 | |
|       interleave8bitStride4(DecomposedVectors, TransposedVectors,
 | |
|                             NumSubVecElems);
 | |
|     if (Factor == 3)
 | |
|       interleave8bitStride3(DecomposedVectors, TransposedVectors,
 | |
|                             NumSubVecElems);
 | |
|     break;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   //   3. Concatenate the contiguous-vectors back into a wide vector.
 | |
|   Value *WideVec = concatenateVectors(Builder, TransposedVectors);
 | |
| 
 | |
|   //   4. Generate a store instruction for wide-vec.
 | |
|   StoreInst *SI = cast<StoreInst>(Inst);
 | |
|   Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(),
 | |
|                              SI->getAlignment());
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Lower interleaved load(s) into target specific instructions/
 | |
| // intrinsics. Lowering sequence varies depending on the vector-types, factor,
 | |
| // number of shuffles and ISA.
 | |
| // Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX.
 | |
| bool X86TargetLowering::lowerInterleavedLoad(
 | |
|     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
 | |
|     ArrayRef<unsigned> Indices, unsigned Factor) const {
 | |
|   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
 | |
|          "Invalid interleave factor");
 | |
|   assert(!Shuffles.empty() && "Empty shufflevector input");
 | |
|   assert(Shuffles.size() == Indices.size() &&
 | |
|          "Unmatched number of shufflevectors and indices");
 | |
| 
 | |
|   // Create an interleaved access group.
 | |
|   IRBuilder<> Builder(LI);
 | |
|   X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget,
 | |
|                                 Builder);
 | |
| 
 | |
|   return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
 | |
| }
 | |
| 
 | |
| bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI,
 | |
|                                               ShuffleVectorInst *SVI,
 | |
|                                               unsigned Factor) const {
 | |
|   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
 | |
|          "Invalid interleave factor");
 | |
| 
 | |
|   assert(SVI->getType()->getVectorNumElements() % Factor == 0 &&
 | |
|          "Invalid interleaved store");
 | |
| 
 | |
|   // Holds the indices of SVI that correspond to the starting index of each
 | |
|   // interleaved shuffle.
 | |
|   SmallVector<unsigned, 4> Indices;
 | |
|   auto Mask = SVI->getShuffleMask();
 | |
|   for (unsigned i = 0; i < Factor; i++)
 | |
|     Indices.push_back(Mask[i]);
 | |
| 
 | |
|   ArrayRef<ShuffleVectorInst *> Shuffles = makeArrayRef(SVI);
 | |
| 
 | |
|   // Create an interleaved access group.
 | |
|   IRBuilder<> Builder(SI);
 | |
|   X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget,
 | |
|                                 Builder);
 | |
| 
 | |
|   return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
 | |
| }
 |