1793 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1793 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the SystemZ implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "MCTargetDesc/SystemZMCTargetDesc.h"
 | |
| #include "SystemZ.h"
 | |
| #include "SystemZInstrBuilder.h"
 | |
| #include "SystemZInstrInfo.h"
 | |
| #include "SystemZSubtarget.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <iterator>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define GET_INSTRINFO_CTOR_DTOR
 | |
| #define GET_INSTRMAP_INFO
 | |
| #include "SystemZGenInstrInfo.inc"
 | |
| 
 | |
| // Return a mask with Count low bits set.
 | |
| static uint64_t allOnes(unsigned int Count) {
 | |
|   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
 | |
| }
 | |
| 
 | |
| // Reg should be a 32-bit GPR.  Return true if it is a high register rather
 | |
| // than a low register.
 | |
| static bool isHighReg(unsigned int Reg) {
 | |
|   if (SystemZ::GRH32BitRegClass.contains(Reg))
 | |
|     return true;
 | |
|   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Pin the vtable to this file.
 | |
| void SystemZInstrInfo::anchor() {}
 | |
| 
 | |
| SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
 | |
|   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
 | |
|     RI(), STI(sti) {
 | |
| }
 | |
| 
 | |
| // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
 | |
| // each having the opcode given by NewOpcode.
 | |
| void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
 | |
|                                  unsigned NewOpcode) const {
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
| 
 | |
|   // Get two load or store instructions.  Use the original instruction for one
 | |
|   // of them (arbitrarily the second here) and create a clone for the other.
 | |
|   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
 | |
|   MBB->insert(MI, EarlierMI);
 | |
| 
 | |
|   // Set up the two 64-bit registers and remember super reg and its flags.
 | |
|   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
 | |
|   MachineOperand &LowRegOp = MI->getOperand(0);
 | |
|   unsigned Reg128 = LowRegOp.getReg();
 | |
|   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
 | |
|   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
 | |
|   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
 | |
|   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
 | |
| 
 | |
|   if (MI->mayStore()) {
 | |
|     // Add implicit uses of the super register in case one of the subregs is
 | |
|     // undefined. We could track liveness and skip storing an undefined
 | |
|     // subreg, but this is hopefully rare (discovered with llvm-stress).
 | |
|     // If Reg128 was killed, set kill flag on MI.
 | |
|     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
 | |
|     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
 | |
|     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
 | |
|   }
 | |
| 
 | |
|   // The address in the first (high) instruction is already correct.
 | |
|   // Adjust the offset in the second (low) instruction.
 | |
|   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
 | |
|   MachineOperand &LowOffsetOp = MI->getOperand(2);
 | |
|   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
 | |
| 
 | |
|   // Clear the kill flags for the base and index registers in the first
 | |
|   // instruction.
 | |
|   EarlierMI->getOperand(1).setIsKill(false);
 | |
|   EarlierMI->getOperand(3).setIsKill(false);
 | |
| 
 | |
|   // Set the opcodes.
 | |
|   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
 | |
|   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
 | |
|   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
 | |
| 
 | |
|   EarlierMI->setDesc(get(HighOpcode));
 | |
|   MI->setDesc(get(LowOpcode));
 | |
| }
 | |
| 
 | |
| // Split ADJDYNALLOC instruction MI.
 | |
| void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   MachineFrameInfo &MFFrame = MF.getFrameInfo();
 | |
|   MachineOperand &OffsetMO = MI->getOperand(2);
 | |
| 
 | |
|   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
 | |
|                      SystemZMC::CallFrameSize +
 | |
|                      OffsetMO.getImm());
 | |
|   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
 | |
|   assert(NewOpcode && "No support for huge argument lists yet");
 | |
|   MI->setDesc(get(NewOpcode));
 | |
|   OffsetMO.setImm(Offset);
 | |
| }
 | |
| 
 | |
| // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
 | |
| // if the first operand is a low GR32 and HighOpcode if the first operand
 | |
| // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
 | |
| // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
 | |
| // MI has the same kind of operand as LowOpcode, so needs to be converted
 | |
| // if HighOpcode is used.
 | |
| void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
 | |
|                                       unsigned HighOpcode,
 | |
|                                       bool ConvertHigh) const {
 | |
|   unsigned Reg = MI.getOperand(0).getReg();
 | |
|   bool IsHigh = isHighReg(Reg);
 | |
|   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
 | |
|   if (IsHigh && ConvertHigh)
 | |
|     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
 | |
| }
 | |
| 
 | |
| // MI is a three-operand RIE-style pseudo instruction.  Replace it with
 | |
| // LowOpcodeK if the registers are both low GR32s, otherwise use a move
 | |
| // followed by HighOpcode or LowOpcode, depending on whether the target
 | |
| // is a high or low GR32.
 | |
| void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
 | |
|                                        unsigned LowOpcodeK,
 | |
|                                        unsigned HighOpcode) const {
 | |
|   unsigned DestReg = MI.getOperand(0).getReg();
 | |
|   unsigned SrcReg = MI.getOperand(1).getReg();
 | |
|   bool DestIsHigh = isHighReg(DestReg);
 | |
|   bool SrcIsHigh = isHighReg(SrcReg);
 | |
|   if (!DestIsHigh && !SrcIsHigh)
 | |
|     MI.setDesc(get(LowOpcodeK));
 | |
|   else {
 | |
|     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
 | |
|                   SystemZ::LR, 32, MI.getOperand(1).isKill(),
 | |
|                   MI.getOperand(1).isUndef());
 | |
|     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
 | |
|     MI.getOperand(1).setReg(DestReg);
 | |
|     MI.tieOperands(0, 1);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
 | |
| // if the first operand is a low GR32 and HighOpcode if the first operand
 | |
| // is a high GR32.
 | |
| void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
 | |
|                                        unsigned HighOpcode) const {
 | |
|   unsigned Reg = MI.getOperand(0).getReg();
 | |
|   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
 | |
|                                        MI.getOperand(2).getImm());
 | |
|   MI.setDesc(get(Opcode));
 | |
| }
 | |
| 
 | |
| // MI is a load-on-condition pseudo instruction with a single register
 | |
| // (source or destination) operand.  Replace it with LowOpcode if the
 | |
| // register is a low GR32 and HighOpcode if the register is a high GR32.
 | |
| void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
 | |
|                                        unsigned HighOpcode) const {
 | |
|   unsigned Reg = MI.getOperand(0).getReg();
 | |
|   unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode;
 | |
|   MI.setDesc(get(Opcode));
 | |
| }
 | |
| 
 | |
| // MI is a load-register-on-condition pseudo instruction.  Replace it with
 | |
| // LowOpcode if source and destination are both low GR32s and HighOpcode if
 | |
| // source and destination are both high GR32s.
 | |
| void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode,
 | |
|                                         unsigned HighOpcode) const {
 | |
|   unsigned DestReg = MI.getOperand(0).getReg();
 | |
|   unsigned SrcReg = MI.getOperand(2).getReg();
 | |
|   bool DestIsHigh = isHighReg(DestReg);
 | |
|   bool SrcIsHigh = isHighReg(SrcReg);
 | |
| 
 | |
|   if (!DestIsHigh && !SrcIsHigh)
 | |
|     MI.setDesc(get(LowOpcode));
 | |
|   else if (DestIsHigh && SrcIsHigh)
 | |
|     MI.setDesc(get(HighOpcode));
 | |
| 
 | |
|   // If we were unable to implement the pseudo with a single instruction, we
 | |
|   // need to convert it back into a branch sequence.  This cannot be done here
 | |
|   // since the caller of expandPostRAPseudo does not handle changes to the CFG
 | |
|   // correctly.  This change is defered to the SystemZExpandPseudo pass.
 | |
| }
 | |
| 
 | |
| // MI is an RR-style pseudo instruction that zero-extends the low Size bits
 | |
| // of one GRX32 into another.  Replace it with LowOpcode if both operands
 | |
| // are low registers, otherwise use RISB[LH]G.
