6344 lines
		
	
	
		
			244 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			6344 lines
		
	
	
		
			244 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the SystemZTargetLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SystemZISelLowering.h"
 | |
| #include "SystemZCallingConv.h"
 | |
| #include "SystemZConstantPoolValue.h"
 | |
| #include "SystemZMachineFunctionInfo.h"
 | |
| #include "SystemZTargetMachine.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include <cctype>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "systemz-lower"
 | |
| 
 | |
| namespace {
 | |
| // Represents a sequence for extracting a 0/1 value from an IPM result:
 | |
| // (((X ^ XORValue) + AddValue) >> Bit)
 | |
| struct IPMConversion {
 | |
|   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
 | |
|     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
 | |
| 
 | |
|   int64_t XORValue;
 | |
|   int64_t AddValue;
 | |
|   unsigned Bit;
 | |
| };
 | |
| 
 | |
| // Represents information about a comparison.
 | |
| struct Comparison {
 | |
|   Comparison(SDValue Op0In, SDValue Op1In)
 | |
|     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
 | |
| 
 | |
|   // The operands to the comparison.
 | |
|   SDValue Op0, Op1;
 | |
| 
 | |
|   // The opcode that should be used to compare Op0 and Op1.
 | |
|   unsigned Opcode;
 | |
| 
 | |
|   // A SystemZICMP value.  Only used for integer comparisons.
 | |
|   unsigned ICmpType;
 | |
| 
 | |
|   // The mask of CC values that Opcode can produce.
 | |
|   unsigned CCValid;
 | |
| 
 | |
|   // The mask of CC values for which the original condition is true.
 | |
|   unsigned CCMask;
 | |
| };
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // Classify VT as either 32 or 64 bit.
 | |
| static bool is32Bit(EVT VT) {
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::i32:
 | |
|     return true;
 | |
|   case MVT::i64:
 | |
|     return false;
 | |
|   default:
 | |
|     llvm_unreachable("Unsupported type");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return a version of MachineOperand that can be safely used before the
 | |
| // final use.
 | |
| static MachineOperand earlyUseOperand(MachineOperand Op) {
 | |
|   if (Op.isReg())
 | |
|     Op.setIsKill(false);
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
 | |
|                                              const SystemZSubtarget &STI)
 | |
|     : TargetLowering(TM), Subtarget(STI) {
 | |
|   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
 | |
| 
 | |
|   // Set up the register classes.
 | |
|   if (Subtarget.hasHighWord())
 | |
|     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
 | |
|   else
 | |
|     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
 | |
|   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
 | |
|   if (Subtarget.hasVector()) {
 | |
|     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
 | |
|     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
 | |
|   } else {
 | |
|     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
 | |
|     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
 | |
|   }
 | |
|   addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
 | |
| 
 | |
|   if (Subtarget.hasVector()) {
 | |
|     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
 | |
|     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
 | |
|     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
 | |
|     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
 | |
|     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
 | |
|     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
 | |
|   }
 | |
| 
 | |
|   // Compute derived properties from the register classes
 | |
|   computeRegisterProperties(Subtarget.getRegisterInfo());
 | |
| 
 | |
|   // Set up special registers.
 | |
|   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
 | |
| 
 | |
|   // TODO: It may be better to default to latency-oriented scheduling, however
 | |
|   // LLVM's current latency-oriented scheduler can't handle physreg definitions
 | |
|   // such as SystemZ has with CC, so set this to the register-pressure
 | |
|   // scheduler, because it can.
 | |
|   setSchedulingPreference(Sched::RegPressure);
 | |
| 
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
|   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
 | |
| 
 | |
|   // Instructions are strings of 2-byte aligned 2-byte values.
 | |
|   setMinFunctionAlignment(2);
 | |
| 
 | |
|   // Handle operations that are handled in a similar way for all types.
 | |
|   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
 | |
|        I <= MVT::LAST_FP_VALUETYPE;
 | |
|        ++I) {
 | |
|     MVT VT = MVT::SimpleValueType(I);
 | |
|     if (isTypeLegal(VT)) {
 | |
|       // Lower SET_CC into an IPM-based sequence.
 | |
|       setOperationAction(ISD::SETCC, VT, Custom);
 | |
| 
 | |
|       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
 | |
|       setOperationAction(ISD::SELECT, VT, Expand);
 | |
| 
 | |
|       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
 | |
|       setOperationAction(ISD::SELECT_CC, VT, Custom);
 | |
|       setOperationAction(ISD::BR_CC,     VT, Custom);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Expand jump table branches as address arithmetic followed by an
 | |
|   // indirect jump.
 | |
|   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
 | |
| 
 | |
|   // Expand BRCOND into a BR_CC (see above).
 | |
|   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | |
| 
 | |
|   // Handle integer types.
 | |
|   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
 | |
|        I <= MVT::LAST_INTEGER_VALUETYPE;
 | |
|        ++I) {
 | |
|     MVT VT = MVT::SimpleValueType(I);
 | |
|     if (isTypeLegal(VT)) {
 | |
|       // Expand individual DIV and REMs into DIVREMs.
 | |
|       setOperationAction(ISD::SDIV, VT, Expand);
 | |
|       setOperationAction(ISD::UDIV, VT, Expand);
 | |
|       setOperationAction(ISD::SREM, VT, Expand);
 | |
|       setOperationAction(ISD::UREM, VT, Expand);
 | |
|       setOperationAction(ISD::SDIVREM, VT, Custom);
 | |
|       setOperationAction(ISD::UDIVREM, VT, Custom);
 | |
| 
 | |
|       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
 | |
|       // stores, putting a serialization instruction after the stores.
 | |
|       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
 | |
|       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
 | |
| 
 | |
|       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
 | |
|       // available, or if the operand is constant.
 | |
|       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
 | |
| 
 | |
|       // Use POPCNT on z196 and above.
 | |
|       if (Subtarget.hasPopulationCount())
 | |
|         setOperationAction(ISD::CTPOP, VT, Custom);
 | |
|       else
 | |
|         setOperationAction(ISD::CTPOP, VT, Expand);
 | |
| 
 | |
|       // No special instructions for these.
 | |
|       setOperationAction(ISD::CTTZ,            VT, Expand);
 | |
|       setOperationAction(ISD::ROTR,            VT, Expand);
 | |
| 
 | |
|       // Use *MUL_LOHI where possible instead of MULH*.
 | |
|       setOperationAction(ISD::MULHS, VT, Expand);
 | |
|       setOperationAction(ISD::MULHU, VT, Expand);
 | |
|       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
 | |
|       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
 | |
| 
 | |
|       // Only z196 and above have native support for conversions to unsigned.
 | |
|       // On z10, promoting to i64 doesn't generate an inexact condition for
 | |
|       // values that are outside the i32 range but in the i64 range, so use
 | |
|       // the default expansion.
 | |
|       if (!Subtarget.hasFPExtension())
 | |
|         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Type legalization will convert 8- and 16-bit atomic operations into
 | |
|   // forms that operate on i32s (but still keeping the original memory VT).
 | |
|   // Lower them into full i32 operations.
 | |
|   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
 | |
| 
 | |
|   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
 | |
| 
 | |
|   // Traps are legal, as we will convert them to "j .+2".
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // z10 has instructions for signed but not unsigned FP conversion.
 | |
|   // Handle unsigned 32-bit types as signed 64-bit types.
 | |
|   if (!Subtarget.hasFPExtension()) {
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
 | |
|   }
 | |
| 
 | |
|   // We have native support for a 64-bit CTLZ, via FLOGR.
 | |
|   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
 | |
|   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
 | |
| 
 | |
|   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
 | |
|   setOperationAction(ISD::OR, MVT::i64, Custom);
 | |
| 
 | |
|   // FIXME: Can we support these natively?
 | |
|   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
 | |
| 
 | |
|   // We have native instructions for i8, i16 and i32 extensions, but not i1.
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
|   for (MVT VT : MVT::integer_valuetypes()) {
 | |
|     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
 | |
|     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
 | |
|     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
 | |
|   }
 | |
| 
 | |
|   // Handle the various types of symbolic address.
 | |
|   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
 | |
|   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
 | |
|   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
 | |
|   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
 | |
| 
 | |
|   // We need to handle dynamic allocations specially because of the
 | |
|   // 160-byte area at the bottom of the stack.
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
 | |
|   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
 | |
| 
 | |
|   // Use custom expanders so that we can force the function to use
 | |
|   // a frame pointer.
 | |
|   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
 | |
|   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
 | |
| 
 | |
|   // Handle prefetches with PFD or PFDRL.
 | |
|   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
 | |
| 
 | |
|   for (MVT VT : MVT::vector_valuetypes()) {
 | |
|     // Assume by default that all vector operations need to be expanded.
 | |
|     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
 | |
|       if (getOperationAction(Opcode, VT) == Legal)
 | |
|         setOperationAction(Opcode, VT, Expand);
 | |
| 
 | |
|     // Likewise all truncating stores and extending loads.
 | |
|     for (MVT InnerVT : MVT::vector_valuetypes()) {
 | |
|       setTruncStoreAction(VT, InnerVT, Expand);
 | |
|       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
 | |
|       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
 | |
|       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
 | |
|     }
 | |
| 
 | |
|     if (isTypeLegal(VT)) {
 | |
|       // These operations are legal for anything that can be stored in a
 | |
|       // vector register, even if there is no native support for the format
 | |
|       // as such.  In particular, we can do these for v4f32 even though there
 | |
|       // are no specific instructions for that format.
 | |
|       setOperationAction(ISD::LOAD, VT, Legal);
 | |
|       setOperationAction(ISD::STORE, VT, Legal);
 | |
|       setOperationAction(ISD::VSELECT, VT, Legal);
 | |
|       setOperationAction(ISD::BITCAST, VT, Legal);
 | |
|       setOperationAction(ISD::UNDEF, VT, Legal);
 | |
| 
 | |
|       // Likewise, except that we need to replace the nodes with something
 | |
|       // more specific.
 | |
|       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle integer vector types.
 | |
|   for (MVT VT : MVT::integer_vector_valuetypes()) {
 | |
|     if (isTypeLegal(VT)) {
 | |
|       // These operations have direct equivalents.
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
 | |
|       setOperationAction(ISD::ADD, VT, Legal);
 | |
|       setOperationAction(ISD::SUB, VT, Legal);
 | |
|       if (VT != MVT::v2i64)
 | |
|         setOperationAction(ISD::MUL, VT, Legal);
 | |
|       setOperationAction(ISD::AND, VT, Legal);
 | |
|       setOperationAction(ISD::OR, VT, Legal);
 | |
|       setOperationAction(ISD::XOR, VT, Legal);
 | |
|       setOperationAction(ISD::CTPOP, VT, Custom);
 | |
|       setOperationAction(ISD::CTTZ, VT, Legal);
 | |
|       setOperationAction(ISD::CTLZ, VT, Legal);
 | |
| 
 | |
|       // Convert a GPR scalar to a vector by inserting it into element 0.
 | |
|       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
 | |
| 
 | |
|       // Use a series of unpacks for extensions.
 | |
|       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
 | |
|       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
 | |
| 
 | |
|       // Detect shifts by a scalar amount and convert them into
 | |
|       // V*_BY_SCALAR.
 | |
|       setOperationAction(ISD::SHL, VT, Custom);
 | |
|       setOperationAction(ISD::SRA, VT, Custom);
 | |
|       setOperationAction(ISD::SRL, VT, Custom);
 | |
| 
 | |
|       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
 | |
|       // converted into ROTL.
 | |
|       setOperationAction(ISD::ROTL, VT, Expand);
 | |
|       setOperationAction(ISD::ROTR, VT, Expand);
 | |
| 
 | |
|       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
 | |
|       // and inverting the result as necessary.
 | |
|       setOperationAction(ISD::SETCC, VT, Custom);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Subtarget.hasVector()) {
 | |
|     // There should be no need to check for float types other than v2f64
 | |
|     // since <2 x f32> isn't a legal type.
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
 | |
|   }
 | |
| 
 | |
|   // Handle floating-point types.
 | |
|   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
 | |
|        I <= MVT::LAST_FP_VALUETYPE;
 | |
|        ++I) {
 | |
|     MVT VT = MVT::SimpleValueType(I);
 | |
|     if (isTypeLegal(VT)) {
 | |
|       // We can use FI for FRINT.
 | |
|       setOperationAction(ISD::FRINT, VT, Legal);
 | |
| 
 | |
|       // We can use the extended form of FI for other rounding operations.
 | |
|       if (Subtarget.hasFPExtension()) {
 | |
|         setOperationAction(ISD::FNEARBYINT, VT, Legal);
 | |
|         setOperationAction(ISD::FFLOOR, VT, Legal);
 | |
|         setOperationAction(ISD::FCEIL, VT, Legal);
 | |
|         setOperationAction(ISD::FTRUNC, VT, Legal);
 | |
|         setOperationAction(ISD::FROUND, VT, Legal);
 | |
|       }
 | |
| 
 | |
|       // No special instructions for these.
 | |
|       setOperationAction(ISD::FSIN, VT, Expand);
 | |
|       setOperationAction(ISD::FCOS, VT, Expand);
 | |
|       setOperationAction(ISD::FSINCOS, VT, Expand);
 | |
|       setOperationAction(ISD::FREM, VT, Expand);
 | |
|       setOperationAction(ISD::FPOW, VT, Expand);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle floating-point vector types.
 | |
|   if (Subtarget.hasVector()) {
 | |
|     // Scalar-to-vector conversion is just a subreg.
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
 | |
| 
 | |
|     // Some insertions and extractions can be done directly but others
 | |
|     // need to go via integers.
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
 | |
| 
 | |
|     // These operations have direct equivalents.
 | |
|     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
 | |
|     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
 | |
|   }
 | |
| 
 | |
|   // We have fused multiply-addition for f32 and f64 but not f128.
 | |
|   setOperationAction(ISD::FMA, MVT::f32,  Legal);
 | |
|   setOperationAction(ISD::FMA, MVT::f64,  Legal);
 | |
|   setOperationAction(ISD::FMA, MVT::f128, Expand);
 | |
| 
 | |
|   // Needed so that we don't try to implement f128 constant loads using
 | |
|   // a load-and-extend of a f80 constant (in cases where the constant
 | |
|   // would fit in an f80).
 | |
|   for (MVT VT : MVT::fp_valuetypes())
 | |
|     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
 | |
| 
 | |
|   // Floating-point truncation and stores need to be done separately.
 | |
|   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
 | |
|   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
 | |
|   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
 | |
| 
 | |
|   // We have 64-bit FPR<->GPR moves, but need special handling for
 | |
|   // 32-bit forms.
 | |
|   if (!Subtarget.hasVector()) {
 | |
|     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
 | |
|   }
 | |
| 
 | |
|   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
 | |
|   // structure, but VAEND is a no-op.
 | |
|   setOperationAction(ISD::VASTART, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
 | |
|   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
 | |
| 
 | |
|   // Codes for which we want to perform some z-specific combinations.
 | |
|   setTargetDAGCombine(ISD::SIGN_EXTEND);
 | |
|   setTargetDAGCombine(ISD::STORE);
 | |
|   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
 | |
|   setTargetDAGCombine(ISD::FP_ROUND);
 | |
|   setTargetDAGCombine(ISD::BSWAP);
 | |
|   setTargetDAGCombine(ISD::SHL);
 | |
|   setTargetDAGCombine(ISD::SRA);
 | |
|   setTargetDAGCombine(ISD::SRL);
 | |
|   setTargetDAGCombine(ISD::ROTL);
 | |
| 
 | |
|   // Handle intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
| 
 | |
|   // We want to use MVC in preference to even a single load/store pair.
 | |
|   MaxStoresPerMemcpy = 0;
 | |
|   MaxStoresPerMemcpyOptSize = 0;
 | |
| 
 | |
|   // The main memset sequence is a byte store followed by an MVC.
 | |
|   // Two STC or MV..I stores win over that, but the kind of fused stores
 | |
|   // generated by target-independent code don't when the byte value is
 | |
|   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
 | |
|   // than "STC;MVC".  Handle the choice in target-specific code instead.
 | |
|   MaxStoresPerMemset = 0;
 | |
|   MaxStoresPerMemsetOptSize = 0;
 | |
| }
 | |
| 
 | |
| EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
 | |
|                                               LLVMContext &, EVT VT) const {
 | |
|   if (!VT.isVector())
 | |
|     return MVT::i32;
 | |
|   return VT.changeVectorElementTypeToInteger();
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
 | |
|   VT = VT.getScalarType();
 | |
| 
 | |
|   if (!VT.isSimple())
 | |
|     return false;
 | |
| 
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     return true;
 | |
|   case MVT::f128:
 | |
|     return false;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
 | |
|   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
 | |
|   return Imm.isZero() || Imm.isNegZero();
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
 | |
|   // We can use CGFI or CLGFI.
 | |
|   return isInt<32>(Imm) || isUInt<32>(Imm);
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
 | |
|   // We can use ALGFI or SLGFI.
 | |
|   return isUInt<32>(Imm) || isUInt<32>(-Imm);
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
 | |
|                                                            unsigned,
 | |
|                                                            unsigned,
 | |
|                                                            bool *Fast) const {
 | |
|   // Unaligned accesses should never be slower than the expanded version.
 | |
|   // We check specifically for aligned accesses in the few cases where
 | |
|   // they are required.
 | |
|   if (Fast)
 | |
|     *Fast = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
 | |
|                                                   const AddrMode &AM, Type *Ty,
 | |
|                                                   unsigned AS) const {
 | |
|   // Punt on globals for now, although they can be used in limited
 | |
|   // RELATIVE LONG cases.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   // Require a 20-bit signed offset.
 | |
|   if (!isInt<20>(AM.BaseOffs))
 | |
|     return false;
 | |
| 
 | |
|   // Indexing is OK but no scale factor can be applied.
 | |
|   return AM.Scale == 0 || AM.Scale == 1;
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isFoldableMemAccessOffset(Instruction *I,
 | |
|                                                       int64_t Offset) const {
 | |
|   // This only applies to z13.
 | |
|   if (!Subtarget.hasVector())
 | |
|     return true;
 | |
| 
 | |
|   // * Use LDE instead of LE/LEY to avoid partial register
 | |
|   //   dependencies (LDE only supports small offsets).
 | |
|   // * Utilize the vector registers to hold floating point
 | |
|   //   values (vector load / store instructions only support small
 | |
|   //   offsets).
 | |
| 
 | |
|   assert (isa<LoadInst>(I) || isa<StoreInst>(I));
 | |
|   Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
 | |
|                        I->getOperand(0)->getType());
 | |
|   bool IsFPAccess = MemAccessTy->isFloatingPointTy();
 | |
|   bool IsVectorAccess = MemAccessTy->isVectorTy();
 | |
| 
 | |
|   // A store of an extracted vector element will be combined into a VSTE type
 | |
|   // instruction.
 | |
|   if (!IsVectorAccess && isa<StoreInst>(I)) {
 | |
|     Value *DataOp = I->getOperand(0);
 | |
|     if (isa<ExtractElementInst>(DataOp))
 | |
|       IsVectorAccess = true;
 | |
|   }
 | |
| 
 | |
|   // A load which gets inserted into a vector element will be combined into a
 | |
|   // VLE type instruction.
 | |
|   if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
 | |
|     User *LoadUser = *I->user_begin();
 | |
|     if (isa<InsertElementInst>(LoadUser))
 | |
|       IsVectorAccess = true;
 | |
|   }
 | |
| 
 | |
|   if (!isUInt<12>(Offset) && (IsFPAccess || IsVectorAccess))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
 | |
|   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
 | |
|     return false;
 | |
|   unsigned FromBits = FromType->getPrimitiveSizeInBits();
 | |
|   unsigned ToBits = ToType->getPrimitiveSizeInBits();
 | |
|   return FromBits > ToBits;
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
 | |
|   if (!FromVT.isInteger() || !ToVT.isInteger())
 | |
|     return false;
 | |
|   unsigned FromBits = FromVT.getSizeInBits();
 | |
|   unsigned ToBits = ToVT.getSizeInBits();
 | |
|   return FromBits > ToBits;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Inline asm support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TargetLowering::ConstraintType
 | |
| SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'a': // Address register
 | |
|     case 'd': // Data register (equivalent to 'r')
 | |
|     case 'f': // Floating-point register
 | |
|     case 'h': // High-part register
 | |
|     case 'r': // General-purpose register
 | |
|       return C_RegisterClass;
 | |
| 
 | |
|     case 'Q': // Memory with base and unsigned 12-bit displacement
 | |
|     case 'R': // Likewise, plus an index
 | |
|     case 'S': // Memory with base and signed 20-bit displacement
 | |
|     case 'T': // Likewise, plus an index
 | |
|     case 'm': // Equivalent to 'T'.
 | |
|       return C_Memory;
 | |
| 
 | |
|     case 'I': // Unsigned 8-bit constant
 | |
|     case 'J': // Unsigned 12-bit constant
 | |
|     case 'K': // Signed 16-bit constant
 | |
|     case 'L': // Signed 20-bit displacement (on all targets we support)
 | |
|     case 'M': // 0x7fffffff
 | |
|       return C_Other;
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| TargetLowering::ConstraintWeight SystemZTargetLowering::
 | |
| getSingleConstraintMatchWeight(AsmOperandInfo &info,
 | |
|                                const char *constraint) const {
 | |
|   ConstraintWeight weight = CW_Invalid;
 | |
|   Value *CallOperandVal = info.CallOperandVal;
 | |
|   // If we don't have a value, we can't do a match,
 | |
|   // but allow it at the lowest weight.
 | |
|   if (!CallOperandVal)
 | |
|     return CW_Default;
 | |
|   Type *type = CallOperandVal->getType();
 | |
|   // Look at the constraint type.
 | |
|   switch (*constraint) {
 | |
|   default:
 | |
|     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
 | |
|     break;
 | |
| 
 | |
|   case 'a': // Address register
 | |
|   case 'd': // Data register (equivalent to 'r')
 | |
|   case 'h': // High-part register
 | |
|   case 'r': // General-purpose register
 | |
|     if (CallOperandVal->getType()->isIntegerTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
| 
 | |
|   case 'f': // Floating-point register
 | |
|     if (type->isFloatingPointTy())
 | |
|       weight = CW_Register;
 | |
|     break;
 | |
| 
 | |
|   case 'I': // Unsigned 8-bit constant
 | |
|     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
 | |
|       if (isUInt<8>(C->getZExtValue()))
 | |
|         weight = CW_Constant;
 | |
|     break;
 | |
| 
 | |
|   case 'J': // Unsigned 12-bit constant
 | |
|     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
 | |
|       if (isUInt<12>(C->getZExtValue()))
 | |
|         weight = CW_Constant;
 | |
|     break;
 | |
| 
 | |
|   case 'K': // Signed 16-bit constant
 | |
|     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
 | |
|       if (isInt<16>(C->getSExtValue()))
 | |
|         weight = CW_Constant;
 | |
|     break;
 | |
| 
 | |
|   case 'L': // Signed 20-bit displacement (on all targets we support)
 | |
|     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
 | |
|       if (isInt<20>(C->getSExtValue()))
 | |
|         weight = CW_Constant;
 | |
|     break;
 | |
| 
 | |
|   case 'M': // 0x7fffffff
 | |
|     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
 | |
|       if (C->getZExtValue() == 0x7fffffff)
 | |
|         weight = CW_Constant;
 | |
|     break;
 | |
|   }
 | |
|   return weight;
 | |
| }
 | |
| 
 | |
| // Parse a "{tNNN}" register constraint for which the register type "t"
 | |
| // has already been verified.  MC is the class associated with "t" and
 | |
| // Map maps 0-based register numbers to LLVM register numbers.
 | |
| static std::pair<unsigned, const TargetRegisterClass *>
 | |
| parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
 | |
|                     const unsigned *Map) {
 | |
|   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
 | |
|   if (isdigit(Constraint[2])) {
 | |
|     unsigned Index;
 | |
|     bool Failed =
 | |
|         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
 | |
|     if (!Failed && Index < 16 && Map[Index])
 | |
|       return std::make_pair(Map[Index], RC);
 | |
|   }
 | |
|   return std::make_pair(0U, nullptr);
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass *>
 | |
| SystemZTargetLowering::getRegForInlineAsmConstraint(
 | |
|     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'd': // Data register (equivalent to 'r')
 | |
|     case 'r': // General-purpose register
 | |
|       if (VT == MVT::i64)
 | |
|         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
 | |
|       else if (VT == MVT::i128)
 | |
|         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
 | |
|       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
 | |
| 
 | |
|     case 'a': // Address register
 | |
|       if (VT == MVT::i64)
 | |
|         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
 | |
|       else if (VT == MVT::i128)
 | |
|         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
 | |
|       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
 | |
| 
 | |
|     case 'h': // High-part register (an LLVM extension)
 | |
|       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
 | |
| 
 | |
|     case 'f': // Floating-point register
 | |
|       if (VT == MVT::f64)
 | |
|         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
 | |
|       else if (VT == MVT::f128)
 | |
|         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
 | |
|       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
 | |
|     }
 | |
|   }
 | |
|   if (Constraint.size() > 0 && Constraint[0] == '{') {
 | |
|     // We need to override the default register parsing for GPRs and FPRs
 | |
|     // because the interpretation depends on VT.  The internal names of
 | |
|     // the registers are also different from the external names
 | |
|     // (F0D and F0S instead of F0, etc.).
 | |
|     if (Constraint[1] == 'r') {
 | |
|       if (VT == MVT::i32)
 | |
|         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
 | |
|                                    SystemZMC::GR32Regs);
 | |
|       if (VT == MVT::i128)
 | |
|         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
 | |
|                                    SystemZMC::GR128Regs);
 | |
|       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
 | |
|                                  SystemZMC::GR64Regs);
 | |
|     }
 | |
|     if (Constraint[1] == 'f') {
 | |
|       if (VT == MVT::f32)
 | |
|         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
 | |
|                                    SystemZMC::FP32Regs);
 | |
|       if (VT == MVT::f128)
 | |
|         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
 | |
|                                    SystemZMC::FP128Regs);
 | |
|       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
 | |
|                                  SystemZMC::FP64Regs);
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
 | |
| }
 | |
| 
 | |
| void SystemZTargetLowering::
 | |
| LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
 | |
|                              std::vector<SDValue> &Ops,
 | |
|                              SelectionDAG &DAG) const {
 | |
|   // Only support length 1 constraints for now.
 | |
|   if (Constraint.length() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     case 'I': // Unsigned 8-bit constant
 | |
|       if (auto *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (isUInt<8>(C->getZExtValue()))
 | |
|           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
 | |
|                                               Op.getValueType()));
 | |
|       return;
 | |
| 
 | |
|     case 'J': // Unsigned 12-bit constant
 | |
|       if (auto *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (isUInt<12>(C->getZExtValue()))
 | |
|           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
 | |
|                                               Op.getValueType()));
 | |
|       return;
 | |
| 
 | |
|     case 'K': // Signed 16-bit constant
 | |
|       if (auto *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (isInt<16>(C->getSExtValue()))
 | |
|           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
 | |
|                                               Op.getValueType()));
 | |
|       return;
 | |
| 
 | |
|     case 'L': // Signed 20-bit displacement (on all targets we support)
 | |
|       if (auto *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (isInt<20>(C->getSExtValue()))
 | |
|           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
 | |
|                                               Op.getValueType()));
 | |
|       return;
 | |
| 
 | |
|     case 'M': // 0x7fffffff
 | |
|       if (auto *C = dyn_cast<ConstantSDNode>(Op))
 | |
|         if (C->getZExtValue() == 0x7fffffff)
 | |
|           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
 | |
|                                               Op.getValueType()));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Calling conventions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SystemZGenCallingConv.inc"
 | |
| 
 | |
| bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
 | |
|                                                      Type *ToType) const {
 | |
|   return isTruncateFree(FromType, ToType);
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
 | |
|   return CI->isTailCall();
 | |
| }
 | |
| 
 | |
| // We do not yet support 128-bit single-element vector types.  If the user
 | |
| // attempts to use such types as function argument or return type, prefer
 | |
| // to error out instead of emitting code violating the ABI.
