943 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			943 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| /// \file
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| 
 | |
| #include "AMDGPU.h"
 | |
| #include "AMDGPUSubtarget.h"
 | |
| #include "SIInstrInfo.h"
 | |
| #include "SIMachineFunctionInfo.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| 
 | |
| #define DEBUG_TYPE "si-fold-operands"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct FoldCandidate {
 | |
|   MachineInstr *UseMI;
 | |
|   union {
 | |
|     MachineOperand *OpToFold;
 | |
|     uint64_t ImmToFold;
 | |
|     int FrameIndexToFold;
 | |
|   };
 | |
|   unsigned char UseOpNo;
 | |
|   MachineOperand::MachineOperandType Kind;
 | |
| 
 | |
|   FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp) :
 | |
|     UseMI(MI), OpToFold(nullptr), UseOpNo(OpNo), Kind(FoldOp->getType()) {
 | |
|     if (FoldOp->isImm()) {
 | |
|       ImmToFold = FoldOp->getImm();
 | |
|     } else if (FoldOp->isFI()) {
 | |
|       FrameIndexToFold = FoldOp->getIndex();
 | |
|     } else {
 | |
|       assert(FoldOp->isReg());
 | |
|       OpToFold = FoldOp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool isFI() const {
 | |
|     return Kind == MachineOperand::MO_FrameIndex;
 | |
|   }
 | |
| 
 | |
|   bool isImm() const {
 | |
|     return Kind == MachineOperand::MO_Immediate;
 | |
|   }
 | |
| 
 | |
|   bool isReg() const {
 | |
|     return Kind == MachineOperand::MO_Register;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SIFoldOperands : public MachineFunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
|   MachineRegisterInfo *MRI;
 | |
|   const SIInstrInfo *TII;
 | |
|   const SIRegisterInfo *TRI;
 | |
|   const SISubtarget *ST;
 | |
| 
 | |
|   void foldOperand(MachineOperand &OpToFold,
 | |
|                    MachineInstr *UseMI,
 | |
|                    unsigned UseOpIdx,
 | |
|                    SmallVectorImpl<FoldCandidate> &FoldList,
 | |
|                    SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
 | |
| 
 | |
|   void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
 | |
| 
 | |
|   const MachineOperand *isClamp(const MachineInstr &MI) const;
 | |
|   bool tryFoldClamp(MachineInstr &MI);
 | |
| 
 | |
|   std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
 | |
|   bool tryFoldOMod(MachineInstr &MI);
 | |
| 
 | |
| public:
 | |
|   SIFoldOperands() : MachineFunctionPass(ID) {
 | |
|     initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   StringRef getPassName() const override { return "SI Fold Operands"; }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
 | |
|                 "SI Fold Operands", false, false)
 | |
| 
 | |
| char SIFoldOperands::ID = 0;
 | |
| 
 | |
| char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
 | |
| 
 | |
| // Wrapper around isInlineConstant that understands special cases when
 | |
| // instruction types are replaced during operand folding.
 | |
| static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
 | |
|                                      const MachineInstr &UseMI,
 | |
|                                      unsigned OpNo,
 | |
|                                      const MachineOperand &OpToFold) {
 | |
|   if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
 | |
|     return true;
 | |
| 
 | |
|   unsigned Opc = UseMI.getOpcode();
 | |
|   switch (Opc) {
 | |
|   case AMDGPU::V_MAC_F32_e64:
 | |
|   case AMDGPU::V_MAC_F16_e64: {
 | |
|     // Special case for mac. Since this is replaced with mad when folded into
 | |
|     // src2, we need to check the legality for the final instruction.
 | |
|     int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
 | |
|     if (static_cast<int>(OpNo) == Src2Idx) {
 | |
|       bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
 | |
|       const MCInstrDesc &MadDesc
 | |
|         = TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
 | |
|       return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
 | |
|     }
 | |
|   }
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createSIFoldOperandsPass() {
 | |
|   return new SIFoldOperands();
 | |
| }
 | |
| 
 | |
| static bool isFoldableCopy(const MachineInstr &MI) {
 | |
|   switch (MI.getOpcode()) {
 | |
|   case AMDGPU::V_MOV_B32_e32:
 | |
|   case AMDGPU::V_MOV_B32_e64:
 | |
|   case AMDGPU::V_MOV_B64_PSEUDO: {
 | |
|     // If there are additional implicit register operands, this may be used for
 | |
|     // register indexing so the source register operand isn't simply copied.
