275 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			275 lines
		
	
	
		
			9.6 KiB
		
	
	
	
		
			C++
		
	
	
	
| //======- X86RetpolineThunks.cpp - Construct retpoline thunks for x86  --=====//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| ///
 | |
| /// Pass that injects an MI thunk implementing a "retpoline". This is
 | |
| /// a RET-implemented trampoline that is used to lower indirect calls in a way
 | |
| /// that prevents speculation on some x86 processors and can be used to mitigate
 | |
| /// security vulnerabilities due to targeted speculative execution and side
 | |
| /// channels such as CVE-2017-5715.
 | |
| ///
 | |
| /// TODO(chandlerc): All of this code could use better comments and
 | |
| /// documentation.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "x86-retpoline-thunks"
 | |
| 
 | |
| static const char ThunkNamePrefix[] = "__llvm_retpoline_";
 | |
| static const char R11ThunkName[]    = "__llvm_retpoline_r11";
 | |
| static const char EAXThunkName[]    = "__llvm_retpoline_eax";
 | |
| static const char ECXThunkName[]    = "__llvm_retpoline_ecx";
 | |
| static const char EDXThunkName[]    = "__llvm_retpoline_edx";
 | |
| static const char EDIThunkName[]    = "__llvm_retpoline_edi";
 | |
| 
 | |
| namespace {
 | |
| class X86RetpolineThunks : public MachineFunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   X86RetpolineThunks() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|   StringRef getPassName() const override { return "X86 Retpoline Thunks"; }
 | |
| 
 | |
|   bool doInitialization(Module &M) override;
 | |
|   bool runOnMachineFunction(MachineFunction &F) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     AU.addRequired<MachineModuleInfo>();
 | |
|     AU.addPreserved<MachineModuleInfo>();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   MachineModuleInfo *MMI;
 | |
|   const TargetMachine *TM;
 | |
|   bool Is64Bit;
 | |
|   const X86Subtarget *STI;
 | |
|   const X86InstrInfo *TII;
 | |
| 
 | |
|   bool InsertedThunks;
 | |
| 
 | |
|   void createThunkFunction(Module &M, StringRef Name);
 | |
|   void insertRegReturnAddrClobber(MachineBasicBlock &MBB, unsigned Reg);
 | |
|   void populateThunk(MachineFunction &MF, Optional<unsigned> Reg = None);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| FunctionPass *llvm::createX86RetpolineThunksPass() {
 | |
|   return new X86RetpolineThunks();
 | |
| }
 | |
| 
 | |
| char X86RetpolineThunks::ID = 0;
 | |
| 
 | |
| bool X86RetpolineThunks::doInitialization(Module &M) {
 | |
|   InsertedThunks = false;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86RetpolineThunks::runOnMachineFunction(MachineFunction &MF) {
 | |
|   LLVM_DEBUG(dbgs() << getPassName() << '\n');
 | |
| 
 | |
|   TM = &MF.getTarget();;
 | |
|   STI = &MF.getSubtarget<X86Subtarget>();
 | |
|   TII = STI->getInstrInfo();
 | |
|   Is64Bit = TM->getTargetTriple().getArch() == Triple::x86_64;
 | |
| 
 | |
|   MMI = &getAnalysis<MachineModuleInfo>();
 | |
|   Module &M = const_cast<Module &>(*MMI->getModule());
 | |
| 
 | |
|   // If this function is not a thunk, check to see if we need to insert
 | |
|   // a thunk.
 | |
|   if (!MF.getName().startswith(ThunkNamePrefix)) {
 | |
|     // If we've already inserted a thunk, nothing else to do.
 | |
|     if (InsertedThunks)
 | |
|       return false;
 | |
| 
 | |
|     // Only add a thunk if one of the functions has the retpoline feature
 | |
|     // enabled in its subtarget, and doesn't enable external thunks.
 | |
|     // FIXME: Conditionalize on indirect calls so we don't emit a thunk when