 | |
| static void VerifyVectorType(MVT VT, EVT ArgVT) {
 | |
|   if (ArgVT.isVector() && !VT.isVector())
 | |
|     report_fatal_error("Unsupported vector argument or return type");
 | |
| }
 | |
| 
 | |
| static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
 | |
|   for (unsigned i = 0; i < Ins.size(); ++i)
 | |
|     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
 | |
| }
 | |
| 
 | |
| static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
 | |
|   for (unsigned i = 0; i < Outs.size(); ++i)
 | |
|     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
 | |
| }
 | |
| 
 | |
| // Value is a value that has been passed to us in the location described by VA
 | |
| // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
 | |
| // any loads onto Chain.
 | |
| static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                    CCValAssign &VA, SDValue Chain,
 | |
|                                    SDValue Value) {
 | |
|   // If the argument has been promoted from a smaller type, insert an
 | |
|   // assertion to capture this.
 | |
|   if (VA.getLocInfo() == CCValAssign::SExt)
 | |
|     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
 | |
|                         DAG.getValueType(VA.getValVT()));
 | |
|   else if (VA.getLocInfo() == CCValAssign::ZExt)
 | |
|     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
 | |
|                         DAG.getValueType(VA.getValVT()));
 | |
| 
 | |
|   if (VA.isExtInLoc())
 | |
|     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
 | |
|   else if (VA.getLocInfo() == CCValAssign::BCvt) {
 | |
|     // If this is a short vector argument loaded from the stack,
 | |
|     // extend from i64 to full vector size and then bitcast.
 | |
|     assert(VA.getLocVT() == MVT::i64);
 | |
|     assert(VA.getValVT().isVector());
 | |
|     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
 | |
|     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
 | |
|   } else
 | |
|     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
 | |
|   return Value;
 | |
| }
 | |
| 
 | |
| // Value is a value of type VA.getValVT() that we need to copy into
 | |
| // the location described by VA.  Return a copy of Value converted to
 | |
| // VA.getValVT().  The caller is responsible for handling indirect values.
 | |
| static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                    CCValAssign &VA, SDValue Value) {
 | |
|   switch (VA.getLocInfo()) {
 | |
|   case CCValAssign::SExt:
 | |
|     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
 | |
|   case CCValAssign::ZExt:
 | |
|     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
 | |
|   case CCValAssign::AExt:
 | |
|     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
 | |
|   case CCValAssign::BCvt:
 | |
|     // If this is a short vector argument to be stored to the stack,
 | |
|     // bitcast to v2i64 and then extract first element.
 | |
|     assert(VA.getLocVT() == MVT::i64);
 | |
|     assert(VA.getValVT().isVector());
 | |
|     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
 | |
|                        DAG.getConstant(0, DL, MVT::i32));
 | |
|   case CCValAssign::Full:
 | |
|     return Value;
 | |
|   default:
 | |
|     llvm_unreachable("Unhandled getLocInfo()");
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::LowerFormalArguments(
 | |
|     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
 | |
|     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
 | |
|     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   SystemZMachineFunctionInfo *FuncInfo =
 | |
|       MF.getInfo<SystemZMachineFunctionInfo>();
 | |
|   auto *TFL =
 | |
|       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   // Detect unsupported vector argument types.
 | |
|   if (Subtarget.hasVector())
 | |
|     VerifyVectorTypes(Ins);
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
 | |
| 
 | |
|   unsigned NumFixedGPRs = 0;
 | |
|   unsigned NumFixedFPRs = 0;
 | |
|   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | |
|     SDValue ArgValue;
 | |
|     CCValAssign &VA = ArgLocs[I];
 | |
|     EVT LocVT = VA.getLocVT();
 | |
|     if (VA.isRegLoc()) {
 | |
|       // Arguments passed in registers
 | |
|       const TargetRegisterClass *RC;
 | |
|       switch (LocVT.getSimpleVT().SimpleTy) {
 | |
|       default:
 | |
|         // Integers smaller than i64 should be promoted to i64.
 | |
|         llvm_unreachable("Unexpected argument type");
 | |
|       case MVT::i32:
 | |
|         NumFixedGPRs += 1;
 | |
|         RC = &SystemZ::GR32BitRegClass;
 | |
|         break;
 | |
|       case MVT::i64:
 | |
|         NumFixedGPRs += 1;
 | |
|         RC = &SystemZ::GR64BitRegClass;
 | |
|         break;
 | |
|       case MVT::f32:
 | |
|         NumFixedFPRs += 1;
 | |
|         RC = &SystemZ::FP32BitRegClass;
 | |
|         break;
 | |
|       case MVT::f64:
 | |
|         NumFixedFPRs += 1;
 | |
|         RC = &SystemZ::FP64BitRegClass;
 | |
|         break;
 | |
|       case MVT::v16i8:
 | |
|       case MVT::v8i16:
 | |
|       case MVT::v4i32:
 | |
|       case MVT::v2i64:
 | |
|       case MVT::v4f32:
 | |
|       case MVT::v2f64:
 | |
|         RC = &SystemZ::VR128BitRegClass;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       unsigned VReg = MRI.createVirtualRegister(RC);
 | |
|       MRI.addLiveIn(VA.getLocReg(), VReg);
 | |
|       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
 | |
|     } else {
 | |
|       assert(VA.isMemLoc() && "Argument not register or memory");
 | |
| 
 | |
|       // Create the frame index object for this incoming parameter.
 | |
|       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
 | |
|                                      VA.getLocMemOffset(), true);
 | |
| 
 | |
|       // Create the SelectionDAG nodes corresponding to a load
 | |
|       // from this parameter.  Unpromoted ints and floats are
 | |
|       // passed as right-justified 8-byte values.
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
 | |
|         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
 | |
|                           DAG.getIntPtrConstant(4, DL));
 | |
|       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
 | |
|                              MachinePointerInfo::getFixedStack(MF, FI));
 | |
|     }
 | |
| 
 | |
|     // Convert the value of the argument register into the value that's
 | |
|     // being passed.
 | |
|     if (VA.getLocInfo() == CCValAssign::Indirect) {
 | |
|       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
 | |
|                                    MachinePointerInfo()));
 | |
|       // If the original argument was split (e.g. i128), we need
 | |
|       // to load all parts of it here (using the same address).
 | |
|       unsigned ArgIndex = Ins[I].OrigArgIndex;
 | |
|       assert (Ins[I].PartOffset == 0);
 | |
|       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
 | |
|         CCValAssign &PartVA = ArgLocs[I + 1];
 | |
|         unsigned PartOffset = Ins[I + 1].PartOffset;
 | |
|         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
 | |
|                                       DAG.getIntPtrConstant(PartOffset, DL));
 | |
|         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
 | |
|                                      MachinePointerInfo()));
 | |
|         ++I;
 | |
|       }
 | |
|     } else
 | |
|       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
 | |
|   }
 | |
| 
 | |
|   if (IsVarArg) {
 | |
|     // Save the number of non-varargs registers for later use by va_start, etc.
 | |
|     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
 | |
|     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
 | |
| 
 | |
|     // Likewise the address (in the form of a frame index) of where the
 | |
|     // first stack vararg would be.  The 1-byte size here is arbitrary.
 | |
|     int64_t StackSize = CCInfo.getNextStackOffset();
 | |
|     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
 | |
| 
 | |
|     // ...and a similar frame index for the caller-allocated save area
 | |
|     // that will be used to store the incoming registers.
 | |
|     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
 | |
|     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
 | |
|     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
 | |
| 
 | |
|     // Store the FPR varargs in the reserved frame slots.  (We store the
 | |
|     // GPRs as part of the prologue.)
 | |
|     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
 | |
|       SDValue MemOps[SystemZ::NumArgFPRs];
 | |
|       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
 | |
|         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
 | |
|         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
 | |
|         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
 | |
|         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
 | |
|                                      &SystemZ::FP64BitRegClass);
 | |
|         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
 | |
|         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
 | |
|                                  MachinePointerInfo::getFixedStack(MF, FI));
 | |
|       }
 | |
|       // Join the stores, which are independent of one another.
 | |
|       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
 | |
|                           makeArrayRef(&MemOps[NumFixedFPRs],
 | |
|                                        SystemZ::NumArgFPRs-NumFixedFPRs));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| static bool canUseSiblingCall(const CCState &ArgCCInfo,
 | |
|                               SmallVectorImpl<CCValAssign> &ArgLocs,
 | |
|                               SmallVectorImpl<ISD::OutputArg> &Outs) {
 | |
|   // Punt if there are any indirect or stack arguments, or if the call
 | |
|   // needs the callee-saved argument register R6, or if the call uses
 | |
|   // the callee-saved register arguments SwiftSelf and SwiftError.
 | |
|   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | |
|     CCValAssign &VA = ArgLocs[I];
 | |
|     if (VA.getLocInfo() == CCValAssign::Indirect)
 | |
|       return false;
 | |
|     if (!VA.isRegLoc())
 | |
|       return false;
 | |
|     unsigned Reg = VA.getLocReg();
 | |
|     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
 | |
|       return false;
 | |
|     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
 | |
|                                  SmallVectorImpl<SDValue> &InVals) const {
 | |
|   SelectionDAG &DAG = CLI.DAG;
 | |
|   SDLoc &DL = CLI.DL;
 | |
|   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
 | |
|   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
 | |
|   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
 | |
|   SDValue Chain = CLI.Chain;
 | |
|   SDValue Callee = CLI.Callee;
 | |
|   bool &IsTailCall = CLI.IsTailCall;
 | |
|   CallingConv::ID CallConv = CLI.CallConv;
 | |
|   bool IsVarArg = CLI.IsVarArg;
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   EVT PtrVT = getPointerTy(MF.getDataLayout());
 | |
| 
 | |
|   // Detect unsupported vector argument and return types.
 | |
|   if (Subtarget.hasVector()) {
 | |
|     VerifyVectorTypes(Outs);
 | |
|     VerifyVectorTypes(Ins);
 | |
|   }
 | |
| 
 | |
|   // Analyze the operands of the call, assigning locations to each operand.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
 | |
|   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
 | |
| 
 | |
|   // We don't support GuaranteedTailCallOpt, only automatically-detected
 | |
|   // sibling calls.
 | |
|   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
 | |
|     IsTailCall = false;
 | |
| 
 | |
|   // Get a count of how many bytes are to be pushed on the stack.
 | |
|   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
 | |
| 
 | |
|   // Mark the start of the call.
 | |
|   if (!IsTailCall)
 | |
|     Chain = DAG.getCALLSEQ_START(Chain,
 | |
|                                  DAG.getConstant(NumBytes, DL, PtrVT, true),
 | |
|                                  DL);
 | |
| 
 | |
|   // Copy argument values to their designated locations.
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
|   SDValue StackPtr;
 | |
|   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
 | |
|     CCValAssign &VA = ArgLocs[I];
 | |
|     SDValue ArgValue = OutVals[I];
 | |
| 
 | |
|     if (VA.getLocInfo() == CCValAssign::Indirect) {
 | |
|       // Store the argument in a stack slot and pass its address.
 | |
|       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
 | |
|       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
 | |
|       MemOpChains.push_back(
 | |
|           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
 | |
|                        MachinePointerInfo::getFixedStack(MF, FI)));
 | |
|       // If the original argument was split (e.g. i128), we need
 | |
|       // to store all parts of it here (and pass just one address).
 | |
|       unsigned ArgIndex = Outs[I].OrigArgIndex;
 | |
|       assert (Outs[I].PartOffset == 0);
 | |
|       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
 | |
|         SDValue PartValue = OutVals[I + 1];
 | |
|         unsigned PartOffset = Outs[I + 1].PartOffset;
 | |
|         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
 | |
|                                       DAG.getIntPtrConstant(PartOffset, DL));
 | |
|         MemOpChains.push_back(
 | |
|             DAG.getStore(Chain, DL, PartValue, Address,
 | |
|                          MachinePointerInfo::getFixedStack(MF, FI)));
 | |
|         ++I;
 | |
|       }
 | |
|       ArgValue = SpillSlot;
 | |
|     } else
 | |
|       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
 | |
| 
 | |
|     if (VA.isRegLoc())
 | |
|       // Queue up the argument copies and emit them at the end.
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
 | |
|     else {
 | |
|       assert(VA.isMemLoc() && "Argument not register or memory");
 | |
| 
 | |
|       // Work out the address of the stack slot.  Unpromoted ints and
 | |
|       // floats are passed as right-justified 8-byte values.
 | |
|       if (!StackPtr.getNode())
 | |
|         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
 | |
|       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
 | |
|       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
 | |
|         Offset += 4;
 | |
|       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
 | |
|                                     DAG.getIntPtrConstant(Offset, DL));
 | |
| 
 | |
|       // Emit the store.
 | |
|       MemOpChains.push_back(
 | |
|           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Join the stores, which are independent of one another.
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
 | |
| 
 | |
|   // Accept direct calls by converting symbolic call addresses to the
 | |
|   // associated Target* opcodes.  Force %r1 to be used for indirect
 | |
|   // tail calls.
 | |
|   SDValue Glue;
 | |
|   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
 | |
|     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
 | |
|   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
 | |
|     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
 | |
|     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
 | |
|   } else if (IsTailCall) {
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
 | |
|     Glue = Chain.getValue(1);
 | |
|     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
 | |
|   }
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes, chained and glued together.
 | |
|   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
 | |
|                              RegsToPass[I].second, Glue);
 | |
|     Glue = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   // The first call operand is the chain and the second is the target address.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(Callee);
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are
 | |
|   // known live into the call.
 | |
|   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
 | |
|                                   RegsToPass[I].second.getValueType()));
 | |
| 
 | |
|   // Add a register mask operand representing the call-preserved registers.
 | |
|   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | |
|   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
 | |
|   assert(Mask && "Missing call preserved mask for calling convention");
 | |
|   Ops.push_back(DAG.getRegisterMask(Mask));
 | |
| 
 | |
|   // Glue the call to the argument copies, if any.
 | |
|   if (Glue.getNode())
 | |
|     Ops.push_back(Glue);
 | |
| 
 | |
|   // Emit the call.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   if (IsTailCall)
 | |
|     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
 | |
|   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
 | |
|   Glue = Chain.getValue(1);
 | |
| 
 | |
|   // Mark the end of the call, which is glued to the call itself.
 | |
|   Chain = DAG.getCALLSEQ_END(Chain,
 | |
|                              DAG.getConstant(NumBytes, DL, PtrVT, true),
 | |
|                              DAG.getConstant(0, DL, PtrVT, true),
 | |
|                              Glue, DL);
 | |
|   Glue = Chain.getValue(1);
 | |
| 
 | |
|   // Assign locations to each value returned by this call.
 | |
|   SmallVector<CCValAssign, 16> RetLocs;
 | |
|   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
 | |
|   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
 | |
|     CCValAssign &VA = RetLocs[I];
 | |
| 
 | |
|     // Copy the value out, gluing the copy to the end of the call sequence.
 | |
|     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
 | |
|                                           VA.getLocVT(), Glue);
 | |
|     Chain = RetValue.getValue(1);
 | |
|     Glue = RetValue.getValue(2);
 | |
| 
 | |
|     // Convert the value of the return register into the value that's
 | |
|     // being returned.
 | |
|     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| bool SystemZTargetLowering::
 | |
| CanLowerReturn(CallingConv::ID CallConv,
 | |
|                MachineFunction &MF, bool isVarArg,
 | |
|                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                LLVMContext &Context) const {
 | |
|   // Detect unsupported vector return types.
 | |
|   if (Subtarget.hasVector())
 | |
|     VerifyVectorTypes(Outs);
 | |
| 
 | |
|   // Special case that we cannot easily detect in RetCC_SystemZ since
 | |
|   // i128 is not a legal type.
 | |
|   for (auto &Out : Outs)
 | |
|     if (Out.ArgVT == MVT::i128)
 | |
|       return false;
 | |
| 
 | |
|   SmallVector<CCValAssign, 16> RetLocs;
 | |
|   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
 | |
|   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
 | |
|                                    bool IsVarArg,
 | |
|                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                    const SmallVectorImpl<SDValue> &OutVals,
 | |
|                                    const SDLoc &DL, SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Detect unsupported vector return types.
 | |
|   if (Subtarget.hasVector())
 | |
|     VerifyVectorTypes(Outs);
 | |
| 
 | |
|   // Assign locations to each returned value.
 | |
|   SmallVector<CCValAssign, 16> RetLocs;
 | |
|   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
 | |
|   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
 | |
| 
 | |
|   // Quick exit for void returns
 | |
|   if (RetLocs.empty())
 | |
|     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   SDValue Glue;
 | |
|   SmallVector<SDValue, 4> RetOps;
 | |
|   RetOps.push_back(Chain);
 | |
|   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
 | |
|     CCValAssign &VA = RetLocs[I];
 | |
|     SDValue RetValue = OutVals[I];
 | |
| 
 | |
|     // Make the return register live on exit.
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
| 
 | |
|     // Promote the value as required.
 | |
|     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
 | |
| 
 | |
|     // Chain and glue the copies together.
 | |
|     unsigned Reg = VA.getLocReg();
 | |
|     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
 | |
|     Glue = Chain.getValue(1);
 | |
|     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
 | |
|   }
 | |
| 
 | |
|   // Update chain and glue.
 | |
|   RetOps[0] = Chain;
 | |
|   if (Glue.getNode())
 | |
|     RetOps.push_back(Glue);
 | |
| 
 | |
|   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad(
 | |
|     SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const {
 | |
|   return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
 | |
| }
 | |
| 
 | |
| // Return true if Op is an intrinsic node with chain that returns the CC value
 | |
| // as its only (other) argument.  Provide the associated SystemZISD opcode and
 | |
| // the mask of valid CC values if so.
 | |
| static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
 | |
|                                       unsigned &CCValid) {
 | |
|   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|   switch (Id) {
 | |
|   case Intrinsic::s390_tbegin:
 | |
|     Opcode = SystemZISD::TBEGIN;
 | |
|     CCValid = SystemZ::CCMASK_TBEGIN;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_tbegin_nofloat:
 | |
|     Opcode = SystemZISD::TBEGIN_NOFLOAT;
 | |
|     CCValid = SystemZ::CCMASK_TBEGIN;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_tend:
 | |
|     Opcode = SystemZISD::TEND;
 | |
|     CCValid = SystemZ::CCMASK_TEND;
 | |
|     return true;
 | |
| 
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return true if Op is an intrinsic node without chain that returns the
 | |
| // CC value as its final argument.  Provide the associated SystemZISD
 | |
| // opcode and the mask of valid CC values if so.
 | |
| static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
 | |
|   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   switch (Id) {
 | |
|   case Intrinsic::s390_vpkshs:
 | |
|   case Intrinsic::s390_vpksfs:
 | |
|   case Intrinsic::s390_vpksgs:
 | |
|     Opcode = SystemZISD::PACKS_CC;
 | |
|     CCValid = SystemZ::CCMASK_VCMP;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vpklshs:
 | |
|   case Intrinsic::s390_vpklsfs:
 | |
|   case Intrinsic::s390_vpklsgs:
 | |
|     Opcode = SystemZISD::PACKLS_CC;
 | |
|     CCValid = SystemZ::CCMASK_VCMP;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vceqbs:
 | |
|   case Intrinsic::s390_vceqhs:
 | |
|   case Intrinsic::s390_vceqfs:
 | |
|   case Intrinsic::s390_vceqgs:
 | |
|     Opcode = SystemZISD::VICMPES;
 | |
|     CCValid = SystemZ::CCMASK_VCMP;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vchbs:
 | |
|   case Intrinsic::s390_vchhs:
 | |
|   case Intrinsic::s390_vchfs:
 | |
|   case Intrinsic::s390_vchgs:
 | |
|     Opcode = SystemZISD::VICMPHS;
 | |
|     CCValid = SystemZ::CCMASK_VCMP;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vchlbs:
 | |
|   case Intrinsic::s390_vchlhs:
 | |
|   case Intrinsic::s390_vchlfs:
 | |
|   case Intrinsic::s390_vchlgs:
 | |
|     Opcode = SystemZISD::VICMPHLS;
 | |
|     CCValid = SystemZ::CCMASK_VCMP;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vtm:
 | |
|     Opcode = SystemZISD::VTM;
 | |
|     CCValid = SystemZ::CCMASK_VCMP;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vfaebs:
 | |
|   case Intrinsic::s390_vfaehs:
 | |
|   case Intrinsic::s390_vfaefs:
 | |
|     Opcode = SystemZISD::VFAE_CC;
 | |
|     CCValid = SystemZ::CCMASK_ANY;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vfaezbs:
 | |
|   case Intrinsic::s390_vfaezhs:
 | |
|   case Intrinsic::s390_vfaezfs:
 | |
|     Opcode = SystemZISD::VFAEZ_CC;
 | |
|     CCValid = SystemZ::CCMASK_ANY;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vfeebs:
 | |
|   case Intrinsic::s390_vfeehs:
 | |
|   case Intrinsic::s390_vfeefs:
 | |
|     Opcode = SystemZISD::VFEE_CC;
 | |
|     CCValid = SystemZ::CCMASK_ANY;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vfeezbs:
 | |
|   case Intrinsic::s390_vfeezhs:
 | |
|   case Intrinsic::s390_vfeezfs:
 | |
|     Opcode = SystemZISD::VFEEZ_CC;
 | |
|     CCValid = SystemZ::CCMASK_ANY;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vfenebs:
 | |
|   case Intrinsic::s390_vfenehs:
 | |
|   case Intrinsic::s390_vfenefs:
 | |
|     Opcode = SystemZISD::VFENE_CC;
 | |
|     CCValid = SystemZ::CCMASK_ANY;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vfenezbs:
 | |
|   case Intrinsic::s390_vfenezhs:
 | |
|   case Intrinsic::s390_vfenezfs:
 | |
|     Opcode = SystemZISD::VFENEZ_CC;
 | |
|     CCValid = SystemZ::CCMASK_ANY;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vistrbs:
 | |
|   case Intrinsic::s390_vistrhs:
 | |
|   case Intrinsic::s390_vistrfs:
 | |
|     Opcode = SystemZISD::VISTR_CC;
 | |
|     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vstrcbs:
 | |
|   case Intrinsic::s390_vstrchs:
 | |
|   case Intrinsic::s390_vstrcfs:
 | |
|     Opcode = SystemZISD::VSTRC_CC;
 | |
|     CCValid = SystemZ::CCMASK_ANY;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vstrczbs:
 | |
|   case Intrinsic::s390_vstrczhs:
 | |
|   case Intrinsic::s390_vstrczfs:
 | |
|     Opcode = SystemZISD::VSTRCZ_CC;
 | |
|     CCValid = SystemZ::CCMASK_ANY;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vfcedbs:
 | |
|     Opcode = SystemZISD::VFCMPES;
 | |
|     CCValid = SystemZ::CCMASK_VCMP;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vfchdbs:
 | |
|     Opcode = SystemZISD::VFCMPHS;
 | |
|     CCValid = SystemZ::CCMASK_VCMP;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vfchedbs:
 | |
|     Opcode = SystemZISD::VFCMPHES;
 | |
|     CCValid = SystemZ::CCMASK_VCMP;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_vftcidb:
 | |
|     Opcode = SystemZISD::VFTCI;
 | |
|     CCValid = SystemZ::CCMASK_VCMP;
 | |
|     return true;
 | |
| 
 | |
|   case Intrinsic::s390_tdc:
 | |
|     Opcode = SystemZISD::TDC;
 | |
|     CCValid = SystemZ::CCMASK_TDC;
 | |
|     return true;
 | |
| 
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Emit an intrinsic with chain with a glued value instead of its CC result.
 | |
| static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
 | |
|                                              unsigned Opcode) {
 | |
|   // Copy all operands except the intrinsic ID.
 | |
|   unsigned NumOps = Op.getNumOperands();
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   Ops.reserve(NumOps - 1);
 | |
|   Ops.push_back(Op.getOperand(0));
 | |
|   for (unsigned I = 2; I < NumOps; ++I)
 | |
|     Ops.push_back(Op.getOperand(I));
 | |
| 
 | |
|   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
 | |
|   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
 | |
|   SDValue OldChain = SDValue(Op.getNode(), 1);
 | |
|   SDValue NewChain = SDValue(Intr.getNode(), 0);
 | |
|   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
 | |
|   return Intr;
 | |
| }
 | |
| 
 | |
| // Emit an intrinsic with a glued value instead of its CC result.
 | |
| static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
 | |
|                                      unsigned Opcode) {
 | |
|   // Copy all operands except the intrinsic ID.
 | |
|   unsigned NumOps = Op.getNumOperands();
 | |
|   SmallVector<SDValue, 6> Ops;
 | |
|   Ops.reserve(NumOps - 1);
 | |
|   for (unsigned I = 1; I < NumOps; ++I)
 | |
|     Ops.push_back(Op.getOperand(I));
 | |
| 
 | |
|   if (Op->getNumValues() == 1)
 | |
|     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
 | |
|   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
 | |
|   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
 | |
|   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
 | |
| }
 | |
| 
 | |
| // CC is a comparison that will be implemented using an integer or
 | |
| // floating-point comparison.  Return the condition code mask for
 | |
| // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
 | |
| // unsigned comparisons and clear for signed ones.  In the floating-point
 | |
| // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
 | |
| static unsigned CCMaskForCondCode(ISD::CondCode CC) {
 | |
| #define CONV(X) \
 | |
|   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
 | |
|   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
 | |
|   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
 | |
| 
 | |
|   switch (CC) {
 | |
|   default:
 | |
|     llvm_unreachable("Invalid integer condition!");
 | |
| 
 | |
|   CONV(EQ);
 | |
|   CONV(NE);
 | |
|   CONV(GT);
 | |
|   CONV(GE);
 | |
|   CONV(LT);
 | |
|   CONV(LE);
 | |
| 
 | |
|   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
 | |
|   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
 | |
|   }
 | |
| #undef CONV
 | |
| }
 | |
| 
 | |
| // Return a sequence for getting a 1 from an IPM result when CC has a
 | |
| // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
 | |
| // The handling of CC values outside CCValid doesn't matter.
 | |
| static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
 | |
|   // Deal with cases where the result can be taken directly from a bit
 | |
|   // of the IPM result.
 | |
|   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
 | |
|     return IPMConversion(0, 0, SystemZ::IPM_CC);
 | |
|   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
 | |
|     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
 | |
| 
 | |
|   // Deal with cases where we can add a value to force the sign bit
 | |
|   // to contain the right value.  Putting the bit in 31 means we can
 | |
|   // use SRL rather than RISBG(L), and also makes it easier to get a
 | |
|   // 0/-1 value, so it has priority over the other tests below.
 | |
|   //
 | |
|   // These sequences rely on the fact that the upper two bits of the
 | |
|   // IPM result are zero.