 | |
| void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
 | |
|                                         unsigned Size) const {
 | |
|   emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
 | |
|                 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
 | |
|                 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
 | |
|   MI.eraseFromParent();
 | |
| }
 | |
| 
 | |
| void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
 | |
|   MachineBasicBlock *MBB = MI->getParent();
 | |
|   MachineFunction &MF = *MBB->getParent();
 | |
|   const unsigned Reg = MI->getOperand(0).getReg();
 | |
| 
 | |
|   // Conveniently, all 4 instructions are cloned from LOAD_STACK_GUARD,
 | |
|   // so they already have operand 0 set to reg.
 | |
| 
 | |
|   // ear <reg>, %a0
 | |
|   MachineInstr *Ear1MI = MF.CloneMachineInstr(MI);
 | |
|   MBB->insert(MI, Ear1MI);
 | |
|   Ear1MI->setDesc(get(SystemZ::EAR));
 | |
|   MachineInstrBuilder(MF, Ear1MI).addReg(SystemZ::A0);
 | |
| 
 | |
|   // sllg <reg>, <reg>, 32
 | |
|   MachineInstr *SllgMI = MF.CloneMachineInstr(MI);
 | |
|   MBB->insert(MI, SllgMI);
 | |
|   SllgMI->setDesc(get(SystemZ::SLLG));
 | |
|   MachineInstrBuilder(MF, SllgMI).addReg(Reg).addReg(0).addImm(32);
 | |
| 
 | |
|   // ear <reg>, %a1
 | |
|   MachineInstr *Ear2MI = MF.CloneMachineInstr(MI);
 | |
|   MBB->insert(MI, Ear2MI);
 | |
|   Ear2MI->setDesc(get(SystemZ::EAR));
 | |
|   MachineInstrBuilder(MF, Ear2MI).addReg(SystemZ::A1);
 | |
| 
 | |
|   // lg <reg>, 40(<reg>)
 | |
|   MI->setDesc(get(SystemZ::LG));
 | |
|   MachineInstrBuilder(MF, MI).addReg(Reg).addImm(40).addReg(0);
 | |
| }
 | |
| 
 | |
| // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
 | |
| // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
 | |
| // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
 | |
| // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
 | |
| // KillSrc is true if this move is the last use of SrcReg.
 | |
| void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
 | |
|                                      MachineBasicBlock::iterator MBBI,
 | |
|                                      const DebugLoc &DL, unsigned DestReg,
 | |
|                                      unsigned SrcReg, unsigned LowLowOpcode,
 | |
|                                      unsigned Size, bool KillSrc,
 | |
|                                      bool UndefSrc) const {
 | |
|   unsigned Opcode;
 | |
|   bool DestIsHigh = isHighReg(DestReg);
 | |
|   bool SrcIsHigh = isHighReg(SrcReg);
 | |
|   if (DestIsHigh && SrcIsHigh)
 | |
|     Opcode = SystemZ::RISBHH;
 | |
|   else if (DestIsHigh && !SrcIsHigh)
 | |
|     Opcode = SystemZ::RISBHL;
 | |
|   else if (!DestIsHigh && SrcIsHigh)
 | |
|     Opcode = SystemZ::RISBLH;
 | |
|   else {
 | |
|     BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
 | |
|       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
 | |
|     return;
 | |
|   }
 | |
|   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
 | |
|   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
 | |
|     .addReg(DestReg, RegState::Undef)
 | |
|     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
 | |
|     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
 | |
| }
 | |
| 
 | |
| MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
 | |
|                                                        bool NewMI,
 | |
|                                                        unsigned OpIdx1,
 | |
|                                                        unsigned OpIdx2) const {
 | |
|   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
 | |
|     if (NewMI)
 | |
|       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
 | |
|     return MI;
 | |
|   };
 | |
| 
 | |
|   switch (MI.getOpcode()) {
 | |
|   case SystemZ::LOCRMux:
 | |
|   case SystemZ::LOCFHR:
 | |
|   case SystemZ::LOCR:
 | |
|   case SystemZ::LOCGR: {
 | |
|     auto &WorkingMI = cloneIfNew(MI);
 | |
|     // Invert condition.
 | |
|     unsigned CCValid = WorkingMI.getOperand(3).getImm();
 | |
|     unsigned CCMask = WorkingMI.getOperand(4).getImm();
 | |
|     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
 | |
|     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
 | |
|                                                    OpIdx1, OpIdx2);
 | |
|   }
 | |
|   default:
 | |
|     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // If MI is a simple load or store for a frame object, return the register
 | |
| // it loads or stores and set FrameIndex to the index of the frame object.
 | |
| // Return 0 otherwise.
 | |
| //
 | |
| // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
 | |
| static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
 | |
|                         unsigned Flag) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
 | |
|       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
 | |
|     FrameIndex = MI.getOperand(1).getIndex();
 | |
|     return MI.getOperand(0).getReg();
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
 | |
|                                                int &FrameIndex) const {
 | |
|   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
 | |
| }
 | |
| 
 | |
| unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
 | |
|                                               int &FrameIndex) const {
 | |
|   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
 | |
|                                        int &DestFrameIndex,
 | |
|                                        int &SrcFrameIndex) const {
 | |
|   // Check for MVC 0(Length,FI1),0(FI2)
 | |
|   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
 | |
|   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
 | |
|       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
 | |
|       MI.getOperand(4).getImm() != 0)
 | |
|     return false;
 | |
| 
 | |
|   // Check that Length covers the full slots.
 | |
|   int64_t Length = MI.getOperand(2).getImm();
 | |
|   unsigned FI1 = MI.getOperand(0).getIndex();
 | |
|   unsigned FI2 = MI.getOperand(3).getIndex();
 | |
|   if (MFI.getObjectSize(FI1) != Length ||
 | |
|       MFI.getObjectSize(FI2) != Length)
 | |
|     return false;
 | |
| 
 | |
|   DestFrameIndex = FI1;
 | |
|   SrcFrameIndex = FI2;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
 | |
|                                      MachineBasicBlock *&TBB,
 | |
|                                      MachineBasicBlock *&FBB,
 | |
|                                      SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                      bool AllowModify) const {
 | |
|   // Most of the code and comments here are boilerplate.
 | |
| 
 | |
|   // Start from the bottom of the block and work up, examining the
 | |
|   // terminator instructions.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   while (I != MBB.begin()) {
 | |
|     --I;
 | |
|     if (I->isDebugValue())
 | |
|       continue;
 | |
| 
 | |
|     // Working from the bottom, when we see a non-terminator instruction, we're
 | |
|     // done.
 | |
|     if (!isUnpredicatedTerminator(*I))
 | |
|       break;
 | |
| 
 | |
|     // A terminator that isn't a branch can't easily be handled by this
 | |
|     // analysis.
 | |
|     if (!I->isBranch())
 | |
|       return true;
 | |
| 
 | |
|     // Can't handle indirect branches.
 | |
|     SystemZII::Branch Branch(getBranchInfo(*I));
 | |
|     if (!Branch.Target->isMBB())
 | |
|       return true;
 | |
| 
 | |
|     // Punt on compound branches.
 | |
|     if (Branch.Type != SystemZII::BranchNormal)
 | |
|       return true;
 | |
| 
 | |
|     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
 | |
|       // Handle unconditional branches.
 | |
|       if (!AllowModify) {
 | |
|         TBB = Branch.Target->getMBB();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If the block has any instructions after a JMP, delete them.
 | |
|       while (std::next(I) != MBB.end())
 | |
|         std::next(I)->eraseFromParent();
 | |
| 
 | |
|       Cond.clear();
 | |
|       FBB = nullptr;
 | |
| 
 | |
|       // Delete the JMP if it's equivalent to a fall-through.
