576 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			576 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines vectorizer utilities.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/EquivalenceClasses.h"
 | |
| #include "llvm/Analysis/DemandedBits.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Analysis/VectorUtils.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| /// \brief Identify if the intrinsic is trivially vectorizable.
 | |
| /// This method returns true if the intrinsic's argument types are all
 | |
| /// scalars for the scalar form of the intrinsic and all vectors for
 | |
| /// the vector form of the intrinsic.
 | |
| bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
 | |
|   switch (ID) {
 | |
|   case Intrinsic::sqrt:
 | |
|   case Intrinsic::sin:
 | |
|   case Intrinsic::cos:
 | |
|   case Intrinsic::exp:
 | |
|   case Intrinsic::exp2:
 | |
|   case Intrinsic::log:
 | |
|   case Intrinsic::log10:
 | |
|   case Intrinsic::log2:
 | |
|   case Intrinsic::fabs:
 | |
|   case Intrinsic::minnum:
 | |
|   case Intrinsic::maxnum:
 | |
|   case Intrinsic::copysign:
 | |
|   case Intrinsic::floor:
 | |
|   case Intrinsic::ceil:
 | |
|   case Intrinsic::trunc:
 | |
|   case Intrinsic::rint:
 | |
|   case Intrinsic::nearbyint:
 | |
|   case Intrinsic::round:
 | |
|   case Intrinsic::bswap:
 | |
|   case Intrinsic::bitreverse:
 | |
|   case Intrinsic::ctpop:
 | |
|   case Intrinsic::pow:
 | |
|   case Intrinsic::fma:
 | |
|   case Intrinsic::fmuladd:
 | |
|   case Intrinsic::ctlz:
 | |
|   case Intrinsic::cttz:
 | |
|   case Intrinsic::powi:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Identifies if the intrinsic has a scalar operand. It check for
 | |
| /// ctlz,cttz and powi special intrinsics whose argument is scalar.
 | |
| bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
 | |
|                                         unsigned ScalarOpdIdx) {
 | |
|   switch (ID) {
 | |
|   case Intrinsic::ctlz:
 | |
|   case Intrinsic::cttz:
 | |
|   case Intrinsic::powi:
 | |
|     return (ScalarOpdIdx == 1);
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Returns intrinsic ID for call.
 | |
| /// For the input call instruction it finds mapping intrinsic and returns
 | |
| /// its ID, in case it does not found it return not_intrinsic.
 | |
| Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
 | |
|                                                 const TargetLibraryInfo *TLI) {
 | |
|   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
 | |
|   if (ID == Intrinsic::not_intrinsic)
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
 | |
|       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume)
 | |
|     return ID;
 | |
|   return Intrinsic::not_intrinsic;
 | |
| }
 | |
| 
 | |
| /// \brief Find the operand of the GEP that should be checked for consecutive
 | |
| /// stores. This ignores trailing indices that have no effect on the final
 | |
| /// pointer.
 | |
| unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
 | |
|   const DataLayout &DL = Gep->getModule()->getDataLayout();
 | |
|   unsigned LastOperand = Gep->getNumOperands() - 1;
 | |
|   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
 | |
| 
 | |
|   // Walk backwards and try to peel off zeros.
 | |
|   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
 | |
|     // Find the type we're currently indexing into.
 | |
|     gep_type_iterator GEPTI = gep_type_begin(Gep);
 | |
|     std::advance(GEPTI, LastOperand - 2);
 | |
| 
 | |
|     // If it's a type with the same allocation size as the result of the GEP we
 | |
|     // can peel off the zero index.
 | |
|     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
 | |
|       break;
 | |
|     --LastOperand;
 | |
|   }
 | |
| 
 | |
|   return LastOperand;
 | |
| }
 | |
| 
 | |
| /// \brief If the argument is a GEP, then returns the operand identified by
 | |
| /// getGEPInductionOperand. However, if there is some other non-loop-invariant
 | |
| /// operand, it returns that instead.
 | |
| Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
 | |
|   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|   if (!GEP)
 | |
|     return Ptr;
 | |
| 
 | |
|   unsigned InductionOperand = getGEPInductionOperand(GEP);
 | |
| 
 | |
|   // Check that all of the gep indices are uniform except for our induction
 | |
|   // operand.
 | |
|   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
 | |
|     if (i != InductionOperand &&
 | |
|         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
 | |
|       return Ptr;
 | |
|   return GEP->getOperand(InductionOperand);
 | |
| }
 | |
| 
 | |
| /// \brief If a value has only one user that is a CastInst, return it.
