763 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			763 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the ARM addressing mode implementation stuff.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
 | |
| #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
 | |
| 
 | |
| #include "llvm/ADT/APFloat.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <cassert>
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// ARM_AM - ARM Addressing Mode Stuff
 | |
| namespace ARM_AM {
 | |
|   enum ShiftOpc {
 | |
|     no_shift = 0,
 | |
|     asr,
 | |
|     lsl,
 | |
|     lsr,
 | |
|     ror,
 | |
|     rrx
 | |
|   };
 | |
| 
 | |
|   enum AddrOpc {
 | |
|     sub = 0,
 | |
|     add
 | |
|   };
 | |
| 
 | |
|   static inline const char *getAddrOpcStr(AddrOpc Op) {
 | |
|     return Op == sub ? "-" : "";
 | |
|   }
 | |
| 
 | |
|   static inline const char *getShiftOpcStr(ShiftOpc Op) {
 | |
|     switch (Op) {
 | |
|     default: llvm_unreachable("Unknown shift opc!");
 | |
|     case ARM_AM::asr: return "asr";
 | |
|     case ARM_AM::lsl: return "lsl";
 | |
|     case ARM_AM::lsr: return "lsr";
 | |
|     case ARM_AM::ror: return "ror";
 | |
|     case ARM_AM::rrx: return "rrx";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
 | |
|     switch (Op) {
 | |
|     default: llvm_unreachable("Unknown shift opc!");
 | |
|     case ARM_AM::asr: return 2;
 | |
|     case ARM_AM::lsl: return 0;
 | |
|     case ARM_AM::lsr: return 1;
 | |
|     case ARM_AM::ror: return 3;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   enum AMSubMode {
 | |
|     bad_am_submode = 0,
 | |
|     ia,
 | |
|     ib,
 | |
|     da,
 | |
|     db
 | |
|   };
 | |
| 
 | |
|   static inline const char *getAMSubModeStr(AMSubMode Mode) {
 | |
|     switch (Mode) {
 | |
|     default: llvm_unreachable("Unknown addressing sub-mode!");
 | |
|     case ARM_AM::ia: return "ia";
 | |
|     case ARM_AM::ib: return "ib";
 | |
|     case ARM_AM::da: return "da";
 | |
|     case ARM_AM::db: return "db";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
 | |
|   ///
 | |
|   static inline unsigned rotr32(unsigned Val, unsigned Amt) {
 | |
|     assert(Amt < 32 && "Invalid rotate amount");
 | |
|     return (Val >> Amt) | (Val << ((32-Amt)&31));
 | |
|   }
 | |
| 
 | |
|   /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
 | |
|   ///
 | |
|   static inline unsigned rotl32(unsigned Val, unsigned Amt) {
 | |
|     assert(Amt < 32 && "Invalid rotate amount");
 | |
|     return (Val << Amt) | (Val >> ((32-Amt)&31));
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Addressing Mode #1: shift_operand with registers
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   // This 'addressing mode' is used for arithmetic instructions.  It can
 | |
|   // represent things like:
 | |
|   //   reg
 | |
|   //   reg [asr|lsl|lsr|ror|rrx] reg
 | |
|   //   reg [asr|lsl|lsr|ror|rrx] imm
 | |
|   //
 | |
|   // This is stored three operands [rega, regb, opc].  The first is the base
 | |
|   // reg, the second is the shift amount (or reg0 if not present or imm).  The
 | |
|   // third operand encodes the shift opcode and the imm if a reg isn't present.
 | |
|   //
 | |
|   static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
 | |
|     return ShOp | (Imm << 3);
 | |
|   }
 | |
|   static inline unsigned getSORegOffset(unsigned Op) {
 | |
|     return Op >> 3;
 | |
|   }
 | |
|   static inline ShiftOpc getSORegShOp(unsigned Op) {
 | |
|     return (ShiftOpc)(Op & 7);
 | |
|   }
 | |
| 
 | |
|   /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
 | |
|   /// the 8-bit imm value.