 | |
|     unsigned NumOps = MI.getDesc().getNumOperands() +
 | |
|       MI.getDesc().getNumImplicitUses();
 | |
| 
 | |
|     return MI.getNumOperands() == NumOps;
 | |
|   }
 | |
|   case AMDGPU::S_MOV_B32:
 | |
|   case AMDGPU::S_MOV_B64:
 | |
|   case AMDGPU::COPY:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool updateOperand(FoldCandidate &Fold,
 | |
|                           const TargetRegisterInfo &TRI) {
 | |
|   MachineInstr *MI = Fold.UseMI;
 | |
|   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
 | |
|   assert(Old.isReg());
 | |
| 
 | |
|   if (Fold.isImm()) {
 | |
|     Old.ChangeToImmediate(Fold.ImmToFold);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Fold.isFI()) {
 | |
|     Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   MachineOperand *New = Fold.OpToFold;
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
 | |
|       TargetRegisterInfo::isVirtualRegister(New->getReg())) {
 | |
|     Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Handle physical registers.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
 | |
|                               const MachineInstr *MI) {
 | |
|   for (auto Candidate : FoldList) {
 | |
|     if (Candidate.UseMI == MI)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
 | |
|                              MachineInstr *MI, unsigned OpNo,
 | |
|                              MachineOperand *OpToFold,
 | |
|                              const SIInstrInfo *TII) {
 | |
|   if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
 | |
| 
 | |
|     // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
 | |
|     unsigned Opc = MI->getOpcode();
 | |
|     if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64) &&
 | |
|         (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
 | |
|       bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
 | |
| 
 | |
|       // Check if changing this to a v_mad_{f16, f32} instruction will allow us
 | |
|       // to fold the operand.
 | |
|       MI->setDesc(TII->get(IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16));
 | |
|       bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
 | |
|       if (FoldAsMAD) {
 | |
|         MI->untieRegOperand(OpNo);
 | |
|         return true;
 | |
|       }
 | |
|       MI->setDesc(TII->get(Opc));
 | |
|     }
 | |
| 
 | |
|     // Special case for s_setreg_b32
 | |
|     if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
 | |
|       MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
 | |
|       FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If we are already folding into another operand of MI, then
 | |
|     // we can't commute the instruction, otherwise we risk making the
 | |
|     // other fold illegal.
 | |
|     if (isUseMIInFoldList(FoldList, MI))
 | |
|       return false;
 | |
| 
 | |
|     // Operand is not legal, so try to commute the instruction to
 | |
|     // see if this makes it possible to fold.
 | |
|     unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
 | |
|     unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
 | |
|     bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
 | |
| 
 | |
|     if (CanCommute) {
 | |
|       if (CommuteIdx0 == OpNo)
 | |
|         OpNo = CommuteIdx1;
 | |
|       else if (CommuteIdx1 == OpNo)
 | |
|         OpNo = CommuteIdx0;
 | |
|     }
 | |
| 
 | |
|     // One of operands might be an Imm operand, and OpNo may refer to it after
 | |
|     // the call of commuteInstruction() below. Such situations are avoided
 | |
|     // here explicitly as OpNo must be a register operand to be a candidate
 | |
|     // for memory folding.
 | |
|     if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
 | |
|                        !MI->getOperand(CommuteIdx1).isReg()))
 | |
|       return false;
 | |
| 
 | |
|     if (!CanCommute ||
 | |
|         !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
 | |
|       return false;
 | |
| 
 | |
|     if (!TII->isOperandLegal(*MI, OpNo, OpToFold))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // If the use operand doesn't care about the value, this may be an operand only
 | |
| // used for register indexing, in which case it is unsafe to fold.