 | |
|   uint64_t TopBit = uint64_t(1) << 31;
 | |
|   if (CCMask == (CCValid & SystemZ::CCMASK_0))
 | |
|     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
 | |
|   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
 | |
|     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
 | |
|   if (CCMask == (CCValid & (SystemZ::CCMASK_0
 | |
|                             | SystemZ::CCMASK_1
 | |
|                             | SystemZ::CCMASK_2)))
 | |
|     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
 | |
|   if (CCMask == (CCValid & SystemZ::CCMASK_3))
 | |
|     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
 | |
|   if (CCMask == (CCValid & (SystemZ::CCMASK_1
 | |
|                             | SystemZ::CCMASK_2
 | |
|                             | SystemZ::CCMASK_3)))
 | |
|     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
 | |
| 
 | |
|   // Next try inverting the value and testing a bit.  0/1 could be
 | |
|   // handled this way too, but we dealt with that case above.
 | |
|   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
 | |
|     return IPMConversion(-1, 0, SystemZ::IPM_CC);
 | |
| 
 | |
|   // Handle cases where adding a value forces a non-sign bit to contain
 | |
|   // the right value.
 | |
|   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
 | |
|     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
 | |
|   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
 | |
|     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
 | |
| 
 | |
|   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
 | |
|   // can be done by inverting the low CC bit and applying one of the
 | |
|   // sign-based extractions above.
 | |
|   if (CCMask == (CCValid & SystemZ::CCMASK_1))
 | |
|     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
 | |
|   if (CCMask == (CCValid & SystemZ::CCMASK_2))
 | |
|     return IPMConversion(1 << SystemZ::IPM_CC,
 | |
|                          TopBit - (3 << SystemZ::IPM_CC), 31);
 | |
|   if (CCMask == (CCValid & (SystemZ::CCMASK_0
 | |
|                             | SystemZ::CCMASK_1
 | |
|                             | SystemZ::CCMASK_3)))
 | |
|     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
 | |
|   if (CCMask == (CCValid & (SystemZ::CCMASK_0
 | |
|                             | SystemZ::CCMASK_2
 | |
|                             | SystemZ::CCMASK_3)))
 | |
|     return IPMConversion(1 << SystemZ::IPM_CC,
 | |
|                          TopBit - (1 << SystemZ::IPM_CC), 31);
 | |
| 
 | |
|   llvm_unreachable("Unexpected CC combination");
 | |
| }
 | |
| 
 | |
| // If C can be converted to a comparison against zero, adjust the operands
 | |
| // as necessary.
 | |
| static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
 | |
|   if (C.ICmpType == SystemZICMP::UnsignedOnly)
 | |
|     return;
 | |
| 
 | |
|   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
 | |
|   if (!ConstOp1)
 | |
|     return;
 | |
| 
 | |
|   int64_t Value = ConstOp1->getSExtValue();
 | |
|   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
 | |
|       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
 | |
|       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
 | |
|       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
 | |
|     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
 | |
|     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
 | |
|   }
 | |
| }
 | |
| 
 | |
| // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
 | |
| // adjust the operands as necessary.
 | |
| static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                              Comparison &C) {
 | |
|   // For us to make any changes, it must a comparison between a single-use
 | |
|   // load and a constant.
 | |
|   if (!C.Op0.hasOneUse() ||
 | |
|       C.Op0.getOpcode() != ISD::LOAD ||
 | |
|       C.Op1.getOpcode() != ISD::Constant)
 | |
|     return;
 | |
| 
 | |
|   // We must have an 8- or 16-bit load.
 | |
|   auto *Load = cast<LoadSDNode>(C.Op0);
 | |
|   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
 | |
|   if (NumBits != 8 && NumBits != 16)
 | |
|     return;
 | |
| 
 | |
|   // The load must be an extending one and the constant must be within the
 | |
|   // range of the unextended value.
 | |
|   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
 | |
|   uint64_t Value = ConstOp1->getZExtValue();
 | |
|   uint64_t Mask = (1 << NumBits) - 1;
 | |
|   if (Load->getExtensionType() == ISD::SEXTLOAD) {
 | |
|     // Make sure that ConstOp1 is in range of C.Op0.
 | |
|     int64_t SignedValue = ConstOp1->getSExtValue();
 | |
|     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
 | |
|       return;
 | |
|     if (C.ICmpType != SystemZICMP::SignedOnly) {
 | |
|       // Unsigned comparison between two sign-extended values is equivalent
 | |
|       // to unsigned comparison between two zero-extended values.
 | |
|       Value &= Mask;
 | |
|     } else if (NumBits == 8) {
 | |
|       // Try to treat the comparison as unsigned, so that we can use CLI.
 | |
|       // Adjust CCMask and Value as necessary.
 | |
|       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
 | |
|         // Test whether the high bit of the byte is set.
 | |
|         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
 | |
|       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
 | |
|         // Test whether the high bit of the byte is clear.
 | |
|         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
 | |
|       else
 | |
|         // No instruction exists for this combination.
 | |
|         return;
 | |
|       C.ICmpType = SystemZICMP::UnsignedOnly;
 | |
|     }
 | |
|   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
 | |
|     if (Value > Mask)
 | |
|       return;
 | |
|     // If the constant is in range, we can use any comparison.
 | |
|     C.ICmpType = SystemZICMP::Any;
 | |
|   } else
 | |
|     return;
 | |
| 
 | |
|   // Make sure that the first operand is an i32 of the right extension type.
 | |
|   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
 | |
|                               ISD::SEXTLOAD :
 | |
|                               ISD::ZEXTLOAD);
 | |
|   if (C.Op0.getValueType() != MVT::i32 ||
 | |
|       Load->getExtensionType() != ExtType)
 | |
|     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
 | |
|                            Load->getBasePtr(), Load->getPointerInfo(),
 | |
|                            Load->getMemoryVT(), Load->getAlignment(),
 | |
|                            Load->getMemOperand()->getFlags());
 | |
| 
 | |
|   // Make sure that the second operand is an i32 with the right value.
 | |
|   if (C.Op1.getValueType() != MVT::i32 ||
 | |
|       Value != ConstOp1->getZExtValue())
 | |
|     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
 | |
| }
 | |
| 
 | |
| // Return true if Op is either an unextended load, or a load suitable
 | |
| // for integer register-memory comparisons of type ICmpType.
 | |
| static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
 | |
|   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
 | |
|   if (Load) {
 | |
|     // There are no instructions to compare a register with a memory byte.
 | |
|     if (Load->getMemoryVT() == MVT::i8)
 | |
|       return false;
 | |
|     // Otherwise decide on extension type.
 | |
|     switch (Load->getExtensionType()) {
 | |
|     case ISD::NON_EXTLOAD:
 | |
|       return true;
 | |
|     case ISD::SEXTLOAD:
 | |
|       return ICmpType != SystemZICMP::UnsignedOnly;
 | |
|     case ISD::ZEXTLOAD:
 | |
|       return ICmpType != SystemZICMP::SignedOnly;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return true if it is better to swap the operands of C.
 | |
| static bool shouldSwapCmpOperands(const Comparison &C) {
 | |
|   // Leave f128 comparisons alone, since they have no memory forms.
 | |
|   if (C.Op0.getValueType() == MVT::f128)
 | |
|     return false;
 | |
| 
 | |
|   // Always keep a floating-point constant second, since comparisons with
 | |
|   // zero can use LOAD TEST and comparisons with other constants make a
 | |
|   // natural memory operand.
 | |
|   if (isa<ConstantFPSDNode>(C.Op1))
 | |
|     return false;
 | |
| 
 | |
|   // Never swap comparisons with zero since there are many ways to optimize
 | |
|   // those later.
 | |
|   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
 | |
|   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Also keep natural memory operands second if the loaded value is
 | |
|   // only used here.  Several comparisons have memory forms.
 | |
|   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
 | |
|   // In that case we generally prefer the memory to be second.
 | |
|   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
 | |
|     // The only exceptions are when the second operand is a constant and
 | |
|     // we can use things like CHHSI.
 | |
|     if (!ConstOp1)
 | |
|       return true;
 | |
|     // The unsigned memory-immediate instructions can handle 16-bit
 | |
|     // unsigned integers.
 | |
|     if (C.ICmpType != SystemZICMP::SignedOnly &&
 | |
|         isUInt<16>(ConstOp1->getZExtValue()))
 | |
|       return false;
 | |
|     // The signed memory-immediate instructions can handle 16-bit
 | |
|     // signed integers.
 | |
|     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
 | |
|         isInt<16>(ConstOp1->getSExtValue()))
 | |
|       return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Try to promote the use of CGFR and CLGFR.
 | |
|   unsigned Opcode0 = C.Op0.getOpcode();
 | |
|   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
 | |
|     return true;
 | |
|   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
 | |
|     return true;
 | |
|   if (C.ICmpType != SystemZICMP::SignedOnly &&
 | |
|       Opcode0 == ISD::AND &&
 | |
|       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
 | |
|       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return a version of comparison CC mask CCMask in which the LT and GT
 | |
| // actions are swapped.
 | |
| static unsigned reverseCCMask(unsigned CCMask) {
 | |
|   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
 | |
|           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
 | |
|           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
 | |
|           (CCMask & SystemZ::CCMASK_CMP_UO));
 | |
| }
 | |
| 
 | |
| // Check whether C tests for equality between X and Y and whether X - Y
 | |
| // or Y - X is also computed.  In that case it's better to compare the
 | |
| // result of the subtraction against zero.
 | |
| static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                  Comparison &C) {
 | |
|   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
 | |
|       C.CCMask == SystemZ::CCMASK_CMP_NE) {
 | |
|     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
 | |
|       SDNode *N = *I;
 | |
|       if (N->getOpcode() == ISD::SUB &&
 | |
|           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
 | |
|            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
 | |
|         C.Op0 = SDValue(N, 0);
 | |
|         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Check whether C compares a floating-point value with zero and if that
 | |
| // floating-point value is also negated.  In this case we can use the
 | |
| // negation to set CC, so avoiding separate LOAD AND TEST and
 | |
| // LOAD (NEGATIVE/COMPLEMENT) instructions.
 | |
| static void adjustForFNeg(Comparison &C) {
 | |
|   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
 | |
|   if (C1 && C1->isZero()) {
 | |
|     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
 | |
|       SDNode *N = *I;
 | |
|       if (N->getOpcode() == ISD::FNEG) {
 | |
|         C.Op0 = SDValue(N, 0);
 | |
|         C.CCMask = reverseCCMask(C.CCMask);
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Check whether C compares (shl X, 32) with 0 and whether X is
 | |
| // also sign-extended.  In that case it is better to test the result
 | |
| // of the sign extension using LTGFR.
 | |
| //
 | |
| // This case is important because InstCombine transforms a comparison
 | |
| // with (sext (trunc X)) into a comparison with (shl X, 32).
 | |
| static void adjustForLTGFR(Comparison &C) {
 | |
|   // Check for a comparison between (shl X, 32) and 0.
 | |
|   if (C.Op0.getOpcode() == ISD::SHL &&
 | |
|       C.Op0.getValueType() == MVT::i64 &&
 | |
|       C.Op1.getOpcode() == ISD::Constant &&
 | |
|       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
 | |
|     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
 | |
|     if (C1 && C1->getZExtValue() == 32) {
 | |
|       SDValue ShlOp0 = C.Op0.getOperand(0);
 | |
|       // See whether X has any SIGN_EXTEND_INREG uses.
 | |
|       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
 | |
|         SDNode *N = *I;
 | |
|         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
 | |
|             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
 | |
|           C.Op0 = SDValue(N, 0);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // If C compares the truncation of an extending load, try to compare
 | |
| // the untruncated value instead.  This exposes more opportunities to
 | |
| // reuse CC.
 | |
| static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                Comparison &C) {
 | |
|   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
 | |
|       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
 | |
|       C.Op1.getOpcode() == ISD::Constant &&
 | |
|       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
 | |
|     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
 | |
|     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
 | |
|       unsigned Type = L->getExtensionType();
 | |
|       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
 | |
|           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
 | |
|         C.Op0 = C.Op0.getOperand(0);
 | |
|         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return true if shift operation N has an in-range constant shift value.
 | |
| // Store it in ShiftVal if so.
 | |
| static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
 | |
|   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
 | |
|   if (!Shift)
 | |
|     return false;
 | |
| 
 | |
|   uint64_t Amount = Shift->getZExtValue();
 | |
|   if (Amount >= N.getValueSizeInBits())
 | |
|     return false;
 | |
| 
 | |
|   ShiftVal = Amount;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Check whether an AND with Mask is suitable for a TEST UNDER MASK
 | |
| // instruction and whether the CC value is descriptive enough to handle
 | |
| // a comparison of type Opcode between the AND result and CmpVal.
 | |
| // CCMask says which comparison result is being tested and BitSize is
 | |
| // the number of bits in the operands.  If TEST UNDER MASK can be used,
 | |
| // return the corresponding CC mask, otherwise return 0.
 | |
| static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
 | |
|                                      uint64_t Mask, uint64_t CmpVal,
 | |
|                                      unsigned ICmpType) {
 | |
|   assert(Mask != 0 && "ANDs with zero should have been removed by now");
 | |
| 
 | |
|   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
 | |
|   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
 | |
|       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
 | |
|     return 0;
 | |
| 
 | |
|   // Work out the masks for the lowest and highest bits.
 | |
|   unsigned HighShift = 63 - countLeadingZeros(Mask);
 | |
|   uint64_t High = uint64_t(1) << HighShift;
 | |
|   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
 | |
| 
 | |
|   // Signed ordered comparisons are effectively unsigned if the sign
 | |
|   // bit is dropped.
 | |
|   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
 | |
| 
 | |
|   // Check for equality comparisons with 0, or the equivalent.
 | |
|   if (CmpVal == 0) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_EQ)
 | |
|       return SystemZ::CCMASK_TM_ALL_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_NE)
 | |
|       return SystemZ::CCMASK_TM_SOME_1;
 | |
|   }
 | |
|   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LT)
 | |
|       return SystemZ::CCMASK_TM_ALL_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GE)
 | |
|       return SystemZ::CCMASK_TM_SOME_1;
 | |
|   }
 | |
|   if (EffectivelyUnsigned && CmpVal < Low) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LE)
 | |
|       return SystemZ::CCMASK_TM_ALL_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GT)
 | |
|       return SystemZ::CCMASK_TM_SOME_1;
 | |
|   }
 | |
| 
 | |
|   // Check for equality comparisons with the mask, or the equivalent.
 | |
|   if (CmpVal == Mask) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_EQ)
 | |
|       return SystemZ::CCMASK_TM_ALL_1;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_NE)
 | |
|       return SystemZ::CCMASK_TM_SOME_0;
 | |
|   }
 | |
|   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GT)
 | |
|       return SystemZ::CCMASK_TM_ALL_1;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LE)
 | |
|       return SystemZ::CCMASK_TM_SOME_0;
 | |
|   }
 | |
|   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GE)
 | |
|       return SystemZ::CCMASK_TM_ALL_1;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LT)
 | |
|       return SystemZ::CCMASK_TM_SOME_0;
 | |
|   }
 | |
| 
 | |
|   // Check for ordered comparisons with the top bit.
 | |
|   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LE)
 | |
|       return SystemZ::CCMASK_TM_MSB_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GT)
 | |
|       return SystemZ::CCMASK_TM_MSB_1;
 | |
|   }
 | |
|   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_LT)
 | |
|       return SystemZ::CCMASK_TM_MSB_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_GE)
 | |
|       return SystemZ::CCMASK_TM_MSB_1;
 | |
|   }
 | |
| 
 | |
|   // If there are just two bits, we can do equality checks for Low and High
 | |
|   // as well.
 | |
|   if (Mask == Low + High) {
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
 | |
|       return SystemZ::CCMASK_TM_MIXED_MSB_0;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
 | |
|       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
 | |
|       return SystemZ::CCMASK_TM_MIXED_MSB_1;
 | |
|     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
 | |
|       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
 | |
|   }
 | |
| 
 | |
|   // Looks like we've exhausted our options.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // See whether C can be implemented as a TEST UNDER MASK instruction.
 | |
| // Update the arguments with the TM version if so.
 | |
| static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                    Comparison &C) {
 | |
|   // Check that we have a comparison with a constant.
 | |
|   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
 | |
|   if (!ConstOp1)
 | |
|     return;
 | |
|   uint64_t CmpVal = ConstOp1->getZExtValue();
 | |
| 
 | |
|   // Check whether the nonconstant input is an AND with a constant mask.
 | |
|   Comparison NewC(C);
 | |
|   uint64_t MaskVal;
 | |
|   ConstantSDNode *Mask = nullptr;
 | |
|   if (C.Op0.getOpcode() == ISD::AND) {
 | |
|     NewC.Op0 = C.Op0.getOperand(0);
 | |
|     NewC.Op1 = C.Op0.getOperand(1);
 | |
|     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
 | |
|     if (!Mask)
 | |
|       return;
 | |
|     MaskVal = Mask->getZExtValue();
 | |
|   } else {
 | |
|     // There is no instruction to compare with a 64-bit immediate
 | |
|     // so use TMHH instead if possible.  We need an unsigned ordered
 | |
|     // comparison with an i64 immediate.
 | |
|     if (NewC.Op0.getValueType() != MVT::i64 ||
 | |
|         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
 | |
|         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
 | |
|         NewC.ICmpType == SystemZICMP::SignedOnly)
 | |
|       return;
 | |
|     // Convert LE and GT comparisons into LT and GE.
 | |
|     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
 | |
|         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
 | |
|       if (CmpVal == uint64_t(-1))
 | |
|         return;
 | |
|       CmpVal += 1;
 | |
|       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
 | |
|     }
 | |
|     // If the low N bits of Op1 are zero than the low N bits of Op0 can
 | |
|     // be masked off without changing the result.
 | |
|     MaskVal = -(CmpVal & -CmpVal);
 | |
|     NewC.ICmpType = SystemZICMP::UnsignedOnly;
 | |
|   }
 | |
|   if (!MaskVal)
 | |
|     return;
 | |
| 
 | |
|   // Check whether the combination of mask, comparison value and comparison
 | |
|   // type are suitable.
 | |
|   unsigned BitSize = NewC.Op0.getValueSizeInBits();
 | |
|   unsigned NewCCMask, ShiftVal;
 | |
|   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
 | |
|       NewC.Op0.getOpcode() == ISD::SHL &&
 | |
|       isSimpleShift(NewC.Op0, ShiftVal) &&
 | |
|       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
 | |
|                                         MaskVal >> ShiftVal,
 | |
|                                         CmpVal >> ShiftVal,
 | |
|                                         SystemZICMP::Any))) {
 | |
|     NewC.Op0 = NewC.Op0.getOperand(0);
 | |
|     MaskVal >>= ShiftVal;
 | |
|   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
 | |
|              NewC.Op0.getOpcode() == ISD::SRL &&
 | |
|              isSimpleShift(NewC.Op0, ShiftVal) &&
 | |
|              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
 | |
|                                                MaskVal << ShiftVal,
 | |
|                                                CmpVal << ShiftVal,
 | |
|                                                SystemZICMP::UnsignedOnly))) {
 | |
|     NewC.Op0 = NewC.Op0.getOperand(0);
 | |
|     MaskVal <<= ShiftVal;
 | |
|   } else {
 | |
|     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
 | |
|                                      NewC.ICmpType);
 | |
|     if (!NewCCMask)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Go ahead and make the change.
 | |
|   C.Opcode = SystemZISD::TM;
 | |
|   C.Op0 = NewC.Op0;
 | |
|   if (Mask && Mask->getZExtValue() == MaskVal)
 | |
|     C.Op1 = SDValue(Mask, 0);
 | |
|   else
 | |
|     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
 | |
|   C.CCValid = SystemZ::CCMASK_TM;
 | |
|   C.CCMask = NewCCMask;
 | |
| }
 | |
| 
 | |
| // Return a Comparison that tests the condition-code result of intrinsic
 | |
| // node Call against constant integer CC using comparison code Cond.
 | |
| // Opcode is the opcode of the SystemZISD operation for the intrinsic
 | |
| // and CCValid is the set of possible condition-code results.
 | |
| static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
 | |
|                                   SDValue Call, unsigned CCValid, uint64_t CC,
 | |
|                                   ISD::CondCode Cond) {
 | |
|   Comparison C(Call, SDValue());
 | |
|   C.Opcode = Opcode;
 | |
|   C.CCValid = CCValid;
 | |
|   if (Cond == ISD::SETEQ)
 | |
|     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
 | |
|     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
 | |
|   else if (Cond == ISD::SETNE)
 | |
|     // ...and the inverse of that.
 | |
|     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
 | |
|   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
 | |
|     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
 | |
|     // always true for CC>3.
 | |
|     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
 | |
|   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
 | |
|     // ...and the inverse of that.
 | |
|     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
 | |
|   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
 | |
|     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
 | |
|     // always true for CC>3.
 | |
|     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
 | |
|   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
 | |
|     // ...and the inverse of that.
 | |
|     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
 | |
|   else
 | |
|     llvm_unreachable("Unexpected integer comparison type");
 | |
|   C.CCMask &= CCValid;
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
 | |
| static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
 | |
|                          ISD::CondCode Cond, const SDLoc &DL) {
 | |
|   if (CmpOp1.getOpcode() == ISD::Constant) {
 | |
|     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
 | |
|     unsigned Opcode, CCValid;
 | |
|     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
 | |
|         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
 | |
|         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
 | |
|       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
 | |
|     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | |
|         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
 | |
|         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
 | |
|       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
 | |
|   }
 | |
|   Comparison C(CmpOp0, CmpOp1);
 | |
|   C.CCMask = CCMaskForCondCode(Cond);
 | |
|   if (C.Op0.getValueType().isFloatingPoint()) {
 | |
|     C.CCValid = SystemZ::CCMASK_FCMP;
 | |
|     C.Opcode = SystemZISD::FCMP;
 | |
|     adjustForFNeg(C);
 | |
|   } else {
 | |
|     C.CCValid = SystemZ::CCMASK_ICMP;
 | |
|     C.Opcode = SystemZISD::ICMP;
 | |
|     // Choose the type of comparison.  Equality and inequality tests can
 | |
|     // use either signed or unsigned comparisons.  The choice also doesn't
 | |
|     // matter if both sign bits are known to be clear.  In those cases we
 | |
|     // want to give the main isel code the freedom to choose whichever
 | |
|     // form fits best.
 | |
|     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
 | |
|         C.CCMask == SystemZ::CCMASK_CMP_NE ||
 | |
|         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
 | |
|       C.ICmpType = SystemZICMP::Any;
 | |
|     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
 | |
|       C.ICmpType = SystemZICMP::UnsignedOnly;
 | |
|     else
 | |
|       C.ICmpType = SystemZICMP::SignedOnly;
 | |
|     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
 | |
|     adjustZeroCmp(DAG, DL, C);
 | |
|     adjustSubwordCmp(DAG, DL, C);
 | |
|     adjustForSubtraction(DAG, DL, C);
 | |
|     adjustForLTGFR(C);
 | |
|     adjustICmpTruncate(DAG, DL, C);
 | |
|   }
 | |
| 
 | |
|   if (shouldSwapCmpOperands(C)) {
 | |
|     std::swap(C.Op0, C.Op1);
 | |
|     C.CCMask = reverseCCMask(C.CCMask);
 | |
|   }
 | |
| 
 | |
|   adjustForTestUnderMask(DAG, DL, C);
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| // Emit the comparison instruction described by C.
 | |
| static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
 | |
|   if (!C.Op1.getNode()) {
 | |
|     SDValue Op;
 | |
|     switch (C.Op0.getOpcode()) {
 | |
|     case ISD::INTRINSIC_W_CHAIN:
 | |
|       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
 | |
|       break;
 | |
|     case ISD::INTRINSIC_WO_CHAIN:
 | |
|       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("Invalid comparison operands");
 | |
|     }
 | |
|     return SDValue(Op.getNode(), Op->getNumValues() - 1);
 | |
|   }
 | |
|   if (C.Opcode == SystemZISD::ICMP)
 | |
|     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
 | |
|                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
 | |
|   if (C.Opcode == SystemZISD::TM) {
 | |
|     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
 | |
|                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
 | |
|     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
 | |
|                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
 | |
|   }
 | |
|   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
 | |
| }
 | |
| 
 | |
| // Implement a 32-bit *MUL_LOHI operation by extending both operands to
 | |
| // 64 bits.  Extend is the extension type to use.  Store the high part
 | |
| // in Hi and the low part in Lo.
 | |
| static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
 | |
|                             SDValue Op0, SDValue Op1, SDValue &Hi,
 | |
|                             SDValue &Lo) {
 | |
|   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
 | |
|   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
 | |
|   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
 | |
|   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
 | |
|                    DAG.getConstant(32, DL, MVT::i64));
 | |
|   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
 | |
|   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
 | |
| }
 | |
| 
 | |
| // Lower a binary operation that produces two VT results, one in each
 | |
| // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
 | |
| // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
 | |
| // on the extended Op0 and (unextended) Op1.  Store the even register result
 | |
| // in Even and the odd register result in Odd.
 | |
| static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
 | |
|                              unsigned Extend, unsigned Opcode, SDValue Op0,
 | |
|                              SDValue Op1, SDValue &Even, SDValue &Odd) {
 | |
|   SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
 | |
|   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
 | |
|                                SDValue(In128, 0), Op1);
 | |
|   bool Is32Bit = is32Bit(VT);
 | |
|   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
 | |
|   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
 | |
| }
 | |
| 
 | |
| // Return an i32 value that is 1 if the CC value produced by Glue is
 | |
| // in the mask CCMask and 0 otherwise.  CC is known to have a value
 | |
| // in CCValid, so other values can be ignored.
 | |
| static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
 | |
|                          unsigned CCValid, unsigned CCMask) {
 | |
|   IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
 | |
|   SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
 | |
| 
 | |
|   if (Conversion.XORValue)
 | |
|     Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
 | |
|                          DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
 | |
| 
 | |
|   if (Conversion.AddValue)
 | |
|     Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
 | |
|                          DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
 | |
| 
 | |
|   // The SHR/AND sequence should get optimized to an RISBG.
 | |
|   Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
 | |
|                        DAG.getConstant(Conversion.Bit, DL, MVT::i32));
 | |
|   if (Conversion.Bit != 31)
 | |
|     Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
 | |
|                          DAG.getConstant(1, DL, MVT::i32));
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
 | |
| // be done directly.  IsFP is true if CC is for a floating-point rather than
 | |
| // integer comparison.
 | |
| static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
 | |
|   switch (CC) {
 | |
|   case ISD::SETOEQ:
 | |
|   case ISD::SETEQ:
 | |
|     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
 | |
| 
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETGE:
 | |
|     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
 | |
| 
 | |
|   case ISD::SETOGT:
 | |
|   case ISD::SETGT:
 | |
|     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
 | |
| 
 | |
|   case ISD::SETUGT:
 | |
|     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
 | |
| 
 | |
|   default:
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return the SystemZISD vector comparison operation for CC or its inverse,
 | |
| // or 0 if neither can be done directly.  Indicate in Invert whether the
 | |
| // result is for the inverse of CC.  IsFP is true if CC is for a
 | |
| // floating-point rather than integer comparison.
 | |
| static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
 | |
|                                             bool &Invert) {
 | |
|   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
 | |
|     Invert = false;
 | |
|     return Opcode;
 | |
|   }
 | |
| 
 | |
|   CC = ISD::getSetCCInverse(CC, !IsFP);
 | |
|   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
 | |
|     Invert = true;
 | |
|     return Opcode;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Return a v2f64 that contains the extended form of elements Start and Start+1
 | |
| // of v4f32 value Op.