 | |
|   static inline unsigned getSOImmValImm(unsigned Imm) {
 | |
|     return Imm & 0xFF;
 | |
|   }
 | |
|   /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
 | |
|   /// the rotate amount.
 | |
|   static inline unsigned getSOImmValRot(unsigned Imm) {
 | |
|     return (Imm >> 8) * 2;
 | |
|   }
 | |
| 
 | |
|   /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
 | |
|   /// computing the rotate amount to use.  If this immediate value cannot be
 | |
|   /// handled with a single shifter-op, determine a good rotate amount that will
 | |
|   /// take a maximal chunk of bits out of the immediate.
 | |
|   static inline unsigned getSOImmValRotate(unsigned Imm) {
 | |
|     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
 | |
|     // of zero.
 | |
|     if ((Imm & ~255U) == 0) return 0;
 | |
| 
 | |
|     // Use CTZ to compute the rotate amount.
 | |
|     unsigned TZ = countTrailingZeros(Imm);
 | |
| 
 | |
|     // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
 | |
|     // not 9.
 | |
|     unsigned RotAmt = TZ & ~1;
 | |
| 
 | |
|     // If we can handle this spread, return it.
 | |
|     if ((rotr32(Imm, RotAmt) & ~255U) == 0)
 | |
|       return (32-RotAmt)&31;  // HW rotates right, not left.
 | |
| 
 | |
|     // For values like 0xF000000F, we should ignore the low 6 bits, then
 | |
|     // retry the hunt.
 | |
|     if (Imm & 63U) {
 | |
|       unsigned TZ2 = countTrailingZeros(Imm & ~63U);
 | |
|       unsigned RotAmt2 = TZ2 & ~1;
 | |
|       if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
 | |
|         return (32-RotAmt2)&31;  // HW rotates right, not left.
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we have no way to cover this span of bits with a single
 | |
|     // shifter_op immediate.  Return a chunk of bits that will be useful to
 | |
|     // handle.
 | |
|     return (32-RotAmt)&31;  // HW rotates right, not left.
 | |
|   }
 | |
| 
 | |
|   /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
 | |
|   /// into an shifter_operand immediate operand, return the 12-bit encoding for
 | |
|   /// it.  If not, return -1.
 | |
|   static inline int getSOImmVal(unsigned Arg) {
 | |
|     // 8-bit (or less) immediates are trivially shifter_operands with a rotate
 | |
|     // of zero.
 | |
|     if ((Arg & ~255U) == 0) return Arg;
 | |
| 
 | |
|     unsigned RotAmt = getSOImmValRotate(Arg);
 | |
| 
 | |
|     // If this cannot be handled with a single shifter_op, bail out.
 | |
|     if (rotr32(~255U, RotAmt) & Arg)
 | |
|       return -1;
 | |
| 
 | |
|     // Encode this correctly.
 | |
|     return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
 | |
|   }
 | |
| 
 | |
|   /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
 | |
|   /// or'ing together two SOImmVal's.
 | |
|   static inline bool isSOImmTwoPartVal(unsigned V) {
 | |
|     // If this can be handled with a single shifter_op, bail out.
 | |
|     V = rotr32(~255U, getSOImmValRotate(V)) & V;
 | |
|     if (V == 0)
 | |
|       return false;
 | |
| 
 | |
|     // If this can be handled with two shifter_op's, accept.
 | |
|     V = rotr32(~255U, getSOImmValRotate(V)) & V;
 | |
|     return V == 0;
 | |
|   }
 | |
| 
 | |
|   /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
 | |
|   /// return the first chunk of it.
 | |
|   static inline unsigned getSOImmTwoPartFirst(unsigned V) {
 | |
|     return rotr32(255U, getSOImmValRotate(V)) & V;
 | |
|   }
 | |
| 
 | |
|   /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
 | |
|   /// return the second chunk of it.