 | |
| static bool isUseSafeToFold(const MachineInstr &MI,
 | |
|                             const MachineOperand &UseMO) {
 | |
|   return !UseMO.isUndef();
 | |
|   //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
 | |
| }
 | |
| 
 | |
| void SIFoldOperands::foldOperand(
 | |
|   MachineOperand &OpToFold,
 | |
|   MachineInstr *UseMI,
 | |
|   unsigned UseOpIdx,
 | |
|   SmallVectorImpl<FoldCandidate> &FoldList,
 | |
|   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
 | |
|   const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
 | |
| 
 | |
|   if (!isUseSafeToFold(*UseMI, UseOp))
 | |
|     return;
 | |
| 
 | |
|   // FIXME: Fold operands with subregs.
 | |
|   if (UseOp.isReg() && OpToFold.isReg()) {
 | |
|     if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
 | |
|       return;
 | |
| 
 | |
|     // Don't fold subregister extracts into tied operands, only if it is a full
 | |
|     // copy since a subregister use tied to a full register def doesn't really
 | |
|     // make sense. e.g. don't fold:
 | |
|     //
 | |
|     // %vreg1 = COPY %vreg0:sub1
 | |
|     // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg1<tied0>
 | |
|     //
 | |
|     //  into
 | |
|     // %vreg2<tied3> = V_MAC_{F16, F32} %vreg3, %vreg4, %vreg0:sub1<tied0>
 | |
|     if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Special case for REG_SEQUENCE: We can't fold literals into
 | |
|   // REG_SEQUENCE instructions, so we have to fold them into the
 | |
|   // uses of REG_SEQUENCE.
 | |
|   if (UseMI->isRegSequence()) {
 | |
|     unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
 | |
|     unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
 | |
| 
 | |
|     for (MachineRegisterInfo::use_iterator
 | |
|            RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
 | |
|          RSUse != RSE; ++RSUse) {
 | |
| 
 | |
|       MachineInstr *RSUseMI = RSUse->getParent();
 | |
|       if (RSUse->getSubReg() != RegSeqDstSubReg)
 | |
|         continue;
 | |
| 
 | |
|       foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
 | |
|                   CopiesToReplace);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool FoldingImm = OpToFold.isImm();
 | |
| 
 | |
|   // In order to fold immediates into copies, we need to change the
 | |
|   // copy to a MOV.
 | |
|   if (FoldingImm && UseMI->isCopy()) {
 | |
|     unsigned DestReg = UseMI->getOperand(0).getReg();
 | |
|     const TargetRegisterClass *DestRC
 | |
|       = TargetRegisterInfo::isVirtualRegister(DestReg) ?
 | |
|       MRI->getRegClass(DestReg) :
 | |
|       TRI->getPhysRegClass(DestReg);
 | |
| 
 | |
|     unsigned MovOp = TII->getMovOpcode(DestRC);
 | |
|     if (MovOp == AMDGPU::COPY)
 | |
|       return;
 | |
| 
 | |
|     UseMI->setDesc(TII->get(MovOp));
 | |
|     CopiesToReplace.push_back(UseMI);
 | |
|   } else {
 | |
|     const MCInstrDesc &UseDesc = UseMI->getDesc();
 | |
| 
 | |
|     // Don't fold into target independent nodes.  Target independent opcodes
 | |
|     // don't have defined register classes.
 | |
|     if (UseDesc.isVariadic() ||
 | |
|         UseDesc.OpInfo[UseOpIdx].RegClass == -1)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   if (!FoldingImm) {
 | |
|     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
 | |
| 
 | |
|     // FIXME: We could try to change the instruction from 64-bit to 32-bit
 | |
|     // to enable more folding opportunites.  The shrink operands pass
 | |
|     // already does this.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
 | |
|   const TargetRegisterClass *FoldRC =
 | |
|     TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
 | |
| 
 | |
| 
 | |
|   // Split 64-bit constants into 32-bits for folding.
 | |
|   if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
 | |
|     unsigned UseReg = UseOp.getReg();
 | |
|     const TargetRegisterClass *UseRC
 | |
|       = TargetRegisterInfo::isVirtualRegister(UseReg) ?