 | |
| static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
 | |
|                                   SDValue Op) {
 | |
|   int Mask[] = { Start, -1, Start + 1, -1 };
 | |
|   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
 | |
|   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
 | |
| }
 | |
| 
 | |
| // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
 | |
| // producing a result of type VT.
 | |
| static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL,
 | |
|                             EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
 | |
|   // There is no hardware support for v4f32, so extend the vector into
 | |
|   // two v2f64s and compare those.
 | |
|   if (CmpOp0.getValueType() == MVT::v4f32) {
 | |
|     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
 | |
|     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
 | |
|     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
 | |
|     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
 | |
|     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
 | |
|     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
 | |
|     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
 | |
|   }
 | |
|   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
 | |
| }
 | |
| 
 | |
| // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
 | |
| // an integer mask of type VT.
 | |
| static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
 | |
|                                 ISD::CondCode CC, SDValue CmpOp0,
 | |
|                                 SDValue CmpOp1) {
 | |
|   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
 | |
|   bool Invert = false;
 | |
|   SDValue Cmp;
 | |
|   switch (CC) {
 | |
|     // Handle tests for order using (or (ogt y x) (oge x y)).
 | |
|   case ISD::SETUO:
 | |
|     Invert = true;
 | |
|   case ISD::SETO: {
 | |
|     assert(IsFP && "Unexpected integer comparison");
 | |
|     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
 | |
|     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
 | |
|     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|     // Handle <> tests using (or (ogt y x) (ogt x y)).
 | |
|   case ISD::SETUEQ:
 | |
|     Invert = true;
 | |
|   case ISD::SETONE: {
 | |
|     assert(IsFP && "Unexpected integer comparison");
 | |
|     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
 | |
|     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
 | |
|     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|     // Otherwise a single comparison is enough.  It doesn't really
 | |
|     // matter whether we try the inversion or the swap first, since
 | |
|     // there are no cases where both work.
 | |
|   default:
 | |
|     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
 | |
|       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
 | |
|     else {
 | |
|       CC = ISD::getSetCCSwappedOperands(CC);
 | |
|       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
 | |
|         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
 | |
|       else
 | |
|         llvm_unreachable("Unhandled comparison");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   if (Invert) {
 | |
|     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
 | |
|                                DAG.getConstant(65535, DL, MVT::i32));
 | |
|     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
 | |
|     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
 | |
|   }
 | |
|   return Cmp;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
 | |
|                                           SelectionDAG &DAG) const {
 | |
|   SDValue CmpOp0   = Op.getOperand(0);
 | |
|   SDValue CmpOp1   = Op.getOperand(1);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   if (VT.isVector())
 | |
|     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
 | |
| 
 | |
|   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
 | |
|   SDValue Glue = emitCmp(DAG, DL, C);
 | |
|   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
 | |
|   SDValue CmpOp0   = Op.getOperand(2);
 | |
|   SDValue CmpOp1   = Op.getOperand(3);
 | |
|   SDValue Dest     = Op.getOperand(4);
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
 | |
|   SDValue Glue = emitCmp(DAG, DL, C);
 | |
|   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
 | |
|                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
 | |
|                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
 | |
| }
 | |
| 
 | |
| // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
 | |
| // allowing Pos and Neg to be wider than CmpOp.
 | |
| static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
 | |
|   return (Neg.getOpcode() == ISD::SUB &&
 | |
|           Neg.getOperand(0).getOpcode() == ISD::Constant &&
 | |
|           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
 | |
|           Neg.getOperand(1) == Pos &&
 | |
|           (Pos == CmpOp ||
 | |
|            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
 | |
|             Pos.getOperand(0) == CmpOp)));
 | |
| }
 | |
| 
 | |
| // Return the absolute or negative absolute of Op; IsNegative decides which.
 | |
| static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
 | |
|                            bool IsNegative) {
 | |
|   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
 | |
|   if (IsNegative)
 | |
|     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
 | |
|                      DAG.getConstant(0, DL, Op.getValueType()), Op);
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   SDValue CmpOp0   = Op.getOperand(0);
 | |
|   SDValue CmpOp1   = Op.getOperand(1);
 | |
|   SDValue TrueOp   = Op.getOperand(2);
 | |
|   SDValue FalseOp  = Op.getOperand(3);
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
 | |
| 
 | |
|   // Check for absolute and negative-absolute selections, including those
 | |
|   // where the comparison value is sign-extended (for LPGFR and LNGFR).
 | |
|   // This check supplements the one in DAGCombiner.
 | |
|   if (C.Opcode == SystemZISD::ICMP &&
 | |
|       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
 | |
|       C.CCMask != SystemZ::CCMASK_CMP_NE &&
 | |
|       C.Op1.getOpcode() == ISD::Constant &&
 | |
|       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
 | |
|     if (isAbsolute(C.Op0, TrueOp, FalseOp))
 | |
|       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
 | |
|     if (isAbsolute(C.Op0, FalseOp, TrueOp))
 | |
|       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
 | |
|   }
 | |
| 
 | |
|   SDValue Glue = emitCmp(DAG, DL, C);
 | |
| 
 | |
|   // Special case for handling -1/0 results.  The shifts we use here
 | |
|   // should get optimized with the IPM conversion sequence.
 | |
|   auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
 | |
|   auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
 | |
|   if (TrueC && FalseC) {
 | |
|     int64_t TrueVal = TrueC->getSExtValue();
 | |
|     int64_t FalseVal = FalseC->getSExtValue();
 | |
|     if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
 | |
|       // Invert the condition if we want -1 on false.
 | |
|       if (TrueVal == 0)
 | |
|         C.CCMask ^= C.CCValid;
 | |
|       SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
 | |
|       EVT VT = Op.getValueType();
 | |
|       // Extend the result to VT.  Upper bits are ignored.
 | |
|       if (!is32Bit(VT))
 | |
|         Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
 | |
|       // Sign-extend from the low bit.
 | |
|       SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
 | |
|       SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
 | |
|       return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
 | |
|                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
 | |
| 
 | |
|   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
 | |
|   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Node);
 | |
|   const GlobalValue *GV = Node->getGlobal();
 | |
|   int64_t Offset = Node->getOffset();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   CodeModel::Model CM = DAG.getTarget().getCodeModel();
 | |
| 
 | |
|   SDValue Result;
 | |
|   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
 | |
|     // Assign anchors at 1<<12 byte boundaries.
 | |
|     uint64_t Anchor = Offset & ~uint64_t(0xfff);
 | |
|     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
 | |
|     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
 | |
| 
 | |
|     // The offset can be folded into the address if it is aligned to a halfword.
 | |
|     Offset -= Anchor;
 | |
|     if (Offset != 0 && (Offset & 1) == 0) {
 | |
|       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
 | |
|       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
 | |
|       Offset = 0;
 | |
|     }
 | |
|   } else {
 | |
|     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
 | |
|     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
 | |
|     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
 | |
|                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | |
|   }
 | |
| 
 | |
|   // If there was a non-zero offset that we didn't fold, create an explicit
 | |
|   // addition for it.
 | |
|   if (Offset != 0)
 | |
|     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
 | |
|                          DAG.getConstant(Offset, DL, PtrVT));
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
 | |
|                                                  SelectionDAG &DAG,
 | |
|                                                  unsigned Opcode,
 | |
|                                                  SDValue GOTOffset) const {
 | |
|   SDLoc DL(Node);
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   SDValue Glue;
 | |
| 
 | |
|   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
 | |
|   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
 | |
|   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
 | |
|   Glue = Chain.getValue(1);
 | |
|   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
 | |
|   Glue = Chain.getValue(1);
 | |
| 
 | |
|   // The first call operand is the chain and the second is the TLS symbol.
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.push_back(Chain);
 | |
|   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
 | |
|                                            Node->getValueType(0),
 | |
|                                            0, 0));
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are
 | |
|   // known live into the call.
 | |
|   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
 | |
|   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
 | |
| 
 | |
|   // Add a register mask operand representing the call-preserved registers.
 | |
|   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
 | |
|   const uint32_t *Mask =
 | |
|       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
 | |
|   assert(Mask && "Missing call preserved mask for calling convention");
 | |
|   Ops.push_back(DAG.getRegisterMask(Mask));
 | |
| 
 | |
|   // Glue the call to the argument copies.
 | |
|   Ops.push_back(Glue);
 | |
| 
 | |
|   // Emit the call.
 | |
|   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
 | |
|   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
 | |
|   Glue = Chain.getValue(1);
 | |
| 
 | |
|   // Copy the return value from %r2.
 | |
|   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   SDValue Chain = DAG.getEntryNode();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   // The high part of the thread pointer is in access register 0.
 | |
|   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
 | |
|   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
 | |
| 
 | |
|   // The low part of the thread pointer is in access register 1.
 | |
|   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
 | |
|   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
 | |
| 
 | |
|   // Merge them into a single 64-bit address.
 | |
|   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
 | |
|                                     DAG.getConstant(32, DL, PtrVT));
 | |
|   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   if (DAG.getTarget().Options.EmulatedTLS)
 | |
|     return LowerToTLSEmulatedModel(Node, DAG);
 | |
|   SDLoc DL(Node);
 | |
|   const GlobalValue *GV = Node->getGlobal();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
 | |
| 
 | |
|   SDValue TP = lowerThreadPointer(DL, DAG);
 | |
| 
 | |
|   // Get the offset of GA from the thread pointer, based on the TLS model.
 | |
|   SDValue Offset;
 | |
|   switch (model) {
 | |
|     case TLSModel::GeneralDynamic: {
 | |
|       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
 | |
|       SystemZConstantPoolValue *CPV =
 | |
|         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
 | |
| 
 | |
|       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
 | |
|       Offset = DAG.getLoad(
 | |
|           PtrVT, DL, DAG.getEntryNode(), Offset,
 | |
|           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
| 
 | |
|       // Call __tls_get_offset to retrieve the offset.
 | |
|       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TLSModel::LocalDynamic: {
 | |
|       // Load the GOT offset of the module ID.
 | |
|       SystemZConstantPoolValue *CPV =
 | |
|         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
 | |
| 
 | |
|       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
 | |
|       Offset = DAG.getLoad(
 | |
|           PtrVT, DL, DAG.getEntryNode(), Offset,
 | |
|           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
| 
 | |
|       // Call __tls_get_offset to retrieve the module base offset.
 | |
|       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
 | |
| 
 | |
|       // Note: The SystemZLDCleanupPass will remove redundant computations
 | |
|       // of the module base offset.  Count total number of local-dynamic
 | |
|       // accesses to trigger execution of that pass.
 | |
|       SystemZMachineFunctionInfo* MFI =
 | |
|         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
 | |
|       MFI->incNumLocalDynamicTLSAccesses();
 | |
| 
 | |
|       // Add the per-symbol offset.
 | |
|       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
 | |
| 
 | |
|       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
 | |
|       DTPOffset = DAG.getLoad(
 | |
|           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
 | |
|           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
| 
 | |
|       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TLSModel::InitialExec: {
 | |
|       // Load the offset from the GOT.
 | |
|       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
 | |
|                                           SystemZII::MO_INDNTPOFF);
 | |
|       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
 | |
|       Offset =
 | |
|           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
 | |
|                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case TLSModel::LocalExec: {
 | |
|       // Force the offset into the constant pool and load it from there.
 | |
|       SystemZConstantPoolValue *CPV =
 | |
|         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
 | |
| 
 | |
|       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
 | |
|       Offset = DAG.getLoad(
 | |
|           PtrVT, DL, DAG.getEntryNode(), Offset,
 | |
|           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add the base and offset together.
 | |
|   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Node);
 | |
|   const BlockAddress *BA = Node->getBlockAddress();
 | |
|   int64_t Offset = Node->getOffset();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
 | |
|   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   SDLoc DL(JT);
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
|   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
 | |
| 
 | |
|   // Use LARL to load the address of the table.
 | |
|   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   SDLoc DL(CP);
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   SDValue Result;
 | |
|   if (CP->isMachineConstantPoolEntry())
 | |
|     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
 | |
|                                        CP->getAlignment());
 | |
|   else
 | |
|     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
 | |
|                                        CP->getAlignment(), CP->getOffset());
 | |
| 
 | |
|   // Use LARL to load the address of the constant pool entry.
 | |
|   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MFI.setFrameAddressIsTaken(true);
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   // If the back chain frame index has not been allocated yet, do so.
 | |
|   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
 | |
|   int BackChainIdx = FI->getFramePointerSaveIndex();
 | |
|   if (!BackChainIdx) {
 | |
|     // By definition, the frame address is the address of the back chain.
 | |
|     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
 | |
|     FI->setFramePointerSaveIndex(BackChainIdx);
 | |
|   }
 | |
|   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
 | |
| 
 | |
|   // FIXME The frontend should detect this case.
 | |
|   if (Depth > 0) {
 | |
|     report_fatal_error("Unsupported stack frame traversal count");
 | |
|   }
 | |
| 
 | |
|   return BackChain;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   MFI.setReturnAddressIsTaken(true);
 | |
| 
 | |
|   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
 | |
|     return SDValue();
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   // FIXME The frontend should detect this case.
 | |
|   if (Depth > 0) {
 | |
|     report_fatal_error("Unsupported stack frame traversal count");
 | |
|   }
 | |
| 
 | |
|   // Return R14D, which has the return address. Mark it an implicit live-in.
 | |
|   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
 | |
|   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   SDValue In = Op.getOperand(0);
 | |
|   EVT InVT = In.getValueType();
 | |
|   EVT ResVT = Op.getValueType();
 | |
| 
 | |
|   // Convert loads directly.  This is normally done by DAGCombiner,
 | |
|   // but we need this case for bitcasts that are created during lowering
 | |
|   // and which are then lowered themselves.
 | |
|   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
 | |
|     return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
 | |
|                        LoadN->getMemOperand());
 | |
| 
 | |
|   if (InVT == MVT::i32 && ResVT == MVT::f32) {
 | |
|     SDValue In64;
 | |
|     if (Subtarget.hasHighWord()) {
 | |
|       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
 | |
|                                        MVT::i64);
 | |
|       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
 | |
|                                        MVT::i64, SDValue(U64, 0), In);
 | |
|     } else {
 | |
|       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
 | |
|       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
 | |
|                          DAG.getConstant(32, DL, MVT::i64));
 | |
|     }
 | |
|     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
 | |
|     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
 | |
|                                       DL, MVT::f32, Out64);
 | |
|   }
 | |
|   if (InVT == MVT::f32 && ResVT == MVT::i32) {
 | |
|     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
 | |
|     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
 | |
|                                              MVT::f64, SDValue(U64, 0), In);
 | |
|     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
 | |
|     if (Subtarget.hasHighWord())
 | |
|       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
 | |
|                                         MVT::i32, Out64);
 | |
|     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
 | |
|                                 DAG.getConstant(32, DL, MVT::i64));
 | |
|     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
 | |
|   }
 | |
|   llvm_unreachable("Unexpected bitcast combination");
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   SystemZMachineFunctionInfo *FuncInfo =
 | |
|     MF.getInfo<SystemZMachineFunctionInfo>();
 | |
|   EVT PtrVT = getPointerTy(DAG.getDataLayout());
 | |
| 
 | |
|   SDValue Chain   = Op.getOperand(0);
 | |
|   SDValue Addr    = Op.getOperand(1);
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // The initial values of each field.
 | |
|   const unsigned NumFields = 4;
 | |
|   SDValue Fields[NumFields] = {
 | |
|     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
 | |
|     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
 | |
|     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
 | |
|     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
 | |
|   };
 | |
| 
 | |
|   // Store each field into its respective slot.
 | |
|   SDValue MemOps[NumFields];
 | |
|   unsigned Offset = 0;
 | |
|   for (unsigned I = 0; I < NumFields; ++I) {
 | |
|     SDValue FieldAddr = Addr;
 | |
|     if (Offset != 0)
 | |
|       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
 | |
|                               DAG.getIntPtrConstant(Offset, DL));
 | |
|     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
 | |
|                              MachinePointerInfo(SV, Offset));
 | |
|     Offset += 8;
 | |
|   }
 | |
|   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   SDValue Chain      = Op.getOperand(0);
 | |
|   SDValue DstPtr     = Op.getOperand(1);
 | |
|   SDValue SrcPtr     = Op.getOperand(2);
 | |
|   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
 | |
|   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
 | |
|                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
 | |
|                        /*isTailCall*/false,
 | |
|                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::
 | |
| lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
 | |
|   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack");
 | |
|   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
 | |
| 
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size  = Op.getOperand(1);
 | |
|   SDValue Align = Op.getOperand(2);
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // If user has set the no alignment function attribute, ignore
 | |
|   // alloca alignments.
 | |
|   uint64_t AlignVal = (RealignOpt ?
 | |
|                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
 | |
| 
 | |
|   uint64_t StackAlign = TFI->getStackAlignment();
 | |
|   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
 | |
|   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
 | |
| 
 | |
|   unsigned SPReg = getStackPointerRegisterToSaveRestore();
 | |
|   SDValue NeededSpace = Size;
 | |
| 
 | |
|   // Get a reference to the stack pointer.
 | |
|   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
 | |
| 
 | |
|   // If we need a backchain, save it now.
 | |
|   SDValue Backchain;
 | |
|   if (StoreBackchain)
 | |
|     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
 | |
| 
 | |
|   // Add extra space for alignment if needed.
 | |
|   if (ExtraAlignSpace)
 | |
|     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
 | |
|                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
 | |
| 
 | |
|   // Get the new stack pointer value.
 | |
|   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
 | |
| 
 | |
|   // Copy the new stack pointer back.
 | |
|   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
 | |
| 
 | |
|   // The allocated data lives above the 160 bytes allocated for the standard
 | |
|   // frame, plus any outgoing stack arguments.  We don't know how much that
 | |
|   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
 | |
|   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
 | |
|   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
 | |
| 
 | |
|   // Dynamically realign if needed.
 | |
|   if (RequiredAlign > StackAlign) {
 | |
|     Result =
 | |
|       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
 | |
|                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
 | |
|     Result =
 | |
|       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
 | |
|                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
 | |
|   }
 | |
| 
 | |
|   if (StoreBackchain)
 | |
|     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
 | |
| 
 | |
|   SDValue Ops[2] = { Result, Chain };
 | |
|   return DAG.getMergeValues(Ops, DL);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
 | |
|     SDValue Op, SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Ops[2];
 | |
|   if (is32Bit(VT))
 | |
|     // Just do a normal 64-bit multiplication and extract the results.
 | |
|     // We define this so that it can be used for constant division.
 | |
|     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
 | |
|                     Op.getOperand(1), Ops[1], Ops[0]);
 | |
|   else {
 | |
|     // Do a full 128-bit multiplication based on UMUL_LOHI64:
 | |
|     //
 | |
|     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
 | |
|     //
 | |
|     // but using the fact that the upper halves are either all zeros
 | |
|     // or all ones:
 | |
|     //
 | |
|     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
 | |
|     //
 | |
|     // and grouping the right terms together since they are quicker than the
 | |
|     // multiplication:
 | |
|     //
 | |
|     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
 | |
|     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
 | |
|     SDValue LL = Op.getOperand(0);
 | |
|     SDValue RL = Op.getOperand(1);
 | |
|     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
 | |
|     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
 | |
|     // UMUL_LOHI64 returns the low result in the odd register and the high
 | |
|     // result in the even register.  SMUL_LOHI is defined to return the
 | |
|     // low half first, so the results are in reverse order.
 | |
|     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
 | |
|                      LL, RL, Ops[1], Ops[0]);
 | |
|     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
 | |
|     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
 | |
|     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
 | |
|     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
 | |
|   }
 | |
|   return DAG.getMergeValues(Ops, DL);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Ops[2];
 | |
|   if (is32Bit(VT))
 | |
|     // Just do a normal 64-bit multiplication and extract the results.
 | |
|     // We define this so that it can be used for constant division.
 | |
|     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
 | |
|                     Op.getOperand(1), Ops[1], Ops[0]);
 | |
|   else
 | |
|     // UMUL_LOHI64 returns the low result in the odd register and the high
 | |
|     // result in the even register.  UMUL_LOHI is defined to return the
 | |
|     // low half first, so the results are in reverse order.
 | |
|     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
 | |
|                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
 | |
|   return DAG.getMergeValues(Ops, DL);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   unsigned Opcode;
 | |
| 
 | |
|   // We use DSGF for 32-bit division.
 | |
|   if (is32Bit(VT)) {
 | |
|     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
 | |
|     Opcode = SystemZISD::SDIVREM32;
 | |
|   } else if (DAG.ComputeNumSignBits(Op1) > 32) {
 | |
|     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
 | |
|     Opcode = SystemZISD::SDIVREM32;
 | |
|   } else
 | |
|     Opcode = SystemZISD::SDIVREM64;
 | |
| 
 | |
|   // DSG(F) takes a 64-bit dividend, so the even register in the GR128
 | |
|   // input is "don't care".  The instruction returns the remainder in
 | |
|   // the even register and the quotient in the odd register.
 | |
|   SDValue Ops[2];
 | |
|   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
 | |
|                    Op0, Op1, Ops[1], Ops[0]);
 | |
|   return DAG.getMergeValues(Ops, DL);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   // DL(G) uses a double-width dividend, so we need to clear the even
 | |
|   // register in the GR128 input.  The instruction returns the remainder
 | |
|   // in the even register and the quotient in the odd register.
 | |
|   SDValue Ops[2];
 | |
|   if (is32Bit(VT))
 | |
|     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
 | |
|                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
 | |
|   else
 | |
|     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
 | |
|                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
 | |
|   return DAG.getMergeValues(Ops, DL);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
 | |
|   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
 | |
| 
 | |
|   // Get the known-zero masks for each operand.
 | |
|   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
 | |
|   APInt KnownZero[2], KnownOne[2];
 | |
|   DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
 | |
|   DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
 | |
| 
 | |
|   // See if the upper 32 bits of one operand and the lower 32 bits of the
 | |
|   // other are known zero.  They are the low and high operands respectively.
 | |
|   uint64_t Masks[] = { KnownZero[0].getZExtValue(),
 | |
|                        KnownZero[1].getZExtValue() };
 | |
|   unsigned High, Low;
 | |
|   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
 | |
|     High = 1, Low = 0;
 | |
|   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
 | |
|     High = 0, Low = 1;
 | |
|   else
 | |
|     return Op;
 | |
| 
 | |
|   SDValue LowOp = Ops[Low];
 | |
|   SDValue HighOp = Ops[High];
 | |
| 
 | |
|   // If the high part is a constant, we're better off using IILH.
 | |
|   if (HighOp.getOpcode() == ISD::Constant)
 | |
|     return Op;
 | |
| 
 | |
|   // If the low part is a constant that is outside the range of LHI,
 | |
|   // then we're better off using IILF.
 | |
|   if (LowOp.getOpcode() == ISD::Constant) {
 | |
|     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
 | |
|     if (!isInt<16>(Value))
 | |
|       return Op;
 | |
|   }
 | |
| 
 | |
|   // Check whether the high part is an AND that doesn't change the
 | |
|   // high 32 bits and just masks out low bits.  We can skip it if so.
 | |
|   if (HighOp.getOpcode() == ISD::AND &&
 | |
|       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|     SDValue HighOp0 = HighOp.getOperand(0);
 | |
|     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
 | |
|     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
 | |
|       HighOp = HighOp0;
 | |
|   }
 | |
| 
 | |
|   // Take advantage of the fact that all GR32 operations only change the
 | |
|   // low 32 bits by truncating Low to an i32 and inserting it directly
 | |
|   // using a subreg.  The interesting cases are those where the truncation
 | |
|   // can be folded.