 | |
|   static inline unsigned getSOImmTwoPartSecond(unsigned V) {
 | |
|     // Mask out the first hunk.
 | |
|     V = rotr32(~255U, getSOImmValRotate(V)) & V;
 | |
| 
 | |
|     // Take what's left.
 | |
|     assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
 | |
|   /// by a left shift. Returns the shift amount to use.
 | |
|   static inline unsigned getThumbImmValShift(unsigned Imm) {
 | |
|     // 8-bit (or less) immediates are trivially immediate operand with a shift
 | |
|     // of zero.
 | |
|     if ((Imm & ~255U) == 0) return 0;
 | |
| 
 | |
|     // Use CTZ to compute the shift amount.
 | |
|     return countTrailingZeros(Imm);
 | |
|   }
 | |
| 
 | |
|   /// isThumbImmShiftedVal - Return true if the specified value can be obtained
 | |
|   /// by left shifting a 8-bit immediate.
 | |
|   static inline bool isThumbImmShiftedVal(unsigned V) {
 | |
|     // If this can be handled with
 | |
|     V = (~255U << getThumbImmValShift(V)) & V;
 | |
|     return V == 0;
 | |
|   }
 | |
| 
 | |
|   /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
 | |
|   /// by a left shift. Returns the shift amount to use.
 | |
|   static inline unsigned getThumbImm16ValShift(unsigned Imm) {
 | |
|     // 16-bit (or less) immediates are trivially immediate operand with a shift
 | |
|     // of zero.
 | |
|     if ((Imm & ~65535U) == 0) return 0;
 | |
| 
 | |
|     // Use CTZ to compute the shift amount.
 | |
|     return countTrailingZeros(Imm);
 | |
|   }
 | |
| 
 | |
|   /// isThumbImm16ShiftedVal - Return true if the specified value can be
 | |
|   /// obtained by left shifting a 16-bit immediate.
 | |
|   static inline bool isThumbImm16ShiftedVal(unsigned V) {
 | |
|     // If this can be handled with
 | |
|     V = (~65535U << getThumbImm16ValShift(V)) & V;
 | |
|     return V == 0;
 | |
|   }
 | |
| 
 | |
|   /// getThumbImmNonShiftedVal - If V is a value that satisfies
 | |
|   /// isThumbImmShiftedVal, return the non-shiftd value.
 | |
|   static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
 | |
|     return V >> getThumbImmValShift(V);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /// getT2SOImmValSplat - Return the 12-bit encoded representation
 | |
|   /// if the specified value can be obtained by splatting the low 8 bits
 | |
|   /// into every other byte or every byte of a 32-bit value. i.e.,
 | |
|   ///     00000000 00000000 00000000 abcdefgh    control = 0
 | |
|   ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
 | |
|   ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
 | |
|   ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
 | |
|   /// Return -1 if none of the above apply.
 | |
|   /// See ARM Reference Manual A6.3.2.
 | |
|   static inline int getT2SOImmValSplatVal(unsigned V) {
 | |
|     unsigned u, Vs, Imm;
 | |
|     // control = 0
 | |
|     if ((V & 0xffffff00) == 0)
 | |
|       return V;
 | |
| 
 | |
|     // If the value is zeroes in the first byte, just shift those off
 | |
|     Vs = ((V & 0xff) == 0) ? V >> 8 : V;
 | |
|     // Any passing value only has 8 bits of payload, splatted across the word
 | |
|     Imm = Vs & 0xff;
 | |
|     // Likewise, any passing values have the payload splatted into the 3rd byte
 | |
|     u = Imm | (Imm << 16);
 | |
| 
 | |
|     // control = 1 or 2
 | |
|     if (Vs == u)
 | |
|       return (((Vs == V) ? 1 : 2) << 8) | Imm;
 | |
| 
 | |
|     // control = 3
 | |
|     if (Vs == (u | (u << 8)))
 | |
|       return (3 << 8) | Imm;
 | |
| 
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
 | |
|   /// specified value is a rotated 8-bit value. Return -1 if no rotation
 | |
|   /// encoding is possible.