 | |
| Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
 | |
|   Value *UniqueCast = nullptr;
 | |
|   for (User *U : Ptr->users()) {
 | |
|     CastInst *CI = dyn_cast<CastInst>(U);
 | |
|     if (CI && CI->getType() == Ty) {
 | |
|       if (!UniqueCast)
 | |
|         UniqueCast = CI;
 | |
|       else
 | |
|         return nullptr;
 | |
|     }
 | |
|   }
 | |
|   return UniqueCast;
 | |
| }
 | |
| 
 | |
| /// \brief Get the stride of a pointer access in a loop. Looks for symbolic
 | |
| /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
 | |
| Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
 | |
|   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
 | |
|   if (!PtrTy || PtrTy->isAggregateType())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Try to remove a gep instruction to make the pointer (actually index at this
 | |
|   // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
 | |
|   // pointer, otherwise, we are analyzing the index.
 | |
|   Value *OrigPtr = Ptr;
 | |
| 
 | |
|   // The size of the pointer access.
 | |
|   int64_t PtrAccessSize = 1;
 | |
| 
 | |
|   Ptr = stripGetElementPtr(Ptr, SE, Lp);
 | |
|   const SCEV *V = SE->getSCEV(Ptr);
 | |
| 
 | |
|   if (Ptr != OrigPtr)
 | |
|     // Strip off casts.
 | |
|     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
 | |
|       V = C->getOperand();
 | |
| 
 | |
|   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
 | |
|   if (!S)
 | |
|     return nullptr;
 | |
| 
 | |
|   V = S->getStepRecurrence(*SE);
 | |
|   if (!V)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Strip off the size of access multiplication if we are still analyzing the
 | |
|   // pointer.
 | |
|   if (OrigPtr == Ptr) {
 | |
|     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
 | |
|       if (M->getOperand(0)->getSCEVType() != scConstant)
 | |
|         return nullptr;
 | |
| 
 | |
|       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
 | |
| 
 | |
|       // Huge step value - give up.
 | |
|       if (APStepVal.getBitWidth() > 64)
 | |
|         return nullptr;
 | |
| 
 | |
|       int64_t StepVal = APStepVal.getSExtValue();
 | |
|       if (PtrAccessSize != StepVal)
 | |
|         return nullptr;
 | |
|       V = M->getOperand(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Strip off casts.
 | |
|   Type *StripedOffRecurrenceCast = nullptr;
 | |
|   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
 | |
|     StripedOffRecurrenceCast = C->getType();
 | |
|     V = C->getOperand();
 | |
|   }
 | |
| 
 | |
|   // Look for the loop invariant symbolic value.
 | |
|   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
 | |
|   if (!U)
 | |
|     return nullptr;
 | |
| 
 | |
|   Value *Stride = U->getValue();
 | |
|   if (!Lp->isLoopInvariant(Stride))
 | |
|     return nullptr;
 | |
| 
 | |
|   // If we have stripped off the recurrence cast we have to make sure that we
 | |
|   // return the value that is used in this loop so that we can replace it later.
 | |
|   if (StripedOffRecurrenceCast)
 | |
|     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
 | |
| 
 | |
|   return Stride;
 | |
| }
 | |
| 
 | |
| /// \brief Given a vector and an element number, see if the scalar value is
 | |
| /// already around as a register, for example if it were inserted then extracted
 | |
| /// from the vector.
 | |
| Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
 | |
|   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
 | |
|   VectorType *VTy = cast<VectorType>(V->getType());
 | |
|   unsigned Width = VTy->getNumElements();
 | |
|   if (EltNo >= Width)  // Out of range access.
 | |
|     return UndefValue::get(VTy->getElementType());
 | |
| 
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return C->getAggregateElement(EltNo);
 | |
| 
 | |
|   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
 | |
|     // If this is an insert to a variable element, we don't know what it is.
 | |
|     if (!isa<ConstantInt>(III->getOperand(2)))
 | |
|       return nullptr;
 | |
|     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
 | |
| 
 | |
|     // If this is an insert to the element we are looking for, return the
 | |
|     // inserted value.
 | |
|     if (EltNo == IIElt)
 | |
|       return III->getOperand(1);
 | |
| 
 | |
|     // Otherwise, the insertelement doesn't modify the value, recurse on its
 | |
|     // vector input.