 | |
|       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
 | |
|         TBB = nullptr;
 | |
|         I->eraseFromParent();
 | |
|         I = MBB.end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // TBB is used to indicate the unconditinal destination.
 | |
|       TBB = Branch.Target->getMBB();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Working from the bottom, handle the first conditional branch.
 | |
|     if (Cond.empty()) {
 | |
|       // FIXME: add X86-style branch swap
 | |
|       FBB = TBB;
 | |
|       TBB = Branch.Target->getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
 | |
|       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Handle subsequent conditional branches.
 | |
|     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
 | |
| 
 | |
|     // Only handle the case where all conditional branches branch to the same
 | |
|     // destination.
 | |
|     if (TBB != Branch.Target->getMBB())
 | |
|       return true;
 | |
| 
 | |
|     // If the conditions are the same, we can leave them alone.
 | |
|     unsigned OldCCValid = Cond[0].getImm();
 | |
|     unsigned OldCCMask = Cond[1].getImm();
 | |
|     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
 | |
|       continue;
 | |
| 
 | |
|     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
 | |
|                                         int *BytesRemoved) const {
 | |
|   assert(!BytesRemoved && "code size not handled");
 | |
| 
 | |
|   // Most of the code and comments here are boilerplate.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   unsigned Count = 0;
 | |
| 
 | |
|   while (I != MBB.begin()) {
 | |
|     --I;
 | |
|     if (I->isDebugValue())
 | |
|       continue;
 | |
|     if (!I->isBranch())
 | |
|       break;
 | |
|     if (!getBranchInfo(*I).Target->isMBB())
 | |
|       break;
 | |
|     // Remove the branch.
 | |
|     I->eraseFromParent();
 | |
|     I = MBB.end();
 | |
|     ++Count;
 | |
|   }
 | |
| 
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::
 | |
| reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   assert(Cond.size() == 2 && "Invalid condition");
 | |
|   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
 | |
|                                         MachineBasicBlock *TBB,
 | |
|                                         MachineBasicBlock *FBB,
 | |
|                                         ArrayRef<MachineOperand> Cond,
 | |
|                                         const DebugLoc &DL,
 | |
|                                         int *BytesAdded) const {
 | |
|   // In this function we output 32-bit branches, which should always
 | |
|   // have enough range.  They can be shortened and relaxed by later code
 | |
|   // in the pipeline, if desired.
 | |
| 
 | |
|   // Shouldn't be a fall through.
 | |
|   assert(TBB && "insertBranch must not be told to insert a fallthrough");
 | |
|   assert((Cond.size() == 2 || Cond.size() == 0) &&
 | |
|          "SystemZ branch conditions have one component!");
 | |
|   assert(!BytesAdded && "code size not handled");
 | |
| 
 | |
|   if (Cond.empty()) {
 | |
|     // Unconditional branch?
 | |
|     assert(!FBB && "Unconditional branch with multiple successors!");
 | |
|     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Conditional branch.
 | |
|   unsigned Count = 0;
 | |
|   unsigned CCValid = Cond[0].getImm();
 | |
|   unsigned CCMask = Cond[1].getImm();
 | |
|   BuildMI(&MBB, DL, get(SystemZ::BRC))
 | |
|     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
 | |
|   ++Count;
 | |
| 
 | |
|   if (FBB) {
 | |
|     // Two-way Conditional branch. Insert the second branch.
 | |
|     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
 | |
|                                       unsigned &SrcReg2, int &Mask,
 | |
|                                       int &Value) const {
 | |
|   assert(MI.isCompare() && "Caller should have checked for a comparison");
 | |
| 
 | |
|   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
 | |
|       MI.getOperand(1).isImm()) {
 | |
|     SrcReg = MI.getOperand(0).getReg();
 | |
|     SrcReg2 = 0;
 | |
|     Value = MI.getOperand(1).getImm();
 | |
|     Mask = ~0;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // If Reg is a virtual register, return its definition, otherwise return null.
 | |
| static MachineInstr *getDef(unsigned Reg,
 | |
|                             const MachineRegisterInfo *MRI) {
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|     return nullptr;
 | |
|   return MRI->getUniqueVRegDef(Reg);
 | |
| }
 | |
| 
 | |
| // Return true if MI is a shift of type Opcode by Imm bits.
 | |
| static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) {
 | |
|   return (MI->getOpcode() == Opcode &&
 | |
|           !MI->getOperand(2).getReg() &&
 | |
|           MI->getOperand(3).getImm() == Imm);
 | |
| }
 | |
| 
 | |
| // If the destination of MI has no uses, delete it as dead.
 | |
| static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
 | |
|   if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
 | |
|     MI->eraseFromParent();
 | |
| }
 | |
| 
 | |
| // Compare compares SrcReg against zero.  Check whether SrcReg contains
 | |
| // the result of an IPM sequence whose input CC survives until Compare,
 | |
| // and whether Compare is therefore redundant.  Delete it and return
 | |
| // true if so.
 | |
| static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg,
 | |
|                                   const MachineRegisterInfo *MRI,
 | |
|                                   const TargetRegisterInfo *TRI) {
 | |
|   MachineInstr *LGFR = nullptr;
 | |
|   MachineInstr *RLL = getDef(SrcReg, MRI);
 | |
|   if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
 | |
|     LGFR = RLL;
 | |
|     RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
 | |
|   }
 | |
|   if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
 | |
|   if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
 | |
|   if (!IPM || IPM->getOpcode() != SystemZ::IPM)
 | |
|     return false;
 | |
| 
 | |
|   // Check that there are no assignments to CC between the IPM and Compare,
 | |
|   if (IPM->getParent() != Compare.getParent())
 | |
|     return false;
 | |
|   MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator();
 | |
|   for (++MBBI; MBBI != MBBE; ++MBBI) {
 | |
|     MachineInstr &MI = *MBBI;
 | |
|     if (MI.modifiesRegister(SystemZ::CC, TRI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   Compare.eraseFromParent();
 | |
|   if (LGFR)
 | |
|     eraseIfDead(LGFR, MRI);
 | |
|   eraseIfDead(RLL, MRI);
 | |
|   eraseIfDead(SRL, MRI);
 | |
|   eraseIfDead(IPM, MRI);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::optimizeCompareInstr(
 | |
|     MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask,
 | |
|     int Value, const MachineRegisterInfo *MRI) const {
 | |
|   assert(!SrcReg2 && "Only optimizing constant comparisons so far");
 | |
|   bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0;
 | |
|   return Value == 0 && !IsLogical &&
 | |
|          removeIPMBasedCompare(Compare, SrcReg, MRI, &RI);
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
 | |
|                                        ArrayRef<MachineOperand> Pred,
 | |
|                                        unsigned TrueReg, unsigned FalseReg,
 | |
|                                        int &CondCycles, int &TrueCycles,
 | |
|                                        int &FalseCycles) const {
 | |
|   // Not all subtargets have LOCR instructions.
 | |
|   if (!STI.hasLoadStoreOnCond())
 | |
|     return false;
 | |
|   if (Pred.size() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Check register classes.
 | |
|   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC =
 | |
|     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
 | |
|   if (!RC)
 | |
|     return false;
 | |
| 
 | |
|   // We have LOCR instructions for 32 and 64 bit general purpose registers.