 | |
|       MRI->getRegClass(UseReg) :
 | |
|       TRI->getPhysRegClass(UseReg);
 | |
| 
 | |
|     if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
 | |
|       return;
 | |
| 
 | |
|     APInt Imm(64, OpToFold.getImm());
 | |
|     if (UseOp.getSubReg() == AMDGPU::sub0) {
 | |
|       Imm = Imm.getLoBits(32);
 | |
|     } else {
 | |
|       assert(UseOp.getSubReg() == AMDGPU::sub1);
 | |
|       Imm = Imm.getHiBits(32);
 | |
|     }
 | |
| 
 | |
|     MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
 | |
|     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| 
 | |
| 
 | |
|   tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
 | |
| }
 | |
| 
 | |
| static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
 | |
|                                   uint32_t LHS, uint32_t RHS) {
 | |
|   switch (Opcode) {
 | |
|   case AMDGPU::V_AND_B32_e64:
 | |
|   case AMDGPU::V_AND_B32_e32:
 | |
|   case AMDGPU::S_AND_B32:
 | |
|     Result = LHS & RHS;
 | |
|     return true;
 | |
|   case AMDGPU::V_OR_B32_e64:
 | |
|   case AMDGPU::V_OR_B32_e32:
 | |
|   case AMDGPU::S_OR_B32:
 | |
|     Result = LHS | RHS;
 | |
|     return true;
 | |
|   case AMDGPU::V_XOR_B32_e64:
 | |
|   case AMDGPU::V_XOR_B32_e32:
 | |
|   case AMDGPU::S_XOR_B32:
 | |
|     Result = LHS ^ RHS;
 | |
|     return true;
 | |
|   case AMDGPU::V_LSHL_B32_e64:
 | |
|   case AMDGPU::V_LSHL_B32_e32:
 | |
|   case AMDGPU::S_LSHL_B32:
 | |
|     // The instruction ignores the high bits for out of bounds shifts.
 | |
|     Result = LHS << (RHS & 31);
 | |
|     return true;
 | |
|   case AMDGPU::V_LSHLREV_B32_e64:
 | |
|   case AMDGPU::V_LSHLREV_B32_e32:
 | |
|     Result = RHS << (LHS & 31);
 | |
|     return true;
 | |
|   case AMDGPU::V_LSHR_B32_e64:
 | |
|   case AMDGPU::V_LSHR_B32_e32:
 | |
|   case AMDGPU::S_LSHR_B32:
 | |
|     Result = LHS >> (RHS & 31);
 | |
|     return true;
 | |
|   case AMDGPU::V_LSHRREV_B32_e64:
 | |
|   case AMDGPU::V_LSHRREV_B32_e32:
 | |
|     Result = RHS >> (LHS & 31);
 | |
|     return true;
 | |
|   case AMDGPU::V_ASHR_I32_e64:
 | |
|   case AMDGPU::V_ASHR_I32_e32:
 | |
|   case AMDGPU::S_ASHR_I32:
 | |
|     Result = static_cast<int32_t>(LHS) >> (RHS & 31);
 | |
|     return true;
 | |
|   case AMDGPU::V_ASHRREV_I32_e64:
 | |
|   case AMDGPU::V_ASHRREV_I32_e32:
 | |
|     Result = static_cast<int32_t>(RHS) >> (LHS & 31);
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getMovOpc(bool IsScalar) {
 | |
|   return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
 | |
| }
 | |
| 
 | |
| /// Remove any leftover implicit operands from mutating the instruction. e.g.
 | |
| /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
 | |
| /// anymore.
 | |
| static void stripExtraCopyOperands(MachineInstr &MI) {
 | |
|   const MCInstrDesc &Desc = MI.getDesc();
 | |
|   unsigned NumOps = Desc.getNumOperands() +
 | |
|                     Desc.getNumImplicitUses() +
 | |
|                     Desc.getNumImplicitDefs();
 | |
| 
 | |
|   for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
 | |
|     MI.RemoveOperand(I);
 | |
| }
 | |
| 
 | |
| static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
 | |
|   MI.setDesc(NewDesc);
 | |
|   stripExtraCopyOperands(MI);
 | |
| }
 | |
| 
 | |
| static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
 | |
|                                                MachineOperand &Op) {
 | |
|   if (Op.isReg()) {
 | |
|     // If this has a subregister, it obviously is a register source.