 | |
|     // nothing will end up calling it.
 | |
|     // FIXME: It's a little silly to look at every function just to enumerate
 | |
|     // the subtargets, but eventually we'll want to look at them for indirect
 | |
|     // calls, so maybe this is OK.
 | |
|     if (!STI->useRetpoline() || STI->useRetpolineExternalThunk())
 | |
|       return false;
 | |
| 
 | |
|     // Otherwise, we need to insert the thunk.
 | |
|     // WARNING: This is not really a well behaving thing to do in a function
 | |
|     // pass. We extract the module and insert a new function (and machine
 | |
|     // function) directly into the module.
 | |
|     if (Is64Bit)
 | |
|       createThunkFunction(M, R11ThunkName);
 | |
|     else
 | |
|       for (StringRef Name :
 | |
|            {EAXThunkName, ECXThunkName, EDXThunkName, EDIThunkName})
 | |
|         createThunkFunction(M, Name);
 | |
|     InsertedThunks = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // If this *is* a thunk function, we need to populate it with the correct MI.
 | |
|   if (Is64Bit) {
 | |
|     assert(MF.getName() == "__llvm_retpoline_r11" &&
 | |
|            "Should only have an r11 thunk on 64-bit targets");
 | |
| 
 | |
|     // __llvm_retpoline_r11:
 | |
|     //   callq .Lr11_call_target
 | |
|     // .Lr11_capture_spec:
 | |
|     //   pause
 | |
|     //   lfence
 | |
|     //   jmp .Lr11_capture_spec
 | |
|     // .align 16
 | |
|     // .Lr11_call_target:
 | |
|     //   movq %r11, (%rsp)
 | |
|     //   retq
 | |
|     populateThunk(MF, X86::R11);
 | |
|   } else {
 | |
|     // For 32-bit targets we need to emit a collection of thunks for various
 | |
|     // possible scratch registers as well as a fallback that uses EDI, which is
 | |
|     // normally callee saved.
 | |
|     //   __llvm_retpoline_eax:
 | |
|     //         calll .Leax_call_target
 | |
|     //   .Leax_capture_spec:
 | |
|     //         pause
 | |
|     //         jmp .Leax_capture_spec
 | |
|     //   .align 16
 | |
|     //   .Leax_call_target:
 | |
|     //         movl %eax, (%esp)  # Clobber return addr
 | |
|     //         retl
 | |
|     //
 | |
|     //   __llvm_retpoline_ecx:
 | |
|     //   ... # Same setup
 | |
|     //         movl %ecx, (%esp)
 | |
|     //         retl
 | |
|     //
 | |
|     //   __llvm_retpoline_edx:
 | |
|     //   ... # Same setup
 | |
|     //         movl %edx, (%esp)
 | |
|     //         retl
 | |
|     //
 | |
|     //   __llvm_retpoline_edi:
 | |
|     //   ... # Same setup
 | |
|     //         movl %edi, (%esp)
 | |
|     //         retl
 | |
|     if (MF.getName() == EAXThunkName)
 | |
|       populateThunk(MF, X86::EAX);
 | |
|     else if (MF.getName() == ECXThunkName)
 | |
|       populateThunk(MF, X86::ECX);
 | |
|     else if (MF.getName() == EDXThunkName)
 | |
|       populateThunk(MF, X86::EDX);
 | |
|     else if (MF.getName() == EDIThunkName)
 | |
|       populateThunk(MF, X86::EDI);
 | |
|     else
 | |
|       llvm_unreachable("Invalid thunk name on x86-32!");
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void X86RetpolineThunks::createThunkFunction(Module &M, StringRef Name) {
 | |
|   assert(Name.startswith(ThunkNamePrefix) &&
 | |
|          "Created a thunk with an unexpected prefix!");
 | |
| 
 | |
|   LLVMContext &Ctx = M.getContext();
 | |
|   auto Type = FunctionType::get(Type::getVoidTy(Ctx), false);
 | |
|   Function *F =
 | |
|       Function::Create(Type, GlobalValue::LinkOnceODRLinkage, Name, &M);
 | |
|   F->setVisibility(GlobalValue::HiddenVisibility);
 | |