 | |
|   if ((STI.hasLoadStoreOnCond2() &&
 | |
|        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
 | |
|       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
 | |
|       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
 | |
|     CondCycles = 2;
 | |
|     TrueCycles = 2;
 | |
|     FalseCycles = 2;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Can't do anything else.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
 | |
|                                     MachineBasicBlock::iterator I,
 | |
|                                     const DebugLoc &DL, unsigned DstReg,
 | |
|                                     ArrayRef<MachineOperand> Pred,
 | |
|                                     unsigned TrueReg,
 | |
|                                     unsigned FalseReg) const {
 | |
|   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
 | |
| 
 | |
|   assert(Pred.size() == 2 && "Invalid condition");
 | |
|   unsigned CCValid = Pred[0].getImm();
 | |
|   unsigned CCMask = Pred[1].getImm();
 | |
| 
 | |
|   unsigned Opc;
 | |
|   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
 | |
|     if (STI.hasLoadStoreOnCond2())
 | |
|       Opc = SystemZ::LOCRMux;
 | |
|     else {
 | |
|       Opc = SystemZ::LOCR;
 | |
|       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
 | |
|     }
 | |
|   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC))
 | |
|     Opc = SystemZ::LOCGR;
 | |
|   else
 | |
|     llvm_unreachable("Invalid register class");
 | |
| 
 | |
|   BuildMI(MBB, I, DL, get(Opc), DstReg)
 | |
|     .addReg(FalseReg).addReg(TrueReg)
 | |
|     .addImm(CCValid).addImm(CCMask);
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
 | |
|                                      unsigned Reg,
 | |
|                                      MachineRegisterInfo *MRI) const {
 | |
|   unsigned DefOpc = DefMI.getOpcode();
 | |
|   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
 | |
|       DefOpc != SystemZ::LGHI)
 | |
|     return false;
 | |
|   if (DefMI.getOperand(0).getReg() != Reg)
 | |
|     return false;
 | |
|   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
 | |
| 
 | |
|   unsigned UseOpc = UseMI.getOpcode();
 | |
|   unsigned NewUseOpc;
 | |
|   unsigned UseIdx;
 | |
|   int CommuteIdx = -1;
 | |
|   switch (UseOpc) {
 | |
|   case SystemZ::LOCRMux:
 | |
|     if (!STI.hasLoadStoreOnCond2())
 | |
|       return false;
 | |
|     NewUseOpc = SystemZ::LOCHIMux;
 | |
|     if (UseMI.getOperand(2).getReg() == Reg)
 | |
|       UseIdx = 2;
 | |
|     else if (UseMI.getOperand(1).getReg() == Reg)
 | |
|       UseIdx = 2, CommuteIdx = 1;
 | |
|     else
 | |
|       return false;
 | |
|     break;
 | |
|   case SystemZ::LOCGR:
 | |
|     if (!STI.hasLoadStoreOnCond2())
 | |
|       return false;
 | |
|     NewUseOpc = SystemZ::LOCGHI;
 | |
|     if (UseMI.getOperand(2).getReg() == Reg)
 | |
|       UseIdx = 2;
 | |
|     else if (UseMI.getOperand(1).getReg() == Reg)
 | |
|       UseIdx = 2, CommuteIdx = 1;
 | |
|     else
 | |
|       return false;
 | |
|     break;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (CommuteIdx != -1)
 | |
|     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
 | |
|       return false;
 | |
| 
 | |
|   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
 | |
|   UseMI.setDesc(get(NewUseOpc));
 | |
|   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
 | |
|   if (DeleteDef)
 | |
|     DefMI.eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   if (Opcode == SystemZ::Return ||
 | |
|       Opcode == SystemZ::Trap ||
 | |
|       Opcode == SystemZ::CallJG ||
 | |
|       Opcode == SystemZ::CallBR)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::
 | |
| isProfitableToIfCvt(MachineBasicBlock &MBB,
 | |
|                     unsigned NumCycles, unsigned ExtraPredCycles,
 | |
|                     BranchProbability Probability) const {
 | |
|   // Avoid using conditional returns at the end of a loop (since then
 | |
|   // we'd need to emit an unconditional branch to the beginning anyway,
 | |
|   // making the loop body longer).  This doesn't apply for low-probability
 | |
|   // loops (eg. compare-and-swap retry), so just decide based on branch
 | |
|   // probability instead of looping structure.
 | |
|   // However, since Compare and Trap instructions cost the same as a regular
 | |
|   // Compare instruction, we should allow the if conversion to convert this
 | |
|   // into a Conditional Compare regardless of the branch probability.
 | |
|   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
 | |
|       MBB.succ_empty() && Probability < BranchProbability(1, 8))
 | |
|     return false;
 | |
|   // For now only convert single instructions.
 | |
|   return NumCycles == 1;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::
 | |
| isProfitableToIfCvt(MachineBasicBlock &TMBB,
 | |
|                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
 | |
|                     MachineBasicBlock &FMBB,
 | |
|                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
 | |
|                     BranchProbability Probability) const {
 | |
|   // For now avoid converting mutually-exclusive cases.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::
 | |
| isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
 | |
|                           BranchProbability Probability) const {
 | |
|   // For now only duplicate single instructions.
 | |
|   return NumCycles == 1;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::PredicateInstruction(
 | |
|     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
 | |
|   assert(Pred.size() == 2 && "Invalid condition");
 | |
|   unsigned CCValid = Pred[0].getImm();
 | |
|   unsigned CCMask = Pred[1].getImm();
 | |
|   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   if (Opcode == SystemZ::Trap) {
 | |
|     MI.setDesc(get(SystemZ::CondTrap));
 | |
|     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|       .addImm(CCValid).addImm(CCMask)
 | |
|       .addReg(SystemZ::CC, RegState::Implicit);
 | |
|     return true;
 | |
|   }
 | |
|   if (Opcode == SystemZ::Return) {
 | |
|     MI.setDesc(get(SystemZ::CondReturn));
 | |
|     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|       .addImm(CCValid).addImm(CCMask)
 | |
|       .addReg(SystemZ::CC, RegState::Implicit);
 | |
|     return true;
 | |
|   }
 | |
|   if (Opcode == SystemZ::CallJG) {
 | |
|     MachineOperand FirstOp = MI.getOperand(0);
 | |
|     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
 | |
|     MI.RemoveOperand(1);
 | |
|     MI.RemoveOperand(0);
 | |
|     MI.setDesc(get(SystemZ::CallBRCL));
 | |
|     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|         .addImm(CCValid)
 | |
|         .addImm(CCMask)
 | |
|         .add(FirstOp)
 | |
|         .addRegMask(RegMask)
 | |
|         .addReg(SystemZ::CC, RegState::Implicit);
 | |
|     return true;
 | |
|   }
 | |
|   if (Opcode == SystemZ::CallBR) {
 | |
|     const uint32_t *RegMask = MI.getOperand(0).getRegMask();
 | |
|     MI.RemoveOperand(0);
 | |
|     MI.setDesc(get(SystemZ::CallBCR));
 | |
|     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
 | |
|       .addImm(CCValid).addImm(CCMask)
 | |
|       .addRegMask(RegMask)
 | |
|       .addReg(SystemZ::CC, RegState::Implicit);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | |
|                                    MachineBasicBlock::iterator MBBI,
 | |
|                                    const DebugLoc &DL, unsigned DestReg,
 | |
|                                    unsigned SrcReg, bool KillSrc) const {
 | |
|   // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
 | |
|   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
 | |
|     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
 | |
|                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
 | |
|     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
 | |
|                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
 | |
|     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
 | |
|                   false);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Everything else needs only one instruction.
 | |
|   unsigned Opcode;
 | |
|   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
 | |
|     Opcode = SystemZ::LGR;
 | |
|   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
 | |
|     // For z13 we prefer LDR over LER to avoid partial register dependencies.