 | |
|     if (Op.getSubReg() != AMDGPU::NoSubRegister)
 | |
|       return &Op;
 | |
| 
 | |
|     MachineInstr *Def = MRI.getVRegDef(Op.getReg());
 | |
|     if (Def->isMoveImmediate()) {
 | |
|       MachineOperand &ImmSrc = Def->getOperand(1);
 | |
|       if (ImmSrc.isImm())
 | |
|         return &ImmSrc;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return &Op;
 | |
| }
 | |
| 
 | |
| // Try to simplify operations with a constant that may appear after instruction
 | |
| // selection.
 | |
| // TODO: See if a frame index with a fixed offset can fold.
 | |
| static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
 | |
|                               const SIInstrInfo *TII,
 | |
|                               MachineInstr *MI,
 | |
|                               MachineOperand *ImmOp) {
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
 | |
|       Opc == AMDGPU::S_NOT_B32) {
 | |
|     MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
 | |
|     mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
 | |
|   if (Src1Idx == -1)
 | |
|     return false;
 | |
| 
 | |
|   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
 | |
|   MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
 | |
|   MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
 | |
| 
 | |
|   if (!Src0->isImm() && !Src1->isImm())
 | |
|     return false;
 | |
| 
 | |
|   // and k0, k1 -> v_mov_b32 (k0 & k1)
 | |
|   // or k0, k1 -> v_mov_b32 (k0 | k1)
 | |
|   // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
 | |
|   if (Src0->isImm() && Src1->isImm()) {
 | |
|     int32_t NewImm;
 | |
|     if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
 | |
|       return false;
 | |
| 
 | |
|     const SIRegisterInfo &TRI = TII->getRegisterInfo();
 | |
|     bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
 | |
| 
 | |
|     // Be careful to change the right operand, src0 may belong to a different
 | |
|     // instruction.
 | |
|     MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
 | |
|     MI->RemoveOperand(Src1Idx);
 | |
|     mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!MI->isCommutable())
 | |
|     return false;
 | |
| 
 | |
|   if (Src0->isImm() && !Src1->isImm()) {
 | |
|     std::swap(Src0, Src1);
 | |
|     std::swap(Src0Idx, Src1Idx);
 | |
|   }
 | |
| 
 | |
|   int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
 | |
|   if (Opc == AMDGPU::V_OR_B32_e64 ||
 | |
|       Opc == AMDGPU::V_OR_B32_e32 ||
 | |
|       Opc == AMDGPU::S_OR_B32) {
 | |
|     if (Src1Val == 0) {
 | |
|       // y = or x, 0 => y = copy x
 | |
|       MI->RemoveOperand(Src1Idx);
 | |
|       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
 | |
|     } else if (Src1Val == -1) {
 | |
|       // y = or x, -1 => y = v_mov_b32 -1
 | |
|       MI->RemoveOperand(Src1Idx);
 | |
|       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
 | |
|     } else
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
 | |
|       MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
 | |
|       MI->getOpcode() == AMDGPU::S_AND_B32) {
 | |
|     if (Src1Val == 0) {
 | |
|       // y = and x, 0 => y = v_mov_b32 0
 | |
|       MI->RemoveOperand(Src0Idx);
 | |
|       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
 | |
|     } else if (Src1Val == -1) {
 | |
|       // y = and x, -1 => y = copy x
 | |
|       MI->RemoveOperand(Src1Idx);
 | |
|       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
 | |
|       stripExtraCopyOperands(*MI);
 | |
|     } else
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
 | |
|       MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
 | |
|       MI->getOpcode() == AMDGPU::S_XOR_B32) {
 | |
|     if (Src1Val == 0) {
 | |
|       // y = xor x, 0 => y = copy x
 | |
|       MI->RemoveOperand(Src1Idx);
 | |
|       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SIFoldOperands::foldInstOperand(MachineInstr &MI,
 | |
|                                      MachineOperand &OpToFold) const {
 | |
|   // We need mutate the operands of new mov instructions to add implicit
 | |
|   // uses of EXEC, but adding them invalidates the use_iterator, so defer
 | |
|   // this.