 | |
|   /// See ARM Reference Manual A6.3.2.
 | |
|   static inline int getT2SOImmValRotateVal(unsigned V) {
 | |
|     unsigned RotAmt = countLeadingZeros(V);
 | |
|     if (RotAmt >= 24)
 | |
|       return -1;
 | |
| 
 | |
|     // If 'Arg' can be handled with a single shifter_op return the value.
 | |
|     if ((rotr32(0xff000000U, RotAmt) & V) == V)
 | |
|       return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
 | |
| 
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
 | |
|   /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
 | |
|   /// encoding for it.  If not, return -1.
 | |
|   /// See ARM Reference Manual A6.3.2.
 | |
|   static inline int getT2SOImmVal(unsigned Arg) {
 | |
|     // If 'Arg' is an 8-bit splat, then get the encoded value.
 | |
|     int Splat = getT2SOImmValSplatVal(Arg);
 | |
|     if (Splat != -1)
 | |
|       return Splat;
 | |
| 
 | |
|     // If 'Arg' can be handled with a single shifter_op return the value.
 | |
|     int Rot = getT2SOImmValRotateVal(Arg);
 | |
|     if (Rot != -1)
 | |
|       return Rot;
 | |
| 
 | |
|     return -1;
 | |
|   }
 | |
| 
 | |
|   static inline unsigned getT2SOImmValRotate(unsigned V) {
 | |
|     if ((V & ~255U) == 0) return 0;
 | |
|     // Use CTZ to compute the rotate amount.
 | |
|     unsigned RotAmt = countTrailingZeros(V);
 | |
|     return (32 - RotAmt) & 31;
 | |
|   }
 | |
| 
 | |
|   static inline bool isT2SOImmTwoPartVal (unsigned Imm) {
 | |
|     unsigned V = Imm;
 | |
|     // Passing values can be any combination of splat values and shifter
 | |
|     // values. If this can be handled with a single shifter or splat, bail
 | |
|     // out. Those should be handled directly, not with a two-part val.
 | |
|     if (getT2SOImmValSplatVal(V) != -1)
 | |
|       return false;
 | |
|     V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
 | |
|     if (V == 0)
 | |
|       return false;
 | |
| 
 | |
|     // If this can be handled as an immediate, accept.
 | |
|     if (getT2SOImmVal(V) != -1) return true;
 | |
| 
 | |
|     // Likewise, try masking out a splat value first.
 | |
|     V = Imm;
 | |
|     if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
 | |
|       V &= ~0xff00ff00U;
 | |
|     else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
 | |
|       V &= ~0x00ff00ffU;
 | |
|     // If what's left can be handled as an immediate, accept.
 | |
|     if (getT2SOImmVal(V) != -1) return true;
 | |
| 
 | |
|     // Otherwise, do not accept.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
 | |
|     assert (isT2SOImmTwoPartVal(Imm) &&
 | |
|             "Immedate cannot be encoded as two part immediate!");
 | |
|     // Try a shifter operand as one part
 | |
|     unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
 | |
|     // If the rest is encodable as an immediate, then return it.
 | |
|     if (getT2SOImmVal(V) != -1) return V;
 | |
| 
 | |
|     // Try masking out a splat value first.
 | |
|     if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
 | |
|       return Imm & 0xff00ff00U;
 | |
| 
 | |
|     // The other splat is all that's left as an option.