 | |
|     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
 | |
|   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
 | |
|     Opcode = SystemZ::LDR;
 | |
|   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
 | |
|     Opcode = SystemZ::LXR;
 | |
|   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
 | |
|     Opcode = SystemZ::VLR32;
 | |
|   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
 | |
|     Opcode = SystemZ::VLR64;
 | |
|   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
 | |
|     Opcode = SystemZ::VLR;
 | |
|   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
 | |
|     Opcode = SystemZ::CPYA;
 | |
|   else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
 | |
|            SystemZ::GR32BitRegClass.contains(SrcReg))
 | |
|     Opcode = SystemZ::SAR;
 | |
|   else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
 | |
|            SystemZ::AR32BitRegClass.contains(SrcReg))
 | |
|     Opcode = SystemZ::EAR;
 | |
|   else
 | |
|     llvm_unreachable("Impossible reg-to-reg copy");
 | |
| 
 | |
|   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
 | |
|     .addReg(SrcReg, getKillRegState(KillSrc));
 | |
| }
 | |
| 
 | |
| void SystemZInstrInfo::storeRegToStackSlot(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
 | |
|     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
 | |
|     const TargetRegisterInfo *TRI) const {
 | |
|   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
 | |
| 
 | |
|   // Callers may expect a single instruction, so keep 128-bit moves
 | |
|   // together for now and lower them after register allocation.
 | |
|   unsigned LoadOpcode, StoreOpcode;
 | |
|   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
 | |
|   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
 | |
|                         .addReg(SrcReg, getKillRegState(isKill)),
 | |
|                     FrameIdx);
 | |
| }
 | |
| 
 | |
| void SystemZInstrInfo::loadRegFromStackSlot(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
 | |
|     int FrameIdx, const TargetRegisterClass *RC,
 | |
|     const TargetRegisterInfo *TRI) const {
 | |
|   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
 | |
| 
 | |
|   // Callers may expect a single instruction, so keep 128-bit moves
 | |
|   // together for now and lower them after register allocation.
 | |
|   unsigned LoadOpcode, StoreOpcode;
 | |
|   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
 | |
|   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
 | |
|                     FrameIdx);
 | |
| }
 | |
| 
 | |
| // Return true if MI is a simple load or store with a 12-bit displacement
 | |
| // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
 | |
| static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   return ((MCID.TSFlags & Flag) &&
 | |
|           isUInt<12>(MI->getOperand(2).getImm()) &&
 | |
|           MI->getOperand(3).getReg() == 0);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct LogicOp {
 | |
|   LogicOp() = default;
 | |
|   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
 | |
|     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
 | |
| 
 | |
|   explicit operator bool() const { return RegSize; }
 | |
| 
 | |
|   unsigned RegSize = 0;
 | |
|   unsigned ImmLSB = 0;
 | |
|   unsigned ImmSize = 0;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static LogicOp interpretAndImmediate(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   case SystemZ::NILMux: return LogicOp(32,  0, 16);
 | |
|   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
 | |
|   case SystemZ::NILL64: return LogicOp(64,  0, 16);
 | |
|   case SystemZ::NILH64: return LogicOp(64, 16, 16);
 | |
|   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
 | |
|   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
 | |
|   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
 | |
|   case SystemZ::NILF64: return LogicOp(64,  0, 32);
 | |
|   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
 | |
|   default:              return LogicOp();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
 | |
|   if (OldMI->registerDefIsDead(SystemZ::CC)) {
 | |
|     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
 | |
|     if (CCDef != nullptr)
 | |
|       CCDef->setIsDead(true);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Used to return from convertToThreeAddress after replacing two-address
 | |
| // instruction OldMI with three-address instruction NewMI.
 | |
| static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
 | |
|                                                  MachineInstr *NewMI,
 | |
|                                                  LiveVariables *LV) {
 | |
|   if (LV) {
 | |
|     unsigned NumOps = OldMI->getNumOperands();
 | |
|     for (unsigned I = 1; I < NumOps; ++I) {
 | |
|       MachineOperand &Op = OldMI->getOperand(I);
 | |
|       if (Op.isReg() && Op.isKill())
 | |
|         LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI);
 | |
|     }
 | |
|   }
 | |
|   transferDeadCC(OldMI, NewMI);
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| MachineInstr *SystemZInstrInfo::convertToThreeAddress(
 | |
|     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
 | |
|   MachineBasicBlock *MBB = MI.getParent();
 | |
|   MachineFunction *MF = MBB->getParent();
 | |
|   MachineRegisterInfo &MRI = MF->getRegInfo();
 | |
| 
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   unsigned NumOps = MI.getNumOperands();
 | |
| 
 | |
|   // Try to convert something like SLL into SLLK, if supported.
 | |
|   // We prefer to keep the two-operand form where possible both
 | |
|   // because it tends to be shorter and because some instructions
 | |
|   // have memory forms that can be used during spilling.
 | |
|   if (STI.hasDistinctOps()) {
 | |
|     MachineOperand &Dest = MI.getOperand(0);
 | |
|     MachineOperand &Src = MI.getOperand(1);
 | |
|     unsigned DestReg = Dest.getReg();
 | |
|     unsigned SrcReg = Src.getReg();
 | |
|     // AHIMux is only really a three-operand instruction when both operands
 | |
|     // are low registers.  Try to constrain both operands to be low if
 | |
|     // possible.
 | |
|     if (Opcode == SystemZ::AHIMux &&
 | |
|         TargetRegisterInfo::isVirtualRegister(DestReg) &&
 | |
|         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
 | |
|         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
 | |
|         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
 | |
|       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
 | |
|       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
 | |
|     }
 | |
|     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
 | |
|     if (ThreeOperandOpcode >= 0) {
 | |
|       // Create three address instruction without adding the implicit
 | |
|       // operands. Those will instead be copied over from the original
 | |
|       // instruction by the loop below.
 | |
|       MachineInstrBuilder MIB(
 | |
|           *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(),
 | |
|                                       /*NoImplicit=*/true));
 | |
|       MIB.add(Dest);
 | |
|       // Keep the kill state, but drop the tied flag.
 | |
|       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
 | |
|       // Keep the remaining operands as-is.
 | |
|       for (unsigned I = 2; I < NumOps; ++I)
 | |
|         MIB.add(MI.getOperand(I));
 | |
|       MBB->insert(MI, MIB);
 | |
|       return finishConvertToThreeAddress(&MI, MIB, LV);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Try to convert an AND into an RISBG-type instruction.
 | |
|   if (LogicOp And = interpretAndImmediate(Opcode)) {
 | |
|     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
 | |
|     // AND IMMEDIATE leaves the other bits of the register unchanged.
 | |
|     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
 | |
|     unsigned Start, End;
 | |
|     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
 | |
|       unsigned NewOpcode;
 | |
|       if (And.RegSize == 64) {
 | |
|         NewOpcode = SystemZ::RISBG;
 | |
|         // Prefer RISBGN if available, since it does not clobber CC.
 | |
|         if (STI.hasMiscellaneousExtensions())
 | |
|           NewOpcode = SystemZ::RISBGN;
 | |
|       } else {
 | |
|         NewOpcode = SystemZ::RISBMux;
 | |
|         Start &= 31;
 | |
|         End &= 31;
 | |
|       }
 | |
|       MachineOperand &Dest = MI.getOperand(0);
 | |
|       MachineOperand &Src = MI.getOperand(1);
 | |
|       MachineInstrBuilder MIB =
 | |
|           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
 | |
|               .add(Dest)
 | |
|               .addReg(0)
 | |
|               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
 | |
|                       Src.getSubReg())
 | |
|               .addImm(Start)
 | |
|               .addImm(End + 128)
 | |
|               .addImm(0);
 | |
|       return finishConvertToThreeAddress(&MI, MIB, LV);
 | |
|     }
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
 | |
|     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
 | |
|     MachineBasicBlock::iterator InsertPt, int FrameIndex,
 | |
|     LiveIntervals *LIS) const {
 | |
|   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   const MachineFrameInfo &MFI = MF.getFrameInfo();
 | |
|   unsigned Size = MFI.getObjectSize(FrameIndex);
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
| 
 | |
|   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | |
|     if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
 | |
|         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
 | |
| 
 | |
|       // Check CC liveness, since new instruction introduces a dead
 | |
|       // def of CC.