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
 | |
|   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
 | |
|                                    MVT::i64, HighOp, Low32);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
 | |
|                                           SelectionDAG &DAG) const {
 | |
|   EVT VT = Op.getValueType();
 | |
|   SDLoc DL(Op);
 | |
|   Op = Op.getOperand(0);
 | |
| 
 | |
|   // Handle vector types via VPOPCT.
 | |
|   if (VT.isVector()) {
 | |
|     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
 | |
|     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
 | |
|     switch (VT.getScalarSizeInBits()) {
 | |
|     case 8:
 | |
|       break;
 | |
|     case 16: {
 | |
|       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
 | |
|       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
 | |
|       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
 | |
|       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
 | |
|       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
 | |
|       break;
 | |
|     }
 | |
|     case 32: {
 | |
|       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
 | |
|                                 DAG.getConstant(0, DL, MVT::i32));
 | |
|       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
 | |
|       break;
 | |
|     }
 | |
|     case 64: {
 | |
|       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
 | |
|                                 DAG.getConstant(0, DL, MVT::i32));
 | |
|       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
 | |
|       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
 | |
|       break;
 | |
|     }
 | |
|     default:
 | |
|       llvm_unreachable("Unexpected type");
 | |
|     }
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   // Get the known-zero mask for the operand.
 | |
|   APInt KnownZero, KnownOne;
 | |
|   DAG.computeKnownBits(Op, KnownZero, KnownOne);
 | |
|   unsigned NumSignificantBits = (~KnownZero).getActiveBits();
 | |
|   if (NumSignificantBits == 0)
 | |
|     return DAG.getConstant(0, DL, VT);
 | |
| 
 | |
|   // Skip known-zero high parts of the operand.
 | |
|   int64_t OrigBitSize = VT.getSizeInBits();
 | |
|   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
 | |
|   BitSize = std::min(BitSize, OrigBitSize);
 | |
| 
 | |
|   // The POPCNT instruction counts the number of bits in each byte.
 | |
|   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
 | |
|   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
 | |
|   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
 | |
| 
 | |
|   // Add up per-byte counts in a binary tree.  All bits of Op at
 | |
|   // position larger than BitSize remain zero throughout.
 | |
|   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
 | |
|     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
 | |
|     if (BitSize != OrigBitSize)
 | |
|       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
 | |
|                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
 | |
|     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
 | |
|   }
 | |
| 
 | |
|   // Extract overall result from high byte.
 | |
|   if (BitSize > 8)
 | |
|     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
 | |
|                      DAG.getConstant(BitSize - 8, DL, VT));
 | |
| 
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
 | |
|     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
 | |
|   SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
 | |
|     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
 | |
| 
 | |
|   // The only fence that needs an instruction is a sequentially-consistent
 | |
|   // cross-thread fence.
 | |
|   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
 | |
|       FenceScope == CrossThread) {
 | |
|     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
 | |
|                                       Op.getOperand(0)),
 | |
|                    0);
 | |
|   }
 | |
| 
 | |
|   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
 | |
|   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
 | |
| }
 | |
| 
 | |
| // Op is an atomic load.  Lower it into a normal volatile load.
 | |
| SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   auto *Node = cast<AtomicSDNode>(Op.getNode());
 | |
|   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
 | |
|                         Node->getChain(), Node->getBasePtr(),
 | |
|                         Node->getMemoryVT(), Node->getMemOperand());
 | |
| }
 | |
| 
 | |
| // Op is an atomic store.  Lower it into a normal volatile store followed
 | |
| // by a serialization.
 | |
| SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   auto *Node = cast<AtomicSDNode>(Op.getNode());
 | |
|   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
 | |
|                                     Node->getBasePtr(), Node->getMemoryVT(),
 | |
|                                     Node->getMemOperand());
 | |
|   return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
 | |
|                                     Chain), 0);
 | |
| }
 | |
| 
 | |
| // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
 | |
| // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
 | |
| SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
 | |
|                                                    SelectionDAG &DAG,
 | |
|                                                    unsigned Opcode) const {
 | |
|   auto *Node = cast<AtomicSDNode>(Op.getNode());
 | |
| 
 | |
|   // 32-bit operations need no code outside the main loop.
 | |
|   EVT NarrowVT = Node->getMemoryVT();
 | |
|   EVT WideVT = MVT::i32;
 | |
|   if (NarrowVT == WideVT)
 | |
|     return Op;
 | |
| 
 | |
|   int64_t BitSize = NarrowVT.getSizeInBits();
 | |
|   SDValue ChainIn = Node->getChain();
 | |
|   SDValue Addr = Node->getBasePtr();
 | |
|   SDValue Src2 = Node->getVal();
 | |
|   MachineMemOperand *MMO = Node->getMemOperand();
 | |
|   SDLoc DL(Node);
 | |
|   EVT PtrVT = Addr.getValueType();
 | |
| 
 | |
|   // Convert atomic subtracts of constants into additions.
 | |
|   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
 | |
|     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
 | |
|       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
 | |
|       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
 | |
|     }
 | |
| 
 | |
|   // Get the address of the containing word.
 | |
|   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
 | |
|                                     DAG.getConstant(-4, DL, PtrVT));
 | |
| 
 | |
|   // Get the number of bits that the word must be rotated left in order
 | |
|   // to bring the field to the top bits of a GR32.
 | |
|   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
 | |
|                                  DAG.getConstant(3, DL, PtrVT));
 | |
|   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
 | |
| 
 | |
|   // Get the complementing shift amount, for rotating a field in the top
 | |
|   // bits back to its proper position.
 | |
|   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
 | |
|                                     DAG.getConstant(0, DL, WideVT), BitShift);
 | |
| 
 | |
|   // Extend the source operand to 32 bits and prepare it for the inner loop.
 | |
|   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
 | |
|   // operations require the source to be shifted in advance.  (This shift
 | |
|   // can be folded if the source is constant.)  For AND and NAND, the lower
 | |
|   // bits must be set, while for other opcodes they should be left clear.
 | |
|   if (Opcode != SystemZISD::ATOMIC_SWAPW)
 | |
|     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
 | |
|                        DAG.getConstant(32 - BitSize, DL, WideVT));
 | |
|   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
 | |
|       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
 | |
|     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
 | |
|                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
 | |
| 
 | |
|   // Construct the ATOMIC_LOADW_* node.
 | |
|   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
 | |
|   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
 | |
|                     DAG.getConstant(BitSize, DL, WideVT) };
 | |
|   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
 | |
|                                              NarrowVT, MMO);
 | |
| 
 | |
|   // Rotate the result of the final CS so that the field is in the lower
 | |
|   // bits of a GR32, then truncate it.
 | |
|   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
 | |
|                                     DAG.getConstant(BitSize, DL, WideVT));
 | |
|   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
 | |
| 
 | |
|   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
 | |
|   return DAG.getMergeValues(RetOps, DL);
 | |
| }
 | |
| 
 | |
| // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
 | |
| // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
 | |
| // operations into additions.
 | |
| SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   auto *Node = cast<AtomicSDNode>(Op.getNode());
 | |
|   EVT MemVT = Node->getMemoryVT();
 | |
|   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
 | |
|     // A full-width operation.
 | |
|     assert(Op.getValueType() == MemVT && "Mismatched VTs");
 | |
|     SDValue Src2 = Node->getVal();
 | |
|     SDValue NegSrc2;
 | |
|     SDLoc DL(Src2);
 | |
| 
 | |
|     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
 | |
|       // Use an addition if the operand is constant and either LAA(G) is
 | |
|       // available or the negative value is in the range of A(G)FHI.
 | |
|       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
 | |
|       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
 | |
|         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
 | |
|     } else if (Subtarget.hasInterlockedAccess1())
 | |
|       // Use LAA(G) if available.
 | |
|       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
 | |
|                             Src2);
 | |
| 
 | |
|     if (NegSrc2.getNode())
 | |
|       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
 | |
|                            Node->getChain(), Node->getBasePtr(), NegSrc2,
 | |
|                            Node->getMemOperand());
 | |
| 
 | |
|     // Use the node as-is.
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
 | |
| }
 | |
| 
 | |
| // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
 | |
| // into a fullword ATOMIC_CMP_SWAPW operation.
 | |
| SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
 | |
|                                                     SelectionDAG &DAG) const {
 | |
|   auto *Node = cast<AtomicSDNode>(Op.getNode());
 | |
| 
 | |
|   // We have native support for 32-bit compare and swap.
 | |
|   EVT NarrowVT = Node->getMemoryVT();
 | |
|   EVT WideVT = MVT::i32;
 | |
|   if (NarrowVT == WideVT)
 | |
|     return Op;
 | |
| 
 | |
|   int64_t BitSize = NarrowVT.getSizeInBits();
 | |
|   SDValue ChainIn = Node->getOperand(0);
 | |
|   SDValue Addr = Node->getOperand(1);
 | |
|   SDValue CmpVal = Node->getOperand(2);
 | |
|   SDValue SwapVal = Node->getOperand(3);
 | |
|   MachineMemOperand *MMO = Node->getMemOperand();
 | |
|   SDLoc DL(Node);
 | |
|   EVT PtrVT = Addr.getValueType();
 | |
| 
 | |
|   // Get the address of the containing word.
 | |
|   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
 | |
|                                     DAG.getConstant(-4, DL, PtrVT));
 | |
| 
 | |
|   // Get the number of bits that the word must be rotated left in order
 | |
|   // to bring the field to the top bits of a GR32.
 | |
|   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
 | |
|                                  DAG.getConstant(3, DL, PtrVT));
 | |
|   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
 | |
| 
 | |
|   // Get the complementing shift amount, for rotating a field in the top
 | |
|   // bits back to its proper position.
 | |
|   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
 | |
|                                     DAG.getConstant(0, DL, WideVT), BitShift);
 | |
| 
 | |
|   // Construct the ATOMIC_CMP_SWAPW node.
 | |
|   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
 | |
|   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
 | |
|                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
 | |
|   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
 | |
|                                              VTList, Ops, NarrowVT, MMO);
 | |
|   return AtomicOp;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
 | |
|   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
 | |
|                             SystemZ::R15D, Op.getValueType());
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
 | |
|   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
 | |
| 
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue NewSP = Op.getOperand(1);
 | |
|   SDValue Backchain;
 | |
|   SDLoc DL(Op);
 | |
| 
 | |
|   if (StoreBackchain) {
 | |
|     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
 | |
|     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
 | |
| 
 | |
|   if (StoreBackchain)
 | |
|     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
 | |
|                                              SelectionDAG &DAG) const {
 | |
|   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
 | |
|   if (!IsData)
 | |
|     // Just preserve the chain.
 | |
|     return Op.getOperand(0);
 | |
| 
 | |
|   SDLoc DL(Op);
 | |
|   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
 | |
|   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
 | |
|   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
 | |
|   SDValue Ops[] = {
 | |
|     Op.getOperand(0),
 | |
|     DAG.getConstant(Code, DL, MVT::i32),
 | |
|     Op.getOperand(1)
 | |
|   };
 | |
|   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
 | |
|                                  Node->getVTList(), Ops,
 | |
|                                  Node->getMemoryVT(), Node->getMemOperand());
 | |
| }
 | |
| 
 | |
| // Return an i32 that contains the value of CC immediately after After,
 | |
| // whose final operand must be MVT::Glue.
 | |
| static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
 | |
|   SDLoc DL(After);
 | |
|   SDValue Glue = SDValue(After, After->getNumValues() - 1);
 | |
|   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
 | |
|   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
 | |
|                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   unsigned Opcode, CCValid;
 | |
|   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
 | |
|     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
 | |
|     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
 | |
|     SDValue CC = getCCResult(DAG, Glued.getNode());
 | |
|     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   unsigned Opcode, CCValid;
 | |
|   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
 | |
|     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
 | |
|     SDValue CC = getCCResult(DAG, Glued.getNode());
 | |
|     if (Op->getNumValues() == 1)
 | |
|       return CC;
 | |
|     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
 | |
|     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
 | |
|                        CC);
 | |
|   }
 | |
| 
 | |
|   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
 | |
|   switch (Id) {
 | |
|   case Intrinsic::thread_pointer:
 | |
|     return lowerThreadPointer(SDLoc(Op), DAG);
 | |
| 
 | |
|   case Intrinsic::s390_vpdi:
 | |
|     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
 | |
| 
 | |
|   case Intrinsic::s390_vperm:
 | |
|     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
 | |
| 
 | |
|   case Intrinsic::s390_vuphb:
 | |
|   case Intrinsic::s390_vuphh:
 | |
|   case Intrinsic::s390_vuphf:
 | |
|     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1));
 | |
| 
 | |
|   case Intrinsic::s390_vuplhb:
 | |
|   case Intrinsic::s390_vuplhh:
 | |
|   case Intrinsic::s390_vuplhf:
 | |
|     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1));
 | |
| 
 | |
|   case Intrinsic::s390_vuplb:
 | |
|   case Intrinsic::s390_vuplhw:
 | |
|   case Intrinsic::s390_vuplf:
 | |
|     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1));
 | |
| 
 | |
|   case Intrinsic::s390_vupllb:
 | |
|   case Intrinsic::s390_vupllh:
 | |
|   case Intrinsic::s390_vupllf:
 | |
|     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1));
 | |
| 
 | |
|   case Intrinsic::s390_vsumb:
 | |
|   case Intrinsic::s390_vsumh:
 | |
|   case Intrinsic::s390_vsumgh:
 | |
|   case Intrinsic::s390_vsumgf:
 | |
|   case Intrinsic::s390_vsumqf:
 | |
|   case Intrinsic::s390_vsumqg:
 | |
|     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
 | |
|                        Op.getOperand(1), Op.getOperand(2));
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Says that SystemZISD operation Opcode can be used to perform the equivalent
 | |
| // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
 | |
| // Operand is the constant third operand, otherwise it is the number of
 | |
| // bytes in each element of the result.
 | |
| struct Permute {
 | |
|   unsigned Opcode;
 | |
|   unsigned Operand;
 | |
|   unsigned char Bytes[SystemZ::VectorBytes];
 | |
| };
 | |
| }
 | |
| 
 | |
| static const Permute PermuteForms[] = {
 | |
|   // VMRHG
 | |
|   { SystemZISD::MERGE_HIGH, 8,
 | |
|     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
 | |
|   // VMRHF
 | |
|   { SystemZISD::MERGE_HIGH, 4,
 | |
|     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
 | |
|   // VMRHH
 | |
|   { SystemZISD::MERGE_HIGH, 2,
 | |
|     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
 | |
|   // VMRHB
 | |
|   { SystemZISD::MERGE_HIGH, 1,
 | |
|     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
 | |
|   // VMRLG
 | |
|   { SystemZISD::MERGE_LOW, 8,
 | |
|     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
 | |
|   // VMRLF
 | |
|   { SystemZISD::MERGE_LOW, 4,
 | |
|     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
 | |
|   // VMRLH
 | |
|   { SystemZISD::MERGE_LOW, 2,
 | |
|     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
 | |
|   // VMRLB
 | |
|   { SystemZISD::MERGE_LOW, 1,
 | |
|     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
 | |
|   // VPKG
 | |
|   { SystemZISD::PACK, 4,
 | |
|     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
 | |
|   // VPKF
 | |
|   { SystemZISD::PACK, 2,
 | |
|     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
 | |
|   // VPKH
 | |
|   { SystemZISD::PACK, 1,
 | |
|     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
 | |
|   // VPDI V1, V2, 4  (low half of V1, high half of V2)
 | |
|   { SystemZISD::PERMUTE_DWORDS, 4,
 | |
|     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
 | |
|   // VPDI V1, V2, 1  (high half of V1, low half of V2)
 | |
|   { SystemZISD::PERMUTE_DWORDS, 1,
 | |
|     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
 | |
| };
 | |
| 
 | |
| // Called after matching a vector shuffle against a particular pattern.
 | |
| // Both the original shuffle and the pattern have two vector operands.
 | |
| // OpNos[0] is the operand of the original shuffle that should be used for
 | |
| // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
 | |
| // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
 | |
| // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
 | |
| // for operands 0 and 1 of the pattern.
 | |
| static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
 | |
|   if (OpNos[0] < 0) {
 | |
|     if (OpNos[1] < 0)
 | |
|       return false;
 | |
|     OpNo0 = OpNo1 = OpNos[1];
 | |
|   } else if (OpNos[1] < 0) {
 | |
|     OpNo0 = OpNo1 = OpNos[0];
 | |
|   } else {
 | |
|     OpNo0 = OpNos[0];
 | |
|     OpNo1 = OpNos[1];
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Bytes is a VPERM-like permute vector, except that -1 is used for
 | |
| // undefined bytes.  Return true if the VPERM can be implemented using P.
 | |
| // When returning true set OpNo0 to the VPERM operand that should be
 | |
| // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
 | |
| //
 | |
| // For example, if swapping the VPERM operands allows P to match, OpNo0
 | |
| // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
 | |
| // operand, but rewriting it to use two duplicated operands allows it to
 | |
| // match P, then OpNo0 and OpNo1 will be the same.
 | |
| static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
 | |
|                          unsigned &OpNo0, unsigned &OpNo1) {
 | |
|   int OpNos[] = { -1, -1 };
 | |
|   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
 | |
|     int Elt = Bytes[I];
 | |
|     if (Elt >= 0) {
 | |
|       // Make sure that the two permute vectors use the same suboperand
 | |
|       // byte number.  Only the operand numbers (the high bits) are
 | |
|       // allowed to differ.
 | |
|       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
 | |
|         return false;
 | |
|       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
 | |
|       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
 | |
|       // Make sure that the operand mappings are consistent with previous
 | |
|       // elements.
 | |
|       if (OpNos[ModelOpNo] == 1 - RealOpNo)
 | |
|         return false;
 | |
|       OpNos[ModelOpNo] = RealOpNo;
 | |
|     }
 | |
|   }
 | |
|   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
 | |
| }
 | |
| 
 | |
| // As above, but search for a matching permute.
 | |
| static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
 | |
|                                    unsigned &OpNo0, unsigned &OpNo1) {
 | |
|   for (auto &P : PermuteForms)
 | |
|     if (matchPermute(Bytes, P, OpNo0, OpNo1))
 | |
|       return &P;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Bytes is a VPERM-like permute vector, except that -1 is used for
 | |
| // undefined bytes.  This permute is an operand of an outer permute.
 | |
| // See whether redistributing the -1 bytes gives a shuffle that can be
 | |
| // implemented using P.  If so, set Transform to a VPERM-like permute vector
 | |
| // that, when applied to the result of P, gives the original permute in Bytes.
 | |
| static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
 | |
|                                const Permute &P,
 | |
|                                SmallVectorImpl<int> &Transform) {
 | |
|   unsigned To = 0;
 | |
|   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
 | |
|     int Elt = Bytes[From];
 | |
|     if (Elt < 0)
 | |
|       // Byte number From of the result is undefined.
 | |
|       Transform[From] = -1;
 | |
|     else {
 | |
|       while (P.Bytes[To] != Elt) {
 | |
|         To += 1;
 | |
|         if (To == SystemZ::VectorBytes)
 | |
|           return false;
 | |
|       }
 | |
|       Transform[From] = To;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // As above, but search for a matching permute.
 | |
| static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
 | |
|                                          SmallVectorImpl<int> &Transform) {
 | |
|   for (auto &P : PermuteForms)
 | |
|     if (matchDoublePermute(Bytes, P, Transform))
 | |
|       return &P;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
 | |
| // as if it had type vNi8.
 | |
| static void getVPermMask(ShuffleVectorSDNode *VSN,
 | |
|                          SmallVectorImpl<int> &Bytes) {
 | |
|   EVT VT = VSN->getValueType(0);
 | |
|   unsigned NumElements = VT.getVectorNumElements();
 | |
|   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
 | |
|   Bytes.resize(NumElements * BytesPerElement, -1);
 | |
|   for (unsigned I = 0; I < NumElements; ++I) {
 | |
|     int Index = VSN->getMaskElt(I);
 | |
|     if (Index >= 0)
 | |
|       for (unsigned J = 0; J < BytesPerElement; ++J)
 | |
|         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Bytes is a VPERM-like permute vector, except that -1 is used for
 | |
| // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
 | |
| // the result come from a contiguous sequence of bytes from one input.
 | |
| // Set Base to the selector for the first byte if so.
 | |
| static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
 | |
|                             unsigned BytesPerElement, int &Base) {
 | |
|   Base = -1;
 | |
|   for (unsigned I = 0; I < BytesPerElement; ++I) {
 | |
|     if (Bytes[Start + I] >= 0) {
 | |
|       unsigned Elem = Bytes[Start + I];
 | |
|       if (Base < 0) {
 | |
|         Base = Elem - I;
 | |
|         // Make sure the bytes would come from one input operand.
 | |
|         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
 | |
|           return false;
 | |
|       } else if (unsigned(Base) != Elem - I)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Bytes is a VPERM-like permute vector, except that -1 is used for
 | |
| // undefined bytes.  Return true if it can be performed using VSLDI.
 | |
| // When returning true, set StartIndex to the shift amount and OpNo0
 | |
| // and OpNo1 to the VPERM operands that should be used as the first
 | |
| // and second shift operand respectively.
 | |
| static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
 | |
|                                unsigned &StartIndex, unsigned &OpNo0,
 | |
|                                unsigned &OpNo1) {
 | |
|   int OpNos[] = { -1, -1 };
 | |
|   int Shift = -1;
 | |
|   for (unsigned I = 0; I < 16; ++I) {
 | |
|     int Index = Bytes[I];
 | |
|     if (Index >= 0) {
 | |
|       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
 | |
|       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
 | |
|       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
 | |
|       if (Shift < 0)
 | |
|         Shift = ExpectedShift;
 | |
|       else if (Shift != ExpectedShift)
 | |
|         return false;
 | |
|       // Make sure that the operand mappings are consistent with previous
 | |
|       // elements.
 | |
|       if (OpNos[ModelOpNo] == 1 - RealOpNo)
 | |
|         return false;
 | |
|       OpNos[ModelOpNo] = RealOpNo;
 | |
|     }
 | |
|   }
 | |
|   StartIndex = Shift;
 | |
|   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
 | |
| }
 | |
| 
 | |
| // Create a node that performs P on operands Op0 and Op1, casting the
 | |
| // operands to the appropriate type.  The type of the result is determined by P.
 | |
| static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                               const Permute &P, SDValue Op0, SDValue Op1) {
 | |
|   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
 | |
|   // elements of a PACK are twice as wide as the outputs.
 | |
|   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
 | |
|                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
 | |
|                       P.Operand);
 | |
|   // Cast both operands to the appropriate type.
 | |
|   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
 | |
|                               SystemZ::VectorBytes / InBytes);
 | |
|   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
 | |
|   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
 | |
|   SDValue Op;
 | |
|   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
 | |
|     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
 | |
|     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
 | |
|   } else if (P.Opcode == SystemZISD::PACK) {
 | |
|     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
 | |
|                                  SystemZ::VectorBytes / P.Operand);
 | |
|     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
 | |
|   } else {
 | |
|     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
 | |
|   }
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| // Bytes is a VPERM-like permute vector, except that -1 is used for
 | |
| // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
 | |
| // VSLDI or VPERM.
 | |
| static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
 | |
|                                      SDValue *Ops,
 | |
|                                      const SmallVectorImpl<int> &Bytes) {
 | |
|   for (unsigned I = 0; I < 2; ++I)
 | |
|     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
 | |
| 
 | |
|   // First see whether VSLDI can be used.
 | |
|   unsigned StartIndex, OpNo0, OpNo1;
 | |
|   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
 | |
|     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
 | |
|                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
 | |
| 
 | |
|   // Fall back on VPERM.  Construct an SDNode for the permute vector.
 | |
|   SDValue IndexNodes[SystemZ::VectorBytes];
 | |
|   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
 | |
|     if (Bytes[I] >= 0)
 | |
|       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
 | |
|     else
 | |
|       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
 | |
|   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
 | |
|   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Describes a general N-operand vector shuffle.
 | |
| struct GeneralShuffle {
 | |
|   GeneralShuffle(EVT vt) : VT(vt) {}
 | |
|   void addUndef();
 | |
|   bool add(SDValue, unsigned);
 | |
|   SDValue getNode(SelectionDAG &, const SDLoc &);
 | |
| 
 | |
|   // The operands of the shuffle.
 | |
|   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
 | |
| 
 | |
|   // Index I is -1 if byte I of the result is undefined.  Otherwise the
 | |
|   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
 | |
|   // Bytes[I] / SystemZ::VectorBytes.
 | |
|   SmallVector<int, SystemZ::VectorBytes> Bytes;
 | |
| 
 | |
|   // The type of the shuffle result.
 | |
|   EVT VT;
 | |
| };
 | |
| }
 | |
| 
 | |
| // Add an extra undefined element to the shuffle.
 | |
| void GeneralShuffle::addUndef() {
 | |
|   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
 | |
|   for (unsigned I = 0; I < BytesPerElement; ++I)
 | |
|     Bytes.push_back(-1);
 | |
| }
 | |
| 
 | |
| // Add an extra element to the shuffle, taking it from element Elem of Op.
 | |
| // A null Op indicates a vector input whose value will be calculated later;
 | |
| // there is at most one such input per shuffle and it always has the same
 | |
| // type as the result. Aborts and returns false if the source vector elements
 | |
| // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
 | |
| // LLVM they become implicitly extended, but this is rare and not optimized.
 | |
| bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
 | |
|   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
 | |
| 
 | |
|   // The source vector can have wider elements than the result,
 | |
|   // either through an explicit TRUNCATE or because of type legalization.
 | |
|   // We want the least significant part.
 | |
|   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
 | |
|   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
 | |
| 
 | |
|   // Return false if the source elements are smaller than their destination
 | |
|   // elements.
 | |
|   if (FromBytesPerElement < BytesPerElement)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
 | |
|                    (FromBytesPerElement - BytesPerElement));
 | |
| 
 | |
|   // Look through things like shuffles and bitcasts.
 | |
|   while (Op.getNode()) {
 | |
|     if (Op.getOpcode() == ISD::BITCAST)
 | |
|       Op = Op.getOperand(0);
 | |
|     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
 | |
|       // See whether the bytes we need come from a contiguous part of one
 | |
|       // operand.
 | |
|       SmallVector<int, SystemZ::VectorBytes> OpBytes;
 | |
|       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
 | |
|       int NewByte;
 | |
|       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
 | |
|         break;
 | |
|       if (NewByte < 0) {
 | |
|         addUndef();
 | |
|         return true;
 | |
|       }
 | |
|       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
 | |
|       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
 | |
|     } else if (Op.isUndef()) {
 | |
|       addUndef();
 | |
|       return true;
 | |
|     } else
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Make sure that the source of the extraction is in Ops.
 | |
|   unsigned OpNo = 0;
 | |
|   for (; OpNo < Ops.size(); ++OpNo)
 | |
|     if (Ops[OpNo] == Op)
 | |
|       break;
 | |
|   if (OpNo == Ops.size())
 | |
|     Ops.push_back(Op);
 | |
| 
 | |
|   // Add the element to Bytes.
 | |
|   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
 | |
|   for (unsigned I = 0; I < BytesPerElement; ++I)
 | |
|     Bytes.push_back(Base + I);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return SDNodes for the completed shuffle.
 | |
| SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
 | |
|   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
 | |
| 
 | |
|   if (Ops.size() == 0)
 | |
|     return DAG.getUNDEF(VT);
 | |
| 
 | |
|   // Make sure that there are at least two shuffle operands.
 | |
|   if (Ops.size() == 1)
 | |
|     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
 | |
| 
 | |
|   // Create a tree of shuffles, deferring root node until after the loop.
 | |
|   // Try to redistribute the undefined elements of non-root nodes so that
 | |
|   // the non-root shuffles match something like a pack or merge, then adjust
 | |
|   // the parent node's permute vector to compensate for the new order.
 | |
|   // Among other things, this copes with vectors like <2 x i16> that were
 | |
|   // padded with undefined elements during type legalization.
 | |
|   //
 | |
|   // In the best case this redistribution will lead to the whole tree
 | |
|   // using packs and merges.  It should rarely be a loss in other cases.
 | |
|   unsigned Stride = 1;
 | |
|   for (; Stride * 2 < Ops.size(); Stride *= 2) {
 | |
|     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
 | |
|       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
 | |
| 
 | |
|       // Create a mask for just these two operands.
 | |
|       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
 | |
|       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
 | |
|         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
 | |
|         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
 | |
|         if (OpNo == I)
 | |
|           NewBytes[J] = Byte;
 | |
|         else if (OpNo == I + Stride)
 | |
|           NewBytes[J] = SystemZ::VectorBytes + Byte;
 | |
|         else
 | |
|           NewBytes[J] = -1;
 | |
|       }
 | |
|       // See if it would be better to reorganize NewMask to avoid using VPERM.
 | |
|       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
 | |
|       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
 | |
|         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
 | |
|         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
 | |
|         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
 | |
|           if (NewBytes[J] >= 0) {
 | |
|             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
 | |
|                    "Invalid double permute");
 | |
|             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
 | |
|           } else
 | |
|             assert(NewBytesMap[J] < 0 && "Invalid double permute");
 | |
|         }
 | |
|       } else {
 | |
|         // Just use NewBytes on the operands.
 | |
|         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
 | |
|         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
 | |
|           if (NewBytes[J] >= 0)
 | |
|             Bytes[J] = I * SystemZ::VectorBytes + J;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now we just have 2 inputs.  Put the second operand in Ops[1].
 | |
|   if (Stride > 1) {
 | |
|     Ops[1] = Ops[Stride];
 | |
|     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
 | |
|       if (Bytes[I] >= int(SystemZ::VectorBytes))
 | |
|         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
 | |
|   }
 | |
| 
 | |
|   // Look for an instruction that can do the permute without resorting
 | |
|   // to VPERM.
 | |
|   unsigned OpNo0, OpNo1;
 | |
|   SDValue Op;
 | |
|   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
 | |
|     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
 | |
|   else
 | |
|     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
 | |
|   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
 | |
| }
 | |
| 
 | |
| // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
 | |
| static bool isScalarToVector(SDValue Op) {
 | |
|   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
 | |
|     if (!Op.getOperand(I).isUndef())
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Return a vector of type VT that contains Value in the first element.
 | |
| // The other elements don't matter.
 | |
| static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
 | |
|                                    SDValue Value) {
 | |
|   // If we have a constant, replicate it to all elements and let the
 | |
|   // BUILD_VECTOR lowering take care of it.
 | |
|   if (Value.getOpcode() == ISD::Constant ||
 | |
|       Value.getOpcode() == ISD::ConstantFP) {
 | |
|     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
 | |
|     return DAG.getBuildVector(VT, DL, Ops);
 | |
|   }
 | |
|   if (Value.isUndef())
 | |
|     return DAG.getUNDEF(VT);
 | |
|   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
 | |
| }
 | |
| 
 | |
| // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
 | |
| // element 1.  Used for cases in which replication is cheap.