 | |
|     assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
 | |
|     return Imm & 0x00ff00ffU;
 | |
|   }
 | |
| 
 | |
|   static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
 | |
|     // Mask out the first hunk
 | |
|     Imm ^= getT2SOImmTwoPartFirst(Imm);
 | |
|     // Return what's left
 | |
|     assert (getT2SOImmVal(Imm) != -1 &&
 | |
|             "Unable to encode second part of T2 two part SO immediate");
 | |
|     return Imm;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Addressing Mode #2
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   // This is used for most simple load/store instructions.
 | |
|   //
 | |
|   // addrmode2 := reg +/- reg shop imm
 | |
|   // addrmode2 := reg +/- imm12
 | |
|   //
 | |
|   // The first operand is always a Reg.  The second operand is a reg if in
 | |
|   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
 | |
|   // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
 | |
|   // fourth operand 16-17 encodes the index mode.
 | |
|   //
 | |
|   // If this addressing mode is a frame index (before prolog/epilog insertion
 | |
|   // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
 | |
|   // with no shift amount for the frame offset.
 | |
|   //
 | |
|   static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
 | |
|                                    unsigned IdxMode = 0) {
 | |
|     assert(Imm12 < (1 << 12) && "Imm too large!");
 | |
|     bool isSub = Opc == sub;
 | |
|     return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
 | |
|   }
 | |
|   static inline unsigned getAM2Offset(unsigned AM2Opc) {
 | |
|     return AM2Opc & ((1 << 12)-1);
 | |
|   }
 | |
|   static inline AddrOpc getAM2Op(unsigned AM2Opc) {
 | |
|     return ((AM2Opc >> 12) & 1) ? sub : add;
 | |
|   }
 | |
|   static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
 | |
|     return (ShiftOpc)((AM2Opc >> 13) & 7);
 | |
|   }
 | |
|   static inline unsigned getAM2IdxMode(unsigned AM2Opc) {
 | |
|     return (AM2Opc >> 16);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Addressing Mode #3
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   // This is used for sign-extending loads, and load/store-pair instructions.
 | |
|   //
 | |
|   // addrmode3 := reg +/- reg
 | |
|   // addrmode3 := reg +/- imm8
 | |
|   //
 | |
|   // The first operand is always a Reg.  The second operand is a reg if in
 | |
|   // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
 | |
|   // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
 | |
|   // index mode.
 | |
| 
 | |
|   /// getAM3Opc - This function encodes the addrmode3 opc field.
 | |
|   static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
 | |
|                                    unsigned IdxMode = 0) {
 | |
|     bool isSub = Opc == sub;
 | |
|     return ((int)isSub << 8) | Offset | (IdxMode << 9);
 | |
|   }
 | |
|   static inline unsigned char getAM3Offset(unsigned AM3Opc) {
 | |
|     return AM3Opc & 0xFF;
 | |
|   }
 | |
|   static inline AddrOpc getAM3Op(unsigned AM3Opc) {
 | |
|     return ((AM3Opc >> 8) & 1) ? sub : add;
 | |
|   }
 | |
|   static inline unsigned getAM3IdxMode(unsigned AM3Opc) {
 | |
|     return (AM3Opc >> 9);
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Addressing Mode #4
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   // This is used for load / store multiple instructions.
 | |
|   //
 | |
|   // addrmode4 := reg, <mode>
 | |
|   //
 | |
|   // The four modes are:
 | |
|   //    IA - Increment after
 | |
|   //    IB - Increment before
 | |
|   //    DA - Decrement after
 | |
|   //    DB - Decrement before
 | |
|   // For VFP instructions, only the IA and DB modes are valid.
 | |
| 
 | |
|   static inline AMSubMode getAM4SubMode(unsigned Mode) {
 | |
|     return (AMSubMode)(Mode & 0x7);
 | |
|   }
 | |
| 
 | |
|   static inline unsigned getAM4ModeImm(AMSubMode SubMode) {
 | |
|     return (int)SubMode;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Addressing Mode #5
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   // This is used for coprocessor instructions, such as FP load/stores.