 | |
|       MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
 | |
|       LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
 | |
|       ++CCUnit;
 | |
|       assert(!CCUnit.isValid() && "CC only has one reg unit.");
 | |
|       SlotIndex MISlot =
 | |
|           LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
 | |
|       if (!CCLiveRange.liveAt(MISlot)) {
 | |
|         // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
 | |
|         MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
 | |
|                                         MI.getDebugLoc(), get(SystemZ::AGSI))
 | |
|                                     .addFrameIndex(FrameIndex)
 | |
|                                     .addImm(0)
 | |
|                                     .addImm(MI.getOperand(2).getImm());
 | |
|         BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
 | |
|         CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
 | |
|         return BuiltMI;
 | |
|       }
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // All other cases require a single operand.
 | |
|   if (Ops.size() != 1)
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned OpNum = Ops[0];
 | |
|   assert(Size ==
 | |
|              MF.getRegInfo()
 | |
|                  .getRegClass(MI.getOperand(OpNum).getReg())
 | |
|                  ->getSize() &&
 | |
|          "Invalid size combination");
 | |
| 
 | |
|   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
 | |
|       isInt<8>(MI.getOperand(2).getImm())) {
 | |
|     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
 | |
|     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
 | |
|     MachineInstr *BuiltMI =
 | |
|         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
 | |
|             .addFrameIndex(FrameIndex)
 | |
|             .addImm(0)
 | |
|             .addImm(MI.getOperand(2).getImm());
 | |
|     transferDeadCC(&MI, BuiltMI);
 | |
|     return BuiltMI;
 | |
|   }
 | |
| 
 | |
|   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
 | |
|     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
 | |
|     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
 | |
|     // If we're spilling the destination of an LDGR or LGDR, store the
 | |
|     // source register instead.
 | |
|     if (OpNum == 0) {
 | |
|       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
 | |
|       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
 | |
|                      get(StoreOpcode))
 | |
|           .add(MI.getOperand(1))
 | |
|           .addFrameIndex(FrameIndex)
 | |
|           .addImm(0)
 | |
|           .addReg(0);
 | |
|     }
 | |
|     // If we're spilling the source of an LDGR or LGDR, load the
 | |
|     // destination register instead.
 | |
|     if (OpNum == 1) {
 | |
|       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
 | |
|       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
 | |
|                      get(LoadOpcode))
 | |
|         .add(MI.getOperand(0))
 | |
|         .addFrameIndex(FrameIndex)
 | |
|         .addImm(0)
 | |
|         .addReg(0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Look for cases where the source of a simple store or the destination
 | |
|   // of a simple load is being spilled.  Try to use MVC instead.
 | |
|   //
 | |
|   // Although MVC is in practice a fast choice in these cases, it is still
 | |
|   // logically a bytewise copy.  This means that we cannot use it if the
 | |
|   // load or store is volatile.  We also wouldn't be able to use MVC if
 | |
|   // the two memories partially overlap, but that case cannot occur here,
 | |
|   // because we know that one of the memories is a full frame index.
 | |
|   //
 | |
|   // For performance reasons, we also want to avoid using MVC if the addresses
 | |
|   // might be equal.  We don't worry about that case here, because spill slot
 | |
|   // coloring happens later, and because we have special code to remove
 | |
|   // MVCs that turn out to be redundant.
 | |
|   if (OpNum == 0 && MI.hasOneMemOperand()) {
 | |
|     MachineMemOperand *MMO = *MI.memoperands_begin();
 | |
|     if (MMO->getSize() == Size && !MMO->isVolatile()) {
 | |
|       // Handle conversion of loads.
 | |
|       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
 | |
|         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
 | |
|                        get(SystemZ::MVC))
 | |
|             .addFrameIndex(FrameIndex)
 | |
|             .addImm(0)
 | |
|             .addImm(Size)
 | |
|             .add(MI.getOperand(1))
 | |
|             .addImm(MI.getOperand(2).getImm())
 | |
|             .addMemOperand(MMO);
 | |
|       }
 | |
|       // Handle conversion of stores.
 | |
|       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
 | |
|         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
 | |
|                        get(SystemZ::MVC))
 | |
|             .add(MI.getOperand(1))
 | |
|             .addImm(MI.getOperand(2).getImm())
 | |
|             .addImm(Size)
 | |
|             .addFrameIndex(FrameIndex)
 | |
|             .addImm(0)
 | |
|             .addMemOperand(MMO);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the spilled operand is the final one, try to change <INSN>R
 | |
|   // into <INSN>.
 | |
|   int MemOpcode = SystemZ::getMemOpcode(Opcode);
 | |
|   if (MemOpcode >= 0) {
 | |
|     unsigned NumOps = MI.getNumExplicitOperands();
 | |
|     if (OpNum == NumOps - 1) {
 | |
|       const MCInstrDesc &MemDesc = get(MemOpcode);
 | |
|       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
 | |
|       assert(AccessBytes != 0 && "Size of access should be known");
 | |
|       assert(AccessBytes <= Size && "Access outside the frame index");
 | |
|       uint64_t Offset = Size - AccessBytes;
 | |
|       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
 | |
|                                         MI.getDebugLoc(), get(MemOpcode));
 | |
|       for (unsigned I = 0; I < OpNum; ++I)
 | |
|         MIB.add(MI.getOperand(I));
 | |
|       MIB.addFrameIndex(FrameIndex).addImm(Offset);
 | |
|       if (MemDesc.TSFlags & SystemZII::HasIndex)
 | |
|         MIB.addReg(0);
 | |
|       transferDeadCC(&MI, MIB);
 | |
|       return MIB;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
 | |
|     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
 | |
|     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
 | |
|     LiveIntervals *LIS) const {
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   case SystemZ::L128:
 | |
|     splitMove(MI, SystemZ::LG);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::ST128:
 | |
|     splitMove(MI, SystemZ::STG);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LX:
 | |
|     splitMove(MI, SystemZ::LD);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::STX:
 | |
|     splitMove(MI, SystemZ::STD);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LBMux:
 | |
|     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LHMux:
 | |
|     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LLCRMux:
 | |
|     expandZExtPseudo(MI, SystemZ::LLCR, 8);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LLHRMux:
 | |
|     expandZExtPseudo(MI, SystemZ::LLHR, 16);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LLCMux:
 | |
|     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LLHMux:
 | |
|     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LMux:
 | |
|     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LOCMux:
 | |
|     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LOCHIMux:
 | |
|     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LOCRMux:
 | |
|     expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::STCMux:
 | |
|     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::STHMux:
 | |
|     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::STMux:
 | |
|     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::STOCMux:
 | |
|     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::LHIMux:
 | |
|     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::IIFMux:
 | |
|     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::IILMux:
 | |
|     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::IIHMux:
 | |
|     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::NIFMux:
 | |
|     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::NILMux:
 | |
|     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::NIHMux:
 | |
|     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::OIFMux:
 | |
|     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::OILMux:
 | |
|     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::OIHMux:
 | |
|     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::XIFMux:
 | |
|     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::TMLMux:
 | |