 | |
|     return findScalarElement(III->getOperand(0), EltNo);
 | |
|   }
 | |
| 
 | |
|   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
 | |
|     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
 | |
|     int InEl = SVI->getMaskValue(EltNo);
 | |
|     if (InEl < 0)
 | |
|       return UndefValue::get(VTy->getElementType());
 | |
|     if (InEl < (int)LHSWidth)
 | |
|       return findScalarElement(SVI->getOperand(0), InEl);
 | |
|     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
 | |
|   }
 | |
| 
 | |
|   // Extract a value from a vector add operation with a constant zero.
 | |
|   Value *Val = nullptr; Constant *Con = nullptr;
 | |
|   if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
 | |
|     if (Constant *Elt = Con->getAggregateElement(EltNo))
 | |
|       if (Elt->isNullValue())
 | |
|         return findScalarElement(Val, EltNo);
 | |
| 
 | |
|   // Otherwise, we don't know.
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// \brief Get splat value if the input is a splat vector or return nullptr.
 | |
| /// This function is not fully general. It checks only 2 cases:
 | |
| /// the input value is (1) a splat constants vector or (2) a sequence
 | |
| /// of instructions that broadcast a single value into a vector.
 | |
| ///
 | |
| const llvm::Value *llvm::getSplatValue(const Value *V) {
 | |
| 
 | |
|   if (auto *C = dyn_cast<Constant>(V))
 | |
|     if (isa<VectorType>(V->getType()))
 | |
|       return C->getSplatValue();
 | |
| 
 | |
|   auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
 | |
|   if (!ShuffleInst)
 | |
|     return nullptr;
 | |
|   // All-zero (or undef) shuffle mask elements.
 | |
|   for (int MaskElt : ShuffleInst->getShuffleMask())
 | |
|     if (MaskElt != 0 && MaskElt != -1)
 | |
|       return nullptr;
 | |
|   // The first shuffle source is 'insertelement' with index 0.
 | |
|   auto *InsertEltInst =
 | |
|     dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
 | |
|   if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
 | |
|       !cast<ConstantInt>(InsertEltInst->getOperand(2))->isNullValue())
 | |
|     return nullptr;
 | |
| 
 | |
|   return InsertEltInst->getOperand(1);
 | |
| }
 | |
| 
 | |
| MapVector<Instruction *, uint64_t>
 | |
| llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
 | |
|                                const TargetTransformInfo *TTI) {
 | |
| 
 | |
|   // DemandedBits will give us every value's live-out bits. But we want
 | |
|   // to ensure no extra casts would need to be inserted, so every DAG
 | |
|   // of connected values must have the same minimum bitwidth.
 | |
|   EquivalenceClasses<Value *> ECs;
 | |
|   SmallVector<Value *, 16> Worklist;
 | |
|   SmallPtrSet<Value *, 4> Roots;
 | |
|   SmallPtrSet<Value *, 16> Visited;
 | |
|   DenseMap<Value *, uint64_t> DBits;
 | |
|   SmallPtrSet<Instruction *, 4> InstructionSet;
 | |
|   MapVector<Instruction *, uint64_t> MinBWs;
 | |
| 
 | |
|   // Determine the roots. We work bottom-up, from truncs or icmps.
 | |
|   bool SeenExtFromIllegalType = false;
 | |
|   for (auto *BB : Blocks)
 | |
|     for (auto &I : *BB) {
 | |
|       InstructionSet.insert(&I);
 | |
| 
 | |
|       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
 | |
|           !TTI->isTypeLegal(I.getOperand(0)->getType()))
 | |
|         SeenExtFromIllegalType = true;
 | |
| 
 | |
|       // Only deal with non-vector integers up to 64-bits wide.
 | |
|       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
 | |
|           !I.getType()->isVectorTy() &&
 | |
|           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
 | |
|         // Don't make work for ourselves. If we know the loaded type is legal,
 | |
|         // don't add it to the worklist.
 | |
|         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
 | |
|           continue;
 | |
| 
 | |
|         Worklist.push_back(&I);
 | |
|         Roots.insert(&I);
 | |
|       }
 | |
|     }
 | |
|   // Early exit.
 | |
|   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
 | |
|     return MinBWs;
 | |
| 
 | |
|   // Now proceed breadth-first, unioning values together.