 | |
|   SmallVector<MachineInstr *, 4> CopiesToReplace;
 | |
|   SmallVector<FoldCandidate, 4> FoldList;
 | |
|   MachineOperand &Dst = MI.getOperand(0);
 | |
| 
 | |
|   bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
 | |
|   if (FoldingImm) {
 | |
|     unsigned NumLiteralUses = 0;
 | |
|     MachineOperand *NonInlineUse = nullptr;
 | |
|     int NonInlineUseOpNo = -1;
 | |
| 
 | |
|     MachineRegisterInfo::use_iterator NextUse, NextInstUse;
 | |
|     for (MachineRegisterInfo::use_iterator
 | |
|            Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
 | |
|          Use != E; Use = NextUse) {
 | |
|       NextUse = std::next(Use);
 | |
|       MachineInstr *UseMI = Use->getParent();
 | |
|       unsigned OpNo = Use.getOperandNo();
 | |
| 
 | |
|       // Folding the immediate may reveal operations that can be constant
 | |
|       // folded or replaced with a copy. This can happen for example after
 | |
|       // frame indices are lowered to constants or from splitting 64-bit
 | |
|       // constants.
 | |
|       //
 | |
|       // We may also encounter cases where one or both operands are
 | |
|       // immediates materialized into a register, which would ordinarily not
 | |
|       // be folded due to multiple uses or operand constraints.
 | |
| 
 | |
|       if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
 | |
|         DEBUG(dbgs() << "Constant folded " << *UseMI <<'\n');
 | |
| 
 | |
|         // Some constant folding cases change the same immediate's use to a new
 | |
|         // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
 | |
|         // again. The same constant folded instruction could also have a second
 | |
|         // use operand.
 | |
|         NextUse = MRI->use_begin(Dst.getReg());
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Try to fold any inline immediate uses, and then only fold other
 | |
|       // constants if they have one use.
 | |
|       //
 | |
|       // The legality of the inline immediate must be checked based on the use
 | |
|       // operand, not the defining instruction, because 32-bit instructions
 | |
|       // with 32-bit inline immediate sources may be used to materialize
 | |
|       // constants used in 16-bit operands.
 | |
|       //
 | |
|       // e.g. it is unsafe to fold:
 | |
|       //  s_mov_b32 s0, 1.0    // materializes 0x3f800000
 | |
|       //  v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
 | |
| 
 | |
|       // Folding immediates with more than one use will increase program size.
 | |
|       // FIXME: This will also reduce register usage, which may be better
 | |
|       // in some cases. A better heuristic is needed.
 | |
|       if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
 | |
|         foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
 | |
|       } else {
 | |
|         if (++NumLiteralUses == 1) {
 | |
|           NonInlineUse = &*Use;
 | |
|           NonInlineUseOpNo = OpNo;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NumLiteralUses == 1) {
 | |
|       MachineInstr *UseMI = NonInlineUse->getParent();
 | |
|       foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
 | |
|     }
 | |
|   } else {
 | |
|     // Folding register.
 | |
|     for (MachineRegisterInfo::use_iterator
 | |
|            Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
 | |
|          Use != E; ++Use) {
 | |
|       MachineInstr *UseMI = Use->getParent();
 | |
| 
 | |
|       foldOperand(OpToFold, UseMI, Use.getOperandNo(),
 | |
|                   FoldList, CopiesToReplace);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MachineFunction *MF = MI.getParent()->getParent();
 | |
|   // Make sure we add EXEC uses to any new v_mov instructions created.
 | |
|   for (MachineInstr *Copy : CopiesToReplace)
 | |
|     Copy->addImplicitDefUseOperands(*MF);
 | |
| 
 | |
|   for (FoldCandidate &Fold : FoldList) {
 | |
|     if (updateOperand(Fold, *TRI)) {
 | |
|       // Clear kill flags.
 | |
|       if (Fold.isReg()) {
 | |
|         assert(Fold.OpToFold && Fold.OpToFold->isReg());
 | |
|         // FIXME: Probably shouldn't bother trying to fold if not an
 | |
|         // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
 | |
|         // copies.