|     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::TMHMux:
 | |
|     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::AHIMux:
 | |
|     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::AHIMuxK:
 | |
|     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::AFIMux:
 | |
|     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::CHIMux:
 | |
|     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::CFIMux:
 | |
|     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::CLFIMux:
 | |
|     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::CMux:
 | |
|     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::CLMux:
 | |
|     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
 | |
|     return true;
 | |
| 
 | |
|   case SystemZ::RISBMux: {
 | |
|     bool DestIsHigh = isHighReg(MI.getOperand(0).getReg());
 | |
|     bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg());
 | |
|     if (SrcIsHigh == DestIsHigh)
 | |
|       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
 | |
|     else {
 | |
|       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
 | |
|       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   case SystemZ::ADJDYNALLOC:
 | |
|     splitAdjDynAlloc(MI);
 | |
|     return true;
 | |
| 
 | |
|   case TargetOpcode::LOAD_STACK_GUARD:
 | |
|     expandLoadStackGuard(&MI);
 | |
|     return true;
 | |
| 
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
 | |
|   if (MI.getOpcode() == TargetOpcode::INLINEASM) {
 | |
|     const MachineFunction *MF = MI.getParent()->getParent();
 | |
|     const char *AsmStr = MI.getOperand(0).getSymbolName();
 | |
|     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
 | |
|   }
 | |
|   return MI.getDesc().getSize();
 | |
| }
 | |
| 
 | |
| SystemZII::Branch
 | |
| SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   case SystemZ::BR:
 | |
|   case SystemZ::J:
 | |
|   case SystemZ::JG:
 | |
|     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
 | |
|                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
 | |
| 
 | |
|   case SystemZ::BRC:
 | |
|   case SystemZ::BRCL:
 | |
|     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
 | |
|                              MI.getOperand(1).getImm(), &MI.getOperand(2));
 | |
| 
 | |
|   case SystemZ::BRCT:
 | |
|   case SystemZ::BRCTH:
 | |
|     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
 | |
|                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
 | |
| 
 | |
|   case SystemZ::BRCTG:
 | |
|     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
 | |
|                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
 | |
| 
 | |
|   case SystemZ::CIJ:
 | |
|   case SystemZ::CRJ:
 | |
|     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
 | |
|                              MI.getOperand(2).getImm(), &MI.getOperand(3));
 | |
| 
 | |
|   case SystemZ::CLIJ:
 | |
|   case SystemZ::CLRJ:
 | |
|     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
 | |
|                              MI.getOperand(2).getImm(), &MI.getOperand(3));
 | |
| 
 | |
|   case SystemZ::CGIJ:
 | |
|   case SystemZ::CGRJ:
 | |
|     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
 | |
|                              MI.getOperand(2).getImm(), &MI.getOperand(3));
 | |
| 
 | |
|   case SystemZ::CLGIJ:
 | |
|   case SystemZ::CLGRJ:
 | |
|     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
 | |
|                              MI.getOperand(2).getImm(), &MI.getOperand(3));
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("Unrecognized branch opcode");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
 | |
|                                            unsigned &LoadOpcode,
 | |
|                                            unsigned &StoreOpcode) const {
 | |
|   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
 | |
|     LoadOpcode = SystemZ::L;
 | |
|     StoreOpcode = SystemZ::ST;
 | |
|   } else if (RC == &SystemZ::GRH32BitRegClass) {
 | |
|     LoadOpcode = SystemZ::LFH;
 | |
|     StoreOpcode = SystemZ::STFH;
 | |
|   } else if (RC == &SystemZ::GRX32BitRegClass) {
 | |
|     LoadOpcode = SystemZ::LMux;
 | |
|     StoreOpcode = SystemZ::STMux;
 | |
|   } else if (RC == &SystemZ::GR64BitRegClass ||
 | |
|              RC == &SystemZ::ADDR64BitRegClass) {
 | |
|     LoadOpcode = SystemZ::LG;
 | |
|     StoreOpcode = SystemZ::STG;
 | |
|   } else if (RC == &SystemZ::GR128BitRegClass ||
 | |
|              RC == &SystemZ::ADDR128BitRegClass) {
 | |
|     LoadOpcode = SystemZ::L128;
 | |
|     StoreOpcode = SystemZ::ST128;
 | |
|   } else if (RC == &SystemZ::FP32BitRegClass) {
 | |
|     LoadOpcode = SystemZ::LE;
 | |
|     StoreOpcode = SystemZ::STE;
 | |
|   } else if (RC == &SystemZ::FP64BitRegClass) {
 | |
|     LoadOpcode = SystemZ::LD;
 | |
|     StoreOpcode = SystemZ::STD;
 | |
|   } else if (RC == &SystemZ::FP128BitRegClass) {
 | |
|     LoadOpcode = SystemZ::LX;
 | |
|     StoreOpcode = SystemZ::STX;
 | |
|   } else if (RC == &SystemZ::VR32BitRegClass) {
 | |
|     LoadOpcode = SystemZ::VL32;
 | |
|     StoreOpcode = SystemZ::VST32;
 | |
|   } else if (RC == &SystemZ::VR64BitRegClass) {
 | |
|     LoadOpcode = SystemZ::VL64;
 | |
|     StoreOpcode = SystemZ::VST64;
 | |
|   } else if (RC == &SystemZ::VF128BitRegClass ||
 | |
|              RC == &SystemZ::VR128BitRegClass) {
 | |
|     LoadOpcode = SystemZ::VL;
 | |
|     StoreOpcode = SystemZ::VST;
 | |
|   } else
 | |
|     llvm_unreachable("Unsupported regclass to load or store");
 | |
| }
 | |
| 
 | |
| unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
 | |
|                                               int64_t Offset) const {
 | |
|   const MCInstrDesc &MCID = get(Opcode);
 | |
|   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
 | |
|   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
 | |
|     // Get the instruction to use for unsigned 12-bit displacements.
 | |
|     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
 | |
|     if (Disp12Opcode >= 0)
 | |
|       return Disp12Opcode;
 | |
| 
 | |
|     // All address-related instructions can use unsigned 12-bit
 | |
|     // displacements.
 | |
|     return Opcode;
 | |
|   }
 | |
|   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
 | |
|     // Get the instruction to use for signed 20-bit displacements.
 | |
|     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
 | |
|     if (Disp20Opcode >= 0)
 | |
|       return Disp20Opcode;
 | |
| 
 | |
|     // Check whether Opcode allows signed 20-bit displacements.
 | |
|     if (MCID.TSFlags & SystemZII::Has20BitOffset)
 | |
|       return Opcode;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|   case SystemZ::L:      return SystemZ::LT;
 | |
|   case SystemZ::LY:     return SystemZ::LT;
 | |
|   case SystemZ::LG:     return SystemZ::LTG;
 | |
|   case SystemZ::LGF:    return SystemZ::LTGF;
 | |
|   case SystemZ::LR:     return SystemZ::LTR;
 | |
|   case SystemZ::LGFR:   return SystemZ::LTGFR;
 | |
|   case SystemZ::LGR:    return SystemZ::LTGR;
 | |
|   case SystemZ::LER:    return SystemZ::LTEBR;
 | |
|   case SystemZ::LDR:    return SystemZ::LTDBR;
 | |
|   case SystemZ::LXR:    return SystemZ::LTXBR;
 | |
|   case SystemZ::LCDFR:  return SystemZ::LCDBR;
 | |
|   case SystemZ::LPDFR:  return SystemZ::LPDBR;
 | |
|   case SystemZ::LNDFR:  return SystemZ::LNDBR;
 | |
|   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
 | |
|   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
 | |
|   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
 | |
|   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
 | |
|   // actually use the condition code, we may turn it back into RISGB.
 | |
|   // Note that RISBG is not really a "load-and-test" instruction,
 | |
|   // but sets the same condition code values, so is OK to use here.
 | |
|   case SystemZ::RISBGN: return SystemZ::RISBG;
 | |
|   default:              return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return true if Mask matches the regexp 0*1+0*, given that zero masks
 | |
| // have already been filtered out.  Store the first set bit in LSB and
 | |
| // the number of set bits in Length if so.
 | |
| static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
 | |
|   unsigned First = findFirstSet(Mask);
 | |
|   uint64_t Top = (Mask >> First) + 1;
 | |
|   if ((Top & -Top) == Top) {
 | |
|     LSB = First;
 | |
|     Length = findFirstSet(Top);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
 | |
|                                    unsigned &Start, unsigned &End) const {
 | |
|   // Reject trivial all-zero masks.
 | |
|   Mask &= allOnes(BitSize);
 | |
|   if (Mask == 0)
 | |
|     return false;
 | |
| 
 | |
|   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
 | |
|   // the msb and End specifies the index of the lsb.