 | |
|   //
 | |
|   // addrmode5 := reg +/- imm8*4
 | |
|   //
 | |
|   // The first operand is always a Reg.  The second operand encodes the
 | |
|   // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
 | |
| 
 | |
|   /// getAM5Opc - This function encodes the addrmode5 opc field.
 | |
|   static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
 | |
|     bool isSub = Opc == sub;
 | |
|     return ((int)isSub << 8) | Offset;
 | |
|   }
 | |
|   static inline unsigned char getAM5Offset(unsigned AM5Opc) {
 | |
|     return AM5Opc & 0xFF;
 | |
|   }
 | |
|   static inline AddrOpc getAM5Op(unsigned AM5Opc) {
 | |
|     return ((AM5Opc >> 8) & 1) ? sub : add;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Addressing Mode #5 FP16
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   // This is used for coprocessor instructions, such as 16-bit FP load/stores.
 | |
|   //
 | |
|   // addrmode5fp16 := reg +/- imm8*2
 | |
|   //
 | |
|   // The first operand is always a Reg.  The second operand encodes the
 | |
|   // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
 | |
| 
 | |
|   /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
 | |
|   static inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
 | |
|     bool isSub = Opc == sub;
 | |
|     return ((int)isSub << 8) | Offset;
 | |
|   }
 | |
|   static inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
 | |
|     return AM5Opc & 0xFF;
 | |
|   }
 | |
|   static inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
 | |
|     return ((AM5Opc >> 8) & 1) ? sub : add;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Addressing Mode #6
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   // This is used for NEON load / store instructions.
 | |
|   //
 | |
|   // addrmode6 := reg with optional alignment
 | |
|   //
 | |
|   // This is stored in two operands [regaddr, align].  The first is the
 | |
|   // address register.  The second operand is the value of the alignment
 | |
|   // specifier in bytes or zero if no explicit alignment.
 | |
|   // Valid alignments depend on the specific instruction.
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // NEON Modified Immediates
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   //
 | |
|   // Several NEON instructions (e.g., VMOV) take a "modified immediate"
 | |
|   // vector operand, where a small immediate encoded in the instruction
 | |
|   // specifies a full NEON vector value.  These modified immediates are
 | |
|   // represented here as encoded integers.  The low 8 bits hold the immediate
 | |
|   // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
 | |
|   // the "Cmode" field of the instruction.  The interfaces below treat the
 | |
|   // Op and Cmode values as a single 5-bit value.
 | |
| 
 | |
|   static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
 | |
|     return (OpCmode << 8) | Val;
 | |
|   }
 | |
|   static inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
 | |
|     return (ModImm >> 8) & 0x1f;
 | |
|   }
 | |
|   static inline unsigned getNEONModImmVal(unsigned ModImm) {
 | |
|     return ModImm & 0xff;
 | |
|   }
 | |
| 
 | |
|   /// decodeNEONModImm - Decode a NEON modified immediate value into the
 | |
|   /// element value and the element size in bits.  (If the element size is
 | |
|   /// smaller than the vector, it is splatted into all the elements.)