 | |
|   while (!Worklist.empty()) {
 | |
|     Value *Val = Worklist.pop_back_val();
 | |
|     Value *Leader = ECs.getOrInsertLeaderValue(Val);
 | |
| 
 | |
|     if (Visited.count(Val))
 | |
|       continue;
 | |
|     Visited.insert(Val);
 | |
| 
 | |
|     // Non-instructions terminate a chain successfully.
 | |
|     if (!isa<Instruction>(Val))
 | |
|       continue;
 | |
|     Instruction *I = cast<Instruction>(Val);
 | |
| 
 | |
|     // If we encounter a type that is larger than 64 bits, we can't represent
 | |
|     // it so bail out.
 | |
|     if (DB.getDemandedBits(I).getBitWidth() > 64)
 | |
|       return MapVector<Instruction *, uint64_t>();
 | |
| 
 | |
|     uint64_t V = DB.getDemandedBits(I).getZExtValue();
 | |
|     DBits[Leader] |= V;
 | |
|     DBits[I] = V;
 | |
| 
 | |
|     // Casts, loads and instructions outside of our range terminate a chain
 | |
|     // successfully.
 | |
|     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
 | |
|         !InstructionSet.count(I))
 | |
|       continue;
 | |
| 
 | |
|     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
 | |
|     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
 | |
|     // transform anything that relies on them.
 | |
|     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
 | |
|         !I->getType()->isIntegerTy()) {
 | |
|       DBits[Leader] |= ~0ULL;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We don't modify the types of PHIs. Reductions will already have been
 | |
|     // truncated if possible, and inductions' sizes will have been chosen by
 | |
|     // indvars.
 | |
|     if (isa<PHINode>(I))
 | |
|       continue;
 | |
| 
 | |
|     if (DBits[Leader] == ~0ULL)
 | |
|       // All bits demanded, no point continuing.
 | |
|       continue;
 | |
| 
 | |
|     for (Value *O : cast<User>(I)->operands()) {
 | |
|       ECs.unionSets(Leader, O);
 | |
|       Worklist.push_back(O);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now we've discovered all values, walk them to see if there are
 | |
|   // any users we didn't see. If there are, we can't optimize that
 | |
|   // chain.
 | |
|   for (auto &I : DBits)
 | |
|     for (auto *U : I.first->users())
 | |
|       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
 | |
|         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
 | |
| 
 | |
|   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
 | |
|     uint64_t LeaderDemandedBits = 0;
 | |
|     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
 | |
|       LeaderDemandedBits |= DBits[*MI];
 | |
| 
 | |
|     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
 | |
|                      llvm::countLeadingZeros(LeaderDemandedBits);
 | |
|     // Round up to a power of 2
 | |
|     if (!isPowerOf2_64((uint64_t)MinBW))
 | |
|       MinBW = NextPowerOf2(MinBW);
 | |
| 
 | |
|     // We don't modify the types of PHIs. Reductions will already have been
 | |
|     // truncated if possible, and inductions' sizes will have been chosen by
 | |
|     // indvars.
 | |
|     // If we are required to shrink a PHI, abandon this entire equivalence class.
 | |
|     bool Abort = false;
 | |
|     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
 | |
|       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
 | |
|         Abort = true;
 | |
|         break;
 | |
|       }
 | |
|     if (Abort)
 | |
|       continue;
 | |
| 
 | |
|     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
 | |
|       if (!isa<Instruction>(*MI))
 | |
|         continue;
 | |
|       Type *Ty = (*MI)->getType();
 | |
|       if (Roots.count(*MI))
 | |
|         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
 | |
|       if (MinBW < Ty->getScalarSizeInBits())
 | |
|         MinBWs[cast<Instruction>(*MI)] = MinBW;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MinBWs;
 | |
| }
 | |
| 
 | |
| /// \returns \p I after propagating metadata from \p VL.