 | |
| static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
 | |
|                                  SDValue Op0, SDValue Op1) {
 | |
|   if (Op0.isUndef()) {
 | |
|     if (Op1.isUndef())
 | |
|       return DAG.getUNDEF(VT);
 | |
|     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
 | |
|   }
 | |
|   if (Op1.isUndef())
 | |
|     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
 | |
|   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
 | |
|                      buildScalarToVector(DAG, DL, VT, Op0),
 | |
|                      buildScalarToVector(DAG, DL, VT, Op1));
 | |
| }
 | |
| 
 | |
| // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
 | |
| // vector for them.
 | |
| static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
 | |
|                           SDValue Op1) {
 | |
|   if (Op0.isUndef() && Op1.isUndef())
 | |
|     return DAG.getUNDEF(MVT::v2i64);
 | |
|   // If one of the two inputs is undefined then replicate the other one,
 | |
|   // in order to avoid using another register unnecessarily.
 | |
|   if (Op0.isUndef())
 | |
|     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
 | |
|   else if (Op1.isUndef())
 | |
|     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
 | |
|   else {
 | |
|     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
 | |
|     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
 | |
|   }
 | |
|   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
 | |
| }
 | |
| 
 | |
| // Try to represent constant BUILD_VECTOR node BVN using a
 | |
| // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
 | |
| // on success.
 | |
| static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
 | |
|   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
 | |
|   unsigned BytesPerElement = ElemVT.getStoreSize();
 | |
|   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
 | |
|     SDValue Op = BVN->getOperand(I);
 | |
|     if (!Op.isUndef()) {
 | |
|       uint64_t Value;
 | |
|       if (Op.getOpcode() == ISD::Constant)
 | |
|         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
 | |
|       else if (Op.getOpcode() == ISD::ConstantFP)
 | |
|         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
 | |
|                  .getZExtValue());
 | |
|       else
 | |
|         return false;
 | |
|       for (unsigned J = 0; J < BytesPerElement; ++J) {
 | |
|         uint64_t Byte = (Value >> (J * 8)) & 0xff;
 | |
|         if (Byte == 0xff)
 | |
|           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
 | |
|         else if (Byte != 0)
 | |
|           return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Try to load a vector constant in which BitsPerElement-bit value Value
 | |
| // is replicated to fill the vector.  VT is the type of the resulting
 | |
| // constant, which may have elements of a different size from BitsPerElement.
 | |
| // Return the SDValue of the constant on success, otherwise return
 | |
| // an empty value.
 | |
| static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
 | |
|                                        const SystemZInstrInfo *TII,
 | |
|                                        const SDLoc &DL, EVT VT, uint64_t Value,
 | |
|                                        unsigned BitsPerElement) {
 | |
|   // Signed 16-bit values can be replicated using VREPI.
 | |
|   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
 | |
|   if (isInt<16>(SignedValue)) {
 | |
|     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
 | |
|                                  SystemZ::VectorBits / BitsPerElement);
 | |
|     SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
 | |
|                              DAG.getConstant(SignedValue, DL, MVT::i32));
 | |
|     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
 | |
|   }
 | |
|   // See whether rotating the constant left some N places gives a value that
 | |
|   // is one less than a power of 2 (i.e. all zeros followed by all ones).
 | |
|   // If so we can use VGM.
 | |
|   unsigned Start, End;
 | |
|   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
 | |
|     // isRxSBGMask returns the bit numbers for a full 64-bit value,
 | |
|     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
 | |
|     // bit numbers for an BitsPerElement value, so that 0 denotes
 | |
|     // 1 << (BitsPerElement-1).
 | |
|     Start -= 64 - BitsPerElement;
 | |
|     End -= 64 - BitsPerElement;
 | |
|     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
 | |
|                                  SystemZ::VectorBits / BitsPerElement);
 | |
|     SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
 | |
|                              DAG.getConstant(Start, DL, MVT::i32),
 | |
|                              DAG.getConstant(End, DL, MVT::i32));
 | |
|     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
 | |
| // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
 | |
| // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
 | |
| // would benefit from this representation and return it if so.
 | |
| static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
 | |
|                                      BuildVectorSDNode *BVN) {
 | |
|   EVT VT = BVN->getValueType(0);
 | |
|   unsigned NumElements = VT.getVectorNumElements();
 | |
| 
 | |
|   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
 | |
|   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
 | |
|   // need a BUILD_VECTOR, add an additional placeholder operand for that
 | |
|   // BUILD_VECTOR and store its operands in ResidueOps.
 | |
|   GeneralShuffle GS(VT);
 | |
|   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
 | |
|   bool FoundOne = false;
 | |
|   for (unsigned I = 0; I < NumElements; ++I) {
 | |
|     SDValue Op = BVN->getOperand(I);
 | |
|     if (Op.getOpcode() == ISD::TRUNCATE)
 | |
|       Op = Op.getOperand(0);
 | |
|     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
 | |
|         Op.getOperand(1).getOpcode() == ISD::Constant) {
 | |
|       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
 | |
|       if (!GS.add(Op.getOperand(0), Elem))
 | |
|         return SDValue();
 | |
|       FoundOne = true;
 | |
|     } else if (Op.isUndef()) {
 | |
|       GS.addUndef();
 | |
|     } else {
 | |
|       if (!GS.add(SDValue(), ResidueOps.size()))
 | |
|         return SDValue();
 | |
|       ResidueOps.push_back(BVN->getOperand(I));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
 | |
|   if (!FoundOne)
 | |
|     return SDValue();
 | |
| 
 | |
|   // Create the BUILD_VECTOR for the remaining elements, if any.
 | |
|   if (!ResidueOps.empty()) {
 | |
|     while (ResidueOps.size() < NumElements)
 | |
|       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
 | |
|     for (auto &Op : GS.Ops) {
 | |
|       if (!Op.getNode()) {
 | |
|         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return GS.getNode(DAG, SDLoc(BVN));
 | |
| }
 | |
| 
 | |
| // Combine GPR scalar values Elems into a vector of type VT.
 | |
| static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
 | |
|                            SmallVectorImpl<SDValue> &Elems) {
 | |
|   // See whether there is a single replicated value.
 | |
|   SDValue Single;
 | |
|   unsigned int NumElements = Elems.size();
 | |
|   unsigned int Count = 0;
 | |
|   for (auto Elem : Elems) {
 | |
|     if (!Elem.isUndef()) {
 | |
|       if (!Single.getNode())
 | |
|         Single = Elem;
 | |
|       else if (Elem != Single) {
 | |
|         Single = SDValue();
 | |
|         break;
 | |
|       }
 | |
|       Count += 1;
 | |
|     }
 | |
|   }
 | |
|   // There are three cases here:
 | |
|   //
 | |
|   // - if the only defined element is a loaded one, the best sequence
 | |
|   //   is a replicating load.
 | |
|   //
 | |
|   // - otherwise, if the only defined element is an i64 value, we will
 | |
|   //   end up with the same VLVGP sequence regardless of whether we short-cut
 | |
|   //   for replication or fall through to the later code.
 | |
|   //
 | |
|   // - otherwise, if the only defined element is an i32 or smaller value,
 | |
|   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
 | |
|   //   This is only a win if the single defined element is used more than once.
 | |
|   //   In other cases we're better off using a single VLVGx.
 | |
|   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
 | |
|     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
 | |
| 
 | |
|   // The best way of building a v2i64 from two i64s is to use VLVGP.
 | |
|   if (VT == MVT::v2i64)
 | |
|     return joinDwords(DAG, DL, Elems[0], Elems[1]);
 | |
| 
 | |
|   // Use a 64-bit merge high to combine two doubles.
 | |
|   if (VT == MVT::v2f64)
 | |
|     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
 | |
| 
 | |
|   // Build v4f32 values directly from the FPRs:
 | |
|   //
 | |
|   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
 | |
|   //         V              V         VMRHF
 | |
|   //      <ABxx>         <CDxx>
 | |
|   //                V                 VMRHG
 | |
|   //              <ABCD>
 | |
|   if (VT == MVT::v4f32) {
 | |
|     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
 | |
|     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
 | |
|     // Avoid unnecessary undefs by reusing the other operand.
 | |
|     if (Op01.isUndef())
 | |
|       Op01 = Op23;
 | |
|     else if (Op23.isUndef())
 | |
|       Op23 = Op01;
 | |
|     // Merging identical replications is a no-op.
 | |
|     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
 | |
|       return Op01;
 | |
|     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
 | |
|     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
 | |
|     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
 | |
|                              DL, MVT::v2i64, Op01, Op23);
 | |
|     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
 | |
|   }
 | |
| 
 | |
|   // Collect the constant terms.
 | |
|   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
 | |
|   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
 | |
| 
 | |
|   unsigned NumConstants = 0;
 | |
|   for (unsigned I = 0; I < NumElements; ++I) {
 | |
|     SDValue Elem = Elems[I];
 | |
|     if (Elem.getOpcode() == ISD::Constant ||
 | |
|         Elem.getOpcode() == ISD::ConstantFP) {
 | |
|       NumConstants += 1;
 | |
|       Constants[I] = Elem;
 | |
|       Done[I] = true;
 | |
|     }
 | |
|   }
 | |
|   // If there was at least one constant, fill in the other elements of
 | |
|   // Constants with undefs to get a full vector constant and use that
 | |
|   // as the starting point.
 | |
|   SDValue Result;
 | |
|   if (NumConstants > 0) {
 | |
|     for (unsigned I = 0; I < NumElements; ++I)
 | |
|       if (!Constants[I].getNode())
 | |
|         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
 | |
|     Result = DAG.getBuildVector(VT, DL, Constants);
 | |
|   } else {
 | |
|     // Otherwise try to use VLVGP to start the sequence in order to
 | |
|     // avoid a false dependency on any previous contents of the vector
 | |
|     // register.  This only makes sense if one of the associated elements
 | |
|     // is defined.
 | |
|     unsigned I1 = NumElements / 2 - 1;
 | |
|     unsigned I2 = NumElements - 1;
 | |
|     bool Def1 = !Elems[I1].isUndef();
 | |
|     bool Def2 = !Elems[I2].isUndef();
 | |
|     if (Def1 || Def2) {
 | |
|       SDValue Elem1 = Elems[Def1 ? I1 : I2];
 | |
|       SDValue Elem2 = Elems[Def2 ? I2 : I1];
 | |
|       Result = DAG.getNode(ISD::BITCAST, DL, VT,
 | |
|                            joinDwords(DAG, DL, Elem1, Elem2));
 | |
|       Done[I1] = true;
 | |
|       Done[I2] = true;
 | |
|     } else
 | |
|       Result = DAG.getUNDEF(VT);
 | |
|   }
 | |
| 
 | |
|   // Use VLVGx to insert the other elements.
 | |
|   for (unsigned I = 0; I < NumElements; ++I)
 | |
|     if (!Done[I] && !Elems[I].isUndef())
 | |
|       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
 | |
|                            DAG.getConstant(I, DL, MVT::i32));
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   const SystemZInstrInfo *TII =
 | |
|     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
 | |
|   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   if (BVN->isConstant()) {
 | |
|     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
 | |
|     // preferred way of creating all-zero and all-one vectors so give it
 | |
|     // priority over other methods below.
 | |
|     uint64_t Mask = 0;
 | |
|     if (tryBuildVectorByteMask(BVN, Mask)) {
 | |
|       SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
 | |
|                                DAG.getConstant(Mask, DL, MVT::i32));
 | |
|       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
 | |
|     }
 | |
| 
 | |
|     // Try using some form of replication.
 | |
|     APInt SplatBits, SplatUndef;
 | |
|     unsigned SplatBitSize;
 | |
|     bool HasAnyUndefs;
 | |
|     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
 | |
|                              8, true) &&
 | |
|         SplatBitSize <= 64) {
 | |
|       // First try assuming that any undefined bits above the highest set bit
 | |
|       // and below the lowest set bit are 1s.  This increases the likelihood of
 | |
|       // being able to use a sign-extended element value in VECTOR REPLICATE
 | |
|       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
 | |
|       uint64_t SplatBitsZ = SplatBits.getZExtValue();
 | |
|       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
 | |
|       uint64_t Lower = (SplatUndefZ
 | |
|                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
 | |
|       uint64_t Upper = (SplatUndefZ
 | |
|                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
 | |
|       uint64_t Value = SplatBitsZ | Upper | Lower;
 | |
|       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
 | |
|                                            SplatBitSize);
 | |
|       if (Op.getNode())
 | |
|         return Op;
 | |
| 
 | |
|       // Now try assuming that any undefined bits between the first and
 | |
|       // last defined set bits are set.  This increases the chances of
 | |
|       // using a non-wraparound mask.
 | |
|       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
 | |
|       Value = SplatBitsZ | Middle;
 | |
|       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
 | |
|       if (Op.getNode())
 | |
|         return Op;
 | |
|     }
 | |
| 
 | |
|     // Fall back to loading it from memory.
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // See if we should use shuffles to construct the vector from other vectors.
 | |
|   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
 | |
|     return Res;
 | |
| 
 | |
|   // Detect SCALAR_TO_VECTOR conversions.
 | |
|   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
 | |
|     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
 | |
| 
 | |
|   // Otherwise use buildVector to build the vector up from GPRs.
 | |
|   unsigned NumElements = Op.getNumOperands();
 | |
|   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
 | |
|   for (unsigned I = 0; I < NumElements; ++I)
 | |
|     Ops[I] = Op.getOperand(I);
 | |
|   return buildVector(DAG, DL, VT, Ops);
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) const {
 | |
|   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned NumElements = VT.getVectorNumElements();
 | |
| 
 | |
|   if (VSN->isSplat()) {
 | |
|     SDValue Op0 = Op.getOperand(0);
 | |
|     unsigned Index = VSN->getSplatIndex();
 | |
|     assert(Index < VT.getVectorNumElements() &&
 | |
|            "Splat index should be defined and in first operand");
 | |
|     // See whether the value we're splatting is directly available as a scalar.
 | |
|     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
 | |
|         Op0.getOpcode() == ISD::BUILD_VECTOR)
 | |
|       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
 | |
|     // Otherwise keep it as a vector-to-vector operation.
 | |
|     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
 | |
|                        DAG.getConstant(Index, DL, MVT::i32));
 | |
|   }
 | |
| 
 | |
|   GeneralShuffle GS(VT);
 | |
|   for (unsigned I = 0; I < NumElements; ++I) {
 | |
|     int Elt = VSN->getMaskElt(I);
 | |
|     if (Elt < 0)
 | |
|       GS.addUndef();
 | |
|     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
 | |
|                      unsigned(Elt) % NumElements))
 | |
|       return SDValue();
 | |
|   }
 | |
|   return GS.getNode(DAG, SDLoc(VSN));
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDLoc DL(Op);
 | |
|   // Just insert the scalar into element 0 of an undefined vector.
 | |
|   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
 | |
|                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
 | |
|                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
 | |
|                                                       SelectionDAG &DAG) const {
 | |
|   // Handle insertions of floating-point values.
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   SDValue Op2 = Op.getOperand(2);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   // Insertions into constant indices of a v2f64 can be done using VPDI.
 | |
|   // However, if the inserted value is a bitcast or a constant then it's
 | |
|   // better to use GPRs, as below.
 | |
|   if (VT == MVT::v2f64 &&
 | |
|       Op1.getOpcode() != ISD::BITCAST &&
 | |
|       Op1.getOpcode() != ISD::ConstantFP &&
 | |
|       Op2.getOpcode() == ISD::Constant) {
 | |
|     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
 | |
|     unsigned Mask = VT.getVectorNumElements() - 1;
 | |
|     if (Index <= Mask)
 | |
|       return Op;
 | |
|   }
 | |
| 
 | |
|   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
 | |
|   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
 | |
|   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
 | |
|   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
 | |
|                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
 | |
|                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
 | |
|   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
 | |
|                                                SelectionDAG &DAG) const {
 | |
|   // Handle extractions of floating-point values.
 | |
|   SDLoc DL(Op);
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT VecVT = Op0.getValueType();
 | |
| 
 | |
|   // Extractions of constant indices can be done directly.
 | |
|   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
 | |
|     uint64_t Index = CIndexN->getZExtValue();
 | |
|     unsigned Mask = VecVT.getVectorNumElements() - 1;
 | |
|     if (Index <= Mask)
 | |
|       return Op;
 | |
|   }
 | |
| 
 | |
|   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
 | |
|   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
 | |
|   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
 | |
|   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
 | |
|                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
 | |
|   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
 | |
|                                               unsigned UnpackHigh) const {
 | |
|   SDValue PackedOp = Op.getOperand(0);
 | |
|   EVT OutVT = Op.getValueType();
 | |
|   EVT InVT = PackedOp.getValueType();
 | |
|   unsigned ToBits = OutVT.getScalarSizeInBits();
 | |
|   unsigned FromBits = InVT.getScalarSizeInBits();
 | |
|   do {
 | |
|     FromBits *= 2;
 | |
|     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
 | |
|                                  SystemZ::VectorBits / FromBits);
 | |
|     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
 | |
|   } while (FromBits != ToBits);
 | |
|   return PackedOp;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
 | |
|                                           unsigned ByScalar) const {
 | |
|   // Look for cases where a vector shift can use the *_BY_SCALAR form.
 | |
|   SDValue Op0 = Op.getOperand(0);
 | |
|   SDValue Op1 = Op.getOperand(1);
 | |
|   SDLoc DL(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned ElemBitSize = VT.getScalarSizeInBits();
 | |
| 
 | |
|   // See whether the shift vector is a splat represented as BUILD_VECTOR.
 | |
|   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
 | |
|     APInt SplatBits, SplatUndef;
 | |
|     unsigned SplatBitSize;
 | |
|     bool HasAnyUndefs;
 | |
|     // Check for constant splats.  Use ElemBitSize as the minimum element
 | |
|     // width and reject splats that need wider elements.
 | |
|     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
 | |
|                              ElemBitSize, true) &&
 | |
|         SplatBitSize == ElemBitSize) {
 | |
|       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
 | |
|                                       DL, MVT::i32);
 | |
|       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
 | |
|     }
 | |
|     // Check for variable splats.
 | |
|     BitVector UndefElements;
 | |
|     SDValue Splat = BVN->getSplatValue(&UndefElements);
 | |
|     if (Splat) {
 | |
|       // Since i32 is the smallest legal type, we either need a no-op
 | |
|       // or a truncation.
 | |
|       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
 | |
|       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
 | |
|   // and the shift amount is directly available in a GPR.
 | |
|   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
 | |
|     if (VSN->isSplat()) {
 | |
|       SDValue VSNOp0 = VSN->getOperand(0);
 | |
|       unsigned Index = VSN->getSplatIndex();
 | |
|       assert(Index < VT.getVectorNumElements() &&
 | |
|              "Splat index should be defined and in first operand");
 | |
|       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
 | |
|           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
 | |
|         // Since i32 is the smallest legal type, we either need a no-op
 | |
|         // or a truncation.
 | |
|         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
 | |
|                                     VSNOp0.getOperand(Index));
 | |
|         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise just treat the current form as legal.
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
 | |
|                                               SelectionDAG &DAG) const {
 | |
|   switch (Op.getOpcode()) {
 | |
|   case ISD::FRAMEADDR:
 | |
|     return lowerFRAMEADDR(Op, DAG);
 | |
|   case ISD::RETURNADDR:
 | |
|     return lowerRETURNADDR(Op, DAG);
 | |
|   case ISD::BR_CC:
 | |
|     return lowerBR_CC(Op, DAG);
 | |
|   case ISD::SELECT_CC:
 | |
|     return lowerSELECT_CC(Op, DAG);
 | |
|   case ISD::SETCC:
 | |
|     return lowerSETCC(Op, DAG);
 | |
|   case ISD::GlobalAddress:
 | |
|     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
 | |
|   case ISD::GlobalTLSAddress:
 | |
|     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
 | |
|   case ISD::BlockAddress:
 | |
|     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
 | |
|   case ISD::JumpTable:
 | |
|     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
 | |
|   case ISD::ConstantPool:
 | |
|     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
 | |
|   case ISD::BITCAST:
 | |
|     return lowerBITCAST(Op, DAG);
 | |
|   case ISD::VASTART:
 | |
|     return lowerVASTART(Op, DAG);
 | |
|   case ISD::VACOPY:
 | |
|     return lowerVACOPY(Op, DAG);
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     return lowerDYNAMIC_STACKALLOC(Op, DAG);
 | |
|   case ISD::GET_DYNAMIC_AREA_OFFSET:
 | |
|     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
 | |
|   case ISD::SMUL_LOHI:
 | |
|     return lowerSMUL_LOHI(Op, DAG);
 | |
|   case ISD::UMUL_LOHI:
 | |
|     return lowerUMUL_LOHI(Op, DAG);
 | |
|   case ISD::SDIVREM:
 | |
|     return lowerSDIVREM(Op, DAG);
 | |
|   case ISD::UDIVREM:
 | |
|     return lowerUDIVREM(Op, DAG);
 | |
|   case ISD::OR:
 | |
|     return lowerOR(Op, DAG);
 | |
|   case ISD::CTPOP:
 | |
|     return lowerCTPOP(Op, DAG);
 | |
|   case ISD::ATOMIC_FENCE:
 | |
|     return lowerATOMIC_FENCE(Op, DAG);
 | |
|   case ISD::ATOMIC_SWAP:
 | |
|     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
 | |
|   case ISD::ATOMIC_STORE:
 | |
|     return lowerATOMIC_STORE(Op, DAG);
 | |
|   case ISD::ATOMIC_LOAD:
 | |
|     return lowerATOMIC_LOAD(Op, DAG);
 | |
|   case ISD::ATOMIC_LOAD_ADD:
 | |
|     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
 | |
|   case ISD::ATOMIC_LOAD_SUB:
 | |
|     return lowerATOMIC_LOAD_SUB(Op, DAG);
 | |
|   case ISD::ATOMIC_LOAD_AND:
 | |
|     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
 | |
|   case ISD::ATOMIC_LOAD_OR:
 | |
|     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
 | |
|   case ISD::ATOMIC_LOAD_XOR:
 | |
|     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
 | |
|   case ISD::ATOMIC_LOAD_NAND:
 | |
|     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
 | |
|   case ISD::ATOMIC_LOAD_MIN:
 | |
|     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
 | |
|   case ISD::ATOMIC_LOAD_MAX:
 | |
|     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
 | |
|   case ISD::ATOMIC_LOAD_UMIN:
 | |
|     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
 | |
|   case ISD::ATOMIC_LOAD_UMAX:
 | |
|     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
 | |
|   case ISD::ATOMIC_CMP_SWAP:
 | |
|     return lowerATOMIC_CMP_SWAP(Op, DAG);
 | |
|   case ISD::STACKSAVE:
 | |
|     return lowerSTACKSAVE(Op, DAG);
 | |
|   case ISD::STACKRESTORE:
 | |
|     return lowerSTACKRESTORE(Op, DAG);
 | |
|   case ISD::PREFETCH:
 | |
|     return lowerPREFETCH(Op, DAG);
 | |
|   case ISD::INTRINSIC_W_CHAIN:
 | |
|     return lowerINTRINSIC_W_CHAIN(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN:
 | |
|     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|   case ISD::BUILD_VECTOR:
 | |
|     return lowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:
 | |
|     return lowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::SCALAR_TO_VECTOR:
 | |
|     return lowerSCALAR_TO_VECTOR(Op, DAG);
 | |
|   case ISD::INSERT_VECTOR_ELT:
 | |
|     return lowerINSERT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::EXTRACT_VECTOR_ELT:
 | |
|     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
 | |
|   case ISD::SIGN_EXTEND_VECTOR_INREG:
 | |
|     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
 | |
|   case ISD::ZERO_EXTEND_VECTOR_INREG:
 | |
|     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
 | |
|   case ISD::SHL:
 | |
|     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
 | |
|   case ISD::SRL:
 | |
|     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
 | |
|   case ISD::SRA:
 | |
|     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected node to lower");
 | |
|   }
 | |
| }
 | |
| 
 | |
| const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
| #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
 | |
|   switch ((SystemZISD::NodeType)Opcode) {
 | |
|     case SystemZISD::FIRST_NUMBER: break;
 | |
|     OPCODE(RET_FLAG);
 | |
|     OPCODE(CALL);
 | |
|     OPCODE(SIBCALL);
 | |
|     OPCODE(TLS_GDCALL);
 | |
|     OPCODE(TLS_LDCALL);
 | |
|     OPCODE(PCREL_WRAPPER);
 | |
|     OPCODE(PCREL_OFFSET);
 | |
|     OPCODE(IABS);
 | |
|     OPCODE(ICMP);
 | |
|     OPCODE(FCMP);
 | |
|     OPCODE(TM);
 | |
|     OPCODE(BR_CCMASK);
 | |
|     OPCODE(SELECT_CCMASK);
 | |
|     OPCODE(ADJDYNALLOC);
 | |
|     OPCODE(POPCNT);
 | |
|     OPCODE(UMUL_LOHI64);
 | |
|     OPCODE(SDIVREM32);
 | |
|     OPCODE(SDIVREM64);
 | |
|     OPCODE(UDIVREM32);
 | |
|     OPCODE(UDIVREM64);
 | |
|     OPCODE(MVC);
 | |
|     OPCODE(MVC_LOOP);
 | |
|     OPCODE(NC);
 | |
|     OPCODE(NC_LOOP);
 | |
|     OPCODE(OC);
 | |
|     OPCODE(OC_LOOP);
 | |
|     OPCODE(XC);
 | |
|     OPCODE(XC_LOOP);
 | |
|     OPCODE(CLC);
 | |
|     OPCODE(CLC_LOOP);
 | |
|     OPCODE(STPCPY);
 | |
|     OPCODE(STRCMP);
 | |
|     OPCODE(SEARCH_STRING);
 | |
|     OPCODE(IPM);
 | |
|     OPCODE(SERIALIZE);
 | |
|     OPCODE(MEMBARRIER);
 | |
|     OPCODE(TBEGIN);
 | |
|     OPCODE(TBEGIN_NOFLOAT);
 | |
|     OPCODE(TEND);
 | |
|     OPCODE(BYTE_MASK);
 | |
|     OPCODE(ROTATE_MASK);
 | |
|     OPCODE(REPLICATE);
 | |
|     OPCODE(JOIN_DWORDS);
 | |
|     OPCODE(SPLAT);
 | |
|     OPCODE(MERGE_HIGH);
 | |
|     OPCODE(MERGE_LOW);
 | |
|     OPCODE(SHL_DOUBLE);
 | |
|     OPCODE(PERMUTE_DWORDS);
 | |
|     OPCODE(PERMUTE);
 | |
|     OPCODE(PACK);
 | |
|     OPCODE(PACKS_CC);
 | |
|     OPCODE(PACKLS_CC);
 | |
|     OPCODE(UNPACK_HIGH);
 | |
|     OPCODE(UNPACKL_HIGH);
 | |
|     OPCODE(UNPACK_LOW);
 | |
|     OPCODE(UNPACKL_LOW);
 | |
|     OPCODE(VSHL_BY_SCALAR);
 | |
|     OPCODE(VSRL_BY_SCALAR);
 | |
|     OPCODE(VSRA_BY_SCALAR);
 | |
|     OPCODE(VSUM);
 | |
|     OPCODE(VICMPE);
 | |
|     OPCODE(VICMPH);
 | |
|     OPCODE(VICMPHL);
 | |
|     OPCODE(VICMPES);
 | |
|     OPCODE(VICMPHS);
 | |
|     OPCODE(VICMPHLS);
 | |
|     OPCODE(VFCMPE);
 | |
|     OPCODE(VFCMPH);
 | |
|     OPCODE(VFCMPHE);
 | |
|     OPCODE(VFCMPES);
 | |
|     OPCODE(VFCMPHS);
 | |
|     OPCODE(VFCMPHES);
 | |
|     OPCODE(VFTCI);
 | |
|     OPCODE(VEXTEND);
 | |
|     OPCODE(VROUND);
 | |
|     OPCODE(VTM);
 | |
|     OPCODE(VFAE_CC);
 | |
|     OPCODE(VFAEZ_CC);
 | |
|     OPCODE(VFEE_CC);
 | |
|     OPCODE(VFEEZ_CC);
 | |
|     OPCODE(VFENE_CC);
 | |
|     OPCODE(VFENEZ_CC);
 | |
|     OPCODE(VISTR_CC);
 | |
|     OPCODE(VSTRC_CC);
 | |
|     OPCODE(VSTRCZ_CC);
 | |
|     OPCODE(TDC);
 | |
|     OPCODE(ATOMIC_SWAPW);
 | |
|     OPCODE(ATOMIC_LOADW_ADD);
 | |
|     OPCODE(ATOMIC_LOADW_SUB);
 | |
|     OPCODE(ATOMIC_LOADW_AND);
 | |
|     OPCODE(ATOMIC_LOADW_OR);
 | |
|     OPCODE(ATOMIC_LOADW_XOR);
 | |
|     OPCODE(ATOMIC_LOADW_NAND);
 | |
|     OPCODE(ATOMIC_LOADW_MIN);
 | |
|     OPCODE(ATOMIC_LOADW_MAX);
 | |
|     OPCODE(ATOMIC_LOADW_UMIN);
 | |
|     OPCODE(ATOMIC_LOADW_UMAX);
 | |
|     OPCODE(ATOMIC_CMP_SWAPW);
 | |
|     OPCODE(LRV);
 | |
|     OPCODE(STRV);
 | |
|     OPCODE(PREFETCH);
 | |
|   }
 | |
|   return nullptr;
 | |
| #undef OPCODE
 | |
| }
 | |
| 
 | |
| // Return true if VT is a vector whose elements are a whole number of bytes
 | |
| // in width.