 | |
|   unsigned LSB, Length;
 | |
|   if (isStringOfOnes(Mask, LSB, Length)) {
 | |
|     Start = 63 - (LSB + Length - 1);
 | |
|     End = 63 - LSB;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
 | |
|   // of the low 1s and End specifies the lsb of the high 1s.
 | |
|   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
 | |
|     assert(LSB > 0 && "Bottom bit must be set");
 | |
|     assert(LSB + Length < BitSize && "Top bit must be set");
 | |
|     Start = 63 - (LSB - 1);
 | |
|     End = 63 - (LSB + Length);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
 | |
|                                            SystemZII::FusedCompareType Type,
 | |
|                                            const MachineInstr *MI) const {
 | |
|   switch (Opcode) {
 | |
|   case SystemZ::CHI:
 | |
|   case SystemZ::CGHI:
 | |
|     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
 | |
|       return 0;
 | |
|     break;
 | |
|   case SystemZ::CLFI:
 | |
|   case SystemZ::CLGFI:
 | |
|     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
 | |
|       return 0;
 | |
|     break;
 | |
|   case SystemZ::CL:
 | |
|   case SystemZ::CLG:
 | |
|     if (!STI.hasMiscellaneousExtensions())
 | |
|       return 0;
 | |
|     if (!(MI && MI->getOperand(3).getReg() == 0))
 | |
|       return 0;
 | |
|     break;
 | |
|   }
 | |
|   switch (Type) {
 | |
|   case SystemZII::CompareAndBranch:
 | |
|     switch (Opcode) {
 | |
|     case SystemZ::CR:
 | |
|       return SystemZ::CRJ;
 | |
|     case SystemZ::CGR:
 | |
|       return SystemZ::CGRJ;
 | |
|     case SystemZ::CHI:
 | |
|       return SystemZ::CIJ;
 | |
|     case SystemZ::CGHI:
 | |
|       return SystemZ::CGIJ;
 | |
|     case SystemZ::CLR:
 | |
|       return SystemZ::CLRJ;
 | |
|     case SystemZ::CLGR:
 | |
|       return SystemZ::CLGRJ;
 | |
|     case SystemZ::CLFI:
 | |
|       return SystemZ::CLIJ;
 | |
|     case SystemZ::CLGFI:
 | |
|       return SystemZ::CLGIJ;
 | |
|     default:
 | |
|       return 0;
 | |
|     }
 | |
|   case SystemZII::CompareAndReturn:
 | |
|     switch (Opcode) {
 | |
|     case SystemZ::CR:
 | |
|       return SystemZ::CRBReturn;
 | |
|     case SystemZ::CGR:
 | |
|       return SystemZ::CGRBReturn;
 | |
|     case SystemZ::CHI:
 | |
|       return SystemZ::CIBReturn;
 | |
|     case SystemZ::CGHI:
 | |
|       return SystemZ::CGIBReturn;
 | |
|     case SystemZ::CLR:
 | |
|       return SystemZ::CLRBReturn;
 | |
|     case SystemZ::CLGR:
 | |
|       return SystemZ::CLGRBReturn;
 | |
|     case SystemZ::CLFI:
 | |
|       return SystemZ::CLIBReturn;
 | |
|     case SystemZ::CLGFI:
 | |
|       return SystemZ::CLGIBReturn;
 | |
|     default:
 | |
|       return 0;
 | |
|     }
 | |
|   case SystemZII::CompareAndSibcall:
 | |
|     switch (Opcode) {
 | |
|     case SystemZ::CR:
 | |
|       return SystemZ::CRBCall;
 | |
|     case SystemZ::CGR:
 | |
|       return SystemZ::CGRBCall;
 | |
|     case SystemZ::CHI:
 | |
|       return SystemZ::CIBCall;
 | |
|     case SystemZ::CGHI:
 | |
|       return SystemZ::CGIBCall;
 | |
|     case SystemZ::CLR:
 | |
|       return SystemZ::CLRBCall;
 | |
|     case SystemZ::CLGR:
 | |
|       return SystemZ::CLGRBCall;
 | |
|     case SystemZ::CLFI:
 | |
|       return SystemZ::CLIBCall;
 | |
|     case SystemZ::CLGFI:
 | |
|       return SystemZ::CLGIBCall;
 | |
|     default:
 | |
|       return 0;
 | |
|     }
 | |
|   case SystemZII::CompareAndTrap:
 | |
|     switch (Opcode) {
 | |
|     case SystemZ::CR:
 | |
|       return SystemZ::CRT;
 | |
|     case SystemZ::CGR:
 | |
|       return SystemZ::CGRT;
 | |
|     case SystemZ::CHI:
 | |
|       return SystemZ::CIT;
 | |
|     case SystemZ::CGHI:
 | |
|       return SystemZ::CGIT;
 | |
|     case SystemZ::CLR:
 | |
|       return SystemZ::CLRT;
 | |
|     case SystemZ::CLGR:
 | |
|       return SystemZ::CLGRT;
 | |
|     case SystemZ::CLFI:
 | |
|       return SystemZ::CLFIT;
 | |
|     case SystemZ::CLGFI:
 | |
|       return SystemZ::CLGIT;
 | |
|     case SystemZ::CL:
 | |
|       return SystemZ::CLT;
 | |
|     case SystemZ::CLG:
 | |
|       return SystemZ::CLGT;
 | |
|     default:
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
 | |
|   if (!STI.hasLoadAndTrap())
 | |
|     return 0;
 | |
|   switch (Opcode) {
 | |
|   case SystemZ::L:
 | |
|   case SystemZ::LY:
 | |
|     return SystemZ::LAT;
 | |
|   case SystemZ::LG:
 | |
|     return SystemZ::LGAT;
 | |
|   case SystemZ::LFH:
 | |
|     return SystemZ::LFHAT;
 | |
|   case SystemZ::LLGF:
 | |
|     return SystemZ::LLGFAT;
 | |
|   case SystemZ::LLGT:
 | |
|     return SystemZ::LLGTAT;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
 | |
|                                      MachineBasicBlock::iterator MBBI,
 | |
|                                      unsigned Reg, uint64_t Value) const {
 | |
|   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
 | |
|   unsigned Opcode;
 | |
|   if (isInt<16>(Value))
 | |
|     Opcode = SystemZ::LGHI;
 | |
|   else if (SystemZ::isImmLL(Value))
 | |
|     Opcode = SystemZ::LLILL;
 | |
|   else if (SystemZ::isImmLH(Value)) {
 | |
|     Opcode = SystemZ::LLILH;
 | |
|     Value >>= 16;
 | |
|   } else {
 | |
|     assert(isInt<32>(Value) && "Huge values not handled yet");
 | |
|     Opcode = SystemZ::LGFI;
 | |
|   }
 | |
|   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
 | |
| }
 | |
| 
 | |
| bool SystemZInstrInfo::
 | |
| areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
 | |
|                                 AliasAnalysis *AA) const {
 | |
| 
 | |
|   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
 | |
|     return false;
 | |
| 
 | |
|   // If mem-operands show that the same address Value is used by both
 | |
|   // instructions, check for non-overlapping offsets and widths. Not
 | |
|   // sure if a register based analysis would be an improvement...
 | |
| 
 | |
|   MachineMemOperand *MMOa = *MIa.memoperands_begin();
 | |
|   MachineMemOperand *MMOb = *MIb.memoperands_begin();
 | |
|   const Value *VALa = MMOa->getValue();
 | |
|   const Value *VALb = MMOb->getValue();
 | |
|   bool SameVal = (VALa && VALb && (VALa == VALb));
 | |
|   if (!SameVal) {
 | |
|     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
 | |
|     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
 | |
|     if (PSVa && PSVb && (PSVa == PSVb))
 | |
|       SameVal = true;
 | |
|   }
 | |
|   if (SameVal) {
 | |
|     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
 | |
|     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
 | |
|     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
 | |
|     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
 | |
|     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
 | |
|     if (LowOffset + LowWidth <= HighOffset)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 |