 | |
|   static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
 | |
|     unsigned OpCmode = getNEONModImmOpCmode(ModImm);
 | |
|     unsigned Imm8 = getNEONModImmVal(ModImm);
 | |
|     uint64_t Val = 0;
 | |
| 
 | |
|     if (OpCmode == 0xe) {
 | |
|       // 8-bit vector elements
 | |
|       Val = Imm8;
 | |
|       EltBits = 8;
 | |
|     } else if ((OpCmode & 0xc) == 0x8) {
 | |
|       // 16-bit vector elements
 | |
|       unsigned ByteNum = (OpCmode & 0x6) >> 1;
 | |
|       Val = Imm8 << (8 * ByteNum);
 | |
|       EltBits = 16;
 | |
|     } else if ((OpCmode & 0x8) == 0) {
 | |
|       // 32-bit vector elements, zero with one byte set
 | |
|       unsigned ByteNum = (OpCmode & 0x6) >> 1;
 | |
|       Val = Imm8 << (8 * ByteNum);
 | |
|       EltBits = 32;
 | |
|     } else if ((OpCmode & 0xe) == 0xc) {
 | |
|       // 32-bit vector elements, one byte with low bits set
 | |
|       unsigned ByteNum = 1 + (OpCmode & 0x1);
 | |
|       Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
 | |
|       EltBits = 32;
 | |
|     } else if (OpCmode == 0x1e) {
 | |
|       // 64-bit vector elements
 | |
|       for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
 | |
|         if ((ModImm >> ByteNum) & 1)
 | |
|           Val |= (uint64_t)0xff << (8 * ByteNum);
 | |
|       }
 | |
|       EltBits = 64;
 | |
|     } else {
 | |
|       llvm_unreachable("Unsupported NEON immediate");
 | |
|     }
 | |
|     return Val;
 | |
|   }
 | |
| 
 | |
|   // Generic validation for single-byte immediate (0X00, 00X0, etc).
 | |
|   static inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
 | |
|     assert(Size >= 1 && Size <= 4 && "Invalid size");
 | |
|     unsigned count = 0;
 | |
|     for (unsigned i = 0; i < Size; ++i) {
 | |
|       if (Value & 0xff) count++;
 | |
|       Value >>= 8;
 | |
|     }
 | |
|     return count == 1;
 | |
|   }
 | |
| 
 | |
|   /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
 | |
|   static inline bool isNEONi16splat(unsigned Value) {
 | |
|     if (Value > 0xffff)
 | |
|       return false;
 | |
|     // i16 value with set bits only in one byte X0 or 0X.
 | |
|     return Value == 0 || isNEONBytesplat(Value, 2);
 | |
|   }
 | |
| 
 | |
|   // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
 | |
|   static inline unsigned encodeNEONi16splat(unsigned Value) {
 | |
|     assert(isNEONi16splat(Value) && "Invalid NEON splat value");
 | |
|     if (Value >= 0x100)
 | |
|       Value = (Value >> 8) | 0xa00;
 | |
|     else
 | |
|       Value |= 0x800;
 | |
|     return Value;
 | |
|   }
 | |
| 
 | |
|   /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
 | |
|   static inline bool isNEONi32splat(unsigned Value) {
 | |
|     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
 | |
|     return Value == 0 || isNEONBytesplat(Value, 4);
 | |
|   }
 | |
| 
 | |
|   /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
 | |
|   static inline unsigned encodeNEONi32splat(unsigned Value) {
 | |
|     assert(isNEONi32splat(Value) && "Invalid NEON splat value");
 | |
|     if (Value >= 0x100 && Value <= 0xff00)
 | |
|       Value = (Value >> 8) | 0x200;
 | |
|     else if (Value > 0xffff && Value <= 0xff0000)
 | |
|       Value = (Value >> 16) | 0x400;
 | |
|     else if (Value > 0xffffff)
 | |
|       Value = (Value >> 24) | 0x600;
 | |
|     return Value;
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Floating-point Immediates
 | |
|   //
 | |
|   static inline float getFPImmFloat(unsigned Imm) {
 | |
|     // We expect an 8-bit binary encoding of a floating-point number here.
 | |
|     union {
 | |
|       uint32_t I;
 | |
|       float F;
 | |
|     } FPUnion;
 | |
| 
 | |
|     uint8_t Sign = (Imm >> 7) & 0x1;
 | |
|     uint8_t Exp = (Imm >> 4) & 0x7;
 | |
|     uint8_t Mantissa = Imm & 0xf;
 | |
| 
 | |
|     //   8-bit FP    iEEEE Float Encoding
 | |
|     //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
 | |
|     //
 | |
|     // where B = NOT(b);
 | |
| 
 | |
|     FPUnion.I = 0;
 | |
|     FPUnion.I |= Sign << 31;
 | |
|     FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
 | |
|     FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
 | |
|     FPUnion.I |= (Exp & 0x3) << 23;
 | |
|     FPUnion.I |= Mantissa << 19;
 | |
|     return FPUnion.F;
 | |
|   }
 | |
| 
 | |
|   /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
 | |
|   /// floating-point value. If the value cannot be represented as an 8-bit
 | |
|   /// floating-point value, then return -1.