|   F->setComdat(M.getOrInsertComdat(Name));
 | |
| 
 | |
|   // Add Attributes so that we don't create a frame, unwind information, or
 | |
|   // inline.
 | |
|   AttrBuilder B;
 | |
|   B.addAttribute(llvm::Attribute::NoUnwind);
 | |
|   B.addAttribute(llvm::Attribute::Naked);
 | |
|   F->addAttributes(llvm::AttributeList::FunctionIndex, B);
 | |
| 
 | |
|   // Populate our function a bit so that we can verify.
 | |
|   BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
 | |
|   IRBuilder<> Builder(Entry);
 | |
| 
 | |
|   Builder.CreateRetVoid();
 | |
| 
 | |
|   // MachineFunctions/MachineBasicBlocks aren't created automatically for the
 | |
|   // IR-level constructs we already made. Create them and insert them into the
 | |
|   // module.
 | |
|   MachineFunction &MF = MMI->getOrCreateMachineFunction(*F);
 | |
|   MachineBasicBlock *EntryMBB = MF.CreateMachineBasicBlock(Entry);
 | |
| 
 | |
|   // Insert EntryMBB into MF. It's not in the module until we do this.
 | |
|   MF.insert(MF.end(), EntryMBB);
 | |
| }
 | |
| 
 | |
| void X86RetpolineThunks::insertRegReturnAddrClobber(MachineBasicBlock &MBB,
 | |
|                                                     unsigned Reg) {
 | |
|   const unsigned MovOpc = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
 | |
|   const unsigned SPReg = Is64Bit ? X86::RSP : X86::ESP;
 | |
|   addRegOffset(BuildMI(&MBB, DebugLoc(), TII->get(MovOpc)), SPReg, false, 0)
 | |
|       .addReg(Reg);
 | |
| }
 | |
| 
 | |
| void X86RetpolineThunks::populateThunk(MachineFunction &MF,
 | |
|                                        Optional<unsigned> Reg) {
 | |
|   // Set MF properties. We never use vregs...
 | |
|   MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
 | |
| 
 | |
|   MachineBasicBlock *Entry = &MF.front();
 | |
|   Entry->clear();
 | |
| 
 | |
|   MachineBasicBlock *CaptureSpec = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
 | |
|   MachineBasicBlock *CallTarget = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
 | |
|   MF.push_back(CaptureSpec);
 | |
|   MF.push_back(CallTarget);
 | |
| 
 | |
|   const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
 | |
|   const unsigned RetOpc = Is64Bit ? X86::RETQ : X86::RETL;
 | |
| 
 | |
|   BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addMBB(CallTarget);
 | |
|   Entry->addSuccessor(CallTarget);
 | |
|   Entry->addSuccessor(CaptureSpec);
 | |
|   CallTarget->setHasAddressTaken();
 | |
| 
 | |
|   // In the capture loop for speculation, we want to stop the processor from
 | |
|   // speculating as fast as possible. On Intel processors, the PAUSE instruction
 | |
|   // will block speculation without consuming any execution resources. On AMD
 | |
|   // processors, the PAUSE instruction is (essentially) a nop, so we also use an
 | |
|   // LFENCE instruction which they have advised will stop speculation as well
 | |
|   // with minimal resource utilization. We still end the capture with a jump to
 | |
|   // form an infinite loop to fully guarantee that no matter what implementation
 | |
|   // of the x86 ISA, speculating this code path never escapes.
 | |
|   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
 | |
|   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
 | |
|   BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
 | |
|   CaptureSpec->setHasAddressTaken();
 | |
|   CaptureSpec->addSuccessor(CaptureSpec);
 | |
| 
 | |
|   CallTarget->setAlignment(4);
 | |
|   insertRegReturnAddrClobber(*CallTarget, *Reg);
 | |
|   BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
 | |
| }
 |