 | |
| static bool canTreatAsByteVector(EVT VT) {
 | |
|   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
 | |
| }
 | |
| 
 | |
| // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
 | |
| // producing a result of type ResVT.  Op is a possibly bitcast version
 | |
| // of the input vector and Index is the index (based on type VecVT) that
 | |
| // should be extracted.  Return the new extraction if a simplification
 | |
| // was possible or if Force is true.
 | |
| SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
 | |
|                                               EVT VecVT, SDValue Op,
 | |
|                                               unsigned Index,
 | |
|                                               DAGCombinerInfo &DCI,
 | |
|                                               bool Force) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   // The number of bytes being extracted.
 | |
|   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
 | |
| 
 | |
|   for (;;) {
 | |
|     unsigned Opcode = Op.getOpcode();
 | |
|     if (Opcode == ISD::BITCAST)
 | |
|       // Look through bitcasts.
 | |
|       Op = Op.getOperand(0);
 | |
|     else if (Opcode == ISD::VECTOR_SHUFFLE &&
 | |
|              canTreatAsByteVector(Op.getValueType())) {
 | |
|       // Get a VPERM-like permute mask and see whether the bytes covered
 | |
|       // by the extracted element are a contiguous sequence from one
 | |
|       // source operand.
 | |
|       SmallVector<int, SystemZ::VectorBytes> Bytes;
 | |
|       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
 | |
|       int First;
 | |
|       if (!getShuffleInput(Bytes, Index * BytesPerElement,
 | |
|                            BytesPerElement, First))
 | |
|         break;
 | |
|       if (First < 0)
 | |
|         return DAG.getUNDEF(ResVT);
 | |
|       // Make sure the contiguous sequence starts at a multiple of the
 | |
|       // original element size.
 | |
|       unsigned Byte = unsigned(First) % Bytes.size();
 | |
|       if (Byte % BytesPerElement != 0)
 | |
|         break;
 | |
|       // We can get the extracted value directly from an input.
 | |
|       Index = Byte / BytesPerElement;
 | |
|       Op = Op.getOperand(unsigned(First) / Bytes.size());
 | |
|       Force = true;
 | |
|     } else if (Opcode == ISD::BUILD_VECTOR &&
 | |
|                canTreatAsByteVector(Op.getValueType())) {
 | |
|       // We can only optimize this case if the BUILD_VECTOR elements are
 | |
|       // at least as wide as the extracted value.
 | |
|       EVT OpVT = Op.getValueType();
 | |
|       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
 | |
|       if (OpBytesPerElement < BytesPerElement)
 | |
|         break;
 | |
|       // Make sure that the least-significant bit of the extracted value
 | |
|       // is the least significant bit of an input.
 | |
|       unsigned End = (Index + 1) * BytesPerElement;
 | |
|       if (End % OpBytesPerElement != 0)
 | |
|         break;
 | |
|       // We're extracting the low part of one operand of the BUILD_VECTOR.
 | |
|       Op = Op.getOperand(End / OpBytesPerElement - 1);
 | |
|       if (!Op.getValueType().isInteger()) {
 | |
|         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
 | |
|         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
 | |
|         DCI.AddToWorklist(Op.getNode());
 | |
|       }
 | |
|       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
 | |
|       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
 | |
|       if (VT != ResVT) {
 | |
|         DCI.AddToWorklist(Op.getNode());
 | |
|         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
 | |
|       }
 | |
|       return Op;
 | |
|     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
 | |
|                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
 | |
|                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
 | |
|                canTreatAsByteVector(Op.getValueType()) &&
 | |
|                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
 | |
|       // Make sure that only the unextended bits are significant.
 | |
|       EVT ExtVT = Op.getValueType();
 | |
|       EVT OpVT = Op.getOperand(0).getValueType();
 | |
|       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
 | |
|       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
 | |
|       unsigned Byte = Index * BytesPerElement;
 | |
|       unsigned SubByte = Byte % ExtBytesPerElement;
 | |
|       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
 | |
|       if (SubByte < MinSubByte ||
 | |
|           SubByte + BytesPerElement > ExtBytesPerElement)
 | |
|         break;
 | |
|       // Get the byte offset of the unextended element
 | |
|       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
 | |
|       // ...then add the byte offset relative to that element.
 | |
|       Byte += SubByte - MinSubByte;
 | |
|       if (Byte % BytesPerElement != 0)
 | |
|         break;
 | |
|       Op = Op.getOperand(0);
 | |
|       Index = Byte / BytesPerElement;
 | |
|       Force = true;
 | |
|     } else
 | |
|       break;
 | |
|   }
 | |
|   if (Force) {
 | |
|     if (Op.getValueType() != VecVT) {
 | |
|       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
 | |
|       DCI.AddToWorklist(Op.getNode());
 | |
|     }
 | |
|     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
 | |
|                        DAG.getConstant(Index, DL, MVT::i32));
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| // Optimize vector operations in scalar value Op on the basis that Op
 | |
| // is truncated to TruncVT.
 | |
| SDValue SystemZTargetLowering::combineTruncateExtract(
 | |
|     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
 | |
|   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
 | |
|   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
 | |
|   // of type TruncVT.
 | |
|   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
 | |
|       TruncVT.getSizeInBits() % 8 == 0) {
 | |
|     SDValue Vec = Op.getOperand(0);
 | |
|     EVT VecVT = Vec.getValueType();
 | |
|     if (canTreatAsByteVector(VecVT)) {
 | |
|       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
 | |
|         unsigned TruncBytes = TruncVT.getStoreSize();
 | |
|         if (BytesPerElement % TruncBytes == 0) {
 | |
|           // Calculate the value of Y' in the above description.  We are
 | |
|           // splitting the original elements into Scale equal-sized pieces
 | |
|           // and for truncation purposes want the last (least-significant)
 | |
|           // of these pieces for IndexN.  This is easiest to do by calculating
 | |
|           // the start index of the following element and then subtracting 1.
 | |
|           unsigned Scale = BytesPerElement / TruncBytes;
 | |
|           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
 | |
| 
 | |
|           // Defer the creation of the bitcast from X to combineExtract,
 | |
|           // which might be able to optimize the extraction.
 | |
|           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
 | |
|                                    VecVT.getStoreSize() / TruncBytes);
 | |
|           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
 | |
|           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::combineSIGN_EXTEND(
 | |
|     SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   // Convert (sext (ashr (shl X, C1), C2)) to
 | |
|   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
 | |
|   // cheap as narrower ones.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue N0 = N->getOperand(0);
 | |
|   EVT VT = N->getValueType(0);
 | |
|   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
 | |
|     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
 | |
|     SDValue Inner = N0.getOperand(0);
 | |
|     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
 | |
|       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
 | |
|         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
 | |
|         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
 | |
|         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
 | |
|         EVT ShiftVT = N0.getOperand(1).getValueType();
 | |
|         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
 | |
|                                   Inner.getOperand(0));
 | |
|         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
 | |
|                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
 | |
|                                                   ShiftVT));
 | |
|         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
 | |
|                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::combineMERGE(
 | |
|     SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   unsigned Opcode = N->getOpcode();
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   SDValue Op1 = N->getOperand(1);
 | |
|   if (Op0.getOpcode() == ISD::BITCAST)
 | |
|     Op0 = Op0.getOperand(0);
 | |
|   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
 | |
|       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
 | |
|     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
 | |
|     // for v4f32.
 | |
|     if (Op1 == N->getOperand(0))
 | |
|       return Op1;
 | |
|     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
 | |
|     EVT VT = Op1.getValueType();
 | |
|     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
 | |
|     if (ElemBytes <= 4) {
 | |
|       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
 | |
|                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
 | |
|       EVT InVT = VT.changeVectorElementTypeToInteger();
 | |
|       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
 | |
|                                    SystemZ::VectorBytes / ElemBytes / 2);
 | |
|       if (VT != InVT) {
 | |
|         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
 | |
|         DCI.AddToWorklist(Op1.getNode());
 | |
|       }
 | |
|       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
 | |
|       DCI.AddToWorklist(Op.getNode());
 | |
|       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::combineSTORE(
 | |
|     SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   auto *SN = cast<StoreSDNode>(N);
 | |
|   auto &Op1 = N->getOperand(1);
 | |
|   EVT MemVT = SN->getMemoryVT();
 | |
|   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
 | |
|   // for the extraction to be done on a vMiN value, so that we can use VSTE.
 | |
|   // If X has wider elements then convert it to:
 | |
|   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
 | |
|   if (MemVT.isInteger()) {
 | |
|     if (SDValue Value =
 | |
|             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
 | |
|       DCI.AddToWorklist(Value.getNode());
 | |
| 
 | |
|       // Rewrite the store with the new form of stored value.
 | |
|       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
 | |
|                                SN->getBasePtr(), SN->getMemoryVT(),
 | |
|                                SN->getMemOperand());
 | |
|     }
 | |
|   }
 | |
|   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
 | |
|   // See comment in combineBSWAP about volatile accesses.
 | |
|   if (!SN->isVolatile() &&
 | |
|       Op1.getOpcode() == ISD::BSWAP &&
 | |
|       Op1.getNode()->hasOneUse() &&
 | |
|       (Op1.getValueType() == MVT::i16 ||
 | |
|        Op1.getValueType() == MVT::i32 ||
 | |
|        Op1.getValueType() == MVT::i64)) {
 | |
| 
 | |
|       SDValue BSwapOp = Op1.getOperand(0);
 | |
| 
 | |
|       if (BSwapOp.getValueType() == MVT::i16)
 | |
|         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
 | |
| 
 | |
|       SDValue Ops[] = {
 | |
|         N->getOperand(0), BSwapOp, N->getOperand(2),
 | |
|         DAG.getValueType(Op1.getValueType())
 | |
|       };
 | |
| 
 | |
|       return
 | |
|         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
 | |
|                                 Ops, MemVT, SN->getMemOperand());
 | |
|     }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
 | |
|     SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   // Try to simplify a vector extraction.
 | |
|   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
 | |
|     SDValue Op0 = N->getOperand(0);
 | |
|     EVT VecVT = Op0.getValueType();
 | |
|     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
 | |
|                           IndexN->getZExtValue(), DCI, false);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::combineJOIN_DWORDS(
 | |
|     SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   // (join_dwords X, X) == (replicate X)
 | |
|   if (N->getOperand(0) == N->getOperand(1))
 | |
|     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
 | |
|                        N->getOperand(0));
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::combineFP_ROUND(
 | |
|     SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   // (fpround (extract_vector_elt X 0))
 | |
|   // (fpround (extract_vector_elt X 1)) ->
 | |
|   // (extract_vector_elt (VROUND X) 0)
 | |
|   // (extract_vector_elt (VROUND X) 1)
 | |
|   //
 | |
|   // This is a special case since the target doesn't really support v2f32s.
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   SDValue Op0 = N->getOperand(0);
 | |
|   if (N->getValueType(0) == MVT::f32 &&
 | |
|       Op0.hasOneUse() &&
 | |
|       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
 | |
|       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
 | |
|       Op0.getOperand(1).getOpcode() == ISD::Constant &&
 | |
|       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
 | |
|     SDValue Vec = Op0.getOperand(0);
 | |
|     for (auto *U : Vec->uses()) {
 | |
|       if (U != Op0.getNode() &&
 | |
|           U->hasOneUse() &&
 | |
|           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
 | |
|           U->getOperand(0) == Vec &&
 | |
|           U->getOperand(1).getOpcode() == ISD::Constant &&
 | |
|           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
 | |
|         SDValue OtherRound = SDValue(*U->use_begin(), 0);
 | |
|         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
 | |
|             OtherRound.getOperand(0) == SDValue(U, 0) &&
 | |
|             OtherRound.getValueType() == MVT::f32) {
 | |
|           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
 | |
|                                        MVT::v4f32, Vec);
 | |
|           DCI.AddToWorklist(VRound.getNode());
 | |
|           SDValue Extract1 =
 | |
|             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
 | |
|                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
 | |
|           DCI.AddToWorklist(Extract1.getNode());
 | |
|           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
 | |
|           SDValue Extract0 =
 | |
|             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
 | |
|                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
 | |
|           return Extract0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::combineBSWAP(
 | |
|     SDNode *N, DAGCombinerInfo &DCI) const {
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
 | |
|   // These loads are allowed to access memory multiple times, and so we must check
 | |
|   // that the loads are not volatile before performing the combine.
 | |
|   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
 | |
|       N->getOperand(0).hasOneUse() &&
 | |
|       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
 | |
|        N->getValueType(0) == MVT::i64) &&
 | |
|        !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
 | |
|       SDValue Load = N->getOperand(0);
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(Load);
 | |
| 
 | |
|       // Create the byte-swapping load.
 | |
|       SDValue Ops[] = {
 | |
|         LD->getChain(),    // Chain
 | |
|         LD->getBasePtr(),  // Ptr
 | |
|         DAG.getValueType(N->getValueType(0)) // VT
 | |
|       };
 | |
|       SDValue BSLoad =
 | |
|         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
 | |
|                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
 | |
|                                               MVT::i64 : MVT::i32, MVT::Other),
 | |
|                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
 | |
| 
 | |
|       // If this is an i16 load, insert the truncate.
 | |
|       SDValue ResVal = BSLoad;
 | |
|       if (N->getValueType(0) == MVT::i16)
 | |
|         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
 | |
| 
 | |
|       // First, combine the bswap away.  This makes the value produced by the
 | |
|       // load dead.
 | |
|       DCI.CombineTo(N, ResVal);
 | |
| 
 | |
|       // Next, combine the load away, we give it a bogus result value but a real
 | |
|       // chain result.  The result value is dead because the bswap is dead.
 | |
|       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
 | |
| 
 | |
|       // Return N so it doesn't get rechecked!
 | |
|       return SDValue(N, 0);
 | |
|     }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::combineSHIFTROT(
 | |
|     SDNode *N, DAGCombinerInfo &DCI) const {
 | |
| 
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
| 
 | |
|   // Shift/rotate instructions only use the last 6 bits of the second operand
 | |
|   // register. If the second operand is the result of an AND with an immediate
 | |
|   // value that has its last 6 bits set, we can safely remove the AND operation.
 | |
|   //
 | |
|   // If the AND operation doesn't have the last 6 bits set, we can't remove it
 | |
|   // entirely, but we can still truncate it to a 16-bit value. This prevents
 | |
|   // us from ending up with a NILL with a signed operand, which will cause the
 | |
|   // instruction printer to abort.
 | |
|   SDValue N1 = N->getOperand(1);
 | |
|   if (N1.getOpcode() == ISD::AND) {
 | |
|     SDValue AndMaskOp = N1->getOperand(1);
 | |
|     auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp);
 | |
| 
 | |
|     // The AND mask is constant
 | |
|     if (AndMask) {
 | |
|       auto AmtVal = AndMask->getZExtValue();
 | |
|       
 | |
|       // Bottom 6 bits are set
 | |
|       if ((AmtVal & 0x3f) == 0x3f) {
 | |
|         SDValue AndOp = N1->getOperand(0);
 | |
| 
 | |
|         // This is the only use, so remove the node
 | |
|         if (N1.hasOneUse()) {
 | |
|           // Combine the AND away
 | |
|           DCI.CombineTo(N1.getNode(), AndOp);
 | |
| 
 | |
|           // Return N so it isn't rechecked
 | |
|           return SDValue(N, 0);
 | |
| 
 | |
|         // The node will be reused, so create a new node for this one use
 | |
|         } else {
 | |
|           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
 | |
|                                         N->getValueType(0), N->getOperand(0),
 | |
|                                         AndOp);
 | |
|           DCI.AddToWorklist(Replace.getNode());
 | |
| 
 | |
|           return Replace;
 | |
|         }
 | |
| 
 | |
|       // We can't remove the AND, but we can use NILL here (normally we would
 | |
|       // use NILF). Only keep the last 16 bits of the mask. The actual
 | |
|       // transformation will be handled by .td definitions.
 | |
|       } else if (AmtVal >> 16 != 0) {
 | |
|         SDValue AndOp = N1->getOperand(0);
 | |
| 
 | |
|         auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff,
 | |
|                                        SDLoc(AndMaskOp),
 | |
|                                        AndMaskOp.getValueType());
 | |
| 
 | |
|         auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(),
 | |
|                                   AndOp, NewMask);
 | |
| 
 | |
|         SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
 | |
|                                       N->getValueType(0), N->getOperand(0),
 | |
|                                       NewAnd);
 | |
|         DCI.AddToWorklist(Replace.getNode());
 | |
| 
 | |
|         return Replace;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                                  DAGCombinerInfo &DCI) const {
 | |
|   switch(N->getOpcode()) {
 | |
|   default: break;
 | |
|   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
 | |
|   case SystemZISD::MERGE_HIGH:
 | |
|   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
 | |
|   case ISD::STORE:              return combineSTORE(N, DCI);
 | |
|   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
 | |
|   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
 | |
|   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
 | |
|   case ISD::BSWAP:              return combineBSWAP(N, DCI);
 | |
|   case ISD::SHL:
 | |
|   case ISD::SRA:
 | |
|   case ISD::SRL:
 | |
|   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Custom insertion
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Create a new basic block after MBB.
 | |
| static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
 | |
|   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
 | |
|   return NewMBB;
 | |
| }
 | |
| 
 | |
| // Split MBB after MI and return the new block (the one that contains
 | |
| // instructions after MI).
 | |
| static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
 | |
|                                           MachineBasicBlock *MBB) {
 | |
|   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
 | |
|   NewMBB->splice(NewMBB->begin(), MBB,
 | |
|                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
 | |
|   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
|   return NewMBB;
 | |
| }
 | |
| 
 | |
| // Split MBB before MI and return the new block (the one that contains MI).
 | |
| static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
 | |
|                                            MachineBasicBlock *MBB) {
 | |
|   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
 | |
|   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
 | |
|   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
 | |
|   return NewMBB;
 | |
| }
 | |
| 
 | |
| // Force base value Base into a register before MI.  Return the register.
 | |
| static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
 | |
|                          const SystemZInstrInfo *TII) {
 | |
|   if (Base.isReg())
 | |
|     return Base.getReg();
 | |
| 
 | |
|   MachineBasicBlock *MBB = MI.getParent();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
 | |
|   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
 | |
|       .add(Base)
 | |
|       .addImm(0)
 | |
|       .addReg(0);
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
 | |
| MachineBasicBlock *
 | |
| SystemZTargetLowering::emitSelect(MachineInstr &MI,
 | |
|                                   MachineBasicBlock *MBB,
 | |
|                                   unsigned LOCROpcode) const {
 | |
|   const SystemZInstrInfo *TII =
 | |
|       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
 | |
| 
 | |
|   unsigned DestReg = MI.getOperand(0).getReg();
 | |
|   unsigned TrueReg = MI.getOperand(1).getReg();
 | |
|   unsigned FalseReg = MI.getOperand(2).getReg();
 | |
|   unsigned CCValid = MI.getOperand(3).getImm();
 | |
|   unsigned CCMask = MI.getOperand(4).getImm();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   // Use LOCROpcode if possible.
 | |
|   if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) {
 | |
|     BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg)
 | |
|       .addReg(FalseReg).addReg(TrueReg)
 | |
|       .addImm(CCValid).addImm(CCMask);
 | |
|     MI.eraseFromParent();
 | |
|     return MBB;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *StartMBB = MBB;
 | |
|   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   BRC CCMask, JoinMBB
 | |
|   //   # fallthrough to FalseMBB
 | |
|   MBB = StartMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
 | |
|   MBB->addSuccessor(JoinMBB);
 | |
|   MBB->addSuccessor(FalseMBB);
 | |
| 
 | |
|   //  FalseMBB:
 | |
|   //   # fallthrough to JoinMBB
 | |
|   MBB = FalseMBB;
 | |
|   MBB->addSuccessor(JoinMBB);
 | |
| 
 | |
|   //  JoinMBB:
 | |
|   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
 | |
|   //  ...
 | |
|   MBB = JoinMBB;
 | |
|   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
 | |
|     .addReg(TrueReg).addMBB(StartMBB)
 | |
|     .addReg(FalseReg).addMBB(FalseMBB);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return JoinMBB;
 | |
| }
 | |
| 
 | |
| // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
 | |
| // StoreOpcode is the store to use and Invert says whether the store should
 | |
| // happen when the condition is false rather than true.  If a STORE ON
 | |
| // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
 | |
| MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
 | |
|                                                         MachineBasicBlock *MBB,
 | |
|                                                         unsigned StoreOpcode,
 | |
|                                                         unsigned STOCOpcode,
 | |
|                                                         bool Invert) const {
 | |
|   const SystemZInstrInfo *TII =
 | |
|       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
 | |
| 
 | |
|   unsigned SrcReg = MI.getOperand(0).getReg();
 | |
|   MachineOperand Base = MI.getOperand(1);
 | |
|   int64_t Disp = MI.getOperand(2).getImm();
 | |
|   unsigned IndexReg = MI.getOperand(3).getReg();
 | |
|   unsigned CCValid = MI.getOperand(4).getImm();
 | |
|   unsigned CCMask = MI.getOperand(5).getImm();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
 | |
| 
 | |
|   // Use STOCOpcode if possible.  We could use different store patterns in
 | |
|   // order to avoid matching the index register, but the performance trade-offs
 | |
|   // might be more complicated in that case.
 | |
|   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
 | |
|     if (Invert)
 | |
|       CCMask ^= CCValid;
 | |
|     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
 | |
|         .addReg(SrcReg)
 | |
|         .add(Base)
 | |
|         .addImm(Disp)
 | |
|         .addImm(CCValid)
 | |
|         .addImm(CCMask);
 | |
|     MI.eraseFromParent();
 | |
|     return MBB;
 | |
|   }
 | |
| 
 | |
|   // Get the condition needed to branch around the store.
 | |
|   if (!Invert)
 | |
|     CCMask ^= CCValid;
 | |
| 
 | |
|   MachineBasicBlock *StartMBB = MBB;
 | |
|   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   BRC CCMask, JoinMBB
 | |
|   //   # fallthrough to FalseMBB
 | |
|   MBB = StartMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
 | |
|   MBB->addSuccessor(JoinMBB);
 | |
|   MBB->addSuccessor(FalseMBB);
 | |
| 
 | |
|   //  FalseMBB:
 | |
|   //   store %SrcReg, %Disp(%Index,%Base)
 | |
|   //   # fallthrough to JoinMBB
 | |
|   MBB = FalseMBB;
 | |
|   BuildMI(MBB, DL, TII->get(StoreOpcode))
 | |
|       .addReg(SrcReg)
 | |
|       .add(Base)
 | |
|       .addImm(Disp)
 | |
|       .addReg(IndexReg);
 | |
|   MBB->addSuccessor(JoinMBB);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return JoinMBB;
 | |
| }
 | |
| 
 | |
| // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
 | |
| // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
 | |
| // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
 | |
| // BitSize is the width of the field in bits, or 0 if this is a partword
 | |
| // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
 | |
| // is one of the operands.  Invert says whether the field should be
 | |
| // inverted after performing BinOpcode (e.g. for NAND).
 | |
| MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
 | |
|     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
 | |
|     unsigned BitSize, bool Invert) const {
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   const SystemZInstrInfo *TII =
 | |
|       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   bool IsSubWord = (BitSize < 32);
 | |
| 
 | |
|   // Extract the operands.  Base can be a register or a frame index.
 | |
|   // Src2 can be a register or immediate.
 | |
|   unsigned Dest = MI.getOperand(0).getReg();
 | |
|   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
 | |
|   int64_t Disp = MI.getOperand(2).getImm();
 | |
|   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
 | |
|   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
 | |
|   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   if (IsSubWord)
 | |
|     BitSize = MI.getOperand(6).getImm();
 | |
| 
 | |
|   // Subword operations use 32-bit registers.
 | |
|   const TargetRegisterClass *RC = (BitSize <= 32 ?
 | |
|                                    &SystemZ::GR32BitRegClass :
 | |
|                                    &SystemZ::GR64BitRegClass);
 | |
|   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
 | |
|   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
 | |
| 
 | |
|   // Get the right opcodes for the displacement.
 | |
|   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
 | |
|   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
 | |
|   assert(LOpcode && CSOpcode && "Displacement out of range");
 | |
| 
 | |
|   // Create virtual registers for temporary results.
 | |
|   unsigned OrigVal       = MRI.createVirtualRegister(RC);
 | |
|   unsigned OldVal        = MRI.createVirtualRegister(RC);
 | |
|   unsigned NewVal        = (BinOpcode || IsSubWord ?
 | |
|                             MRI.createVirtualRegister(RC) : Src2.getReg());
 | |
|   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
 | |
|   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
 | |
| 
 | |
|   // Insert a basic block for the main loop.
 | |
|   MachineBasicBlock *StartMBB = MBB;
 | |
|   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   ...
 | |
|   //   %OrigVal = L Disp(%Base)
 | |
|   //   # fall through to LoopMMB
 | |
|   MBB = StartMBB;
 | |
|   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|   //  LoopMBB:
 | |
|   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
 | |
|   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
 | |
|   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
 | |
|   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
 | |
|   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
 | |
|   //   JNE LoopMBB
 | |
|   //   # fall through to DoneMMB
 | |
|   MBB = LoopMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
 | |
|     .addReg(OrigVal).addMBB(StartMBB)
 | |
|     .addReg(Dest).addMBB(LoopMBB);
 | |
|   if (IsSubWord)
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
 | |
|       .addReg(OldVal).addReg(BitShift).addImm(0);
 | |
|   if (Invert) {
 | |
|     // Perform the operation normally and then invert every bit of the field.
 | |
|     unsigned Tmp = MRI.createVirtualRegister(RC);
 | |
|     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
 | |
|     if (BitSize <= 32)
 | |
|       // XILF with the upper BitSize bits set.