 | |
|         MRI->clearKillFlags(Fold.OpToFold->getReg());
 | |
|       }
 | |
|       DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
 | |
|             static_cast<int>(Fold.UseOpNo) << " of " << *Fold.UseMI << '\n');
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
 | |
|   unsigned Op = MI.getOpcode();
 | |
|   switch (Op) {
 | |
|   case AMDGPU::V_MAX_F32_e64:
 | |
|   case AMDGPU::V_MAX_F16_e64:
 | |
|   case AMDGPU::V_MAX_F64: {
 | |
|     if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Make sure sources are identical.
 | |
|     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
 | |
|     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
 | |
|     if (!Src0->isReg() || Src0->getSubReg() != Src1->getSubReg() ||
 | |
|         Src0->getSubReg() != AMDGPU::NoSubRegister)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Can't fold up if we have modifiers.
 | |
|     if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
 | |
|         TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
 | |
|         TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
 | |
|       return nullptr;
 | |
|     return Src0;
 | |
|   }
 | |
|   default:
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // We obviously have multiple uses in a clamp since the register is used twice
 | |
| // in the same instruction.
 | |
| static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
 | |
|   int Count = 0;
 | |
|   for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
 | |
|        I != E; ++I) {
 | |
|     if (++Count > 1)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
 | |
|   const MachineOperand *ClampSrc = isClamp(MI);
 | |
|   if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
 | |
|   if (!TII->hasFPClamp(*Def))
 | |
|     return false;
 | |
|   MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
 | |
|   if (!DefClamp)
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def << '\n');
 | |
| 
 | |
|   // Clamp is applied after omod, so it is OK if omod is set.
 | |
|   DefClamp->setImm(1);
 | |
|   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
 | |
|   MI.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static int getOModValue(unsigned Opc, int64_t Val) {
 | |
|   switch (Opc) {
 | |
|   case AMDGPU::V_MUL_F32_e64: {
 | |
|     switch (static_cast<uint32_t>(Val)) {
 | |
|     case 0x3f000000: // 0.5
 | |
|       return SIOutMods::DIV2;
 | |
|     case 0x40000000: // 2.0
 | |
|       return SIOutMods::MUL2;
 | |
|     case 0x40800000: // 4.0
 | |
|       return SIOutMods::MUL4;
 | |
|     default:
 | |
|       return SIOutMods::NONE;
 | |
|     }
 | |
|   }
 | |
|   case AMDGPU::V_MUL_F16_e64: {
 | |
|     switch (static_cast<uint16_t>(Val)) {
 | |
|     case 0x3800: // 0.5
 | |
|       return SIOutMods::DIV2;
 | |
|     case 0x4000: // 2.0
 | |
|       return SIOutMods::MUL2;
 | |
|     case 0x4400: // 4.0
 | |
|       return SIOutMods::MUL4;
 | |
|     default:
 | |
|       return SIOutMods::NONE;
 | |
|     }
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("invalid mul opcode");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // FIXME: Does this really not support denormals with f16?
 | |
| // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
 | |
| // handled, so will anything other than that break?
 | |
| std::pair<const MachineOperand *, int>
 | |
| SIFoldOperands::isOMod(const MachineInstr &MI) const {
 | |
|   unsigned Op = MI.getOpcode();
 | |
|   switch (Op) {
 | |
|   case AMDGPU::V_MUL_F32_e64:
 | |
|   case AMDGPU::V_MUL_F16_e64: {
 | |
|     // If output denormals are enabled, omod is ignored.
 | |
|     if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
 | |
|         (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
 | |
|       return std::make_pair(nullptr, SIOutMods::NONE);
 | |
| 
 | |
|     const MachineOperand *RegOp = nullptr;
 | |
|     const MachineOperand *ImmOp = nullptr;
 | |
|     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
 | |
|     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
 | |
|     if (Src0->isImm()) {
 | |
|       ImmOp = Src0;
 | |
|       RegOp = Src1;
 | |
|     } else if (Src1->isImm()) {
 | |
|       ImmOp = Src1;
 | |
|       RegOp = Src0;
 | |
|     } else
 | |
|       return std::make_pair(nullptr, SIOutMods::NONE);
 | |
| 
 | |
|     int OMod = getOModValue(Op, ImmOp->getImm());
 | |
|     if (OMod == SIOutMods::NONE ||
 | |
|         TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
 | |
|         TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
 | |
|         TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
 | |
|         TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
 | |
|       return std::make_pair(nullptr, SIOutMods::NONE);
 | |
| 
 | |
|     return std::make_pair(RegOp, OMod);
 | |
|   }
 | |
|   case AMDGPU::V_ADD_F32_e64:
 | |
|   case AMDGPU::V_ADD_F16_e64: {
 | |
|     // If output denormals are enabled, omod is ignored.