 | |
| Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
 | |
|   Instruction *I0 = cast<Instruction>(VL[0]);
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
 | |
|   I0->getAllMetadataOtherThanDebugLoc(Metadata);
 | |
| 
 | |
|   for (auto Kind :
 | |
|        {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
 | |
|         LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
 | |
|         LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) {
 | |
|     MDNode *MD = I0->getMetadata(Kind);
 | |
| 
 | |
|     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
 | |
|       const Instruction *IJ = cast<Instruction>(VL[J]);
 | |
|       MDNode *IMD = IJ->getMetadata(Kind);
 | |
|       switch (Kind) {
 | |
|       case LLVMContext::MD_tbaa:
 | |
|         MD = MDNode::getMostGenericTBAA(MD, IMD);
 | |
|         break;
 | |
|       case LLVMContext::MD_alias_scope:
 | |
|         MD = MDNode::getMostGenericAliasScope(MD, IMD);
 | |
|         break;
 | |
|       case LLVMContext::MD_fpmath:
 | |
|         MD = MDNode::getMostGenericFPMath(MD, IMD);
 | |
|         break;
 | |
|       case LLVMContext::MD_noalias:
 | |
|       case LLVMContext::MD_nontemporal:
 | |
|       case LLVMContext::MD_invariant_load:
 | |
|         MD = MDNode::intersect(MD, IMD);
 | |
|         break;
 | |
|       default:
 | |
|         llvm_unreachable("unhandled metadata");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Inst->setMetadata(Kind, MD);
 | |
|   }
 | |
| 
 | |
|   return Inst;
 | |
| }
 | |
| 
 | |
| Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
 | |
|                                      unsigned NumVecs) {
 | |
|   SmallVector<Constant *, 16> Mask;
 | |
|   for (unsigned i = 0; i < VF; i++)
 | |
|     for (unsigned j = 0; j < NumVecs; j++)
 | |
|       Mask.push_back(Builder.getInt32(j * VF + i));
 | |
| 
 | |
|   return ConstantVector::get(Mask);
 | |
| }
 | |
| 
 | |
| Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
 | |
|                                  unsigned Stride, unsigned VF) {
 | |
|   SmallVector<Constant *, 16> Mask;
 | |
|   for (unsigned i = 0; i < VF; i++)
 | |
|     Mask.push_back(Builder.getInt32(Start + i * Stride));
 | |
| 
 | |
|   return ConstantVector::get(Mask);
 | |
| }
 | |
| 
 | |
| Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
 | |
|                                      unsigned NumInts, unsigned NumUndefs) {
 | |
|   SmallVector<Constant *, 16> Mask;
 | |
|   for (unsigned i = 0; i < NumInts; i++)
 | |
|     Mask.push_back(Builder.getInt32(Start + i));
 | |
| 
 | |
|   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
 | |
|   for (unsigned i = 0; i < NumUndefs; i++)
 | |
|     Mask.push_back(Undef);
 | |
| 
 | |
|   return ConstantVector::get(Mask);
 | |
| }
 | |
| 
 | |
| /// A helper function for concatenating vectors. This function concatenates two
 | |
| /// vectors having the same element type. If the second vector has fewer
 | |
| /// elements than the first, it is padded with undefs.
 | |
| static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
 | |
|                                     Value *V2) {
 | |
|   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
 | |
|   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
 | |
|   assert(VecTy1 && VecTy2 &&
 | |
|          VecTy1->getScalarType() == VecTy2->getScalarType() &&
 | |
|          "Expect two vectors with the same element type");
 | |
| 
 | |
|   unsigned NumElts1 = VecTy1->getNumElements();
 | |
|   unsigned NumElts2 = VecTy2->getNumElements();
 | |
|   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
 | |
| 
 | |
|   if (NumElts1 > NumElts2) {
 | |
|     // Extend with UNDEFs.
 | |
|     Constant *ExtMask =
 | |
|         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
 | |
|     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
 | |
|   }
 | |
| 
 | |
|   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
 | |
|   return Builder.CreateShuffleVector(V1, V2, Mask);
 | |
| }
 | |
| 
 | |
| Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
 | |
|   unsigned NumVecs = Vecs.size();
 | |
|   assert(NumVecs > 1 && "Should be at least two vectors");
 | |
| 
 | |
|   SmallVector<Value *, 8> ResList;
 | |
|   ResList.append(Vecs.begin(), Vecs.end());
 | |
|   do {
 | |
|     SmallVector<Value *, 8> TmpList;
 | |
|     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
 | |
|       Value *V0 = ResList[i], *V1 = ResList[i + 1];
 | |
|       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
 | |
|              "Only the last vector may have a different type");
 | |
| 
 | |
|       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
 | |
|     }
 | |
| 
 | |
|     // Push the last vector if the total number of vectors is odd.
 | |
|     if (NumVecs % 2 != 0)
 | |
|       TmpList.push_back(ResList[NumVecs - 1]);
 | |
| 
 | |
|     ResList = TmpList;
 | |
|     NumVecs = ResList.size();
 | |
|   } while (NumVecs > 1);
 | |
| 
 | |
|   return ResList[0];
 | |
| }
 |