 | |
|   static inline int getFP16Imm(const APInt &Imm) {
 | |
|     uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
 | |
|     int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
 | |
|     int64_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
 | |
| 
 | |
|     // We can handle 4 bits of mantissa.
 | |
|     // mantissa = (16+UInt(e:f:g:h))/16.
 | |
|     if (Mantissa & 0x3f)
 | |
|       return -1;
 | |
|     Mantissa >>= 6;
 | |
| 
 | |
|     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
 | |
|     if (Exp < -3 || Exp > 4)
 | |
|       return -1;
 | |
|     Exp = ((Exp+3) & 0x7) ^ 4;
 | |
| 
 | |
|     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
 | |
|   }
 | |
| 
 | |
|   static inline int getFP16Imm(const APFloat &FPImm) {
 | |
|     return getFP16Imm(FPImm.bitcastToAPInt());
 | |
|   }
 | |
| 
 | |
|   /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
 | |
|   /// floating-point value. If the value cannot be represented as an 8-bit
 | |
|   /// floating-point value, then return -1.
 | |
|   static inline int getFP32Imm(const APInt &Imm) {
 | |
|     uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
 | |
|     int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
 | |
|     int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
 | |
| 
 | |
|     // We can handle 4 bits of mantissa.
 | |
|     // mantissa = (16+UInt(e:f:g:h))/16.
 | |
|     if (Mantissa & 0x7ffff)
 | |
|       return -1;
 | |
|     Mantissa >>= 19;
 | |
|     if ((Mantissa & 0xf) != Mantissa)
 | |
|       return -1;
 | |
| 
 | |
|     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
 | |
|     if (Exp < -3 || Exp > 4)
 | |
|       return -1;
 | |
|     Exp = ((Exp+3) & 0x7) ^ 4;
 | |
| 
 | |
|     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
 | |
|   }
 | |
| 
 | |
|   static inline int getFP32Imm(const APFloat &FPImm) {
 | |
|     return getFP32Imm(FPImm.bitcastToAPInt());
 | |
|   }
 | |
| 
 | |
|   /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
 | |
|   /// floating-point value. If the value cannot be represented as an 8-bit
 | |
|   /// floating-point value, then return -1.
 | |
|   static inline int getFP64Imm(const APInt &Imm) {
 | |
|     uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
 | |
|     int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
 | |
|     uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
 | |
| 
 | |
|     // We can handle 4 bits of mantissa.
 | |
|     // mantissa = (16+UInt(e:f:g:h))/16.
 | |
|     if (Mantissa & 0xffffffffffffULL)
 | |
|       return -1;
 | |
|     Mantissa >>= 48;
 | |
|     if ((Mantissa & 0xf) != Mantissa)
 | |
|       return -1;
 | |
| 
 | |
|     // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
 | |
|     if (Exp < -3 || Exp > 4)
 | |
|       return -1;
 | |
|     Exp = ((Exp+3) & 0x7) ^ 4;
 | |
| 
 | |
|     return ((int)Sign << 7) | (Exp << 4) | Mantissa;
 | |
|   }
 | |
| 
 | |
|   static inline int getFP64Imm(const APFloat &FPImm) {
 | |
|     return getFP64Imm(FPImm.bitcastToAPInt());
 | |
|   }
 | |
| 
 | |
| } // end namespace ARM_AM
 | |
| } // end namespace llvm
 | |
| 
 | |
| #endif
 | |
| 
 |