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
 | |
|         .addReg(Tmp).addImm(-1U << (32 - BitSize));
 | |
|     else {
 | |
|       // Use LCGR and add -1 to the result, which is more compact than
 | |
|       // an XILF, XILH pair.
 | |
|       unsigned Tmp2 = MRI.createVirtualRegister(RC);
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
 | |
|         .addReg(Tmp2).addImm(-1);
 | |
|     }
 | |
|   } else if (BinOpcode)
 | |
|     // A simply binary operation.
 | |
|     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
 | |
|         .addReg(RotatedOldVal)
 | |
|         .add(Src2);
 | |
|   else if (IsSubWord)
 | |
|     // Use RISBG to rotate Src2 into position and use it to replace the
 | |
|     // field in RotatedOldVal.
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
 | |
|       .addReg(RotatedOldVal).addReg(Src2.getReg())
 | |
|       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
 | |
|   if (IsSubWord)
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
 | |
|       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
 | |
|   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
 | |
|       .addReg(OldVal)
 | |
|       .addReg(NewVal)
 | |
|       .add(Base)
 | |
|       .addImm(Disp);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
|   MBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return DoneMBB;
 | |
| }
 | |
| 
 | |
| // Implement EmitInstrWithCustomInserter for pseudo
 | |
| // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
 | |
| // instruction that should be used to compare the current field with the
 | |
| // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
 | |
| // for when the current field should be kept.  BitSize is the width of
 | |
| // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
 | |
| MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
 | |
|     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
 | |
|     unsigned KeepOldMask, unsigned BitSize) const {
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   const SystemZInstrInfo *TII =
 | |
|       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   bool IsSubWord = (BitSize < 32);
 | |
| 
 | |
|   // Extract the operands.  Base can be a register or a frame index.
 | |
|   unsigned Dest = MI.getOperand(0).getReg();
 | |
|   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
 | |
|   int64_t Disp = MI.getOperand(2).getImm();
 | |
|   unsigned Src2 = MI.getOperand(3).getReg();
 | |
|   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
 | |
|   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
|   if (IsSubWord)
 | |
|     BitSize = MI.getOperand(6).getImm();
 | |
| 
 | |
|   // Subword operations use 32-bit registers.
 | |
|   const TargetRegisterClass *RC = (BitSize <= 32 ?
 | |
|                                    &SystemZ::GR32BitRegClass :
 | |
|                                    &SystemZ::GR64BitRegClass);
 | |
|   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
 | |
|   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
 | |
| 
 | |
|   // Get the right opcodes for the displacement.
 | |
|   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
 | |
|   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
 | |
|   assert(LOpcode && CSOpcode && "Displacement out of range");
 | |
| 
 | |
|   // Create virtual registers for temporary results.
 | |
|   unsigned OrigVal       = MRI.createVirtualRegister(RC);
 | |
|   unsigned OldVal        = MRI.createVirtualRegister(RC);
 | |
|   unsigned NewVal        = MRI.createVirtualRegister(RC);
 | |
|   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
 | |
|   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
 | |
|   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
 | |
| 
 | |
|   // Insert 3 basic blocks for the loop.
 | |
|   MachineBasicBlock *StartMBB  = MBB;
 | |
|   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
 | |
|   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
 | |
|   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   ...
 | |
|   //   %OrigVal     = L Disp(%Base)
 | |
|   //   # fall through to LoopMMB
 | |
|   MBB = StartMBB;
 | |
|   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|   //  LoopMBB:
 | |
|   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
 | |
|   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
 | |
|   //   CompareOpcode %RotatedOldVal, %Src2
 | |
|   //   BRC KeepOldMask, UpdateMBB
 | |
|   MBB = LoopMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
 | |
|     .addReg(OrigVal).addMBB(StartMBB)
 | |
|     .addReg(Dest).addMBB(UpdateMBB);
 | |
|   if (IsSubWord)
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
 | |
|       .addReg(OldVal).addReg(BitShift).addImm(0);
 | |
|   BuildMI(MBB, DL, TII->get(CompareOpcode))
 | |
|     .addReg(RotatedOldVal).addReg(Src2);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
 | |
|   MBB->addSuccessor(UpdateMBB);
 | |
|   MBB->addSuccessor(UseAltMBB);
 | |
| 
 | |
|   //  UseAltMBB:
 | |
|   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
 | |
|   //   # fall through to UpdateMMB
 | |
|   MBB = UseAltMBB;
 | |
|   if (IsSubWord)
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
 | |
|       .addReg(RotatedOldVal).addReg(Src2)
 | |
|       .addImm(32).addImm(31 + BitSize).addImm(0);
 | |
|   MBB->addSuccessor(UpdateMBB);
 | |
| 
 | |
|   //  UpdateMBB:
 | |
|   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
 | |
|   //                        [ %RotatedAltVal, UseAltMBB ]
 | |
|   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
 | |
|   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
 | |
|   //   JNE LoopMBB
 | |
|   //   # fall through to DoneMMB
 | |
|   MBB = UpdateMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
 | |
|     .addReg(RotatedOldVal).addMBB(LoopMBB)
 | |
|     .addReg(RotatedAltVal).addMBB(UseAltMBB);
 | |
|   if (IsSubWord)
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
 | |
|       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
 | |
|   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
 | |
|       .addReg(OldVal)
 | |
|       .addReg(NewVal)
 | |
|       .add(Base)
 | |
|       .addImm(Disp);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
|   MBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return DoneMBB;
 | |
| }
 | |
| 
 | |
| // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
 | |
| // instruction MI.
 | |
| MachineBasicBlock *
 | |
| SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
 | |
|                                           MachineBasicBlock *MBB) const {
 | |
| 
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   const SystemZInstrInfo *TII =
 | |
|       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   // Extract the operands.  Base can be a register or a frame index.
 | |
|   unsigned Dest = MI.getOperand(0).getReg();
 | |
|   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
 | |
|   int64_t Disp = MI.getOperand(2).getImm();
 | |
|   unsigned OrigCmpVal = MI.getOperand(3).getReg();
 | |
|   unsigned OrigSwapVal = MI.getOperand(4).getReg();
 | |
|   unsigned BitShift = MI.getOperand(5).getReg();
 | |
|   unsigned NegBitShift = MI.getOperand(6).getReg();
 | |
|   int64_t BitSize = MI.getOperand(7).getImm();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
 | |
| 
 | |
|   // Get the right opcodes for the displacement.
 | |
|   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
 | |
|   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
 | |
|   assert(LOpcode && CSOpcode && "Displacement out of range");
 | |
| 
 | |
|   // Create virtual registers for temporary results.
 | |
|   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
 | |
|   unsigned OldVal       = MRI.createVirtualRegister(RC);
 | |
|   unsigned CmpVal       = MRI.createVirtualRegister(RC);
 | |
|   unsigned SwapVal      = MRI.createVirtualRegister(RC);
 | |
|   unsigned StoreVal     = MRI.createVirtualRegister(RC);
 | |
|   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
 | |
|   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
 | |
|   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|   // Insert 2 basic blocks for the loop.
 | |
|   MachineBasicBlock *StartMBB = MBB;
 | |
|   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
 | |
|   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   ...
 | |
|   //   %OrigOldVal     = L Disp(%Base)
 | |
|   //   # fall through to LoopMMB
 | |
|   MBB = StartMBB;
 | |
|   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
 | |
|       .add(Base)
 | |
|       .addImm(Disp)
 | |
|       .addReg(0);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|   //  LoopMBB:
 | |
|   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
 | |
|   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
 | |
|   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
 | |
|   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
 | |
|   //                      ^^ The low BitSize bits contain the field
 | |
|   //                         of interest.
 | |
|   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
 | |
|   //                      ^^ Replace the upper 32-BitSize bits of the
 | |
|   //                         comparison value with those that we loaded,
 | |
|   //                         so that we can use a full word comparison.
 | |
|   //   CR %Dest, %RetryCmpVal
 | |
|   //   JNE DoneMBB
 | |
|   //   # Fall through to SetMBB
 | |
|   MBB = LoopMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
 | |
|     .addReg(OrigOldVal).addMBB(StartMBB)
 | |
|     .addReg(RetryOldVal).addMBB(SetMBB);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
 | |
|     .addReg(OrigCmpVal).addMBB(StartMBB)
 | |
|     .addReg(RetryCmpVal).addMBB(SetMBB);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
 | |
|     .addReg(OrigSwapVal).addMBB(StartMBB)
 | |
|     .addReg(RetrySwapVal).addMBB(SetMBB);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
 | |
|     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
 | |
|     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::CR))
 | |
|     .addReg(Dest).addReg(RetryCmpVal);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_ICMP)
 | |
|     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
 | |
|   MBB->addSuccessor(DoneMBB);
 | |
|   MBB->addSuccessor(SetMBB);
 | |
| 
 | |
|   //  SetMBB:
 | |
|   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
 | |
|   //                      ^^ Replace the upper 32-BitSize bits of the new
 | |
|   //                         value with those that we loaded.
 | |
|   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
 | |
|   //                      ^^ Rotate the new field to its proper position.
 | |
|   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
 | |
|   //   JNE LoopMBB
 | |
|   //   # fall through to ExitMMB
 | |
|   MBB = SetMBB;
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
 | |
|     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
 | |
|     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
 | |
|   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
 | |
|       .addReg(OldVal)
 | |
|       .addReg(StoreVal)
 | |
|       .add(Base)
 | |
|       .addImm(Disp);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
|   MBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return DoneMBB;
 | |
| }
 | |
| 
 | |
| // Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
 | |
| // if the high register of the GR128 value must be cleared or false if
 | |
| // it's "don't care".  SubReg is subreg_l32 when extending a GR32
 | |
| // and subreg_l64 when extending a GR64.
 | |
| MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
 | |
|                                                      MachineBasicBlock *MBB,
 | |
|                                                      bool ClearEven,
 | |
|                                                      unsigned SubReg) const {
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   const SystemZInstrInfo *TII =
 | |
|       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   unsigned Dest = MI.getOperand(0).getReg();
 | |
|   unsigned Src = MI.getOperand(1).getReg();
 | |
|   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
 | |
| 
 | |
|   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
 | |
|   if (ClearEven) {
 | |
|     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
 | |
|     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
 | |
| 
 | |
|     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
 | |
|       .addImm(0);
 | |
|     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
 | |
|       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
 | |
|     In128 = NewIn128;
 | |
|   }
 | |
|   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
 | |
|     .addReg(In128).addReg(Src).addImm(SubReg);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
 | |
|     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   const SystemZInstrInfo *TII =
 | |
|       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
 | |
|   uint64_t DestDisp = MI.getOperand(1).getImm();
 | |
|   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
 | |
|   uint64_t SrcDisp = MI.getOperand(3).getImm();
 | |
|   uint64_t Length = MI.getOperand(4).getImm();
 | |
| 
 | |
|   // When generating more than one CLC, all but the last will need to
 | |
|   // branch to the end when a difference is found.
 | |
|   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
 | |
|                                splitBlockAfter(MI, MBB) : nullptr);
 | |
| 
 | |
|   // Check for the loop form, in which operand 5 is the trip count.
 | |
|   if (MI.getNumExplicitOperands() > 5) {
 | |
|     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
 | |
| 
 | |
|     uint64_t StartCountReg = MI.getOperand(5).getReg();
 | |
|     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
 | |
|     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
 | |
|                               forceReg(MI, DestBase, TII));
 | |
| 
 | |
|     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
 | |
|     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
 | |
|     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
 | |
|                             MRI.createVirtualRegister(RC));
 | |
|     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
 | |
|     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
 | |
|                             MRI.createVirtualRegister(RC));
 | |
| 
 | |
|     RC = &SystemZ::GR64BitRegClass;
 | |
|     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
 | |
|     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|     MachineBasicBlock *StartMBB = MBB;
 | |
|     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
 | |
|     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
 | |
|     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
 | |
| 
 | |
|     //  StartMBB:
 | |
|     //   # fall through to LoopMMB
 | |
|     MBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|     //  LoopMBB:
 | |
|     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
 | |
|     //                      [ %NextDestReg, NextMBB ]
 | |
|     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
 | |
|     //                     [ %NextSrcReg, NextMBB ]
 | |
|     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
 | |
|     //                       [ %NextCountReg, NextMBB ]
 | |
|     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
 | |
|     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
 | |
|     //   ( JLH EndMBB )
 | |
|     //
 | |
|     // The prefetch is used only for MVC.  The JLH is used only for CLC.
 | |
|     MBB = LoopMBB;
 | |
| 
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
 | |
|       .addReg(StartDestReg).addMBB(StartMBB)
 | |
|       .addReg(NextDestReg).addMBB(NextMBB);
 | |
|     if (!HaveSingleBase)
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
 | |
|         .addReg(StartSrcReg).addMBB(StartMBB)
 | |
|         .addReg(NextSrcReg).addMBB(NextMBB);
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
 | |
|       .addReg(StartCountReg).addMBB(StartMBB)
 | |
|       .addReg(NextCountReg).addMBB(NextMBB);
 | |
|     if (Opcode == SystemZ::MVC)
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
 | |
|         .addImm(SystemZ::PFD_WRITE)
 | |
|         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
 | |
|     BuildMI(MBB, DL, TII->get(Opcode))
 | |
|       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
 | |
|       .addReg(ThisSrcReg).addImm(SrcDisp);
 | |
|     if (EndMBB) {
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
 | |
|         .addMBB(EndMBB);
 | |
|       MBB->addSuccessor(EndMBB);
 | |
|       MBB->addSuccessor(NextMBB);
 | |
|     }
 | |
| 
 | |
|     // NextMBB:
 | |
|     //   %NextDestReg = LA 256(%ThisDestReg)
 | |
|     //   %NextSrcReg = LA 256(%ThisSrcReg)
 | |
|     //   %NextCountReg = AGHI %ThisCountReg, -1
 | |
|     //   CGHI %NextCountReg, 0
 | |
|     //   JLH LoopMBB
 | |
|     //   # fall through to DoneMMB
 | |
|     //
 | |
|     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
 | |
|     MBB = NextMBB;
 | |
| 
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
 | |
|       .addReg(ThisDestReg).addImm(256).addReg(0);
 | |
|     if (!HaveSingleBase)
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
 | |
|         .addReg(ThisSrcReg).addImm(256).addReg(0);
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
 | |
|       .addReg(ThisCountReg).addImm(-1);
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
 | |
|       .addReg(NextCountReg).addImm(0);
 | |
|     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
 | |
|       .addMBB(LoopMBB);
 | |
|     MBB->addSuccessor(LoopMBB);
 | |
|     MBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|     DestBase = MachineOperand::CreateReg(NextDestReg, false);
 | |
|     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
 | |
|     Length &= 255;
 | |
|     MBB = DoneMBB;
 | |
|   }
 | |
|   // Handle any remaining bytes with straight-line code.
 | |
|   while (Length > 0) {
 | |
|     uint64_t ThisLength = std::min(Length, uint64_t(256));
 | |
|     // The previous iteration might have created out-of-range displacements.
 | |
|     // Apply them using LAY if so.
 | |
|     if (!isUInt<12>(DestDisp)) {
 | |
|       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
 | |
|       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
 | |
|           .add(DestBase)
 | |
|           .addImm(DestDisp)
 | |
|           .addReg(0);
 | |
|       DestBase = MachineOperand::CreateReg(Reg, false);
 | |
|       DestDisp = 0;
 | |
|     }
 | |
|     if (!isUInt<12>(SrcDisp)) {
 | |
|       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
 | |
|       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
 | |
|           .add(SrcBase)
 | |
|           .addImm(SrcDisp)
 | |
|           .addReg(0);
 | |
|       SrcBase = MachineOperand::CreateReg(Reg, false);
 | |
|       SrcDisp = 0;
 | |
|     }
 | |
|     BuildMI(*MBB, MI, DL, TII->get(Opcode))
 | |
|         .add(DestBase)
 | |
|         .addImm(DestDisp)
 | |
|         .addImm(ThisLength)
 | |
|         .add(SrcBase)
 | |
|         .addImm(SrcDisp);
 | |
|     DestDisp += ThisLength;
 | |
|     SrcDisp += ThisLength;
 | |
|     Length -= ThisLength;
 | |
|     // If there's another CLC to go, branch to the end if a difference
 | |
|     // was found.
 | |
|     if (EndMBB && Length > 0) {
 | |
|       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
 | |
|       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
 | |
|         .addMBB(EndMBB);
 | |
|       MBB->addSuccessor(EndMBB);
 | |
|       MBB->addSuccessor(NextMBB);
 | |
|       MBB = NextMBB;
 | |
|     }
 | |
|   }
 | |
|   if (EndMBB) {
 | |
|     MBB->addSuccessor(EndMBB);
 | |
|     MBB = EndMBB;
 | |
|     MBB->addLiveIn(SystemZ::CC);
 | |
|   }
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| // Decompose string pseudo-instruction MI into a loop that continually performs
 | |
| // Opcode until CC != 3.
 | |
| MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
 | |
|     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   const SystemZInstrInfo *TII =
 | |
|       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   uint64_t End1Reg = MI.getOperand(0).getReg();
 | |
|   uint64_t Start1Reg = MI.getOperand(1).getReg();
 | |
|   uint64_t Start2Reg = MI.getOperand(2).getReg();
 | |
|   uint64_t CharReg = MI.getOperand(3).getReg();
 | |
| 
 | |
|   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
 | |
|   uint64_t This1Reg = MRI.createVirtualRegister(RC);
 | |
|   uint64_t This2Reg = MRI.createVirtualRegister(RC);
 | |
|   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
 | |
| 
 | |
|   MachineBasicBlock *StartMBB = MBB;
 | |
|   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
 | |
|   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
 | |
| 
 | |
|   //  StartMBB:
 | |
|   //   # fall through to LoopMMB
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
| 
 | |
|   //  LoopMBB:
 | |
|   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
 | |
|   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
 | |
|   //   R0L = %CharReg
 | |
|   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
 | |
|   //   JO LoopMBB
 | |
|   //   # fall through to DoneMMB
 | |
|   //
 | |
|   // The load of R0L can be hoisted by post-RA LICM.
 | |
|   MBB = LoopMBB;
 | |
| 
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
 | |
|     .addReg(Start1Reg).addMBB(StartMBB)
 | |
|     .addReg(End1Reg).addMBB(LoopMBB);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
 | |
|     .addReg(Start2Reg).addMBB(StartMBB)
 | |
|     .addReg(End2Reg).addMBB(LoopMBB);
 | |
|   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
 | |
|   BuildMI(MBB, DL, TII->get(Opcode))
 | |
|     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
 | |
|     .addReg(This1Reg).addReg(This2Reg);
 | |
|   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
 | |
|     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
 | |
|   MBB->addSuccessor(LoopMBB);
 | |
|   MBB->addSuccessor(DoneMBB);
 | |
| 
 | |
|   DoneMBB->addLiveIn(SystemZ::CC);
 | |
| 
 | |
|   MI.eraseFromParent();
 | |
|   return DoneMBB;
 | |
| }
 | |
| 
 | |
| // Update TBEGIN instruction with final opcode and register clobbers.
 | |
| MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
 | |
|     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
 | |
|     bool NoFloat) const {
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
 | |
|   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
 | |
| 
 | |
|   // Update opcode.
 | |
|   MI.setDesc(TII->get(Opcode));
 | |
| 
 | |
|   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
 | |
|   // Make sure to add the corresponding GRSM bits if they are missing.
 | |
|   uint64_t Control = MI.getOperand(2).getImm();
 | |
|   static const unsigned GPRControlBit[16] = {
 | |
|     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
 | |
|     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
 | |
|   };
 | |
|   Control |= GPRControlBit[15];
 | |
|   if (TFI->hasFP(MF))
 | |
|     Control |= GPRControlBit[11];
 | |
|   MI.getOperand(2).setImm(Control);
 | |
| 
 | |
|   // Add GPR clobbers.
 | |
|   for (int I = 0; I < 16; I++) {
 | |
|     if ((Control & GPRControlBit[I]) == 0) {
 | |
|       unsigned Reg = SystemZMC::GR64Regs[I];
 | |
|       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add FPR/VR clobbers.
 | |
|   if (!NoFloat && (Control & 4) != 0) {
 | |
|     if (Subtarget.hasVector()) {
 | |
|       for (int I = 0; I < 32; I++) {
 | |
|         unsigned Reg = SystemZMC::VR128Regs[I];
 | |
|         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
 | |
|       }
 | |
|     } else {
 | |
|       for (int I = 0; I < 16; I++) {
 | |
|         unsigned Reg = SystemZMC::FP64Regs[I];
 | |
|         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
 | |
|     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineRegisterInfo *MRI = &MF.getRegInfo();
 | |
|   const SystemZInstrInfo *TII =
 | |
|       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
 | |
|   DebugLoc DL = MI.getDebugLoc();
 | |
| 
 | |
|   unsigned SrcReg = MI.getOperand(0).getReg();
 | |
| 
 | |
|   // Create new virtual register of the same class as source.
 | |
|   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
 | |
|   unsigned DstReg = MRI->createVirtualRegister(RC);
 | |
| 
 | |
|   // Replace pseudo with a normal load-and-test that models the def as
 | |
|   // well.
 | |
|   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
 | |
|     .addReg(SrcReg);
 | |
|   MI.eraseFromParent();
 | |
| 
 | |
|   return MBB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
 | |
|     MachineInstr &MI, MachineBasicBlock *MBB) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   case SystemZ::Select32Mux:
 | |
|     return emitSelect(MI, MBB,
 | |
|                       Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0);
 | |
|   case SystemZ::Select32:
 | |
|     return emitSelect(MI, MBB, SystemZ::LOCR);
 | |
|   case SystemZ::Select64:
 | |
|     return emitSelect(MI, MBB, SystemZ::LOCGR);
 | |
|   case SystemZ::SelectF32:
 | |
|   case SystemZ::SelectF64:
 | |
|   case SystemZ::SelectF128:
 | |
|     return emitSelect(MI, MBB, 0);
 | |
| 
 | |
|   case SystemZ::CondStore8Mux:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
 | |
|   case SystemZ::CondStore8MuxInv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
 | |
|   case SystemZ::CondStore16Mux:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
 | |
|   case SystemZ::CondStore16MuxInv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
 | |
|   case SystemZ::CondStore32Mux:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
 | |
|   case SystemZ::CondStore32MuxInv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
 | |
|   case SystemZ::CondStore8:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
 | |
|   case SystemZ::CondStore8Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
 | |
|   case SystemZ::CondStore16:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
 | |
|   case SystemZ::CondStore16Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
 | |
|   case SystemZ::CondStore32:
 | |
|     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
 | |
|   case SystemZ::CondStore32Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
 | |
|   case SystemZ::CondStore64:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
 | |
|   case SystemZ::CondStore64Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
 | |
|   case SystemZ::CondStoreF32:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
 | |
|   case SystemZ::CondStoreF32Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
 | |
|   case SystemZ::CondStoreF64:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
 | |
|   case SystemZ::CondStoreF64Inv:
 | |
|     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
 | |
| 
 | |
|   case SystemZ::AEXT128_64:
 | |
|     return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
 | |
|   case SystemZ::ZEXT128_32:
 | |
|     return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
 | |
|   case SystemZ::ZEXT128_64:
 | |
|     return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_SWAPW:
 | |
|     return emitAtomicLoadBinary(MI, MBB, 0, 0);
 | |
|   case SystemZ::ATOMIC_SWAP_32:
 | |
|     return emitAtomicLoadBinary(MI, MBB, 0, 32);
 | |
|   case SystemZ::ATOMIC_SWAP_64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, 0, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_AR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
 | |
|   case SystemZ::ATOMIC_LOADW_AFI:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_AR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_AHI:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_AFI:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_AGR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_AGHI:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_AGFI:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_SR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_SR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_SGR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_NR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
 | |
|   case SystemZ::ATOMIC_LOADW_NILH:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_NR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_NILL:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_NILH:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_NILF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_NGR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NILL64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NILH64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHL64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHH64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NILF64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHF64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_OR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
 | |
|   case SystemZ::ATOMIC_LOADW_OILH:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_OR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_OILL:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_OILH:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_OILF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_OGR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OILL64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OILH64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OIHL64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OIHH64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OILF64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_OIHF64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_XR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
 | |
|   case SystemZ::ATOMIC_LOADW_XILF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_XR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_XILF:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_XGR:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_XILF64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
 | |
|   case SystemZ::ATOMIC_LOAD_XIHF64:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_NRi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
 | |
|   case SystemZ::ATOMIC_LOADW_NILHi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NRi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILLi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILHi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILFi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NGRi:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILL64i:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILH64i:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHL64i:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHH64i:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NILF64i:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
 | |
|   case SystemZ::ATOMIC_LOAD_NIHF64i:
 | |
|     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_MIN:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_MIN_32:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_MIN_64:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_MAX:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_MAX_32:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_MAX_64:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_UMIN:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_UMIN_32:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_UMIN_64:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
 | |
|                                 SystemZ::CCMASK_CMP_LE, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_LOADW_UMAX:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 0);
 | |
|   case SystemZ::ATOMIC_LOAD_UMAX_32:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 32);
 | |
|   case SystemZ::ATOMIC_LOAD_UMAX_64:
 | |
|     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
 | |
|                                 SystemZ::CCMASK_CMP_GE, 64);
 | |
| 
 | |
|   case SystemZ::ATOMIC_CMP_SWAPW:
 | |
|     return emitAtomicCmpSwapW(MI, MBB);
 | |
|   case SystemZ::MVCSequence:
 | |
|   case SystemZ::MVCLoop:
 | |
|     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
 | |
|   case SystemZ::NCSequence:
 | |
|   case SystemZ::NCLoop:
 | |
|     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
 | |
|   case SystemZ::OCSequence:
 | |
|   case SystemZ::OCLoop:
 | |
|     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
 | |
|   case SystemZ::XCSequence:
 | |
|   case SystemZ::XCLoop:
 | |
|     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
 | |
|   case SystemZ::CLCSequence:
 | |
|   case SystemZ::CLCLoop:
 | |
|     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
 | |
|   case SystemZ::CLSTLoop:
 | |
|     return emitStringWrapper(MI, MBB, SystemZ::CLST);
 | |
|   case SystemZ::MVSTLoop:
 | |
|     return emitStringWrapper(MI, MBB, SystemZ::MVST);
 | |
|   case SystemZ::SRSTLoop:
 | |
|     return emitStringWrapper(MI, MBB, SystemZ::SRST);
 | |
|   case SystemZ::TBEGIN:
 | |
|     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
 | |
|   case SystemZ::TBEGIN_nofloat:
 | |
|     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
 | |
|   case SystemZ::TBEGINC:
 | |
|     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
 | |
|   case SystemZ::LTEBRCompare_VecPseudo:
 | |
|     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
 | |
|   case SystemZ::LTDBRCompare_VecPseudo:
 | |
|     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
 | |
|   case SystemZ::LTXBRCompare_VecPseudo:
 | |
|     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("Unexpected instr type to insert");
 | |
|   }
 | |
| }
 |