 | |
|     if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
 | |
|         (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
 | |
|       return std::make_pair(nullptr, SIOutMods::NONE);
 | |
| 
 | |
|     // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
 | |
|     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
 | |
|     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
 | |
| 
 | |
|     if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
 | |
|         Src0->getSubReg() == Src1->getSubReg() &&
 | |
|         !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
 | |
|         !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
 | |
|         !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
 | |
|         !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
 | |
|       return std::make_pair(Src0, SIOutMods::MUL2);
 | |
| 
 | |
|     return std::make_pair(nullptr, SIOutMods::NONE);
 | |
|   }
 | |
|   default:
 | |
|     return std::make_pair(nullptr, SIOutMods::NONE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // FIXME: Does this need to check IEEE bit on function?
 | |
| bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
 | |
|   const MachineOperand *RegOp;
 | |
|   int OMod;
 | |
|   std::tie(RegOp, OMod) = isOMod(MI);
 | |
|   if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
 | |
|       RegOp->getSubReg() != AMDGPU::NoSubRegister ||
 | |
|       !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
 | |
|   MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
 | |
|   if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
 | |
|     return false;
 | |
| 
 | |
|   // Clamp is applied after omod. If the source already has clamp set, don't
 | |
|   // fold it.
 | |
|   if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
 | |
|     return false;
 | |
| 
 | |
|   DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
 | |
| 
 | |
|   DefOMod->setImm(OMod);
 | |
|   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
 | |
|   MI.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipFunction(*MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   MRI = &MF.getRegInfo();
 | |
|   ST = &MF.getSubtarget<SISubtarget>();
 | |
|   TII = ST->getInstrInfo();
 | |
|   TRI = &TII->getRegisterInfo();
 | |
| 
 | |
|   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
 | |
| 
 | |
|   // omod is ignored by hardware if IEEE bit is enabled. omod also does not
 | |
|   // correctly handle signed zeros.
 | |
|   //
 | |
|   // TODO: Check nsz on instructions when fast math flags are preserved to MI
 | |
|   // level.
 | |
|   bool IsIEEEMode = ST->enableIEEEBit(MF) || !MFI->hasNoSignedZerosFPMath();
 | |
| 
 | |
|   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
 | |
|        BI != BE; ++BI) {
 | |
| 
 | |
|     MachineBasicBlock &MBB = *BI;
 | |
|     MachineBasicBlock::iterator I, Next;
 | |
|     for (I = MBB.begin(); I != MBB.end(); I = Next) {
 | |
|       Next = std::next(I);
 | |
|       MachineInstr &MI = *I;
 | |
| 
 | |
|       if (!isFoldableCopy(MI)) {
 | |
|         if (IsIEEEMode || !tryFoldOMod(MI))
 | |
|           tryFoldClamp(MI);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       MachineOperand &OpToFold = MI.getOperand(1);
 | |
|       bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
 | |
| 
 | |
|       // FIXME: We could also be folding things like TargetIndexes.
 | |
|       if (!FoldingImm && !OpToFold.isReg())
 | |
|         continue;
 | |
| 
 | |
|       if (OpToFold.isReg() &&
 | |
|           !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
 | |
|         continue;
 | |
| 
 | |
|       // Prevent folding operands backwards in the function. For example,
 | |
|       // the COPY opcode must not be replaced by 1 in this example:
 | |
|       //
 | |
|       //    %vreg3<def> = COPY %VGPR0; VGPR_32:%vreg3
 | |
|       //    ...
 | |
|       //    %VGPR0<def> = V_MOV_B32_e32 1, %EXEC<imp-use>
 | |
|       MachineOperand &Dst = MI.getOperand(0);
 | |
|       if (Dst.isReg() &&
 | |
|           !TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
 | |
|         continue;
 | |
| 
 | |
|       foldInstOperand(MI, OpToFold);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 |